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Abstract

For a simple undirected weighted graph G = (V, E, w, c), the weighted total domi-
nation problem is to find a total dominating set S with the minimum weight cost. A
total dominating set S is a vertex subset satisfying that for each vertex in V there is
at least one neighboring vertex in S. We propose a knowledge-based iterated local
search algorithm for this problem that combines a reduction procedure to reduce
the input graph, a learning-based initialization to generate high-quality initial so-
lutions and a solution-based iterated local search to conduct intensive solution ex-
amination. Experiments on 342 benchmark instances show that the algorithm out-
performs state-of-the-art algorithms. In particular, it reports 93 new upper bounds
and 249 same results (including 165 known optimal results). The impact of each
component of the algorithm is examined.

Keywords: Solution-based search; Learning-based perturbation; Total dominating
set.
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Nomenclature

BKV best known value of a WTDP instance

CPLEX IBM ILOG mathematical program solver

GA genetic algorithm

GRASP greedy randomized adaptive search procedure

ILP integer linear programming model

KILS knowledge-based iterated local search algorithm

MIP mixed integer programming model

MTDS minimum total dominating set problem

SILS solution-based iterated local search procedure

VNS variable neighborhood search

WTDP weighted total domination problem

1 Introduction

Given a simple undirected graph G = (V, E), where V is the set of vertices
and E ⊆ V × V is the set of edges. The Minimum Total Dominating Set
(MTDS) problem is to find the total dominating set S ⊆ V with minimum
cardinality [3]. A total dominating set S satisfies the condition that every
vertex in V, including those in S has at least one neighboring vertex in S.

The MTDS is NP-hard in simple undirected graphs [17], and first appeared
in the 1980s [3]. A typical application of the MTDS is the committee for-
mation problem in notification systems [10]. Suppose that we have a large
number of candidate committee members and we know for each member
the members with whom he/she can communicate. We want to establish
a restrictive committee by selecting as few members as possible such that
each selected or non-selected member is able to communicate with at least
one selected committee member. By considering that V is the set of mem-
bers, and E is the edge set such that member a is linked to member b if they
can communicate with each other. Then the committee formation problem
can be conveniently modeled by the MTDS. Other applications of the MTDS
include network resource allocation [10], computer network backup [13],
and biological network analysis [21].

As a variant of the MTDS, the weighted total domination problem (WTDP)
on a vertex weighted and edge weighted graph aims to find a total dom-
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inating set S to minimize a weight cost function [20]. Specifically, let G =
(V, E, w, c) be an undirected graph with a vertex set V, an edge set E, a
vertex weight vector w, and an edge weight vector c. Then, given a vertex
subset S of V, its weight cost f (S) consists of 1) the sum weight of all ver-
tices in S; 2) the sum weight of all edges between any two vertices that are
both in S; and 3) the sum of the minimum weights of edges between each
vertex in V \ S and its neighbors in S. The WTDP is to find a vertex subset
which minimizes these three sums. Formally, the WTDP can be stated as
the following mathematical model [20].

Minimize f (S) =
|V|

∑
i=1

w(vi)xi +
|V|

∑
i=1

∑
{vi,vj}∈E

c(vi, vj)xixj+

|V|

∑
i=1

∑
{vi,vj}∈E

min{c(vi, vj)|xj = 1}(1− xi)

(1)

subject to ∑
{vi,vj}∈E

xj ≥ 1, ∀i ∈ {1, . . . , |V|} (2)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , |V|} (3)

where |V| is the number of vertices; xi = 1 if vertex vi is in S, otherwise,
xi = 0; {vi, vj} ∈ E is an edge connecting vertices vi and vj; c(vi, vj) is the
weight of edge {vi, vj} ∈ E and w(vi) is the weight of vertex vi ∈ V. Equa-
tion (1) (objective function) is to minimize the total weight cost. Constraint
(2) guarantees that each vertex in V has at least one neighbor vertex in S.
Constraint (3) ensures the binary nature for variable xi.

Figure 1(a) shows a graph G with 8 vertices {v1, . . . , v8} whose weights are
given in the vertices, and 11 edges whose weights are on the edges respec-
tively. Figure 1(b) shows a total dominating set S = {v3, v4, v7, v8}, lead-
ing to an objective value of 41, since the sum weight of vertices of S is 26,
the sum weight of edges between two vertices of S, i.e., edges {v3, v4} and
{v7, v8}, is 6, and the sum of minimum edge weights from vertices v1, v2, v5
and v6 to S (i.e., the weights of edges {v1, v8}, {v2, v4},{v5, v4} and {v6, v8})
is 9. Figure 1(c) illustrates an optimal total dominating set with a minimum
objective value of 35.

The WTDP is also an NP-hard problem [20], as it degenerates to the well-
known MTDS problem if we set each vertex weight to 1 and each edge
weight to 0. The WTDP is notable for its ability to formulate a variety of
real-life applications, such as social network information spreading [12], or-
ganization network global decisions [11], and rescue facility placement [4].
For instance, the WTDP can be used to formulate a more realistic version
of the committee establishment problem mentioned previously, where the
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(a) A given graph G (b) A total dominating set
{v3, v4, v7, v8}

(c) An optimal total dom-
inating set {v4, v6, v8}

Fig. 1. A graph, a total dominating set, and an optimal total dominating set (the
vertices and edges involved by the objective function are in orange, and the other
vertices and edges are not colored).

weight of each vertex represents the cost of hiring the member, and the
weight of each edge represents the communication cost.

By reviewing the existing literature (see Section 2), we find that there are
few practical algorithms that can effectively solve the WTDP. In particular,
the exact algorithms in [1, 20] could only be used on instances with up to
|V| = 500 vertices due to the inevitable exponential time complexity. To
address such instances, computationally efficient heuristic algorithms have
been developed to yield high-quality solutions in reasonable computation
time. The heuristic algorithms in [1, 12] show greater success in solving in-
stances with up to |V| = 1000, but still lack stability on large instances with
at least 500 vertices. However, WTDP instances derived from real-world
applications can be much larger in size. Thus, there is a need to develop
more effective algorithms capable of finding satisfactory solutions for large
WTDP instances.

Recent studies have shown that the integration of knowledge-based tech-
niques and conventional heuristic approaches can yield exceptional perfor-
mance for various combinatorial optimization problems [6, 26, 28]. These
studies motivate us to investigate hybrid approaches to take advantage of
both the powerful local optimization and the knowledge-based strategies.
In this study, we introduce the first knowledge-based iterated local search
algorithm (KILS), which integrates a knowledge-based mechanism into the
popular iterated local search algorithm framework. We summarize the con-
tributions as follows.

We propose a two-phase local search (see the flow-chart in Section 4.1) that
integrates a remove-insert neighborhood to ensure an effective exploitation
in the first phase, and an adaptive penalty-based fitness function to guide
the local search process in the second phase. The algorithm uses historical
information learned from the discovered local optimal solutions to generate
good-quality initial solutions, and calls for probability learning to guide
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its perturbation procedure. The algorithm also uses a fast neighborhood
evaluation to shorten the computation time in both phases.

We evaluate the proposed algorithm on a total of 315 commonly used bench-
mark instances, and report 71 new record results (improved upper bounds)
and 244 equally best results including 160 known optimal results. More-
over, the proposed algorithm achieves the previous best results in a fraction
(< 10%) of the time required by the best existing algorithm in the literature.
In addition, we show 22 record-breaking best solutions out of the 27 real-
world benchmark instances.

The rest of the paper is organized as follows. Section 2 provides a literature
review on exact and heuristic algorithms for the WTDP. Section 3 presents
some basic definitions. Section 4 presents the proposed algorithm. Section
5 reports comparative results. Section 6 analyzes the impacts of key com-
ponents of the proposed algorithm. Conclusions and future work are dis-
cussed in the final section.

2 Literature review

This section provides an overview of both exact algorithms and heuristic
algorithms for the WTDP, while also addressing current research gaps in
this area.

2.1 Exact algorithms

Ma et al. [20] (2019) presented three integer linear programming (ILP) mod-
els, which are used to solve 45 small instances (20 ≤ |V| ≤ 100) with a time
limit of 1800 seconds using the mathematical programming solver CPLEX
(version 12.8). This approach is only applicable to instances of limited sizes
(with no more than 50 vertices).

Álvarez-Miranda and Sinnl [1] (2021) investigated two mixed integer pro-
gramming (MIP) models and generated 135 medium instances (75 ≤ |V| ≤
125). The two MIP models solved by the CPLEX solver (version 12.9) re-
spectively reported 133 and 148 optimal solutions for a total of 180 small
and medium instances with a time limit of 1800 seconds. Compared to
ILP [20], the MIP models obtained 15 better results and 30 equal results
out of the 45 small instances.

Kapunac et al. [12] (2022) used the CPLEX solver (version 20.1) to solve the
best MIP model of [1] (denoted by re-MIP) on a more powerful computing
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platform with an Intel Core i9-9900KF processor (3.6 GHz and 6 GB RAM
against the 2.5 GHz processor in [1]). With re-MIP, [12] obtained better re-
sults than those reported in [1] (160 vs. 148 optimal results) for the 180 small
and medium instances under the same time limit as in [20]. Therefore, we
use the results of [12] as our references of exact algorithms.

2.2 Heuristic algorithms

Due to their high complexity, exact algorithms do not scale well for large
instances and typically become unpractical for graphs with more than 125
vertices. Thus, heuristic algorithms are preferred to find suboptimal solu-
tions for large instances within a reasonable computation time.

Álvarez-Miranda and Sinnl [1] (2021) proposed a greedy randomized adap-
tive search procedure (GRASP) and a genetic algorithm (GA). In addition
to its greedy randomized solution construction procedure based on the re-
move operator, GRASP is characterized by its descent search procedure
which combines the insert operator and the remove operator. The GA incor-
porates a crossover operator, a random mutation, and the descent search.
The crossover operator produces an offspring by combining two parents
and iteratively removing vertices from the offspring with a greedy random-
ized strategy. The offspring is then mutated by randomly removing several
vertices. The descent search used to improve the offspring is the same as
GRASP. GRASP and GA were tested on the instances with |V| ≤ 125. Com-
pared to GRASP, GA obtained 85 better results and 50 equal results on the
135 medium instances, indicating that GA dominated GRASP under the
same time limit.

Kapunac et al. [12] (2022) introduced a variable neighborhood search (VNS)
algorithm, which alternates between a variable neighborhood descent phase
and a shaking phase. An initial solution constructive procedure is used to
generate a random solution. The variable neighborhood descent phase re-
lies on two types of basic moves (flip operator and 1-swap operator) to at-
tain a local optimum. The shaking phase carries out random perturbations
to produce new starting solutions. Besides, 135 large instances (250 ≤ |V| ≤
1000) are generated in [12]. In addition, Kapunac et al. [12] re-implemented
the GA algorithm in [1], which is called re-GA in this paper. Compared
to re-GA, VNS obtained 100 better results, 141 equal results, and 29 worse
results on the 270 medium and large instances. Besides, to reach its best
solutions, VNS consumed less time than any previous algorithm.

Therefore, re-GA and VNS are the most advanced existing heuristic al-
gorithms for solving the WTDP on the three sets of 315 benchmark in-
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stances including small instances (20 ≤ |V| ≤ 100), medium instances
(75 ≤ |V| ≤ 125) and large instances (250 ≤ |V| ≤ 1000). We use these
two algorithms as our main references of heuristic algorithms for our com-
putational study on these 315 benchmark instances. Besides, VNS was also
run on 27 real-world instances (1912 ≤ |V| ≤ 81306) from the Stanford
large network dataset collection [18] on the information spreading prob-
lem. However, we find that VNS reports incorrect weight cost of WTDP
for problem instances containing self-loops and multiple edges. Therefore,
when we test these real-world instances, we remove the self-loops and mul-
tiple edges to ensure that they are simple graphs.

Table 1 summarizes the methods discussed in this section. Column 1 shows
the authors and publication year of the literature. Column 2 indicates the
algorithm framework of the corresponding literature. Column 3 shows the
move operators used by the algorithm (not applicable to exact algorithms).
Column 4 indicates the groups of the instances on which each algorithm
has run.
Table 1
Representative exact and heuristic algorithms for the WTDP.

Literature Framework Operators Instance groups

Exact algorithms

Ma et al. (2019) [20] ILP - small

Álvarez-Miranda and Sinnl (2021) [1] MIP - small, medium

Kapunac et al. (2022) [12] re-MIP - small, medium, large

Heuristic methods

Álvarez-Miranda and Sinnl (2021) [1] GRASP remove, insert small, medium

Álvarez-Miranda and Sinnl (2021) [1] GA remove, insert medium

Kapunac et al. (2022) [12] re-GA remove, insert medium, large

Kapunac et al. (2022) [12] VNS flip, 1-swap small, medium, large, real-world

2.3 Research gaps

As discussed in the previous sections, considerable efforts have been made
to develop various solution methods for the WTDP. Nevertheless, there is
still room for improvement in terms of more effective solution techniques,
considering the following research gaps: (1) Recently, approaches combin-
ing knowledge-based techniques and optimization methods have shown
promising results for various combinatorial optimization problems [6, 26,
28]. However, the use of knowledge-based approaches in solving the WTDP
is still missing; (2) The WTDP possesses distinctive features that can be
used to guide dedicated search algorithms. By effectively learning these fea-
tures, algorithm performance can be significantly enhanced. For instance,
viewing the WTDP as a strongly constrained problem allows for the ex-

7



ploration of tunneling methods that examine both feasible and infeasible
regions to find high-quality solutions. However, these methods have not
yet been studied specifically for solving the WTDP.

To address these gaps, this study introduces the first knowledge-based it-
erated local search for the WTDP. The primary objective of this work is
twofold. First, given the importance of WTDP, we aim to enrich the exist-
ing literature by proposing a novel solution approach capable of achieving
high-quality solutions with reduced computing effort. Second, we aim to
make methodological contributions to the integration of knowledge-based
techniques with optimization methods and to the improvement of the pop-
ular iterated local search method for general combinatorial optimization.

3 Definitions

For a precise description of the KILS algorithm (see Section 4), we first intro-
duce the following definitions, where G0 = (V0, E0, w0, c0) is a given undi-
rected weighted graph.

De f inition 1 : A crucial vertex is a vertex that must be contained by all total
dominating sets. A redundant vertex is a vertex that is out of any optimal
solution. The remaining vertices are unknown vertices.

We use Sc to denote the set of crucial vertices, Sr the set of redundant vertices,
and U = V0 \ {Sc ∪ Sr} the set of unknown vertices.

Figure 2 presents a graph G0 with 10 vertices {v1, . . . , v10}. According to
Rule 1 (see Appendix A), v4 and v8, which have a neighbor of degree 1, are
crucial vertices, and Sc = {v4, v8} (in violet). According to Rule 2 (see Ap-
pendix A), vertices v9 and v10 are redundant vertices because they have a
degree of 1 and are neighbors of crucial vertices, but don’t have the min-
imum vertex weight. Thus, Sr = {v9, v10} (in grey). The set of unknown
vertices U = {v1, v2, v3, v5, v6, v7} (in blue).

De f inition 2: For a WTDP instance, a f easible solution is any candidate sub-
set satisfying the constraint that it is a total dominating set, i.e., each vertex
in V0 has at least one neighbor vertex in this subset. Otherwise, it is an
in f easible solution.

De f inition 3: For a given WTDP instance, its f easible solution space Ω con-
tains all feasible solutions. Formally, Ω is given by
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Fig. 2. Illustration of crucial (violet), redundant (grey) and unknown (blue) ver-
tices.

Ω = {(x1, x2, . . . , x|V0|)| ∑
{vi,vj}∈E0

xj ≥ 1, xi ∈ {0, 1}, 1 ≤ i, j ≤ |V0|} (4)

De f inition 4: For a WTDP instance, its f easible and in f easible solution space Ω+

includes all feasible and infeasible solutions, i.e., all non-empty subsets of
V0, which is described as below.

Ω+ = {(x1, x2, . . . , x|V0|)|
|V0|

∑
i=1

xi > 0, xi ∈ {0, 1}, 1 ≤ i ≤ |V0|} (5)

Definition 1 presents three types of vertices that are used in the reduction
procedure of the KILS algorithm. Definitions 2-4 are needed to illustrate the
second phase of the local search procedure.

4 The knowledge-based iterated local search algorithm

In this section, we first introduce the general procedure of the proposed
KILS algorithm and then present each of its components.

4.1 General approach

Algorithm 1 and Figure 3 show the general architecture of the KILS algo-
rithm. At the beginning of the algorithm, a reduction procedure is used to
preprocess the given input graph (line 7). Then, a number of iterations fol-
low, in each of which the learning-based initialization procedure (line 11)
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generates an initial solution S and the solution-based iterated local search
procedure (line 12) improves the solution S until the stopping condition is
reached. The recorded overall best solution (S∗) is updated whenever nec-
essary, and is output at the end of the KILS algorithm.

Fig. 3. Flowchart of the proposed KILS algorithm.

The proposed KILS algorithm necessitates some parameters, including hash
vectors Hk and hash functions hk (k = 1, ..., 6) to determine tabu status in
solution-based iterated local search (Section 4.3.3); greediness ratio ε to bal-
ance the quality and randomness of initial solutions (Section 4.2); historical
information vector P to generate informed initial solutions (Section 4.2);
perturbation probability vector Q to obtain promising new starting solu-
tions (Section 4.3.2); penalty coefficient α to control the importance given to
the penalty function (Section 4.3.1.2).

Algorithm 1 The main framework of the KILS algorithm
Input: Given graph G0 = (V0, E0, w0, c0); hash vectors Hk with a length of L (k =

1, . . . , 6); hash functions hk (k = 1, . . . , 6); greediness ratio ε.
Output: The overall best feasible solution S∗ ever found.
1: for l ← 0 to L− 1 do
2: H1[l]← 0; H2[l]← 0; H3[l]← 0; /*Initialization of hash vectors */
3: H4[l]← 0; H5[l]← 0; H6[l]← 0;
4: end for
5: Initialize the historical information vector P /*See Section 4.2*/
6: Initialize the perturbation probability vector Q /*See Section 4.3.2*/
7: G ← Reduction(G0)
8: S∗ ← ∅ /*Initialize the overall best feasible solution S∗*/
9: while stopping condition is not met do

10: α← 2 /*The penalty coefficient α is initially set as 2*/
11: S← Learning Based Initialization(G, P, ε)

/* Generate an initial solution S*/
12: (S, P, Q)← Solution Based Iterated Local Search(G, S, Hk, hk, α, P, Q)

/*Improve the initial solution S, k = 1, . . . , 6*/
13: if f (S) < f (S∗) then
14: S∗ ← S /*Update the overall best feasible solution S∗ ever found*/
15: end if
16: end while
17: return S∗

The reduction procedure is designed to reduce the search space (line 7, Al-
gorithm 1). Specifically, before the learning-based initialization procedure,
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we identify the set of crucial vertices Sc and the set of redundant vertices
Sr according to the rules presented in Appendix A. Then we simplify the
given graph as follows: 1) all vertices in Sc are put in S; 2) all vertices in Sr
and their connected edges are deleted; 3) the weights of the edges between
the deleted vertices and their neighbor vertices are added to the latter, to
ensure that the objective function remains unchanged after the reduction.
Thus, we reduce the input graph G0 = (V0, E0, w0, c0) to the reduced graph
G = (V, E, w, c), where V = V0 \ Sr. Throughout the whole KILS algorithm,
none of the vertices in Sc will be traversed or moved during the subsequent
neighborhood search.

To explain this process, we consider the graph in Figure 2 with 10 vertices
V0 = {v1, . . . , v10}. Figure 4(a) depicts the input graph G0 = (V0, E0, w0, c0)
with the set of crucial vertices Sc = {v4, v8}, the set of redundant vertices
Sr = {v9, v10} according to the Appendix A. After reducing the input graph
G0 = (V0, E0, w0, c0), we obtain the reduced graph G = (V, E, w, c) by
adding the weight of edge {v4, v10} to v4 and the weight of edge {v8,v9}
to v8 as shown in Figure 4(b), where V = {v1, . . . , v8}, w(v4) = w0(v4) +
c0(v4, v10), and w(v8) = w0(v8) + c0(v8, v9).

(a) An input graph G0 = (V0, E0, w0, c0) (b) A reduced graph G = (V, E, w, c)

Fig. 4. Illustration of reduction procedure.

4.2 Learning-based initialization

Learning-based initialization aims to generate an initial feasible solution for
the reduced graph (Algorithm 2). It initializes the current solution S with
V, and iteratively removes one vertex from S according to the historical
information vector P = {P[1], P[2], . . . , P[|V|]} (lines 3-15, Algorithm 2).
P[i] records the probability of vi being removed from S, and is initially set
to 0.5, ∀i ∈ {1, 2, . . . , |V|} (line 5, Algorithm 1). Specifically, when removing
one vertex from S each time: 1) the vertex vi ∈ CL with the highest value
P[i] in P is chosen with a probability of ε, or a random vertex vi ∈ CL is
selected (lines 5-9, Algorithm 2), where CL represents the set of unchosen
vertices; 2) the chosen vi is removed from CL (line 10, Algorithm 2); 3) vi
is removed from S if S \ {vi} is still a feasible solution and P[i] is higher
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than a random probability (lines 12-14, Algorithm 2), or vi is ignored. The
initialization procedure terminates when CL becomes empty.

Algorithm 2 Learning-based initialization
Input: Reduced graph G = (V, E, w, c); historical information vector P; greediness

ratio ε
Output: A feasible solution S
1: S← V /*Initialize the current solution S */
2: CL← S /*Initialize the set of unchosen vertices CL*/
3: while CL 6= ∅ do
4: /*Choose a vertex vi */
5: if rand(0, 1) < ε then
6: Choose a vertex vi ∈ CL with the largest value P[i] in vector P
7: else
8: Randomly choose a vertex vi ∈ CL
9: end if

10: CL← CL \ {vi} /*Remove the chosen vertex vi from CL*/
11: /*Remove the chosen vertex vi from S*/
12: if S \ {vi} is a feasible solution and rand(0, 1) < P[i] then
13: S← S \ {vi}
14: end if
15: end while
16: return S

To explain this process, we consider the reduced graph G = (V, E, w, c) in
Figure 4(b) (with vertices V = {v1, v2, . . . , v8}). Figure 5 provides an exam-
ple in which CL = S = V initially. First, according to the greediness ratio ε
and vector P, the vertex v2 with the largest value P[2] in vector P is chosen
and removed from CL and S. Second, v6, v1 and v5 are successively chosen
and removed from CL and S. Then, the vertices v3, v4, v7 and v8 are succes-
sively removed from CL, but can not be removed from S. Finally, a feasible
solution S = {v3, v4, v7, v8} is obtained.

This initialization procedure thus provides a feasible solution of reasonable
quality, which will be further improved by the subsequent solution-based
iterated local search procedure.

4.3 Solution-based iterated local search procedure

Beginning with the solution that comes from the learning-based initializa-
tion procedure (Section 4.2), the KILS algorithm designs the solution-based
iterated local search procedure (SILS) (Algorithm 3) to improve the solu-
tion. Specifically, SILS alternates the two-phase local search (line 4) and the
learning-based perturbation (line 13) until its best solution cannot be im-
proved for ω consecutive iterations (ω stands for the depth of SILS). More-
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Fig. 5. Generate an initial feasible solution by iteratively removing vertices with
the historical information vector (the vertices and edges involved by the objective
function of S are in orange and the other vertices and edges are not colored).

over, the historical information vector P, perturbation probability vector Q,
the best feasible solution Sbest found during SILS, and the consecutive non-
improvement counter NoImprove are updated (lines 6-9), if the best feasible
solution Sb found during the two-phase local search is better than Sbest.

4.3.1 Two-phase local search

As a general method, two-phase search has been successfully adopted to
solve various difficult optimization problems such as the multidimensional
knapsack problem [15, 27], quadratic knapsack problem [2], and colored
traveling salesman problem [8, 9].

The two-phase local search as described in Algorithm 4 aims to improve the
input solution. If the input solution is feasible, the first phase, also called the
solution-based descent phase, performs an intensive exploitation of candi-
date solutions to quickly find a local optimal solution (lines 2-4); otherwise,
this phase is skipped. Then, the second phase, also called the solution-based
feasible and infeasible phase, is invoked to explore larger search areas start-
ing from the local optimal solution (line 5).

4.3.1.1 Solution-based descent phase The solution-based descent phase
explores the feasible search space Ω only and tries to find a local optimal
feasible solution rapidly. This phase iteratively replaces the current solution
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Algorithm 3 The solution-based iterated local search
Input: Reduced graph G = (V, E, w, c); the current solution S; hash vectors Hk

with a length of L, k = 1, . . . , 6; hash functions hk, k = 1, . . . , 6; penalty coeffi-
cient α; probability vectors P and Q.

Output: The best feasible solution Sbest found during SILS; updated probability
vectors P.

1: Sbest ← ∅ /*Initialize the best feasible solution Sbest found during SILS*/
2: NoImprove ← 0 /*Indicate the consecutive iterations where Sbest is not up-

dated*/
3: while NoImprove < ω do
4: (S, Sb, α) ← TwoPhase LocalSearch(S, Hk, hk, α) /*Update the current so-

lution S and the best feasible solution Sb found during two-phase local
search*/

5: if f (Sb) < f (Sbest) then
6: Update historical information vector P with Equations (17)-(18)
7: Update perturbation probability vector Q with Equation (19)
8: Sbest ← Sb /*Update the best feasible solution Sbest found during SILS*/
9: NoImprove← 0

10: else
11: NoImprove← NoImprove + 1
12: end if
13: S← Learning Based Perturbation(G, S, Q)
14: end while
15: return (Sbest, P, Q)

Algorithm 4 Two-phase local search
Input: The current solution S; hash vectors Hk with a length of L, k = 1, . . . , 6;

hash functions hk, k = 1, . . . , 6; penalty coefficient α.
Output: The current solution S; the best feasible solution Sb found during two-

phase local search; penalty coefficient α.
1: Sb ← ∅ /*Initialize the best feasible solution Sb found during two-phase local

search*/
2: if F(S) = f (S) then
3: (S, Hk) ← Solution Based Descent(S, Hk, hk) /*1st-phase: find a local opti-

mal feasible solution, k = 1, 2, 3, Section 4.3.1.1*/
4: end if
5: (S, Sb, Hk, α) ← Solution Based Feasible In f easible(S, Sb, Hk, hk, α) /*2nd-

phase: find a local optimal feasible or infeasible solution, k = 4, 5, 6, Section
4.3.1.2*/

6: return (S, Sb, α)

S with a best admissible neighborhood solution S′ (lines 5-10, Algorithm 5).
We design a remove-insert operator to generate neighborhood solutions,
and hash vectors Hk, k = 1, 2, 3 to manage the admissibility of each neigh-
borhood solution (Section 4.3.3). This process is repeated until no improve-
ment is possible.
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Algorithm 5 The solution-based descent search
Input: The current solution S; hash vectors Hk, k = 1, 2, 3; hash functions hk, k =

1, 2, 3.
Output: The current solution S; hash vectors Hk, k = 1, 2, 3.
1: Calculate the neighborhood N1(S) /*N1(S) is defined in Equation (6)*/
2: NoImprove← 0 /*Indicate whether S has been improved*/
3: while NoImprove = 0 do
4: NoImprove← 1
5: Select a best admissible neighborhood solution S′ ∈ N1(S) in terms of ob-

jective function f with a remove-insert operator that satisfies H1(h1(S′)) ∧
H2(h2(S′)) ∧ H3(h3(S′)) = 0

6: if f (S′) < f (S) then
7: S← S′ /*Update the current solution S */
8: H1(h1(S))← 1; H2(h2(S))← 1; H3(h3(S))← 1 /*Update the hash vectors

with S*/
9: NoImprove← 0

10: end if
11: end while
12: return (S, Hk) /*k = 1, 2, 3*/

Remove-insert operator: This operator first removes a vertex vi from S.
Then, for each vi’s neighbor vl that has no neighbor vertex in S, its neigh-
bor vj ∈ V \ S that has the minimum incremental objective value (Equation
(10)) will be inserted to S (ties are broken randomly). Let A be the set of
eligible vertices for insertion after removing vi, and let remove - insert(vi, A)
denote the operation that removes vertex vi from S and inserts the vertices
from A. The neighborhood N1 induced by this move operator contains all
possible feasible solutions obtained by applying “remove-insert” to S.

N1(S) = {S⊕ remove - insert(vi, A)| vi ∈ S and vi /∈ Sc} (6)

The size of N1 is limited by O(|S| ×Max2
deg), where Maxdeg is the maximum

vertex degree in the graph G.

Fast Neighborhood Evaluation Technique: The remove-insert operator can
be regarded as a combination of a remove operator followed by several in-
sert operators. ∆ f (remove - insert(vi, A)) denotes the incremental objective
value after applying remove - insert(vi, A) and can be calculated by

∆ f (remove - insert(vi, A)) = ∆ f (remove(vi)) + ∑
vj∈A

∆ f (insert(vj)) (7)

where remove(vi) represents the operation that removes vertex vi from the
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current solution S and insert(vj) represents the operation that inserts vertex
vj into S.

To fasten the calculation of ∆ f (remove(vi)), two |V|-vectors M1 and M2
are adopted. Specifically, M1 and M2 are maintained in which the entry
M1[vi] (vi ∈ V) is the edge with the minimum weight in ES(vi) and M2[vi] (vi ∈
V) is the edge with the minimum weight in ES(vi) except M1[vi], i.e., M1[vi] =
arg min{c(vi, vj)| {vi, vj} ∈ ES(vi)} and M2[vi] = arg min {c(vi, vj)| {vi, vj} ∈
ES(vi) \ {M1[vi]}}. With these data structures, we can efficiently calculate
∆ f (remove(vi)) as follows.

∆ f (remove(vi)) = −w(vi)− ∑
{vi,vj}∈ES(vi)

c(vi, vj)+

c(M1[vi]) + ∑
{vi,vj}∈EV\S(vi)

γremove(vi, vj)
(8)

where ES(vi) = {{vi, vj}|{vi, vj} ∈ E, vj ∈ S} is the set of edges between
vertex vi and vertices in S; EV\S(vi) = {{vi, vj}|{vi, vj} ∈ E, vj ∈ V \
S} is the set of edges between vertex vi and vertices in V \ S, and the
γremove(vi, vj) for each {vi, vj} ∈ EV\S(vi) can be given by

γremove(vi, vj) =


−c(vi, vj), i f ES(vj) = {{vi, vj}};

−c(vi, vj) + c(M2[vj]), i f ES(vj) 6= {{vi, vj}}, {vi, vj} = M1[vj];

0, otherwise.
(9)

Then, vectors M1 and M2 are accordingly updated as follows: 1) M1[vj] ←
M2[vj], M2[vj] ← arg min{c(vj, vm)|{vj, vm} ∈ ES(vj) \ {M2[vj]}} for each
neighbor vertex vj of vi satisfying M1[vj] = {vi, vj}; 2) M2[vt] ← arg min
{c(vt, vm)|{vt, vm} ∈ ES(vt) \ {M2[vt]}} for each neighbor vertex vt of vi
satisfying M2[vt] = {vi, vt}. Finally, the edge {vi, vn} in ES(vn) will be
moved to EV\S(vn) for each neighbor vertex vn of vi. Clearly, updating M1

and M2 can be done in O(Max2
deg).

Similarly, the incremental objective value of inserting vj ∈ A into the solu-
tion S is computed by
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∆ f (insert(vj)) = w(vj) + ∑
{vj,vm}∈ES(vj)

c(vj, vm)−

c(M1[vj]) + ∑
{vj,vm}∈EV\S(vj)

γinsert(vj, vm)
(10)

where γinsert(vj, vm), (vj, vm) ∈ EV\S(vj), is given by

γinsert(vj, vm) =


c(vj, vm), i f ES(vm) = ∅;

c(vj, vm)− c(M1[vm]), i f ES(vm) 6= ∅, c(vj, vm) < c(M1[vm]);

0, otherwise.
(11)

When a remove-insert move is performed, the affected data structures M1
and M2 can be firstly updated according to the updating rule of the “re-
move” move. Then, vectors M1 and M2 will be accordingly updated as be-
low if an insert operator (i.e., insert(vj)) is performed: 1) M2[vm]← M1[vm],
M1[vm] ← {vj, vm}, for each neighbor vertex vm of vertex vj satisfying
c(vj, vm) < c(M1[vm]); 2) M2[vt] ← {vj, vt}, for each neighbor vertex vt
of vertex vj satisfying c(M1[vt]) ≤ c(vj, vt) < c(M2[vt]). The edge {vj, vn}
in EV\S(vn) will be moved into ES(vn) for each neighbor vertex vn of vj.
Vectors M1 and M2 can be updated in O(Max2

deg).

Figure 6 illustrates the solution-based descent phase operating on the given
graph. Suppose that S = {v3, v4, v7, v8} is the local optimal feasible solution
with the objective value of 41 obtained from the learning-based initializa-
tion algorithm. When removing v7 and inserting A = {v6}, an improved
neighborhood solution S ⊕ remove - insert(v7, {v6}) can be obtained. The
incremental objective value is the sum of ∆ f (remove(v7)) = −6 and the
∑u∈A ∆ f (insert(u)) = ∆ f (insert(v6)) = 5, that is, -1, and thus the objective
value of the improved solution is 40.

Fig. 6. Illustration of the solution-based descent search procedure (the vertices and
edges involved by the objective function f (S) are in orange and the other vertices
and edges are not colored).
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4.3.1.2 Solution-based feasible and infeasible phase When the solution-
based descent search cannot find still better solution within the feasible
space Ω, or when the current solution of two-phase local search from the
perturbation procedure is infeasible, the KILS algorithm invokes the sec-
ond phase to explore an enlarged space Ω+ including both feasible and
infeasible solutions (line 5, Algorithm 4).

This phase also iteratively substitutes the current solution S with the best
admissible neighborhood solution S′ in terms of the extended evaluation
function F (see Equation (13) below), which combines the objective function
f with an adaptive penalty function ρ. Whether each solution is admissible
is also managed by hash vectors Hk (k = 4, 5, 6) (lines 5-12, Algorithm 6).
The second phase stops when the solution cannot be improved. To generate
neighborhood solutions, we design a flip operator.

Algorithm 6 The solution-based feasible and infeasible search
Input: The current solution S; the best feasible solution Sb found during two-phase

local search; hash vectors H4, H5, H6; hash functions h4, h5, h6; penalty coeffi-
cient α.

Output: The current solution S; updated best feasible solution Sb found during
two-phase local search; hash vectors Hk, k = 4, 5, 6; penalty coefficient α.

1: Calculate the neighborhood N2(S) /*N2(S) is defined in Equation (12)*/
2: NoImprove← 0 /*Indicate whether S has been improved*/
3: while NoImprove = 0 do
4: NoImprove← 1
5: Select a best admissible neighborhood solution S′ ∈ N2(S) in terms of ex-

tended objective function F with a flip operator that satisfies H4(h4(S′)) ∧
H5(h5(S′)) ∧ H6(h6(S′)) = 0

6: if F(S′) < F(S) then
7: S← S′ /*Update the current solution S*/
8: Calculate the N2(S)
9: NoImprove← 0

10: H4(h4(S))← 1; H5(h5(S))← 1; H6(h6(S))← 1/*Update the hash vectors
with S*/

11: (Sb, α) ← Adaptive Update(S, Sb, α) /*Update the penalty coefficient α
adaptively and the best feasible solution Sb found during two-phase lo-
cal search*/

12: end if
13: end while
14: return (S, Sb, Hk, α) /*k = 4, 5, 6*/

Flip operator: This operator removes a vertex from S or inserts a vertex
into S. Let f lip(vi) denote such a move. Then, the induced neighborhood
N2 contains all feasible and infeasible solutions obtained by applying “flip”
to S.
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N2(S) = {S⊕ f lip(vi) | vi ∈ V and vi /∈ Sc} (12)

The size of N2 is restricted by O(|V|). To evaluate the quality of the solu-
tions, the following extended penalty-based fitness function F is used.

Extended fitness function: The extended fitness function F (to be mini-
mized) is defined as a linear combination of the basic fitness function f
(Equation (1)) and a penalty function:

F(S) = f (S) + α ∑
vi∈V

ρ(vi) (13)

where α (α is initially set as 2) is the penalty coefficient to control the im-
portance of the penalty function; ρ(vi) is the penalty of a vertex vi, which
equals the sum of the vertex weight and the weights of all edges in EV\S(vi)
if the vertex has no neighbor vertex in S; otherwise ρ(vi) is 0. ρ(vi) can be
calculated as by

ρ(vi) =


w(vi) + ∑

{vi,vj}∈EV\S(vi)

c(vi, vj), ES(vi) = ∅;

0, otherwise.

(14)

Fast Neighborhood Evaluation Technique: The incremental value of each
f lip(vi) in terms of the extended fitness variation ∆F( f lip(vi)) (see Equa-
tion (13)) can be easily computed as per:

∆F( f lip(vi)) = F(S⊕ f lip(vi))− F(S)

=


α ∑

vj∈C1(vi)

ρ(vj) + ∆ f (remove(vi)), vi ∈ S and vi /∈ Sc;

−α ∑
vj∈C2(vi)

ρ(vj) + ∆ f (insert(vi)), vi ∈ V \ S.

(15)

where C1(vi) is the set of vertices that only neighboring to vi in S, i.e.,
C1(vi) = {vj|{vi, vj} ∈ E, ES(vj) = {vi}}, and C2(vi) is the set of neigh-
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bor vertices of vi that has no neighbors in S, i.e., C2(vi) = {vj|{vi, vj} ∈
E, ES(vj) = ∅}.

Figure 7 presents a neighborhood solution by executing the flip operator.
Let S = {v3, v4, v6, v8} be the best solution found during the descent search
with an objective value of 40. When flipping v3, a best improved neighbor-
hood solution S⊕ f lip(v3) can be obtained. The incremental extended ob-
jective value is ∆F( f lip(v3)) = −5 and the objective value of the improved
solution is 35.

Fig. 7. Illustration of the solution-based feasible and infeasible search procedure
(the vertices and edges involved by the objective function f (S) are in orange and
the other vertices and edges are not colored).

Adaptive Update Technique: According to whether the current solution S
is a feasible solution, the adaptive update technique adjusts α to affect the
search pathway of the next iteration of the search procedure. Specifically, if
F(S) 6= f (S) (line 1, Algorithm 7), which means the current solution S is
an infeasible solution, we increase α to α + αstep to lead the search toward
feasible solutions (line 2, Algorithm 7). αstep is a parameter that is set to 2
according to the previous experiment. Inversely, we decrease α to α− αstep
to raise the chance of visiting infeasible solutions (line 4, Algorithm 7), and
update the best feasible solution Sb found during two-phase local search if
the current solution S is better than Sb (line 5, Algorithm 7).

4.3.2 Learning-based perturbation procedure

The learning-based perturbation has been successfully applied in iterated
local search algorithms for solving the graph coloring problem [28], bud-
geted maximum coverage problem [6], and k-vertex-critical subgraphs prob-
lem [26]. Algorithm 8 gives the general framework of our learning-based
perturbation, which is decomposed into two parts.

(1) Vertices of S are sorted in a non-increasing sequence and vertices of V \
S are sorted in a non-descending sequence according to their probability
values in Q, respectively.
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Algorithm 7 Adaptive update technique for penalty coefficient
Input: The current solution S; the best feasible solution Sb found during two-phase

local search; penalty coefficient α.
Output: Updated best feasible solution Sb found during two-phase local search;

updated penalty coefficient α.
1: if F(S) 6= f (S) then
2: α ← α + αstep /*Increase the penalty term to lead the search toward feasible

solutions*/
3: else
4: α ← α − αstep /*Decrease the penalty term to raise the chance of visiting

infeasible solutions*/
5: Sb = arg min{ f (S), f (Sb)} /*Update the best feasible solution Sb found dur-

ing two-phase local search*/
6: end if
7: if α ≤ 0 then
8: α← αstep
9: end if

10: return (Sb, α)

Algorithm 8 Learning-based perturbation
Input: Reduced graph G = (V, E, w, c); the current solution S; the perturbation

probability vector Q.
Output: A perturbed solution S.
1: D1 ← S, D2 ← V \ S
2: D1 ← sort D1 in non-increasing order of the value in Q
3: D2 ← sort D2 in non-descending order of the value in Q
4: for r ← 1 to 2 do
5: Dr ← the first ηr vertices from Dr
6: for each vi ∈ Dr do
7: if 1−Q[i] > rand(0, 1) and r = 1 then
8: S← S \ {vi} /*Remove vertex vi from S according to 1−Q[i]*/
9: else if Q[i] > rand(0, 1) and r = 2 then

10: S← S ∪ {vi} /*Insert vertex vi into S according to Q[i]*/
11: end if
12: end for
13: end for
14: return S

(2) The first ηr (r = 1, 2) vertices in Dr are flipped according to their corre-
sponding probabilities in Q, where η1 is a parameter, which is the limit of
the to-be flipped vertices of S when this vertex is in S, and η2 is a parameter,
which is the limit of the to-be flipped vertices out of S when this vertex is
in V \ S. D1 equals to S, and D2 equals to V \ S.

Note that the vertices in Sc are not concerned by the perturbation since they
are known to be part of any optimal total dominating set.
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In the perturbation procedure, S does not follow the constraint that S must
be a feasible solution. Therefore, the perturbed solutions can be feasible or
infeasible.

Figure 8 shows an example of the learning-based perturbation for the local
optimal solution S = {v4, v6, v8} from the two-phase local search. First, the
vertices in S are sorted in a non-increasing order and V \ S are sorted in
a non-descending order according to their probabilities in Q, respectively.
Then the first η1 = 1 vertex v6 in S and the first η2 = 2 vertices {v3, v7} in
V \ S are flipped with their probabilities in Q. This leads to the perturbed
solution S = {v3, v4, v7, v8}.

Fig. 8. Illustration of the learning-based perturbation procedure (the vertices con-
tained in S are in orange and the other vertices are not colored).

Algorithm 3 illustrates that the proposed SILS algorithm repetitively calls
the two-phase local search and the perturbation procedure until a termina-
tion criterion is met. The solution acquired through the perturbation pro-
cedure is employed as the new starting solution of the next round of the
SILS.

4.3.3 Solution-based management strategy

It is important to prevent the search from revisiting a previously visited
solution. To realize this, we adopt a tabu list [5] based on the hashing tech-
nique to determine whether a neighborhood solution was already visited.
This technique has proven to be quite successful for solving several chal-
lenging optimization problems including the dispersion problems [14, 16],
multidemand multidimensional knapsack problem [15], and dynamic bi-
partite drawing problem [25]. To our knowledge, this has not been investi-
gated for solving the total dominating set problem.

Specifically, we employ six hash vectors Hk, k = 1, . . . , 6, of length L (a
parameter) associated with six hash function hk. H1 to H3 are used during
the first search phase (descent search) while H4 to H6 serve for the second
search phase (feasible and infeasible search).

These hash vectors Hk, k = 1, . . . , 6 are initially set to 0. Then, the corre-
sponding positions of the hash vectors (H1 to H3 for the first phase and H4
to H6 for the second phase) are updated to 1 when a new neighborhood
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solution S′ is accepted to substitute the current solution S (lines 5-10, Al-
gorithm 5, or lines 5-12, Algorithm 6). If this neighborhood solution S′ has
been previously encountered, i.e., H1[h1(S′)] ∧ H2[h2(S′)] ∧ H3[h3(S′)] = 1
(or H4[h5(S′)] ∧ H5[h5(S′)] ∧ H6[h6(S′)] = 1), S′ will not be considered by
the algorithm. The six hash functions hk, k = 1, . . . , 6, are defined as below.

hk(S) = (
|V|

∑
i=1
biξkc × xi) mod L (16)

where ξk refers to the parameters of hash functions, and L is the length of
the hash vectors. We set ξ1 = 1.3, ξ2 = 1.9, ξ3 = 2.1, ξ4 = 1.3, ξ5 = 1.9, ξ6 =
2.1, and L = 108 according to preliminary experiments. At the beginning
of the first (or second) phase, the hash value hk(S) of the current solution S
is calculated. With the current solution S and its hash value hk(S), the hash
value hk(S′) of the neighborhood solution S′ = S⊕ remove-insert(vi, A) (or
S′ = S⊕ f lip(vi)) is given by hk(S) + ∑vj∈Abjξkc − biξkc (or hk(S)± biξkc).

4.4 Historical information update

As mentioned before, KILS creates initial solutions by using the historical
information vector P (Section 4.2) and chooses perturbed vertices using the
perturbation probability vector Q (Section 4.3.2). Both P and Q are updated
each time the best feasible solution Sbest found during SILS is improved.

1) Update the historical information vector P. The inspiration for updating
P = {P[1], P[2], . . . P[|V|]} comes from the learning automata [22], whose
principle is to reduce the probability P[i](1 ≤ i ≤ |V|) of each vertex vi in
Sb (recall that Sb is the best feasible solution found during the two-phase
local search) while increasing the probability of each vertex vi in V \ Sb.
Specifically, we modify the probability value of each vertex as follows.

P[i] =



(1− θ1)× P[i], i f vi ∈ Sbest and vi ∈ Sb

(1− θ2)× P[i], i f vi ∈ V \ Sbest and vi ∈ Sb

θ1 + (1− θ1)× P[i], i f vi ∈ V \ Sbest and vi ∈ V \ Sb

θ2 + (1− θ2)× P[i], i f vi ∈ Sbest and vi ∈ V \ Sb

(17)

where reward factors θ1(0 < θ1 < 1) and θ2(0 < θ2 < 1) are respectively
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set to 0.2 and 0.3 according to the previous experiment (see Section 5.2.1).

In addition, we use a probability smoothing technique to modify the histor-
ical information. When a probability in P reaches the specified probability
threshold, a smoothing factor is applied to increase or decrease the proba-
bility to neglect some previous information as follows.

P[i] =

 β1 × P[i], i f P[i] > τ, vi ∈ V

β2 × P[i], i f P[i] < 1− τ, vi ∈ V
(18)

where the smoothing factors β1 and β2 are respectively set to 0.5 and 10, and
the smoothing threshold τ is set to 0.95 experimentally (see Section 5.2.1).

2) Update the perturbation probability vector Q. We use a probability learn-
ing method (Equation (19)) to update the perturbation probability vector
Q = {Q[1], Q[2], . . . , Q[|V|]} according to the principle of increasing the
probability value Q[i] (1 ≤ i ≤ |V|) of each vertex vi in the current solution
S while decreasing that of each vertex vi in V \ S. This is done as follows.

Q[i] =

 θ3 + (1− θ3)×Q[i], i f vi ∈ S

(1− θ3)×Q[i], i f vi ∈ V \ S
(19)

where the reward factor θ3 (0 < θ3 < 1) is set to 0.1 experimentally (see
Section 5.2.1). In addition, we smooth the probability vector Q in the same
way as we smooth the historical information vector P.

4.5 Computational complexity

The time complexity of the learning-based initialization procedure for graph
G = (V, E, w, c) is O(K0 × |V| ×Maxdeg), where K0 is the quantity of itera-
tions of initialization and Maxdeg is the maximum vertex degree in V. The
complexity of the two-phase local search and the perturbation procedure
is O(K1 × |V| × Max2

deg), where K1 is the maximum iteration of solution-
based descent phase. Then, the complexity of the solution-based iterated
local search is O(K2 × K1 × |V| × Max2

deg), where K2 is the maximum it-
eration of the solution-based iterated local search. Finally, the overall time
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complexity of the main algorithm is O(K×K2×K1× |V| ×Max2
deg), where

K is the maximum iteration of KILS.

5 Experimental results and comparisons

We present in this section detailed experimental results and assessment of
the proposed KILS algorithm based on 315 conventional benchmark in-
stances used in the literature [1,12] and 27 real-world benchmark instances
that were initially tested in [12].

5.1 Benchmark instances

The set of the 315 conventional WTDP instances in the literature were gen-
erated according to the Erdös-Rényi model [1, 12, 20] and the set of 27 re-
alistic instances were from real-world social networks [12]. These instances
are organized into four groups.

(1) MA (45 small instances): The first group from [20] were generated by
adopting the “gnp random graph ( |V|,p)” function in “networkx” pack-
age [7]. Names of these instances are in the form of MA-|V|-p-a-b-id, where
MA is the name of the instance group, |V| ∈ {20, 50, 100} is the number
of vertices in the graph, and p ∈ {0.2, 0.5, 0.8} is the edge density. The ver-
tex weights and edge weights are chosen from {1, . . . , a} and {1, . . . , b},
respectively, where a = b = 5. The vertex size and density are combined
in 9 different ways, and each combination results in 5 different instances
labeled with an index id ∈ {1, . . . , 5}. The optimal solutions for these 45
instances in this group were reported in [1]. These instances are available at
https://msinnl.github.io/pages/instancescodes.html.

(2) AMS (135 medium instances): The second group from [1] are also gen-
erated by using the “gnp random graph (|V|,p)” function. These instances
are named as AMS-|V|-p-a-b-id, with {75, 100, 125} vertices and a den-
sity p ∈ {0.2, 0.5, 0.8}. Vertex weights and edge weights are sampled from
{1, . . . , a} and {1, . . . , b}, respectively, where (a, b) ∈ {(50, 10), (25, 25), (10,
50)}. We distinguish 5 graphs that are sampled for each of the 27 configura-
tions {(1, 50, 1, 10), (1, 25, 1, 25), (1, 10, 1, 50)}×{75, 100, 125}×{0.2, 0.5, 0.8}
identified by id, leading to 135 AMS instances. The optimal solutions of 115
instances are given in [12], while for the remaining 20 instances, no optimal
solution is known. These instances are available at https://msinnl.github.io
/pages/instancescodes.html.
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(3) NEW (135 large instances): The instances of the third group, named
by NEW-|V|-p-a-b-id were introduced in [12]. They were randomly gen-
erated in the same way as the AMS set in [1]. These large instances have
{250, 500, 1000} vertices and their optimal solutions are unknown. These in-
stances are available at https://github.com/StefanKapunac/wtdp public.

(4) SNAP (27 real-world instances): The fourth group is composed of 27
real-world instances from the Stanford large network dataset collection [18].
These instances represent parts of real-world social networks such as Face-
book and Twitter, which are characterized by the number of vertices within
[1912, 82168] and the number of edges within [31299, 1342310]. Since there
are no vertex weights or edge weights for these instances, we set the vertex
weights and edge weights sampled from {1, . . . , a} and {1, . . . , b}, respec-
tively, where (a, b) ∈ {(5, 5), (25, 25), (50, 50)}. To ensure that they are simple
graphs we remove the self-loops and multiple edges from these instances.
The optimal solutions for these instances are unknown. These instances are
available at https://github.com/Miserable-ccf/WTDP.

5.2 Experimental settings

Our KILS algorithm was written in C++ 1 and compiled by the g++ com-
piler with the -O3 option. All experiments are performed on an Intel Core
2 Duo T7700 processor (2.4 GHz and 2 GB RAM) under the CentOS release
7.9.2009.

5.2.1 Parameters

The KILS algorithm requires several parameters (see Table 2): the greedi-
ness ratio ε of initialization, the step size αstep of penalty coefficient α, the
search depth ω of SILS, the limit η1 of the to-be flipped vertices of S, the
limit η2 of the to-be flipped vertices out of S, reward factors θ1, θ2 and θ3 of
the probability vectors, smoothing factors β1 and β2, and smoothing thresh-
old τ. We identify the suitable values of the parameters by running the au-
tomatic parameter tuning package called “IRACE” [19] on 45 representative
instances of group NEW. We perform 20 runs within a calibration budget
of 1800 seconds. Table 2 provides the candidate and final values of these
parameters. The final parameter values can be considered as the default
parameter settings, which are consistently used through all experiments re-
ported in this paper.

1 The binary code of the algorithm will be made available upon the publication of
this work.
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Table 2
Settings of parameters.

Parameters Description Candidate value Final value

ε The greediness ratio of initialization {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 0.6

αstep The step size of the penalty coefficient α {1, 2, 3, 4, 5} 2

ω The search depth of SILS { 106

|V| ,
105

|V| ,
104

|V| }
106

|V|

η1 limit of to-be flipped vertices of S {0.1|S|, 0.5|S|, 0.9|S|} (for |V| ≤ 3000) 0.5|S|

{0.01|S|, 0.02|S|, 0.006|S|} (for |V| > 3000) 0.01|S|

η2 limit of to-be flipped vertices out of S {0.1|V \ S|, 0.5|V \ S|, 0.9|V \ S|} (for |V| ≤ 3000) 0.5|V \ S|

{0.006|V \ S|, 0.01|V \ S|, 0.02|V \ S|} (for |V| > 3000) 0.01|V \ S|

θ1 First reward factor of the probability vector P {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 0.2

θ2 Second reward factor of the probability vector P {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 0.3

θ3 Reward factor of the probability vector Q {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 0.1

β1 First smoothing factor {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} 0.5

β2 Second smoothing factor {1, 5, 7, 10} 10

τ Smoothing threshold {0.9, 0.93, 0.95, 0.97} 0.95

5.2.2 Reference algorithms

The following three latest algorithms are used for our comparative study:
the mixed integer programming model solved by CPLEX (re-MIP) [12], the
genetic algorithm (re-GA) [12], and the variable neighborhood search algo-
rithm (VNS) [12]. re-MIP is the re-implementation in [12] of the mixed in-
teger programming model proposed in [1]. re-GA is the re-implementation
in [12] of the genetic algorithm presented in [1]. The codes of re-MIP and
re-GA are available at https://github.com/StefanKapunac/wtdp public.

For the first three groups of instances, the reference algorithms were run
in [12] on a computer with an Intel Core i9-9900KF processor (3.6 GHz and
6 GB RAM) with a time limit of 1800 seconds. Since our computer (Inter
Core T7700 2.4GHz and 2 GB RAM) is slower, running the reference al-
gorithms on our computer with the same time limit of 1800 seconds will
produce results equal to or worse than those reported in [12]. Therefore, we
use the best results of re-MIP, re-GA, and VNS from [12] for our compar-
ative study. For the fourth group of instances, we ran the source codes of
the reference algorithms (re-MIP, re-GA and VNS) on our computer to solve
these instances with a time limit of 18000 seconds.

1) The CPLEX solver (re-MIP) [12]: re-MIP reaches 45/45, 115/135, 0/135
and 5/27 optimal solutions for the MA, AMS, NEW, and SNAP instances.

2) Heuristic algorithm re-GA [12]: re-GA reports 41/45 optimal solutions,
105/135 (including 89 optimal solutions), 64/135 and 12/27 best-known
values for the MA, AMS, NEW, and SNAP instances.

3) Heuristic algorithm VNS [12]: VNS obtains 45/45 optimal solutions, 132/135
(including 115 optimal solutions), 107/135, 9/27 best-known values for the

27



MA, AMS, NEW, and SNAP instances.

5.2.3 Stopping conditions

Following [1, 12], we adopt a time limit of 1800s for the first three groups
of instances and 18000s for the fourth group of instances, which is a more
restrictive condition compared to the reference algorithms because the ma-
chine used to run the reference algorithms (Intel Core i9-9900KF processor
with 3.6 GHz and a memory limit of 6 GB RAM) is 1.5 times faster than our
computer (Intel Core 2 Duo T7700 processor with 2.4 GHz and a memory
limit of 2 GB RAM) according to the SPEC evaluation 2 .

The number of independent runs for VNS and re-GA is not indicated in
[1, 12]. Given the stochastic nature of our algorithm, we independently run
our algorithm 20 times to solve each instance with a different random seed
for each run.

5.3 Comparison with reference algorithms

This section compares our algorithm with the state-of-the-art algorithms on
the four groups of 342 benchmark instances.

Table 3
Summary of comparative results between the KILS algorithm and three reference
algorithms.

Algorithm pair Instance group/Nb of instances Indicator #Wins #Ties #Losses p-values

KILS vs re-MIP MA/45 fbest (time) 0 (-) 45 (-) 0 (-) 1 (-)

AMS/135 fbest (time) 0 (-) 135 (-) 0 (-) 1 (-)

NEW/135 fbest (time) 133 (-) 2 (-) 0 (-) - (-)

SNAP/27 fbest (time) 22 (-) 5 (-) 0 (5) - (-)

KILS vs re-GA MA/45 fbest (time) 4 (45) 41 (0) 0 (0) 0.125 (5.18E-09)

AMS/135 fbest (time) 30 (135) 105 (0) 0 (0) 1.65E-06 (6.71E-24)

NEW/135 fbest (time) 97 (135) 38 (0) 0 (0) 1.21E-17 (6.71E-24)

SNAP/27 fbest (time) 27 (27) 0 (0) 0 (0) 5.61E-06 (4.90E-05)

KILS vs VNS MA/45 fbest (time) 0 (45) 45 (0) 0 (0) 1 (5.18E-09)

AMS/135 fbest (time) 3 (135) 132 (0) 0 (0) 0.25 (6.71E-24)

NEW/135 fbest (time) 79 (135) 56 (0) 0 (0) 1.14E-14 (1.05E-23)

SNAP/27 fbest (time) 27 (22) 0 (0) 0 (5) 5.61E-06 (0.017)
1 Note: “-” means the corresponding result is not available in the literature.

Table 3 shows a summary of the comparison between the KILS algorithm
and each reference algorithm. Column 1 indicates the compared pairwise

2 https://www.spec.org
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algorithms. Column 2 tells the names of instance groups with the number
of instances. Column 3 indicates the quality indicator in terms of the best
objective value ( fbest) and the average computation time (time) to obtain the
best result of each algorithm over 20 runs, where“-” means the correspond-
ing result and time is not available in the literature. Columns 4-6 provide
the number of instances on which KILS achieves a better, equal or worse
result compared with re-MIP, re-GA and VNS respectively (#Wins, #Ties
and #Losses). Column 7 gives the p-values of the non-parametric Wilcoxon
signed-rank test which indicates a significant difference between two sets of
compared results if less than 0.05, and no difference otherwise. Meanwhile,
the detailed results for each instance group are reported in Tables B.1 - B.4
of the appendix.

We can make the following observations from Table 3. For the all instances
(MA, AMS, NEW and SNAP), the KILS algorithm performs remarkably
well by attaining 93 new upper bounds and 249 equal results (including
165 known optimal results). Besides, it consumes less time on 326 instances
than all reference algorithms, considering that the reference algorithms use
a faster computer than ours.

Compared with the most recent exact algorithm re-MIP, KILS behaves bet-
ter in terms of fbest by reporting 155 better results and 187 equal results for
the 342 instances. Besides, KILS outperforms re-GA by achieving 158 better
results and 184 equal results. Finally, KILS dominates VNS by obtaining 109
better results and 233 equal results for the 342 instances.

6 Analysis

This section studies the contributions of each critical component of the pro-
posed algorithm. The experiments for this study are based on a selection of
30 most challenging instances, which are solved 20 times by each investi-
gated algorithm variant within a limit of 1800s per run.

6.1 Effectiveness of the two-phase local search

We create two variants KILS1 and KILS2 by respectively disabling the first
phase (solution-based descent phase) and the second phase (solution-based
feasible and infeasible phase) to justify the significance of these two phases
of the local search.

Figure 9 shows their best results fbest and average results favg. The X-axis
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indicates the instances numbered according to the order they appear in Ta-
ble B.3. The Y-axis indicates the gap between fbest (or favg) and the new
upper bound NUBbest (or NUBavg) from KILS, i.e., gap = fbest − NUBbest
for Figure 9(a) and gap = favg − NUBavg for Figure 9(b).

(a) Best results fbest (b) Average results favg

Fig. 9. Comparisons of KILS (in blue) with its variants KILS1 (in orange) and KILS2
(in black).

We observe from Figure 9 that KILS exhibits a superior performance in
terms of the best results and the average results. Specifically, compared with
the variant KILS1, KILS obtains 2 (28) better results and 28 (2) equal results
in terms of fbest ( favg). KILS dominates KILS2 by reporting 30 (30) better re-
sults in terms of fbest ( favg) on all instances. Moreover, small p-values (3.79E-
06, 1.73E-06 and 1.73E-06) confirm the statistically significant differences
between KILS and the two variants.

6.2 Effectiveness of solution-based hash strategy

We implement a variant KILSnosh of the KILS algorithm by only removing
the solution-based hash strategy, and compare it with KILS to justify the
hash strategy as an essential component of the KILS algorithm.

(a) Best results fbest (b) Average results favg

Fig. 10. Comparisons of KILS (in blue) with its variant KILSnosh (in magenta).
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We observe from Figure 10 that KILS dominates KILSnosh by reporting 16
(30) better results and 14 (0) equal results in terms of fbest ( favg). Besides,
the small p-values (4.37E-04 and 1.73E-06) indicate that the performance
differences between the compared results are statistically significant. This
experiment demonstrates the usefulness of the solution-based strategy for
solving the WTDP under the two-phase local search.

6.3 Effectiveness of learning-based strategy

To analyze the joint impacts of the learning-based initialization (Section 4.2)
and perturbation (Section 4.3.2), we implement a variant KILSrandom, where
the initial solution is replaced by a random solution and the learning-based
perturbation is replaced by a random perturbation. Specifically, the random
initial solution is still generated following the process of Algorithm 2, but
all values in P are fixed to 0.5; the random perturbation is still followed the
process of Algorithm 8, but all values in Q are fixed to 0.5.

(a) Best results fbest (b) Average results favg

Fig. 11. Comparisons of KILS (in blue) with its variant KILSrandom (in grey).

Figure 11 shows that KILS significantly outperforms the random perturba-
tion strategy (KILSrandom). Specifically, compared with KILSrandom, KILS ob-
tains better fbest values for 5 out of the 30 instances, better favg values for 22
instances, and equal results for the remaining instances respectively. More-
over, judging from Table 4, the p-value (4.01E-05) confirms the statistically
significant differences between the results of KILS and KILSrandom.

6.4 Convergence analysis

To investigate the most crucial component of KILS in time decrease, we
conduct an additional convergence analysis of KILS and its four aforemen-
tioned variants (KILS1, KILS2, KILSnosh and KILSrandom). This experiment is
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Table 4
Summary of comparative results between the KILS algorithm and four variants
KILS1, KILS2, KILSnosh and KILSrandom.

Algorithm pair Nb of instances Indicator #Wins #Ties #Losses p-values

KILS vs KILS1 30 fbest ( favg) 2 (28) 28 (2) 0 (0) 0.50 (3.79E-06)

KILS vs KILS2 30 fbest ( favg) 30 (30) 0 (0) 0 (0) 1.73E-06 (1.73E-06)

KILS vs KILSnosh 30 fbest ( favg) 16 (30) 14 (0) 0 (0) 4.37E-04 (1.73E-06)

KILS vs KILSrandom 30 fbest ( favg) 5 (22) 25 (8) 0 (0) 0.06 (4.01E-05)

carried out on four difficult instances NEW-500-0.2-10-50-4, NEW-500-0.2-
50-10-5, NEW-500-0.5-10-50-3 and NEW-500-0.8-25-25-5. Each algorithm is
executed 20 times to solve each instance within a time limit of 1800 seconds
per run. The convergence graphs (i.e., running profiles) are depicted in Fig-
ure 12, where the X-axis represents the computation time in seconds and
the Y-axis indicates the best objective value achieved by each algorithm.

(a) NEW-500-0.2-10-50-4 (b) NEW-500-0.2-50-10-5

(c) NEW-500-0.5-10-50-3 (d) NEW-500-0.8-25-25-5

Fig. 12. Convergence profiles of KILS and four variants (KILS1, KILS2, KILSnosh and
KILSrandom)

Figure 12 confirms the superiority of KILS over other algorithms as evi-
denced by the fact that the curve of KILS consistently lies below those of
other algorithms, although the performance difference between the com-
pared algorithms is marginal. It can also be observed that the curve of KILS2
strictly runs above the curve of other algorithms, indicating the importance
of using the second phase (the feasible and infeasible search phase) of the
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local search procedure.

The feasible and infeasible search phase oscillates between feasible and in-
feasible regions, which can locate high-quality solutions that are difficult
to obtain if the search is restricted to feasible regions only. This strategy
proves to be crucial in helping the algorithm to effectively find high-quality
solutions to the constrained WTDP problem.

7 Conclusions and prospects

The weighted total domination problem is a general model which is use-
ful for a variety of applications. The proposed knowledge-based iterated
local search algorithm includes a reduction procedure (to reduce the input
graph), a learning-based initialization (to generate an initial solution), and
a solution-based iterated local search procedure (to find high-quality solu-
tions).

Extensive empirical tests and comparative results on 342 benchmark in-
stances show a remarkable performance of the proposed algorithm. Specif-
ically, it discovers 93 new upper bounds and attains 249 current best results
(including the 165 known optimal results). Moreover, the proposed algo-
rithm is computationally efficient as it only needs a fraction of the time
(about < 10%) required by the state-of-the-art algorithm in groups MA and
AMS to attain the best known solutions.

For future research, we can advance two directions. First, population-based
approaches would be investigated, where the proposed algorithm can be
advantageously used as a critical intensification component. Second, given
its excellent performance for the weighted total domination problem, it
would be interesting to adapt the proposed algorithm to other related dom-
ination problems [23, 24].
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A Reduction strategy

The two reduction rules used by the proposed algorithm to reduce the given
graph G0 = (V0, E0, w0, c0) are defined as follows.

Rule 1: If vertex vi has a degree of 1, its neighbor vertex vj is identified as a
crucial vertex, and included in the crucial vertex set Sc.

Proof of Rule 1: For each vertex vi of degree of 1, if its neighbor vertex
vj is not a crucial vertex, then at least there is one total dominating set S′

that does not contain vj. For S′, vi has no neighbor vertex in S′, which is in
contradiction with the condition that S′ is a total dominating set. Therefore,
vj must be a crucial vertex.

Rule 2: For each crucial vertex vj that has more than one neighbor vertex
whose degree is 1, all its neighbor vertices, except the one and the only one
vertex vi with the minimum vertex weight, will be identified as redundant
vertices and contained by the redundant vertex set Sr.

Proof of Rule 2: For each crucial vertex vj that has more than one neighbor
vertex with a degree of 1, there is one of its neighbor vertices vm, except
the unique vertex vi with the minimum vertex weight, such that vm is not
a redundant vertex. Then according to the definition of redundant vertex,
vm at least belongs to one optimal solution. For any optimal solution S′ that
contains vm, the solution S′ \ {vm} ∪ {vi} is a total dominating set since the
only neighbor vertex vj of vm in S′ is also neighbor of vi, and f (S′ \ {vm} ∪
{vi}) < f (S′) since w0(vm) < w0(vi). Then S′ is not an optimal solution,
which conflicts with the condition that S′ is an optimal total dominating
set.

For example, Figure A.1(a) is a given graph G0 with 3 vertices {v1, v2, v3}
and 2 edges. As shown in Figure A.1(b), because both vertices v1 and v3
have a degree of 1, their neighbor vertex v2 is a crucial vertex and is con-
tained in Sc according to Rule 1. After Rule 1 identifies all crucial vertices,
i.e., Sc = {v2} (in violet), Rule 2 is applied. Vertex v1 has the minimum
vertex weight among all v2’s neighbors whose degree is 1. Therefore, v3 is
in the redundant set Sr. After all vertices in Sc are traversed, Sr = {v3} (in
grey).
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(a) A given graph G0 (b) A crucial set Sc =
{v2}

(c) A redundant set Sr =
{v3}

Fig. A.1. Illustration of reduction operation for a given graph G0 (crucial vertices
and the edges involved by them are colored in violet, redundant vertices are in
grey).

B Detailed comparative results between KILS and the state-of-the-art
methods

This appendix presents detailed comparative results of re-MIP, re-GA, VNS
[12] and KILS on all benchmark instances of the four groups MA, AMS,
NEW, and SNAP (Tables B.1, B.2, B.3, and B.4). The first two columns give
the names of instances and the corresponding best-known values (BKVs)
in the literature, respectively. The remaining columns report the best re-
sult ( fbest), the average time (time) in seconds to reach the best result of
re-MIP, re-GA, VNS and KILS over 20 runs, and the percentage gap (pg% =
fbest−BKVs

BKVs ) between the fbest and BKVs (A negative value indicates an im-
proved best-known result). The row (Average) indicates the average value
of each column. Entries “-” mean the corresponding result is not available
in the literature. Entries with “n/a” indicate that no solution is found by
re-MIP within the time limit. The best results among the compared values
are highlighted in boldface. The optimal results are indicated by “*”.

It can be seen from Tables B.1, B.2, B.3, and B.4 that KILS outperforms the
reference algorithms for all these instances. Specifically, compared with the
reference algorithms (re-MIP, re-GA and VNS), KILS obtains respectively
(155, 158 and 109) better results and (187, 184 and 233) equal results, re-
spectively. Besides, KILS obtains the best average results of fbest in each
instance group compared with re-MIP, re-GA and VNS. Moreover, KILS
spends much less time for 326 instances than the re-MIP, re-GA and VNS to
reach their best results.
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Table B.1
Comparative results of KILS with re-MIP, re-GA and VNS on MA instances with a
time limit of 1800 seconds.

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

MA-20-0.2-5-5-1 63* 63* - 63* 1.56 0.00% 63* 2.35 0.00% 63* 0.13 0.00%
MA-20-0.2-5-5-2 58* 58* - 58* 1.80 0.00% 58* 1.45 0.00% 58* 0.13 0.00%
MA-20-0.2-5-5-3 58* 58* - 58* 1.51 0.00% 58* 1.42 0.00% 58* 0.14 0.00%
MA-20-0.2-5-5-4 51* 51* - 51* 2.00 0.00% 51* 1.45 0.00% 51* 0.14 0.00%
MA-20-0.2-5-5-5 55* 55* - 55* 1.80 0.00% 55* 1.44 0.00% 55* 0.15 0.00%
MA-20-0.5-5-5-1 44* 44* - 44* 1.74 0.00% 44* 1.71 0.00% 44* 0.14 0.00%
MA-20-0.5-5-5-2 47* 47* - 47* 2.03 0.00% 47* 1.56 0.00% 47* 0.15 0.00%
MA-20-0.5-5-5-3 46* 46* - 46* 1.96 0.00% 46* 1.56 0.00% 46* 0.13 0.00%
MA-20-0.5-5-5-4 40* 40* - 40* 1.41 0.00% 40* 1.52 0.00% 40* 0.14 0.00%
MA-20-0.5-5-5-5 41* 41* - 41* 1.89 0.00% 41* 1.54 0.00% 41* 0.13 0.00%
MA-20-0.8-5-5-1 37* 37* - 37* 2.08 0.00% 37* 1.37 0.00% 37* 0.13 0.00%
MA-20-0.8-5-5-2 35* 35* - 35* 1.93 0.00% 35* 1.65 0.00% 35* 0.13 0.00%
MA-20-0.8-5-5-3 40* 40* - 40* 1.86 0.00% 40* 1.63 0.00% 40* 0.13 0.00%
MA-20-0.8-5-5-4 34* 34* - 34* 2.21 0.00% 34* 1.41 0.00% 34* 0.14 0.00%
MA-20-0.8-5-5-5 34* 34* - 34* 1.98 0.00% 34* 1.78 0.00% 34* 0.14 0.00%
MA-50-0.2-5-5-1 111* 111* - 111* 6.52 0.00% 111* 5.77 0.00% 111* 0.15 0.00%
MA-50-0.2-5-5-2 106* 106* - 106* 7.02 0.00% 106* 4.51 0.00% 106* 0.14 0.00%
MA-50-0.2-5-5-3 111* 111* - 111* 7.40 0.00% 111* 4.53 0.00% 111* 0.15 0.00%
MA-50-0.2-5-5-4 101* 101* - 101* 7.73 0.00% 101* 4.60 0.00% 101* 0.15 0.00%
MA-50-0.2-5-5-5 108* 108* - 110 6.51 1.85% 108* 4.69 0.00% 108* 0.14 0.00%
MA-50-0.5-5-5-1 82* 82* - 82* 8.13 0.00% 82* 5.08 0.00% 82* 0.13 0.00%
MA-50-0.5-5-5-2 85* 85* - 85* 6.11 0.00% 85* 4.79 0.00% 85* 0.14 0.00%
MA-50-0.5-5-5-3 84* 84* - 85 8.35 1.19% 84* 5.54 0.00% 84* 0.15 0.00%
MA-50-0.5-5-5-4 82* 82* - 82* 8.42 0.00% 82* 5.39 0.00% 82* 0.15 0.00%
MA-50-0.5-5-5-5 82* 82* - 82* 7.15 0.00% 82* 5.43 0.00% 82* 0.14 0.00%
MA-50-0.8-5-5-1 77* 77* - 77* 7.81 0.00% 77* 5.70 0.00% 77* 0.15 0.00%
MA-50-0.8-5-5-2 72* 72* - 72* 8.02 0.00% 72* 5.73 0.00% 72* 0.13 0.00%
MA-50-0.8-5-5-3 74* 74* - 74* 7.43 0.00% 74* 5.70 0.00% 74* 0.14 0.00%
MA-50-0.8-5-5-4 76* 76* - 76* 7.07 0.00% 76* 5.52 0.00% 76* 0.14 0.00%
MA-50-0.8-5-5-5 79* 79* - 79* 8.48 0.00% 79* 5.65 0.00% 79* 0.15 0.00%
MA-100-0.2-5-5-1 175* 175* - 177 19.18 1.14% 175* 16.30 0.00% 175* 0.32 0.00%
MA-100-0.2-5-5-2 174* 174* - 174* 22.63 0.00% 174* 15.42 0.00% 174* 0.22 0.00%
MA-100-0.2-5-5-3 177* 177* - 177* 24.85 0.00% 177* 15.16 0.00% 177* 0.28 0.00%
MA-100-0.2-5-5-4 169* 169* - 169* 24.28 0.00% 169* 15.59 0.00% 169* 0.17 0.00%
MA-100-0.2-5-5-5 167* 167* - 168 22.93 0.60% 167* 15.49 0.00% 167* 0.33 0.00%
MA-100-0.5-5-5-1 147* 147* - 147* 28.93 0.00% 147* 18.94 0.00% 147* 0.83 0.00%
MA-100-0.5-5-5-2 144* 144* - 144* 25.12 0.00% 144* 19.75 0.00% 144* 0.16 0.00%
MA-100-0.5-5-5-3 147* 147* - 147* 23.05 0.00% 147* 19.48 0.00% 147* 0.32 0.00%
MA-100-0.5-5-5-4 146* 146* - 146* 27.62 0.00% 146* 20.46 0.00% 146* 0.18 0.00%
MA-100-0.5-5-5-5 139* 139* - 139* 25.02 0.00% 139* 20.85 0.00% 139* 0.24 0.00%
MA-100-0.8-5-5-1 136* 136* - 136* 29.24 0.00% 136* 23.51 0.00% 136* 0.19 0.00%
MA-100-0.8-5-5-2 140* 140* - 140* 27.93 0.00% 140* 21.04 0.00% 140* 0.20 0.00%
MA-100-0.8-5-5-3 141* 141* - 141* 25.46 0.00% 141* 22.45 0.00% 141* 0.61 0.00%
MA-100-0.8-5-5-4 141* 141* - 141* 27.18 0.00% 141* 22.85 0.00% 141* 0.18 0.00%
MA-100-0.8-5-5-5 134* 134* - 134* 28.11 0.00% 134* 22.17 0.00% 134* 0.19 0.00%
Average 95.33 95.33 - 95.47 11.59 0.11% 95.33 8.71 0.00% 95.33 0.19 0.00%
1 Note: The results of re-GA are obtained by re-compiling these algorithms on our computer since the algorithm

has not been applied on these instances.
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Table B.2
Comparative results of KILS with re-MIP, re-GA and VNS on AMS instances with
a time limit of 1800 seconds.

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

AMS-75-0.2-10-50-1 686* 686* - 686* 5.00 0.00% 686* 10.85 0.00% 686* 0.17 0.00%
AMS-75-0.2-10-50-2 770* 770* - 794 6.00 3.10% 770* 10.03 0.00% 770* 0.27 0.00%
AMS-75-0.2-10-50-3 661* 661* - 661* 6.00 0.00% 661* 10.13 0.00% 661* 0.15 0.00%
AMS-75-0.2-10-50-4 703* 703* - 740 7.00 5.30% 703* 10.71 0.00% 703* 0.25 0.00%
AMS-75-0.2-10-50-5 758* 758* - 779 6.00 2.80% 758* 9.79 0.00% 758* 0.19 0.00%
AMS-75-0.2-25-25-1 498* 498* - 504 6.00 1.20% 498* 10.24 0.00% 498* 0.20 0.00%
AMS-75-0.2-25-25-2 546* 546* - 546* 6.00 0.00% 546* 9.63 0.00% 546* 0.16 0.00%
AMS-75-0.2-25-25-3 518* 518* - 518* 5.00 0.00% 518* 9.50 0.00% 518* 0.16 0.00%
AMS-75-0.2-25-25-4 498* 498* - 498* 6.00 0.00% 498* 9.72 0.00% 498* 0.29 0.00%
AMS-75-0.2-25-25-5 513* 513* - 513* 6.00 0.00% 513* 9.89 0.00% 513* 0.14 0.00%
AMS-75-0.2-50-10-1 339* 339* - 339* 6.00 0.00% 339* 9.12 0.00% 339* 0.13 0.00%
AMS-75-0.2-50-10-2 382* 382* - 382* 5.00 0.00% 382* 8.30 0.00% 382* 0.15 0.00%
AMS-75-0.2-50-10-3 335* 335* - 341 5.00 1.80% 335* 9.11 0.00% 335* 0.14 0.00%
AMS-75-0.2-50-10-4 333* 333* - 333* 6.00 0.00% 333* 8.82 0.00% 333* 0.14 0.00%
AMS-75-0.2-50-10-5 347* 347* - 347* 6.00 0.00% 347* 9.03 0.00% 347* 0.14 0.00%
AMS-75-0.5-10-50-1 581* 581* - 581* 13.00 0.00% 581* 13.09 0.00% 581* 0.28 0.00%
AMS-75-0.5-10-50-2 602* 602* - 602* 11.00 0.00% 602* 12.14 0.00% 602* 0.18 0.00%
AMS-75-0.5-10-50-3 545* 545* - 545* 10.00 0.00% 545* 13.34 0.00% 545* 0.16 0.00%
AMS-75-0.5-10-50-4 540* 540* - 540* 10.00 0.00% 540* 12.69 0.00% 540* 0.20 0.00%
AMS-75-0.5-10-50-5 519* 519* - 519* 10.00 0.00% 519* 12.69 0.00% 519* 0.17 0.00%
AMS-75-0.5-25-25-1 387* 387* - 387* 10.00 0.00% 387* 12.16 0.00% 387* 0.17 0.00%
AMS-75-0.5-25-25-2 384* 384* - 384* 10.00 0.00% 384* 11.54 0.00% 384* 0.16 0.00%
AMS-75-0.5-25-25-3 362* 362* - 362* 10.00 0.00% 362* 11.63 0.00% 362* 0.16 0.00%
AMS-75-0.5-25-25-4 366* 366* - 371 9.00 1.40% 366* 11.25 0.00% 366* 0.21 0.00%
AMS-75-0.5-25-25-5 331* 331* - 331* 10.00 0.00% 331* 12.16 0.00% 331* 0.16 0.00%
AMS-75-0.5-50-10-1 240* 240* - 240* 9.00 0.00% 240* 10.45 0.00% 240* 0.14 0.00%
AMS-75-0.5-50-10-2 238* 238* - 238* 9.00 0.00% 238* 10.48 0.00% 238* 0.14 0.00%
AMS-75-0.5-50-10-3 215* 215* - 215* 9.00 0.00% 215* 10.49 0.00% 215* 0.13 0.00%
AMS-75-0.5-50-10-4 235* 235* - 235* 9.00 0.00% 235* 10.60 0.00% 235* 0.14 0.00%
AMS-75-0.5-50-10-5 206* 206* - 206* 8.00 0.00% 206* 10.95 0.00% 206* 0.15 0.00%
AMS-75-0.8-10-50-1 571* 571* - 571* 16.00 0.00% 571* 13.82 0.00% 571* 0.18 0.00%
AMS-75-0.8-10-50-2 520* 520* - 520* 15.00 0.00% 520* 14.18 0.00% 520* 0.18 0.00%
AMS-75-0.8-10-50-3 543* 543* - 543* 15.00 0.00% 543* 14.43 0.00% 543* 0.21 0.00%
AMS-75-0.8-10-50-4 571* 571* - 571* 15.00 0.00% 571* 13.93 0.00% 571* 0.26 0.00%
AMS-75-0.8-10-50-5 509* 509* - 509* 17.00 0.00% 509* 14.39 0.00% 509* 0.16 0.00%
AMS-75-0.8-25-25-1 357* 357* - 357* 15.00 0.00% 357* 13.27 0.00% 357* 0.17 0.00%
AMS-75-0.8-25-25-2 338* 338* - 338* 15.00 0.00% 338* 13.24 0.00% 338* 0.16 0.00%
AMS-75-0.8-25-25-3 323* 323* - 323* 13.00 0.00% 323* 12.97 0.00% 323* 0.16 0.00%
AMS-75-0.8-25-25-4 345* 345* - 345* 13.00 0.00% 345* 13.70 0.00% 345* 0.16 0.00%
AMS-75-0.8-25-25-5 311* 311* - 311* 15.00 0.00% 311* 13.47 0.00% 311* 0.17 0.00%
AMS-75-0.8-50-10-1 182* 182* - 182* 14.00 0.00% 182* 12.51 0.00% 182* 0.14 0.00%
AMS-75-0.8-50-10-2 188* 188* - 188* 11.00 0.00% 188* 12.31 0.00% 188* 0.14 0.00%
AMS-75-0.8-50-10-3 191* 191* - 191* 11.00 0.00% 191* 11.95 0.00% 191* 0.14 0.00%
AMS-75-0.8-50-10-4 196* 196* - 196* 12.00 0.00% 196* 12.05 0.00% 196* 0.14 0.00%
AMS-75-0.8-50-10-5 192* 192* - 192* 15.00 0.00% 192* 12.19 0.00% 192* 0.14 0.00%

(Continued)
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Table B.2
(continued)

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

AMS-100-0.2-10-50-1 873* 873* - 873* 12.00 0.00% 873* 19.33 0.00% 873* 0.64 0.00%
AMS-100-0.2-10-50-2 944* 944* - 944* 13.00 0.00% 944* 17.70 0.00% 944* 0.34 0.00%
AMS-100-0.2-10-50-3 878* 878* - 878* 11.00 0.00% 878* 18.01 0.00% 878* 0.49 0.00%
AMS-100-0.2-10-50-4 837* 837* - 837* 11.00 0.00% 837* 18.30 0.00% 837* 0.33 0.00%
AMS-100-0.2-10-50-5 840* 840* - 870 12.00 3.60% 840* 17.79 0.00% 840* 0.48 0.00%
AMS-100-0.2-25-25-1 591* 591* - 591* 12.00 0.00% 591* 18.15 0.00% 591* 0.18 0.00%
AMS-100-0.2-25-25-2 653* 653* - 655 11.00 0.30% 653* 15.76 0.00% 653* 0.26 0.00%
AMS-100-0.2-25-25-3 612* 612* - 616 12.00 0.70% 615 16.47 0.50% 612* 0.63 0.00%
AMS-100-0.2-25-25-4 552* 552* - 552* 11.00 0.00% 552* 15.92 0.00% 552* 0.23 0.00%
AMS-100-0.2-25-25-5 606* 606* - 607 12.00 0.20% 606* 16.79 0.00% 606* 0.55 0.00%
AMS-100-0.2-50-10-1 418* 418* - 420 12.00 0.50% 418* 15.18 0.00% 418* 0.19 0.00%
AMS-100-0.2-50-10-2 447* 447* - 456 11.00 2.00% 447* 14.26 0.00% 447* 0.19 0.00%
AMS-100-0.2-50-10-3 419* 419* - 419* 11.00 0.00% 419* 15.21 0.00% 419* 0.16 0.00%
AMS-100-0.2-50-10-4 403* 403* - 410 12.00 1.70% 403* 14.97 0.00% 403* 0.18 0.00%
AMS-100-0.2-50-10-5 375* 375* - 379 13.00 1.10% 375* 15.74 0.00% 375* 0.20 0.00%
AMS-100-0.5-10-50-1 743* 743* - 749 26.00 0.80% 743* 22.39 0.00% 743* 1.43 0.00%
AMS-100-0.5-10-50-2 698* 698* - 700 25.00 0.30% 698* 21.47 0.00% 698* 0.88 0.00%
AMS-100-0.5-10-50-3 699* 699* - 718 24.00 2.70% 699* 22.06 0.00% 699* 1.89 0.00%
AMS-100-0.5-10-50-4 726* 726* - 726* 26.00 0.00% 726* 22.15 0.00% 726* 0.37 0.00%
AMS-100-0.5-10-50-5 702* 702* - 702* 25.00 0.00% 702* 22.44 0.00% 702* 0.28 0.00%
AMS-100-0.5-25-25-1 461* 461* - 461* 25.00 0.00% 461* 20.31 0.00% 461* 0.19 0.00%
AMS-100-0.5-25-25-2 437* 437* - 437* 19.00 0.00% 437* 21.27 0.00% 437* 0.18 0.00%
AMS-100-0.5-25-25-3 434* 434* - 434* 22.00 0.00% 434* 22.22 0.00% 434* 0.29 0.00%
AMS-100-0.5-25-25-4 482* 482* - 482* 25.00 0.00% 482* 20.52 0.00% 482* 0.43 0.00%
AMS-100-0.5-25-25-5 456* 456* - 457 23.00 0.20% 456* 20.36 0.00% 456* 0.30 0.00%
AMS-100-0.5-50-10-1 260* 260* - 260* 22.00 0.00% 260* 18.15 0.00% 260* 0.16 0.00%
AMS-100-0.5-50-10-2 271* 271* - 271* 21.00 0.00% 271* 18.86 0.00% 271* 0.16 0.00%
AMS-100-0.5-50-10-3 283* 283* - 283* 21.00 0.00% 283* 20.55 0.00% 283* 0.17 0.00%
AMS-100-0.5-50-10-4 291* 291* - 291* 22.00 0.00% 291* 18.30 0.00% 291* 0.16 0.00%
AMS-100-0.5-50-10-5 269* 269* - 269* 21.00 0.00% 269* 18.48 0.00% 269* 0.17 0.00%
AMS-100-0.8-10-50-1 730 730 - 730 39.00 0.00% 730 25.15 0.00% 730 0.73 0.00%
AMS-100-0.8-10-50-2 683* 683* - 683* 37.00 0.00% 683* 23.51 0.00% 683* 0.52 0.00%
AMS-100-0.8-10-50-3 718* 718* - 718* 37.00 0.00% 718* 24.80 0.00% 718* 0.23 0.00%
AMS-100-0.8-10-50-4 709* 709* - 709* 41.00 0.00% 709* 28.08 0.00% 709* 0.70 0.00%
AMS-100-0.8-10-50-5 700* 700* - 704 39.00 0.60% 700* 26.15 0.00% 700* 0.36 0.00%
AMS-100-0.8-25-25-1 442* 442* - 442* 40.00 0.00% 442* 22.49 0.00% 442* 0.27 0.00%
AMS-100-0.8-25-25-2 430* 430* - 430* 32.00 0.00% 430* 23.40 0.00% 430* 0.22 0.00%
AMS-100-0.8-25-25-3 426* 426* - 426* 36.00 0.00% 426* 23.26 0.00% 426* 0.19 0.00%
AMS-100-0.8-25-25-4 428* 428* - 428* 35.00 0.00% 428* 22.73 0.00% 428* 0.24 0.00%
AMS-100-0.8-25-25-5 432* 432* - 432* 42.00 0.00% 432* 23.04 0.00% 432* 0.39 0.00%
AMS-100-0.8-50-10-1 259* 259* - 259* 32.00 0.00% 259* 21.01 0.00% 259* 0.18 0.00%
AMS-100-0.8-50-10-2 246* 246* - 246* 9.00 0.00% 246* 20.64 0.00% 246* 0.16 0.00%
AMS-100-0.8-50-10-3 238* 238* - 238* 34.00 0.00% 238* 21.63 0.00% 238* 0.16 0.00%
AMS-100-0.8-50-10-4 253* 253* - 253* 34.00 0.00% 253* 22.23 0.00% 253* 0.18 0.00%
AMS-100-0.8-50-10-5 248* 248* - 248* 31.00 0.00% 248* 33.60 0.00% 248* 0.17 0.00%
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Table B.2
(continued)

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

AMS-125-0.2-10-50-1 1026 1026 - 1026 24.00 0.00% 1026 28.80 0.00% 1026 0.69 0.00%
AMS-125-0.2-10-50-2 1038 1038 - 1038 22.00 0.00% 1038 28.10 0.00% 1038 0.52 0.00%
AMS-125-0.2-10-50-3 935* 935* - 947 23.00 1.28% 935* 24.50 1.28% 935* 0.39 0.00%
AMS-125-0.2-10-50-4 1050 1050 - 1051 21.00 0.10% 1064 26.10 0.10% 1050 0.48 0.00%
AMS-125-0.2-10-50-5 974 974 - 975 25.00 0.10% 974 25.70 0.10% 974 0.53 0.00%
AMS-125-0.2-25-25-1 720* 720* - 720* 26.00 0.00% 720* 25.70 0.00% 720* 0.39 0.00%
AMS-125-0.2-25-25-2 746* 746* - 748 24.00 0.27% 746* 22.80 0.27% 746* 0.47 0.00%
AMS-125-0.2-25-25-3 715* 715* - 717 21.00 0.28% 715* 26.90 0.28% 715* 0.40 0.00%
AMS-125-0.2-25-25-4 701* 701* - 705 22.00 0.57% 701* 25.40 0.57% 701* 0.73 0.00%
AMS-125-0.2-25-25-5 684* 684* - 697 23.00 1.90% 685 23.40 1.90% 684* 1.61 0.00%
AMS-125-0.2-50-10-1 455* 455* - 455* 21.00 0.00% 455* 23.20 0.00% 455* 0.14 0.00%
AMS-125-0.2-50-10-2 477* 477* - 477* 23.00 0.00% 477* 22.40 0.00% 477* 0.14 0.00%
AMS-125-0.2-50-10-3 490* 490* - 490* 21.00 0.00% 490* 22.00 0.00% 490* 0.17 0.00%
AMS-125-0.2-50-10-4 467* 467* - 467* 23.00 0.00% 467* 22.50 0.00% 467* 0.23 0.00%
AMS-125-0.2-50-10-5 457* 457* - 459 24.00 0.44% 457* 23.10 0.44% 457* 0.17 0.00%
AMS-125-0.5-10-50-1 817 817 - 817 41.00 0.00% 817 33.80 0.00% 817 0.27 0.00%
AMS-125-0.5-10-50-2 815 815 - 815 45.00 0.00% 815 34.40 0.00% 815 0.23 0.00%
AMS-125-0.5-10-50-3 836 836 - 872 45.00 4.31% 836 35.80 4.31% 836 0.63 0.00%
AMS-125-0.5-10-50-4 867 867 - 867 55.00 0.00% 867 33.70 0.00% 867 0.35 0.00%
AMS-125-0.5-10-50-5 867 867 - 867 55.00 0.00% 867 28.60 0.00% 867 1.23 0.00%
AMS-125-0.5-25-25-1 566 566 - 566 48.00 0.00% 566 32.00 0.00% 566 0.34 0.00%
AMS-125-0.5-25-25-2 533* 533* - 533* 48.00 0.00% 533* 28.60 0.00% 533* 0.58 0.00%
AMS-125-0.5-25-25-3 538* 538* - 538* 49.00 0.00% 538* 30.40 0.00% 538* 0.41 0.00%
AMS-125-0.5-25-25-4 552 552 - 552 53.00 0.00% 552 31.10 0.00% 552 0.41 0.00%
AMS-125-0.5-25-25-5 545 545 - 548 48.00 0.55% 545 31.70 0.55% 545 0.89 0.00%
AMS-125-0.5-50-10-1 334* 334* - 334* 40.00 0.00% 334* 29.30 0.00% 334* 0.22 0.00%
AMS-125-0.5-50-10-2 330* 330* - 330* 38.00 0.00% 330* 28.50 0.00% 330* 0.15 0.00%
AMS-125-0.5-50-10-3 315* 315* - 315* 49.00 0.00% 315* 26.50 0.00% 315* 0.14 0.00%
AMS-125-0.5-50-10-4 316* 316* - 316* 51.00 0.00% 316* 29.20 0.00% 316* 0.15 0.00%
AMS-125-0.5-50-10-5 311* 311* - 311* 40.00 0.00% 311* 28.90 0.00% 311* 0.20 0.00%
AMS-125-0.8-10-50-1 793 793 - 793 78.00 0.00% 793 39.50 0.00% 793 0.20 0.00%
AMS-125-0.8-10-50-2 845 845 - 845 72.00 0.00% 845 40.40 0.00% 845 0.54 0.00%
AMS-125-0.8-10-50-3 787 787 - 787 74.00 0.00% 787 41.80 0.00% 787 0.24 0.00%
AMS-125-0.8-10-50-4 777 777 - 777 83.00 0.00% 777 40.80 0.00% 777 0.29 0.00%
AMS-125-0.8-10-50-5 813 813 - 813 77.00 0.00% 813 40.70 0.00% 813 0.66 0.00%
AMS-125-0.8-25-25-1 508* 508* - 510 69.00 0.39% 508* 37.40 0.39% 508* 0.54 0.00%
AMS-125-0.8-25-25-2 498* 498* - 498* 65.00 0.00% 498* 38.30 0.00% 498* 0.36 0.00%
AMS-125-0.8-25-25-3 513 513 - 513 77.00 0.00% 513 37.00 0.00% 513 0.36 0.00%
AMS-125-0.8-25-25-4 493* 493* - 493* 75.00 0.00% 493* 38.90 0.00% 493* 0.20 0.00%
AMS-125-0.8-25-25-5 504 504 - 504 76.00 0.00% 504 38.30 0.00% 504 0.89 0.00%
AMS-125-0.8-50-10-1 307* 307* - 307* 64.00 0.00% 307* 33.60 0.00% 307* 0.17 0.00%
AMS-125-0.8-50-10-2 296* 296* - 296* 57.00 0.00% 296* 37.60 0.00% 296* 0.16 0.00%
AMS-125-0.8-50-10-3 294* 294* - 294* 71.00 0.00% 294* 33.60 0.00% 294* 0.18 0.00%
AMS-125-0.8-50-10-4 270* 270* - 270* 86.00 0.00% 270* 34.80 0.00% 270* 0.15 0.00%
AMS-125-0.8-50-10-5 278* 278* - 278* 77.00 0.00% 278* 33.60 0.00% 278* 0.16 0.00%
Average 518.74 518.74 - 520.73 26.93 0.30% 518.87 21.03 0.08% 518.74 0.32 0.00%
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Table B.3
Comparative results of KILS with re-MIP, re-GA and VNS on NEW instances with
a time limit of 1800 seconds.

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

NEW-250-0.2-10-50-1 1662 1933 - 1662 122.44 0.00% 1703 111.20 2.47% 1637 8.64 -1.50%
NEW-250-0.2-10-50-2 1728 2029 - 1768 125.38 2.31% 1728 108.40 0.00% 1718 11.46 -0.58%
NEW-250-0.2-10-50-3 1754 1943 - 1754 143.58 0.00% 1769 96.60 0.86% 1723 8.03 -1.77%
NEW-250-0.2-10-50-4 1635 1799 - 1655 121.02 1.22% 1635 100.80 0.00% 1632 48.11 -0.18%
NEW-250-0.2-10-50-5 1737 1905 - 1739 135.64 0.12% 1737 103.60 0.00% 1698 8.91 -2.25%
NEW-250-0.2-25-25-1 1144 1244 - 1157 141.54 1.14% 1144 102.70 0.00% 1144 5.53 0.00%
NEW-250-0.2-25-25-2 1135 1210 - 1139 112.92 0.35% 1135 101.90 0.00% 1135 1.72 0.00%
NEW-250-0.2-25-25-3 1132 1197 - 1132 120.07 0.00% 1132 109.20 0.00% 1132 1.58 0.00%
NEW-250-0.2-25-25-4 1162 1228 - 1162 103.53 0.00% 1162 107.70 0.00% 1149 9.95 -1.12%
NEW-250-0.2-25-25-5 1147 1285 - 1149 124.22 0.17% 1147 111.30 0.00% 1144 12.61 -0.26%
NEW-250-0.2-50-10-1 749 763 - 749 101.84 0.00% 749 108.20 0.00% 743 0.96 -0.80%
NEW-250-0.2-50-10-2 708 715 - 708 110.43 0.00% 708 102.40 0.00% 708 0.72 0.00%
NEW-250-0.2-50-10-3 719 720 - 719 103.70 0.00% 719 104.30 0.00% 719 0.54 0.00%
NEW-250-0.2-50-10-4 680 680 - 680 107.74 0.00% 680 117.90 0.00% 680 0.31 0.00%
NEW-250-0.2-50-10-5 758 765 - 764 127.89 0.79% 758 105.90 0.00% 758 1.01 0.00%
NEW-250-0.5-10-50-1 1431 1696 - 1431 175.70 0.00% 1431 195.20 0.00% 1410 16.10 -1.47%
NEW-250-0.5-10-50-2 1468 1834 - 1471 168.53 0.20% 1468 223.50 0.00% 1468 13.91 0.00%
NEW-250-0.5-10-50-3 1417 1502 - 1417 205.66 0.00% 1417 234.80 0.00% 1417 10.51 0.00%
NEW-250-0.5-10-50-4 1492 1716 - 1518 183.18 1.74% 1492 208.80 0.00% 1492 3.87 0.00%
NEW-250-0.5-10-50-5 1474 1798 - 1474 175.63 0.00% 1483 205.00 0.61% 1474 12.95 0.00%
NEW-250-0.5-25-25-1 900 1018 - 914 182.00 1.56% 900 204.40 0.00% 900 4.87 0.00%
NEW-250-0.5-25-25-2 921 1044 - 939 171.87 1.95% 921 195.40 0.00% 921 5.53 0.00%
NEW-250-0.5-25-25-3 896 1100 - 896 164.35 0.00% 896 195.00 0.00% 896 5.42 0.00%
NEW-250-0.5-25-25-4 956 1082 - 957 189.52 0.10% 956 237.60 0.00% 956 22.23 0.00%
NEW-250-0.5-25-25-5 914 1060 - 914 210.20 0.00% 915 219.40 0.11% 914 9.73 0.00%
NEW-250-0.5-50-10-1 533 535 - 533 161.83 0.00% 533 188.10 0.00% 533 0.39 0.00%
NEW-250-0.5-50-10-2 554 588 - 554 189.04 0.00% 554 203.20 0.00% 554 0.96 0.00%
NEW-250-0.5-50-10-3 556 557 - 556 166.84 0.00% 556 173.70 0.00% 556 0.92 0.00%
NEW-250-0.5-50-10-4 558 569 - 558 206.30 0.00% 558 181.70 0.00% 558 0.45 0.00%
NEW-250-0.5-50-10-5 532 532 - 532 143.61 0.00% 532 186.10 0.00% 532 0.31 0.00%
NEW-250-0.8-10-50-1 1410 1627 - 1435 275.55 1.77% 1410 304.70 0.00% 1410 12.91 0.00%
NEW-250-0.8-10-50-2 1401 1547 - 1401 272.07 0.00% 1401 275.30 0.00% 1396 5.68 -0.36%
NEW-250-0.8-10-50-3 1444 1748 - 1444 313.13 0.00% 1444 313.80 0.00% 1444 6.70 0.00%
NEW-250-0.8-10-50-4 1420 1738 - 1420 293.97 0.00% 1420 308.70 0.00% 1420 4.89 0.00%
NEW-250-0.8-10-50-5 1430 1668 - 1430 269.13 0.00% 1430 290.00 0.00% 1430 5.73 0.00%
NEW-250-0.8-25-25-1 919 1006 - 928 295.71 0.98% 919 295.20 0.00% 919 1.93 0.00%
NEW-250-0.8-25-25-2 835 931 - 835 286.39 0.00% 835 293.30 0.00% 835 1.24 0.00%
NEW-250-0.8-25-25-3 914 1072 - 914 295.34 0.00% 919 271.50 0.55% 914 17.61 0.00%
NEW-250-0.8-25-25-4 846 903 - 846 268.14 0.00% 846 289.60 0.00% 846 1.45 0.00%
NEW-250-0.8-25-25-5 853 911 - 853 280.14 0.00% 853 285.60 0.00% 853 9.44 0.00%
NEW-250-0.8-50-10-1 489 490 - 489 295.28 0.00% 489 274.80 0.00% 489 3.53 0.00%
NEW-250-0.8-50-10-2 507 522 - 507 254.11 0.00% 507 271.50 0.00% 507 1.52 0.00%
NEW-250-0.8-50-10-3 498 507 - 499 323.87 0.20% 498 274.80 0.00% 498 1.08 0.00%
NEW-250-0.8-50-10-4 489 519 - 494 287.05 1.02% 489 289.00 0.00% 489 2.12 0.00%
NEW-250-0.8-50-10-5 482 508 - 482 339.30 0.00% 482 253.00 0.00% 482 0.39 0.00%

(Continued)
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Table B.3
(continued)

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

NEW-500-0.2-10-50-1 2893 3837 - 2893 728.03 0.00% 2968 650.84 2.47% 2893 125.22 0.00%
NEW-500-0.2-10-50-2 2937 3736 - 2937 806.45 0.00% 2947 766.95 0.00% 2848 751.86 -3.03%
NEW-500-0.2-10-50-3 3082 3839 - 3090 940.17 0.26% 3082 737.20 0.86% 2978 174.51 -3.37%
NEW-500-0.2-10-50-4 2964 3705 - 2964 904.48 0.00% 3063 584.93 0.00% 2930 138.43 -1.15%
NEW-500-0.2-10-50-5 2928 3965 - 2942 1069.15 0.48% 2928 574.73 0.00% 2869 376.30 -2.02%
NEW-500-0.2-25-25-1 1884 2383 - 1918 667.69 1.80% 1884 835.16 0.00% 1861 265.76 -1.22%
NEW-500-0.2-25-25-2 1931 2474 - 1931 803.81 0.00% 1941 603.05 0.00% 1916 512.44 -0.78%
NEW-500-0.2-25-25-3 1898 2225 - 1914 913.94 0.84% 1898 664.47 0.00% 1867 160.48 -1.63%
NEW-500-0.2-25-25-4 1861 2368 - 1861 774.70 0.00% 1937 603.66 0.00% 1861 334.69 0.00%
NEW-500-0.2-25-25-5 1861 2285 - 1904 926.24 2.31% 1861 875.06 0.00% 1855 352.25 -0.32%
NEW-500-0.2-50-10-1 1128 1256 - 1133 853.24 0.44% 1128 667.66 0.00% 1128 15.18 0.00%
NEW-500-0.2-50-10-2 1143 1263 - 1159 831.21 1.40% 1143 719.89 0.00% 1143 31.61 0.00%
NEW-500-0.2-50-10-3 1108 1288 - 1108 627.85 0.00% 1108 633.61 0.00% 1108 6.78 0.00%
NEW-500-0.2-50-10-4 1145 1246 - 1149 708.18 0.35% 1145 715.77 0.00% 1145 9.10 0.00%
NEW-500-0.2-50-10-5 1186 1301 - 1186 821.28 0.00% 1188 747.80 0.00% 1175 140.38 -0.93%
NEW-500-0.5-10-50-1 2590 3864 - 2614 1031.47 0.93% 2590 1560.09 0.00% 2522 650.08 -2.63%
NEW-500-0.5-10-50-2 2542 4551 - 2631 1089.09 3.50% 2542 1624.32 0.00% 2534 279.52 -0.31%
NEW-500-0.5-10-50-3 2547 4759 - 2552 1011.45 0.20% 2547 1432.79 0.00% 2543 487.11 -0.16%
NEW-500-0.5-10-50-4 2584 3220 - 2584 1112.37 0.00% 2596 1140.71 0.00% 2551 621.63 -1.28%
NEW-500-0.5-10-50-5 2539 3691 - 2539 978.20 0.00% 2539 821.39 0.61% 2522 794.30 -0.67%
NEW-500-0.5-25-25-1 1543 2164 - 1566 1064.91 1.49% 1543 1059.86 0.00% 1542 372.22 -0.06%
NEW-500-0.5-25-25-2 1574 2137 - 1574 1266.94 0.00% 1594 1069.64 0.00% 1559 197.52 -0.95%
NEW-500-0.5-25-25-3 1547 2121 - 1568 1054.71 1.36% 1547 1093.08 0.00% 1546 93.74 -0.06%
NEW-500-0.5-25-25-4 1564 2210 - 1564 1029.50 0.00% 1566 986.54 0.00% 1564 115.81 0.00%
NEW-500-0.5-25-25-5 1567 2343 - 1567 1083.46 0.00% 1570 998.63 0.11% 1566 969.76 -0.06%
NEW-500-0.5-50-10-1 919 1036 - 919 961.30 0.00% 919 785.72 0.00% 919 10.82 0.00%
NEW-500-0.5-50-10-2 911 1067 - 933 874.65 2.41% 911 761.01 0.00% 911 11.58 0.00%
NEW-500-0.5-50-10-3 906 1020 - 906 850.46 0.00% 906 808.49 0.00% 906 32.05 0.00%
NEW-500-0.5-50-10-4 904 1091 - 904 995.52 0.00% 904 851.96 0.00% 904 41.49 0.00%
NEW-500-0.5-50-10-5 932 1063 - 938 945.76 0.64% 932 986.16 0.00% 932 20.38 0.00%
NEW-500-0.8-10-50-1 2500 3385 - 2500 1479.92 0.00% 2500 1465.99 0.00% 2500 109.22 0.00%
NEW-500-0.8-10-50-2 2497 3492 - 2497 1524.66 0.00% 2499 1631.88 0.00% 2483 99.39 -0.56%
NEW-500-0.8-10-50-3 2466 3384 - 2513 1729.63 1.91% 2466 1588.32 0.00% 2466 430.55 0.00%
NEW-500-0.8-10-50-4 2511 5055 - 2544 1769.65 1.31% 2511 1552.92 0.00% 2509 134.28 -0.08%
NEW-500-0.8-10-50-5 2497 4581 - 2538 1790.36 1.64% 2497 1450.32 0.00% 2497 204.15 0.00%
NEW-500-0.8-25-25-1 1490 2004 - 1490 1635.55 0.00% 1490 1326.62 0.00% 1480 855.17 -0.67%
NEW-500-0.8-25-25-2 1505 1972 - 1509 1394.27 0.27% 1505 1523.79 0.00% 1500 133.69 -0.33%
NEW-500-0.8-25-25-3 1470 2048 - 1470 1693.75 0.00% 1471 1332.70 0.55% 1470 107.36 0.00%
NEW-500-0.8-25-25-4 1489 1986 - 1489 1532.75 0.00% 1489 1369.60 0.00% 1489 78.90 0.00%
NEW-500-0.8-25-25-5 1496 2055 - 1507 1469.24 0.74% 1496 1534.04 0.00% 1496 527.41 0.00%
NEW-500-0.8-50-10-1 871 1021 - 871 1368.94 0.00% 871 1411.70 0.00% 871 23.34 0.00%
NEW-500-0.8-50-10-2 853 968 - 853 1611.79 0.00% 853 1406.58 0.00% 853 13.42 0.00%
NEW-500-0.8-50-10-3 855 1002 - 855 1607.03 0.00% 855 1426.59 0.00% 855 17.19 0.00%
NEW-500-0.8-50-10-4 869 985 - 871 1510.68 0.23% 869 1254.65 0.00% 867 48.05 -0.23%
NEW-500-0.8-50-10-5 872 933 - 872 1313.77 0.00% 872 1421.05 0.00% 872 21.61 0.00%
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Table B.3
(continued)

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS
fbest time fbest time pg% fbest time pg% fbest time pg%

NEW-1000-0.2-10-50-1 4990 10851 - 4990 1844.62 0.00% 5106 1802.92 2.32% 4875 396.92 -2.30%
NEW-1000-0.2-10-50-2 5233 9687 - 5233 1911.96 0.00% 5316 1806.68 1.59% 5049 1172.23 -3.52%
NEW-1000-0.2-10-50-3 5044 9995 - 5196 2030.31 3.01% 5044 1800.12 0.00% 4962 665.97 -1.63%
NEW-1000-0.2-10-50-4 5079 9760 - 5079 1901.64 0.00% 5321 1803.50 4.76% 4981 742.05 -1.93%
NEW-1000-0.2-10-50-5 5098 10617 - 5098 1817.69 0.00% 5260 1802.36 3.18% 4988 1556.61 -2.16%
NEW-1000-0.2-25-25-1 3167 5340 - 3167 1903.54 0.00% 3233 1803.17 2.08% 3122 636.26 -1.42%
NEW-1000-0.2-25-25-2 3163 5845 - 3179 1954.87 0.51% 3163 1804.58 0.00% 3127 768.29 -1.14%
NEW-1000-0.2-25-25-3 3148 5003 - 3159 1802.92 0.35% 3148 1800.66 0.00% 3106 892.91 -1.33%
NEW-1000-0.2-25-25-4 3227 4863 - 3227 1839.07 0.00% 3268 1802.43 1.27% 3147 736.78 -2.48%
NEW-1000-0.2-25-25-5 3234 5349 - 3285 1848.57 1.58% 3234 1800.96 0.00% 3151 981.56 -2.57%
NEW-1000-0.2-50-10-1 1907 2419 - 1907 1876.57 0.00% 1930 1807.56 1.21% 1907 598.98 0.00%
NEW-1000-0.2-50-10-2 1882 2275 - 1882 1826.26 0.00% 1890 1803.21 0.43% 1876 533.31 -0.32%
NEW-1000-0.2-50-10-3 1899 2401 - 1899 1851.74 0.00% 1921 1820.84 1.16% 1890 104.14 -0.47%
NEW-1000-0.2-50-10-4 1914 2281 - 1914 1842.00 0.00% 1916 1801.58 0.10% 1908 350.41 -0.31%
NEW-1000-0.2-50-10-5 1934 2302 - 1934 1883.87 0.00% 1936 1807.26 0.10% 1917 569.95 -0.88%
NEW-1000-0.5-10-50-1 4483 n/a - 4869 1817.82 8.61% 4483 1817.88 0.00% 4363 349.51 -2.68%
NEW-1000-0.5-10-50-2 4462 n/a - 4807 1814.33 7.73% 4462 1802.64 0.00% 4405 1085.69 -1.28%
NEW-1000-0.5-10-50-3 4567 n/a - 5015 1819.77 9.81% 4567 1809.09 0.00% 4428 223.83 -3.04%
NEW-1000-0.5-10-50-4 4480 n/a - 4967 1804.76 10.87% 4480 1847.11 0.00% 4386 876.22 -2.10%
NEW-1000-0.5-10-50-5 4469 n/a - 4862 1805.86 8.79% 4469 1812.15 0.00% 4364 751.38 -2.35%
NEW-1000-0.5-25-25-1 2743 n/a - 2961 1822.59 7.95% 2743 1826.69 0.00% 2712 1565.19 -1.13%
NEW-1000-0.5-25-25-2 2771 n/a - 2905 1811.76 4.84% 2771 1814.80 0.00% 2646 741.23 -4.51%
NEW-1000-0.5-25-25-3 2783 n/a - 2923 1815.74 5.03% 2783 1813.17 0.00% 2698 813.65 -3.05%
NEW-1000-0.5-25-25-4 2757 n/a - 2942 1811.96 6.71% 2757 1800.03 0.00% 2694 573.76 -2.29%
NEW-1000-0.5-25-25-5 2752 n/a - 2946 1818.25 7.05% 2752 1800.10 0.00% 2662 1053.23 -3.27%
NEW-1000-0.5-50-10-1 1612 n/a - 1699 1810.50 5.40% 1612 1801.31 0.00% 1612 623.61 0.00%
NEW-1000-0.5-50-10-2 1631 n/a - 1697 1813.97 4.05% 1631 1807.96 0.00% 1604 489.38 -1.66%
NEW-1000-0.5-50-10-3 1625 n/a - 1711 1819.20 5.29% 1625 1801.26 0.00% 1625 676.47 0.00%
NEW-1000-0.5-50-10-4 1629 n/a - 1710 1805.03 4.97% 1629 1835.95 0.00% 1616 589.00 -0.80%
NEW-1000-0.5-50-10-5 1597 n/a - 1694 1813.95 6.07% 1597 1825.22 0.00% 1597 221.53 0.00%
NEW-1000-0.8-10-50-1 4334 n/a - 4678 1827.11 7.94% 4334 1806.33 0.00% 4284 691.70 -1.15%
NEW-1000-0.8-10-50-2 4352 n/a - 4630 1807.23 6.39% 4352 1800.31 0.00% 4242 578.95 -2.53%
NEW-1000-0.8-10-50-3 4358 n/a - 4698 1800.78 7.80% 4358 1841.15 0.00% 4310 639.24 -1.10%
NEW-1000-0.8-10-50-4 4375 n/a - 4660 1817.18 6.51% 4375 1818.54 0.00% 4295 422.35 -1.83%
NEW-1000-0.8-10-50-5 4373 n/a - 4587 1814.03 4.89% 4373 1857.44 0.00% 4228 455.45 -3.32%
NEW-1000-0.8-25-25-1 2580 n/a - 2723 1802.05 5.54% 2580 1885.02 0.00% 2580 417.76 0.00%
NEW-1000-0.8-25-25-2 2605 n/a - 2736 1811.44 5.03% 2605 1848.56 0.00% 2557 505.91 -1.84%
NEW-1000-0.8-25-25-3 2577 n/a - 2742 1824.19 6.40% 2577 1818.58 0.00% 2576 1293.46 -0.04%
NEW-1000-0.8-25-25-4 2574 n/a - 2668 1803.35 3.65% 2574 1815.11 0.00% 2544 1119.54 -1.17%
NEW-1000-0.8-25-25-5 2613 n/a - 2726 1840.62 4.32% 2613 1800.48 0.00% 2543 619.85 -2.68%
NEW-1000-0.8-50-10-1 1525 n/a - 1597 1820.47 4.72% 1525 1803.74 0.00% 1525 485.52 0.00%
NEW-1000-0.8-50-10-2 1549 n/a - 1637 1819.92 5.68% 1549 1800.89 0.00% 1542 825.45 -0.45%
NEW-1000-0.8-50-10-3 1526 n/a - 1594 1800.46 4.46% 1526 1815.45 0.00% 1526 354.75 0.00%
NEW-1000-0.8-50-10-4 1526 n/a - 1579 1801.10 3.47% 1526 1800.99 0.00% 1507 520.77 -1.25%
NEW-1000-0.8-50-10-5 1541 n/a - 1596 1806.17 3.57% 1541 1801.81 0.00% 1532 765.95 -0.58%
Average 1951.37 n/a - 2000.84 1055.86 1.70% 1959.90 1026.59 0.20% 1927.76 314.35 -0.75%
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Table B.4
Comparative results of KILS with re-MIP, re-GA and VNS on SNAP instances with
a time limit of 18000 seconds.

Instance BKVs re-MIP [12] re-GA [12] VNS [12] KILS

fbest time fbest time pg% fbest time pg% fbest time pg%

deezer HR 586365 n/a - 586365 18000.17 0.00% 620957 18001.20 5.90% 536771 17973.00 -8.46%

deezer HU 555498 n/a - 555498 18000.35 0.00% 556022 16186.68 0.09% 508548 16021.60 -8.45%

deezer RO 556582 654858 18001.23 556582 18000.09 0.00% 578040 11007.70 3.86% 534449 17909.90 -3.98%

Slashdot0811 6050730 n/a - 6050730 18000.30 0.00% 6179223 18025.35 2.12% 5936600 17980.40 -1.89%

Slashdot0902 6015347 n/a - 6015347 18000.10 0.00% 6247455 18000.99 3.86% 5895170 17972.60 -2.00%

Wiki-Vote 650140* 650140* 4.67 654677 18000.03 0.70% 651159 18012.22 0.16% 650140* 1140.14 0.00%

facebook artist 740523 n/a - 740523 18000.33 0.00% 912157 18019.65 23.18% 698510 17842.30 -5.67%

facebook athletes 169723 n/a - 178107 18000.09 4.94% 169723 6178.07 0.00% 166569 17958.80 -1.86%

facebook company 199157 n/a - 199157 18000.04 0.00% 203123 2560.45 1.99% 192749 16667.00 -3.22%

deezer europe 381800 381800 18000.02 391494 18000.06 2.54% 396971 6877.88 3.97% 378612 17989.60 -0.83%

facebook combined 27205 n/a - 27537 13109.16 1.22% 27205 14645.15 0.00% 27137 16619.30 -0.25%

facebook government 71259 n/a - 77368 18017.82 8.57% 71259 2545.88 0.00% 69030 17482.60 -3.13%

lastfm asia 29814* 29814* 3.38 30334 18010.74 1.74% 30169 3232.05 1.19% 29814* 14739.30 0.00%

musae DE 114292 n/a - 119985 18000.09 4.98% 114292 18001.97 0.00% 110880 16281.40 -2.99%

musae ENGB 25540* 25540* 3.14 26118 18013.43 2.26% 25859 4401.84 1.25% 25540* 14333.45 0.00%

musae ES 106135 n/a - 111628 18001.85 5.18% 106135 7198.66 0.00% 104865 5172.06 -1.20%

musae FR 72864 n/a - 78113 18000.04 7.20% 72864 16243.31 0.00% 71538 17651.00 -1.82%

musae PTBR 44605* 44605* 16.19 45593 18001.42 2.21% 44886 2569.50 0.63% 44605* 195.84 0.00%

musae RU 14577* 14577* 4.18 15083 18006.74 3.47% 14710 4839.94 0.91% 14577* 16327.80 0.00%

musae facebook 285549 n/a - 285549 18000.02 0.00% 286852 6384.36 0.46% 271000 17994.70 -5.10%

musae git 1425237 n/a - 1425237 18000.10 0.00% 1508949 12529.38 5.87% 1421929 17769.10 -0.23%

facebook new sites 351544 n/a - 351544 18000.12 0.00% 353735 8607.34 0.62% 330643 17860.20 -5.95%

facebook politician 66757 n/a - 70258 18003.53 5.24% 66757 5039.59 0.00% 66290 5765.64 -0.70%

facebook public figure 181074 n/a - 181074 18000.07 0.00% 181428 2458.28 0.20% 174529 14184.40 -3.61%

soc-Epinions1 6413824 n/a - 6413824 18000.17 0.00% 6566233 18011.00 2.38% 6365250 17952.80 -0.76%

facebook tvshow 47173 n/a - 48355 18005.77 2.51% 47173 1876.68 0.00% 46990 4969.87 -0.39%

twitter combined 721324 n/a - 3876001 18000.89 437.35% 721324 18003.00 0.00% 708565 17975.50 -1.77%

Average 959431.04 n/a - 1078225 17821.24 18.15% 990913.33 10350.30 2.17% 940048.15 14545.57 -2.38%
1 Note: The results of re-MIP, re-GA and VNS are obtained by re-compiling these algorithms on our computer since

these algorithms have not been applied on these instances.
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