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cLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

dSchool of Management, Huazhong University of Science and Technology, 1037
Road Luoyu, 430074 Wuhan, China

Information Sciences, https://doi.org/10.1016/j.ins.2023.119404

Abstract

The profit maximization set covering problem is a general model able to formulate
practical problems including in particular an application in the mining industry.
As a variant of the partial set covering problem, the studied problem is to select
some subsets of elements to maximize the difference of the total gain of the covered
elements subtracting the costs of the chosen subsets and their associated groups.
We investigate for the first time a learning-based multi-start iterated local search
algorithm for solving the problem. The proposed algorithm combines a multi-restart
mechanism to enhance robustness, an intensification-driven local search to perform
intensive solution examination, a learning-driven initialization to obtain high-quality
starting solutions and a learning-based strategy to select suitable perturbations.
Experimental results on 30 benchmark instances show the competitiveness of the
algorithm against the state-of-the-art methods, by reporting 18 new lower bounds
and 12 equal results (including 7 known optimal results). We also perform additional
experiments to validate the design of the algorithmic components.
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1 Introduction

The profit maximization set covering problem (PMSCP) was introduced in
[3] to formulate the drill-hole placement problem in mining industry. In this
application, the candidate drill holes are grouped by different drill stations
where the drill-platform can be installed and each candidate drill hole covers
a number of blocks. There is a cost of drilling a hole that proportional to the
hole length and a gain generated by each block covered by a hole. Moreover,
displacing the drill-platform from one station to another implies a high cost.
We want to perform a number of drill holes that can maximize the difference of
the total gain of the blocks covered by the performed drill holes subtracting the
costs of drilling the holes and moving the drill-platform. Then, the problem
can be formally defined by the following model and the details of practical
applications can be found in [3].

Let E = {e1, e2, . . . , em} denote a set of m elements, and S = {s1, s2, . . . , sn}
a collection of n non-empty subsets of E, which are grouped into q groups and
let G = {g1, g2, . . . , gq} be the union of these q groups. Moreover, each element
ei (i = 1, . . . ,m) of E has a gain or profit ai; each subset sj (j = 1, . . . , n) of
S has a cost bj; each group gk (k = 1, . . . , q) of G has a cost ck. The PMSCP
is to select a collection X of some subsets from S to maximize the objective
function, which is the difference of the total gain of the covered elements
subtracting the total cost of the selected subsets and the groups containing
these subsets. The gain of a covered element is counted once, even though
the element is part of several selected subsets; similarly, the cost of a group is
counted only once, even though the group contains several selected subsets.

Formally, let U be a binary matrix (called element-set matrix) specifying the
relationship between the elements of E and the subsets of S such that uij = 1
if element ei appears in subset sj and else uij = 0. Let V be a binary matrix
(called group-set matrix) specifying the relationship between the subsets of S
and the groups of G such that vjk = 1 if subset sj belongs to group gk and
else vjk = 0. Let xj be a binary variable (decision variable) such that xj = 1
if subset sj is selected and else xj = 0. Let yi be a binary variable (logical
variable) such that yi = 1 if ei is covered by a selected subset and else yi = 0.
Let zk be a binary variable (logical variable) such that zk = 1 if gk contains at
least one selected subset and else zk = 0. Let X = (x1, x2, . . . , xn) be a binary
vector representing a candidate solution. Then the PMSCP can be stated as
follows [3].

(PMSCP ) Maximize f(X) =
m∑
i=1

aiyi −
n∑

j=1

bjxj −
q∑

k=1

ckzk (1)
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subject to yi ≤
n∑

j=1

uijxj, i ∈ {1, ...,m} (2)

vkjxj ≤ zk, j ∈ {1, ..., n}, k ∈ {1, ..., q} (3)

xj, yi, zk ∈ {0, 1} (4)

Equation (1) (objective function) is to maximize the difference of the total
profit of the elements covered by the selected subsets in X subtracting the
costs of the chosen subsets and the costs of the groups containing the selected
subsets. Constraint (2) ensures that an element is covered if it appears in one
or more selected subsets. Constraint (3) states that a group containing at least
one selected subset is part of the solution. Constraint (4) stipulates the binary
nature for variables xj, yi and zk.

Figure 1 provides an illustrative example of the PMSCP with E = {e1, e2, ..., e6},
S = {s1, s2, ..., s5}, and G = {g1, g2}. The element gains and subset/group
costs are indicated next to each item as well as the element-set matrix U and
group-set matrix V . Figure 1(c) shows a candidate solution X = {s4} that
covers three elements {e1, e4, e5} and belongs to group g2. This solution has an
objective value of 6, since the total gain of the covered elements is (5+3+6)
(orange elements), the cost of the selected subset is 5 (orange subset) and the
cost of the corresponding group is 3 (orange group). Figure 1(d) exemplifies
an optimal solution X = {s1, s2} with the maximum objective value of 9.

Now it is easy to observe that the above drill-hole placement problem is an
instance of the PMSCP, if we consider that E is the set of blocks with their
gains, S is the set of candidate drill holes with their costs, and G is composed
of the drill-platform locations with their moving costs.

The PMSCP is tightly related to the popular set covering problem (SCP)
[12] and can be considered as a profit-maximization variant of the partial set
covering problem where it is unnecessary to cover all elements of E.

Like the related SCP and its various variants, the PMSCP is computationally
challenging. Bilal et al. [3] introduced an iterated tabu search (ITS) that in-
tegrates a tabu search and an adaptive perturbation mechanism, which was
tested on 30 benchmark instances derived from the drill-hole placement prob-
lem. Along with the ITS algorithm, the exact branch and bound algorithm
(B&B) of the CPLEX solver (CPLEX (B&B)) for solving mixed integer pro-
gramming problems was run for a long computation time (up to 9 days per
instance) to solve the mathematical model (1)-(4). Results show that CPLEX
(B&B) can obtain 7 optimal solutions and 13 feasible solutions, but fails to
find a feasible solution for the other instances. Compared with CPLEX (B&B),
ITS obtains 22 better, 5 equal, and 3 worse results. Bilal et al. [3] also com-
pared ITS with an adaptation to the PMSCP of the memetic algorithm (MA-
PMSCP) initially designed for the SCP in [2], demonstrating the dominance
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(a) An element-set matrix U (b) A group-set matrix V

(c) A candidate solution (d) An optimal solution

Fig. 1. An example of PMSCP with its element-set matrix U , group-set matrix V ,
a candidate solution and an optimal solution

of ITS over MA-PMSCP. In [4], a Parallel ITS algorithm was proposed, which
combines the ITS and a parallel neighborhood evaluation approach. Exper-
imental results showed that Parallel ITS is superior to ITS by obtaining 20
better, 8 equal and 2 worse results. We notice that CPLEX (B&B), ITS and
Parallel ITS are the best existing approaches for solving the PMSCP and will
be used as the references for our experimental study.

According to the reported results, existing heuristic algorithms for the PM-
SCP are unstable, especially on large instances with at least 5192 elements,
15252 subsets, and 62 groups. Besides, these algorithms are primarily based on
conventional ITS approach and ignore powerful learning-based frameworks. In-
deed, it is recently shown that algorithms integrating learning techniques and
conventional heuristic approaches can achieve top performance for covering
problems such as the set covering problem [6] and the budgeted maximum
coverage problem [15]. These observations motivate us to devise a learning-
based heuristic algorithm that is able to solve large-scale instances.

In this paper, we introduce the first learning-based local search algorithm for
the PMSCP with the following contributions.
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First, we design a two-phase iterated local search that employs an intensification-
driven search strategy to perform an intensified examination of candidate so-
lutions, fast neighborhood evaluations to shorten the computation time, and
a two-phase local search to effectively examine the search space.

Second, we present a learning-driven construction method to generate high-
quality initial solutions by using historical information of the discovered local
optimal solutions, and an informed perturbation to dynamically select a proper
perturbation.

Finally, we show 18 record-breaking best solutions among the 30 benchmark
instances, which can be used for the problem in future research.

Section 2 introduces the proposed algorithm. Section 3 shows comparative
results. Section 4 justifies the design of the key algorithmic components, and
the last section draws conclusions and presents research perspectives.

2 Learning-based multi-start iterated local search

The proposed learning-based multi-start iterated local search algorithm (LMILS)
for the PMSCP relies on the multi-start iterated local search framework [18]
that iterates solution construction and local optimization. As a general ap-
proach, multi-start iterated local search has been applied to several hard op-
timization problems including the set-union knapsack [26], maximum clique
[27], bandwidth coloring [14] and minimum weight vertex cover [28]. In this
work, we propose the first adaptation of the multi-start iterated local search
to the PMSCP enhanced by learning techniques. Algorithm 1 presents the
pseudo-code of LMILS.

The LMILS algorithm (Algorithm 1) begins with a reduction procedure to
pre-process the given input instance (line 1). Then a number of iterations are
performed until the stopping condition is satisfied. At each iteration, an initial
solution X0 is generated by the learning-driven initialization procedure (line 6)
and then improved by the intensification-driven iterated local search procedure
(line 7). The recorded best solution (X∗) is updated whenever necessary, and
finally returned as the output at the end of the LMILS algorithm. In the fol-
lowing section, we illustrate the details of the reduction-based pre-processing
procedure, the learning-driven construction procedure, and the two-phase lo-
cal optimization procedure.
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Algorithm 1 Framework of the LMILS algorithm
Input: Instance I = (E,S,G), greediness ratio ε, depth of iterated local search ω,

depth of tabu search β
Output: The best solution X∗ ever found
1: I0 ← Reduction(I) /*See Section 2.1*/
2: X∗ ← ∅ /*Initialize the best solution X∗*/
3: Initialize the historical information vector η /*See Section 2.2*/
4: Initialize the perturbation probability vector γ /*See Section 2.3.2*/
5: while Stopping condition is not satisfied do
6: X0 ← Learning Driven Initialization(I0, η, ε)

/*Generate an initial solution X0, see section 2.2*/
7: (X0, η, γ)← Intensification Driven Iterated Local Search(X0, ω, β, η, γ)

/*Improve the initial solution X0, see section 2.3*/
8: if f(X0) > f(X∗) then
9: X∗ ← X0

10: end if
11: end while
12: return X∗

2.1 Reduction-based pre-processing

We first use a reduction procedure to pre-process the given problem instance
I = (E, S,G) before the search starts, in which a subset of S can be eliminated
if the total gain of the elements covered by this subset is no more than the
cost of the subset. This is achieved by traversing all subsets of S and removing
any subset sj if

∑
ei∈sj ai ≤ bj.

Figure 2 presents an example of the reduction procedure. The cost of subset
s3 is 4, which is equal to the total gain of its covered elements (e2 and e6).
Thus, s3 is removed from S. In Appendix A, we investigate the impact of the
reduction procedure (in fact, it can reduce the size of S by 5%-30%).

Let S0 be the reduced S after this reduction procedure and let I0 = (E, S0, G)
denote the pre-processed instance. The LMILS algorithm starts its search by
obtaining an initial solution with the learning-driven solution construction
procedure.

2.2 Learning-driven solution construction

Multi-start iterated local search typically generates a new starting solution
from the previous (best) local optimal solution by performing some perturba-
tion operations. In this work, we devise a learning-driven solution construction
procedure to generate promising new starting solutions with the help of histor-
ical information. This is in sharp contrast to the non-informed perturbations
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(a) The given instance (s3 will be re-
moved from S)

(b) The instance after reduction

Fig. 2. An example of the reduction procedure

adopted in [3,4].

Algorithm 2 Learning-driven initialization
Input: Reduced instance I0 = (E,S0, G), historical information vector η, greedi-

ness ratio ε
Output: The initial solution X0

1: X0 ← ∅
2: S′ ← S0 /*Initialize the set S′ of the subsets that have not been chosen */
3: while S′ 6= ∅ do
4: /*Choose a subset sj*/
5: if rand(0, 1) < ε then
6: Choose a subset sj ∈ S′ with the largest value ηj in vector η
7: else
8: Randomly choose a subset sj ∈ S′
9: end if

10: S′ ← S′\{sj} /*Update S′*/
11: /*Insert the chosen subset sj*/
12: if

∑
ei∈sj∧ei /∈∪sl∈X0

sl
ai − bj > 0 and rand(0, 1) < ηj then

13: X0 ← X0 ∪ {sj}
14: end if
15: end while
16: return X0

The learning-driven solution construction iteratively inserts one subset from
S0 to the current solution X0 according to the historical information vector
η = {η1, η2, ..., ηn} (lines 3-15, Algorithm 2), where ηj records the probability of
sj being inserted into the solution X0. ηj is initialized to 0.5, ∀j ∈ {1, 2, ..., n}
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(line 3, Algorithm 1),X0 to ∅ (line 1, Algorithm 2), and S ′ to S0 that represents
the set of unchosen subsets (line 2, Algorithm 2). At each iteration, first, the
subset sj ∈ S ′ with the largest value ηj in vector η is chosen with a probability
of ε, otherwise, a random subset sj ∈ S ′ is chosen (lines 5-9, Algorithm 2);
then, the chosen sj is inserted into X0 if its incremental gain is higher than
its cost and ηj is more than a random probability (line 12, Algorithm 2);
otherwise, sj is ignored. The construction procedure stops when S ′ becomes
empty.

2.3 Intensification-driven iterated local search

Starting from the solution brought by the learning-driven construction proce-
dure (Section 2.2), the MLILS algorithm uses the intensification-driven iter-
ated local search (IILS) (Algorithm 3) to find improved solutions. Specifically,
IILS iterates the two-phase local search procedure line 5) and the learning-
based perturbation procedure (line 14) until it cannot improve its best solution
for ω consecutive iterations (ω is the depth of iterated local search).

Algorithm 3 Intensification-driven iterated local search
Input: Initial solution X0, the depth of IILS ω, the depth of tabu search β, prob-

ability vectors η and γ
Output: The best solution Xbest found during this search process, updated prob-

ability vectors η and γ
1: X ← X0 /*Initialize the current solution X*/
2: Xbest ← X /*Initialize the best solution Xbest of the IILS*/
3: non improve← 0 /*Indicate the consecutive iterations where Xbest is not

updated*/
4: while non improve < ω do
5: X ← TwoPhase LocalSearch(X,β) /*See Section 2.3.1*/
6: if f(X) > f(Xbest) then
7: Update historical information vector η according to Equation (13) and (14)
8: Update perturbation probability vector γ according to Equation (15)
9: Xbest ← X /*Update the best solution Xbest of IILS*/

10: non improve← 0
11: else
12: non improve← non improve+ 1
13: end if
14: X ← Perturbation(Xbest, γ) /*See Section 2.3.2*/
15: end while
16: return (Xbest, η, γ)

8



2.3.1 Two-phase local search

The two-phase local optimization aims to improve the input solution as de-
scribed in Algorithm 4. The first phase, called the flip-based tabu search, per-
forms an exploratory and fast search (line 5), while the second phase, called
the swap-based descent search, performs a more focused search (line 6). The
two phases alternate until no further improvement is possible.

Algorithm 4 Two-phase local search
Input: Input solution X, the depth of tabu search β
Output: Updated solution X
1: Xb ← X /*Initialize the best solution Xb of the two-phase local search*/
2: non improve← 0 /*Indicate whether X has been improved */
3: while non improve = 0 do
4: non improve← 1
5: X ← Flip TabuSearch(X,β) /*See Section 2.3.1.1*/
6: X ← Swap DescentSearch(X) /*See Section 2.3.1.2*/
7: if f(X) > f(Xb) then
8: X ← Xb /*Update the best solution Xb of the two-phase local search*/
9: non improve← 0

10: end if
11: end while
12: return X

2.3.1.1 Flip-based tabu search Starting with an input solution X, the
flip-based tabu search procedure iteratively improves the solution according
to the tabu search method [9], which explores the flip-based neighborhood
(see below). At each iteration, the best admissible candidate solution among
the neighboring solutions is taken to replace the current solution. The corre-
sponding flip move is recorded in the so-called tabu list to forbid the reverse
move for a number of subsequent iterations. The tabu search process continues
until its best solution cannot be further improved for a number of consecutive
iterations.

Flip Move Operator. Following [3], we apply the flip operator to generate
neighboring solutions. Generally, this operator changes the value of a binary
variable to its complementary value. In our case, flip(X, j) adds a subset sj /∈
X to the current solution X or removes a subset sj from X. Let X⊕flip(X, j)
designate the neighboring solution given by applying flip(X, j) to X. The
neighborhood NF induced by the flip(X, j) operator is given by

NF (X) = {X ⊕ flip(X, j) : sj ∈ S0}. (5)

It can be seen easily that the size of NF is limited by O(|S0|).
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Fast Neighborhood Evaluation Technique. We design a fast incremental evalua-
tion technique to efficiently compute the move gain (∆f), which identifies the
variation of the objective value f (Equation (1)) after applying the flip(X, j)
operator. We maintain a vector δ of size n, δ[j] (1 ≤ j ≤ n), for each sj ∈ gk
to record the incremental evaluation value of flipping sj. We can initialize the
vector δ as follows

δ[j] =


∑

ei∈sj ,|Ri∩X|=0 ai − bj − θ1 ∗ ck, sj /∈ X

−∑
ei∈sj ,|Ri∩X|=1 ai + bj + θ2 ∗ ck, sj ∈ X

(1 ≤ i ≤ m, 1 ≤ k ≤ q)

(6)

where θ1 = 1 if no subset is shared by gk and X, i.e., gk ∩X = ∅; otherwise,
θ1 = 0; θ2 = 1 if only one subset is shared by gk and X, i.e., gk ∩X = {sj};
otherwise, θ2 = 0; ei denotes an element of the subset sj, and Ri represents
the union of such subsets.

Each time a flip(X, j) move involving subset sj is performed, the move gain
∆f(flip(X, j)) is obtained by,

∆f(flip(X, j)) = f(X ⊕ flip(X, j))− f(X) = δ[j]. (7)

When the flip move is performed, the affected data structure δ is updated as
follows.

1) For the flipped subset sj, δ[j] = −δ[j].

2) For each subset sl in the same group gk as the flipped sj (l 6= j), δ[l] is
updated by

δ[l] =

 δ[l]− ck, if (X ∩ gk = {sj} and sj ∈ X) or (X ∩ gk = {sl} and sj /∈ X);

δ[l] + ck, if (X ∩ gk = {sl, sj} and sj ∈ X) or (X ∩ gk = ∅ and sj /∈ X);

(8)

3) For each subset sr covering the element ei in sj (r 6= j), the value δ[r] of sr
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is updated by,

δ[r] =

 δ[r] + ai, if (X ∩Ri = {sj} and sj ∈ X) or (X ∩Ri = {sr} and sj /∈ X);

δ[r]− ai, if (X ∩Ri = {sr, sj} and sj ∈ X) or (X ∩Ri = ∅ and sj /∈ X);

(9)

Clearly, the time complexity of updating δ is O(mn) in the worst case.

Tabu List Management Strategy. To prevent the search from revisiting recently
encountered solutions, we adopt an n-vector T as our tabu list to record the
subsets involved in the flip operator, where T [j] is initially set to 0 and is
updated as follows each time a subset sj is flipped in the current solution X,

T [j] =

 Iter + rand(C), if sj is added to X;

Iter + |S0|, if sj is removed from X;
(10)

where Iter is the current number of iterations, rand(C) is a random integer
between 1 to C. C is the tabu tenure threshold set to 5 according to experiment
(see Section 3.2), and |S0| is the number of the available subsets after the
reduction procedure. Then, during the next iterations, if Iter < T [j], sj is
forbidden to take part in any flip operation, unless the flip involving sj leads
to a neighboring solution that is better than the recorded best solution Xb of
the tabu process (this exception rule is called an aspiration criterion in tabu
search [9]).

The framework of the proposed tabu search is illustrated in Algorithm 5.
Starting with the input solution X (line 1), it enters a while loop to iteratively
improve the current solution (lines 3-13). At each iteration, the algorithm se-
lects one best admissible neighboring solution X ′ in the neighborhood NF (X)
to take it as the new current solution (lines 4 and 5), records the underlying
flip move in the tabu list (line 6), conditionally renews the best recorded so-
lution Xb, and updates the consecutive non-improvement counter (lines 7-11).
Tabu search terminates when the best solution found during this search is not
updated for β continuous iterations (β is the depth of tabu search).

2.3.1.2 Swap-based descent search The swap-based descent search
(Algorithm 6) aims to find still better solutions by using an enlarged neigh-
borhood NS induced by the swap operator. At each iteration of the descent
search, the current solution X is substituted by the best neighboring solution
X ′ found in NS(X), if X ′ is better than X (lines 2-9). Swap-based descent
search stops when a local optimal solution is reached in the swap neighbor-
hood.
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Algorithm 5 Flip-based tabu search
Input: Input solution X, depth of tabu search β
Output: The best solution Xb found during the tabu process
1: Xb ← X /*Initialize the best solution Xb of the flip-based tabu search*/
2: non improve← 0 /*Indicate the continuous iterations where Xb is not

updated*/
3: while non improve ≤ β do
4: Choose a best admissible neighboring solution X ′ ∈ NF (X)
5: X ← X ′

6: Update the tabu list
7: if f(X) > f(Xb) then
8: Xb ← X /*Update the best solution Xb of the flip-based tabu search*/
9: non improve← 0

10: else
11: non improve← non improve+ 1
12: end if
13: end while
14: return Xb

Algorithm 6 Swap-based descent search
Input: Input solution X
Output: The improved solution X
1: non improve← 0 /*Indicate whether X has been improved*/
2: while non improve = 0 do
3: non improve← 1
4: Choose the best neighboring solution X ′ ∈ NS(X)
5: if f(X ′) > f(X) then
6: X ← X ′ /*Update the current solution X*/
7: non improve← 0
8: end if
9: end while

10: return X

Swap Move Operator. The swap operator exchanges a selected subset sj from
X with an unselected subset sl, leading to the following NS neighborhood

NS(X) = {X ⊕ swap(X, j, l) : sj ∈ X, sl /∈ X}. (11)

The size of NS is bounded by O(|X| × |S0 \X|).

Fast Neighborhood Evaluation Technique. The swap(X, j, l) move can be per-
formed as a combination of two consecutive flipmoves, i.e.,X⊕swap(X, j, l) =
(X ⊕ flip(X, j)) ⊕ flip(X ⊕ flip(X, j), l). As a result, we can compute the
move value ∆f(swap(X, j, l)) as ∆f(swap(X, j, l)) = δ[j] + δ′[l], where δ[j]
is the incremental objective value of flipping sj and δ′[l] is the incremental
objective value of flipping sl after flipping sj.
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We initialize δ[j] by Equation (6), and δ′[l] by

δ′[l] =


δ[l]− ck, if X ∩ gk = {sj} and sl ∈ gk ∩ (S0 \X);

δ[l] + ai, if X ∩Ri = {sj} and sl ∈ Ri ∩ (S0 \X);

δ[l], otherwise.

(12)

When a swap move is performed, the affected data structure δ can be updated
according to the updating rule of the flip move (see Section 2.3.1.1). δ′ will
be recalculated accordingly. The complexity of the swap move is O(mn).

2.3.2 Learning-based perturbation strategy

The perturbation procedure (Algorithm 7) aims to jump from the current
search zone to other areas. Our perturbation procedure employs two types of
perturbations: Set Perturbation and Group Perturbation, which shares the
ideas of the ruin-and-recreate strategy [22]. For each perturbation iteration,
one type is selected with a learning-based strategy inspired by the technique
from [17]. The perturbation probability vector γ records the possibility γt of
the t-th type of perturbation being selected, and

∑2
t=1 γt = 1. At first, the

probability of each perturbation type being selected is the same, i.e, γt = 1/2.
Then, a random number “rand” between 0 and 1 is generated. If the rand <
γ1, the Set Perturbation (the 1st type of perturbation) is selected (lines 1-2);
otherwise, the Group Perturbation (the 2nd type of perturbation) is selected
(lines 3-4).

Algorithm 7 Perturbation procedure
Input: The best solution in IILS Xbest, the perturbation probability vector γ =
{γ1, γ2}

Output: The perturbed solution X
1: if rand(0, 1) < γ1 then
2: X ← Set Perturbation(Xbest)
3: else
4: X ← Group Perturbation(Xbest)
5: end if
6: return X

We now explain the two perturbations as follows.

1) Set Perturbation: This perturbation first removes all subsets of the best
solution Xbest of IILS with a probability p (p = 0.3 in this work). Let h be the
number of removed subsets. Then, randomly choose h subsets from S0 and
add each chosen subset if it is not in the solution Xbest; otherwise, skip it.

2) Group Perturbation: This perturbation first identifies a collection of groups
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Z = {gk|gk ∩ X 6= ∅, gk ∈ G} where the intersection of each group with
Xbest is not empty. Then randomly choose max{p × |Z|, 1} groups from Z,
and remove the intersection subsets between the chosen groups and Xbest.
Finally, randomly choose max{p × |Z|, 1} groups from G\Z, and randomly
flip b|Xbest|/|Z|c subsets of each chosen groups.

Figure 3 illustrates the two perturbations. Figure 3(a) shows the set pertur-
bation on the solution Xbest = {s2, s3, s5, s6}. It first removes all subsets of
Xbest with the probability p = 0.3. Suppose that only one subset s5 from Xbest

is removed, then we randomly choose one subset from S0, say s9. Because
the chosen subset s9 is not in Xbest, it is added, leading to the perturbed so-
lution X = {s2, s3, s6, s9}. Figure 3(b) illustrates the group perturbation on
Xbest = {s2, s3, s5, s6}. This perturbation randomly chooses a group g1 from
Z = {g1, g2}, and removes the intersection subsets s2 and s3 between g1 and
Xbest. Then, it randomly chooses a group g3 from G\Z = {g3}. Finally, by
flipping two random subsets (|Xbest|/|Z| = 2) (say, s7 and s8) in the chosen
group g3, a perturbed solution X = {s5, s6, s7, s8} is obtained.

(a) The example of Set Perturbation

(b) The example of Group Perturbation

Fig. 3. Examples of Set Perturbation and Group Perturbation

The perturbed solution is given to the intensification-driven iterated local
search (Algorithm 3) to start the next round of search.
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2.4 Historical information update

As mentioned above, LMILS employs the historical information vector η to
construct initial solutions (Section 2.2) and perturbation probability vector γ
to select the type of perturbation (Section 2.3.2). Both vectors are updated
each time the best solution Xbest in the IILS procedure is improved.

Update the historical information vector η. The inspiration for updating the
vector η comes from the learning automata [20], ant system [7], and max-
min ant system [23]. The principle is to raise the probability of subsets being
selected by while reducing that of taken out from the current solution X if
X is better than Xbest. Specifically, we modify the probability value of each
subset as follows,

ηj =



φ1 + (1− φ1)× ηj, if sj ∈ X and sj ∈ Xbest

φ2 + (1− φ2)× ηj, if sj ∈ X and sj /∈ Xbest

(1− φ1)× ηj, if sj /∈ X and sj /∈ Xbest

(1− φ2)× ηj, if sj /∈ X and sj ∈ Xbest

(1 ≤ j ≤ n) (13)

where reward factors φ1 (0 < φ1 < 1) and φ2 (0 < φ2 < 1) are respectively set
to 0.2 and 0.3 (see Section 3.2).

Besides, a probability smoothing technique is adopted to prevent historical
information from misleading the current search. Once a subset in the historical
information vector achieves the given probability threshold, it will be increased
or decreased by a smoothing factor (i.e., φ3, 0 < φ3 < 1) to ignore some earlier
information. The details are as follows.

ηj =

φ3 + (1− φ3)× ηj, if ηj < 1− α

(1− φ3)× ηj, if ηj > α
(1 ≤ j ≤ n) (14)

where smoothing threshold α is a parameter.

Update the perturbation probability vector γ. The perturbation probability vec-
tor γ = {γ1, γ2} is updated following a probability learning method (Equation
(15)). The inspiration for updating the probability in this work is from [16,24],
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which is helpful to determine the optimal candidate strategies.

γt =
d0 + dt

2× d0 + d1 + d2
(15)

t is the perturbation type, d0 is an adjustment parameter and dt is the fre-
quency that local optimal solution Xbest is updated by adopting the t-type
perturbation. If dt increases in the current iteration, the numerator and the
denominator of the Equation (15) will both increase with the same quantity.
The γt value rises, while the selection probability of the other perturbation
accordingly decreases.

2.5 Computational complexity

The time complexity of the learning-driven solution construction procedure is
bounded by O(n2). As to the intensification-driven iterated local search, its
two-phase local search requires O(K3 × (K1 +K2 × n)×mn) time, where K1

is the number of iterations of the tabu search, K2 is the number of iterations
of the descent search, and K3 is the number of iterations of the two-phase
local search, whereas its perturbation phase requires O(n) time. Therefore,
one iteration of the main loop of the LMILS algorithm has a complexity of
O(K4 ×K3 × (K1 + K2 × n)×mn), where K4 is the number of iterations of
the intensification-driven iterated local search.

3 Computational assessment and comparative analysis

We test the LMILS algorithm on the 30 realistic benchmark instances from
the mining industry that were initially proposed by Bilal et al. [3]. Among
them, the optimal objective value is known for 7 instances and given in [3].
For the other instances, the best results (best lower bounds) were obtained in
[3] and [4].

3.1 Benchmark instances

We classify the 30 benchmark instances 1 into three categories. The term BKV
(the best-known value) stands for the optimal objective value (if known) or
the best lower bound in the literature.

1 Available at https://github.com/sunseu2022/PMSCP/.
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1. The first category consists 10 small instances with A* and B* in their
names, among which the optimal values of 2 instances (A1 and A2) are
known. These instances feature the number of elements m = 1000, the num-
ber of subsets n within [3493, 82635], the number of groups q ∈ {10, 20},
the element gain within [100, 300], the subset cost within [300, 1500], and
the group cost 1000.

2. The second category contains 10 medium instances whose names start with
C* or D*, where the optimal values of 5 instances (C1,C2,C3,C4 and C5)
are known. Each instance has m = 5192 elements, n ∈ {6633,117274} and
q ∈ {31, 62} groups. Besides, each element has a gain within [1, 100], each
subset has a cost within [100, 1200], and each group has a cost of 1000.

3. The third category contains 10 large instances with E* or F* in their names.
Each instance is characterized by its number of elements m = 15625, num-
ber of subsets n within [10325, 462666], and number of groups q ∈ {96, 100}.
Each element has a gain within [1, 100] and each subset has a cost within
[500, 1500]. The cost of each group is equal to 500 or 1000.

3.2 Experimental Protocol

The proposed algorithm was coded in C++ 2 and compiled by GNU g++
4.1.2 with the -O3 flag. All experiments were conducted on an Intel (R) Core
(TM) 2 Duo CPU T7700 2.40GHz processor with 2GB of RAM running on
the Ubuntu CentOS Linux release 7.9.2009 (Core).

Parameters: LMILS requires 10 parameters: greediness ratio ε in initializa-
tion phase; search depth of IILS ω, search depth of flip-based tabu search β,
tabu tenure threshold C of flip-based tabu search, perturbation strength p in
the IILS phase; reward factors φ1 and φ2, smoothing coefficient φ3, smoothing
threshold α for the probability vector η; and adjustment parameter d0 of the
probability vector γ in the historical information update phase. We used the
“irace” package to automatically determine the fittest parameter settings. The
“irace” was run on 18 representative instances (relatively difficult as shown
in Tables 4-6) with a budget of 200 executions. Table 1 presents both the
candidate parameter values and final parameter values suggested by “irace”.
All experiments employed the final parameter values.

Reference algorithms: For comparison, we used 3 state-of-the-art algo-
rithms.

(1) The CPLEX solver (B&B) [3] (run on an Intel(R)Xeon(R) X7550 with a
2.00GHz processor and 1 TB of RAM);

2 The binary code is available at https://github.com/sunseu2022/PMSCP/.
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Table 1
Parameter settings of the LMILS algorithm

Parameters Section Description Candidate values Final value

ε 2.2 The greediness ratio of initialization [0.1,0.9] 0.6

ω 2.3 The search depth of IILS {100, 200, 300, 400, 500} 300

β 2.3.1.1 The search depth of flip-based tabu search {500, 1000, 1500, 2000, 2500} 1000

C 2.3.1.1 The tabu tenure threshold of flip-based tabu search {1, 5, 10, 15, 20} 5

p 2.3.2 The perturbation strength {0.1, 0.2, 0.3, 0.4, 0.5} 0.3

φ1 2.4 The first reward factor of probability vector η [0.1,0.9] 0.2

φ2 2.4 The second reward factor of probability vector η [0.1,0.9] 0.3

φ3 2.4 The smoothing coefficient of probability vector η [0.1,0.9] 0.3

α 2.4 The smoothing threshold of probability vector η {0.8, 0.85, 0.9, 0.95, 0.99} 0.95

d0 2.4 The adjustment parameter of probability vector γ {1, 25, 50, 75, 100} 50

(2) Iterated tabu search algorithm (ITS) [3] (run on an Intel(R)Xeon(R)
X7550 with a 2.00GHz processor and 1 TB of RAM);

(3) Parallel ITS [4] (run on two Intel Xeon E5-2697 v2 with 2.7GHz processors
and 64 GB of RAM.

Stopping conditions: For our comparative study, we focused on the quality
of the solutions found. Nevertheless, we also provide the details of computa-
tion time for indication purpose. Similar to [25,5], the CPU frequency of our
computer (Intel Core T7700 2.40GHz) was taken as the basis to scale the time
of the reference algorithms (see Table 2 for the scaling factors). We made sure
that our stopping conditions are comparable to those used by the reference
algorithms.

Table 2
Scaling factors for the computers used by reference algorithms. Our computer (Intel
Core T7700) serves as the basis.

Algorithm Reference Processor type Frequency (GHz) Factor

LMILS - Intel Core T7700 2.4 1.0

CPLEX (B&B) [3] Intel Xeon X7550 2.0 0.83

ITS [3] Intel Xeon X7550 2.0 0.83

Parallel ITS [4] Intel Xeon E5-2697 2.7 1.125

We set the stopping conditions of our algorithm according to the scaling fac-
tors given in Table 2 to make sure that our stopping conditions for different
categories of instances are comparable to the strictest conditions. Following
the ITS algorithm in [3], LMILS was performed 5 times on each instance un-
der the following stopping conditions: 3000 seconds for A5, C5 and D3, 6000
seconds for D4 and D5, 1500 seconds for the remaining instances of the first
and second categories, and 30000 seconds for all instances of the third cat-
egory. The time limit of Parallel ITS [4] for the first and second categories
was 1800 seconds longer than that of ITS. For the third category, the cutoff
time of Parallel ITS and ITS was the same. The results from the exact CPLEX
solver (B&B) were obtained by running the solver for a very long computation
time (up to 9 days per instance). Table 3 summarizes the stopping conditions
(cutoff time limit for each instance category) for the compared algorithms.
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Table 3
Summary of stopping conditions for LMILS and three reference algorithms

Category Instance CPLEX (B&B) ITS Parallel ITS LMILS

First A5 9 days 3600s 5400s 3000s

Others 9 days 1800s 3600s 1500s

Second C5, D3 9 days 3600s 5400s 3000s

D4, D5 9 days 7200s 9000s 6000s

Others 9 days 1800s 3600s 1500s

Third All 9 days 36000s 36000s 30000s

3.3 Comparative study

We compared the results achieved by our LMILS algorithm with those of
reference algorithms on the three categories of instances.

3.3.1 Comparison on the instances of first-category

Table 4 provides the information of solution quality and computing time of
LMILS and reference algorithms on the first-category instances. In columns
1 and 2 are their names and BKVs. Columns 3 and 4 present the best lower
bound (LB) of each instance obtained by CPLEX (B&B) [3] and the computa-
tion time. The next 9 columns respectively report the best result fbest, average
result favg, and average time tavg(s) to obtain the best results of ITS, Parallel
ITS and LMILS over 5 runs. Additionally, the row “Avg.” shows the average
value of each column, and the row “#Best” indicates the number of instances
for which an algorithm obtains the best values in term of favg or fbest among
all the compared algorithms. The p-values from the non-parametric Friedman
tests were introduced in the final row to check significant differences between
LMILS and each reference algorithm in terms of the fbest and the favg. A p-
value smaller than 0.05 means a significant difference. Finally, the best fbest
and favg values among the compared results are indicated in bold and the
optimal values are indicated by asterisks “*”.

Table 4
Comparison between LMILS and reference algorithms on the first-category instances

Instance BKV
CPLEX (B&B) ITS Parallel ITS LMILS

LB t fbest favg tavg(s) fbest favg tavg(s) fbest favg tavg(s)

A1 150,386* 150,386 5.3(h) 150,386 150,245.6 132.5 150,386 150,378.8 442.1 150,386 150,386.0 223.2

A2 179,973* 179,973 375(s) 179,973 179,973.0 101.7 179,973 179,973.0 1,545.8 179,973 179,973.0 26.3

A3 155,266 155,242 3.8(d) 155,266 154,909.2 515.7 155,266 155,266.0 707.6 155,266 155,266.0 106.8

A4 156,558 156,558 2.4(d) 156,423 156,338.2 400.2 156,540 156,453.0 2,675.3 156,559 156,546.8 496.1

A5 160,767 158,550 7.1(d) 160,276 159,963.0 951.2 160,767 160,438.8 3,991.5 160,786 160,543.6 1,939.4

B1 152,335 152,222 2.7(d) 152,335 152,290.0 66.3 152,335 152,306.2 334.1 152,335 152,335.0 65.4

B2 155,752 155,310 2.3(d) 155,554 155,526.2 231.8 155,752 155,593.6 1,625.6 155,752 155,633.2 551.1

B3 158,176 156,509 2.7(d) 157,551 157,455.0 753.8 158,176 157,556.0 2,632.5 158,197 157,923.6 667.3

B4 158,411 156,851 1.1(d) 158,403 158,215.0 819.7 158,411 158,254.2 3,287.3 158,488 158,352.2 899.8

B5 159,581 158,903 6.0(d) 159,426 158,827.0 675.7 159,581 158,966.4 1,841.6 160,168 159,718.0 1,021.4

Avg. 158,720.5 158,050.4 2.8(d) 158,559.3 158,374.2 464.9 158,718.7 158,518.6 1,908.3 158,791.0 158,667.7 599.7

#Best 2 4 1 5 2 10 10

p-value 0.0047 0.0143 0.0027 0.0253 0.0047
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Table 4 reveals that LMILS performs remarkably on the 10 first-category
instances. In terms of fbest, LMILS achieves all known optimal results (A1 and
A2), and much better lower bounds for the remaining 8 instances compared
with CPLEX (B&B) [3]. Besides, LMILS dominates both ITS (with 6 better
and 4 equal results) and Parallel ITS (with 5 better and 5 equal results).
LMILS significantly outperforms ITS and Parallel ITS in terms of favg by
obtaining better or equal results on all instances. The small p-values (< 0.05)
indicate that there are significant differences between our best results and
those of ITS (p-value= 0.0143) and Parallel ITS (p-value= 0.0253).

3.3.2 Comparison on the instances of second-category

The comparative results of LMILS and reference algorithms on the second
category are summarized in Table 5.

Table 5
Comparison between LMILS and reference algorithms on the second-category in-
stances
Instance BKV

CPLEX (B&B) ITS Parallel ITS LMILS

LB t fbest favg tavg(s) fbest favg tavg(s) fbest favg tavg(s)

C1 246,121* 246,121 1610.8(s) 246,121 246,121.0 8.7 246,121 246,121.0 68.6 246,121 246,121.0 1.0

C2 247,455* 247,455 5.3(h) 247,455 247,450.2 296.0 247,455 247,450.2 1,692.0 247,455 247,455.0 328.8

C3 249,070* 249,070 3.1(h) 249,070 249,070.0 78.0 249,070 249,070.0 1,227.4 249,070 249,070.0 31.1

C4 249,124* 249,124 19.7(h) 249,094 249,072.4 453.2 249,124 249,110.8 2,671.9 249,124 249,118.0 684.9

C5 249,935* 249,935 13.9(h) 249,881 249,756.8 1,469.2 249,935 249,881.2 3,163.5 249,935 249,935.0 925.9

D1 247,250 247,112 6.0(d) 247,199 247,170.6 487.7 247,250 247,185.4 1,434.4 247,250 247,250.0 273.4

D2 248,389 248,200 6.5(d) 248,389 247,968.6 820.7 248,389 248,087.4 1,748.3 248,424 248,424.0 474.3

D3 249,165 248,136 6.8(d) 248,923 248,663.8 2,056.8 249,165 248,818.4 3,677.6 249,187 249,060.8 1,735.1

D4 249,107 247,809 6.7(d) 249,107 248,672.2 4,480.0 248,949 248,691.0 8,164.1 249,389 249,195.4 2,794.0

D5 250,288 249,929 7.5(d) 250,158 249,956.8 2,866.3 250,288 250,019.2 8,453.3 250,597 250,536.6 3,823.9

Avg. 248,590.4 248,289.1 3.5(d) 248,539.7 248,390.2 1,301.7 248,574.6 248,443.5 3,230.1 248,655.2 248,616.6 1,107.2

#Best 5 3 2 6 2 10 10

p-value 0.0253 0.0082 0.0047 0.0455 0.0047

LMILS outperforms reference algorithms for all instances of the second cat-
egory. Compared with B&B, LMILS easily finds all 5 known optimal results
(C1, C2, C3, C4, C5) and improves the remaining 5 best results. Compared
with ITS, LMILS obtains better results for 7 instances, and equal results for
the other 3 instances. Compared with Parallel ITS, LMILS obtains better re-
sults for 4 instances, and equal results for the remaining 6 instances. Moreover,
for same results, LMILS spends less time than reference algorithms to reach
the BKVs (except for one instance C2), and reports better favg values for all
instances. The p-values of 0.0082 and 0.0455 between LMILS and references
algorithms (ITS, Parallel ITS) in terms of the fbest indicate that there are
significant differences between their results.
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3.3.3 Comparison on the instances of third-category

Table 6 lists the results on the third-category instances. It is worth mentioning
that these instances have not been solved by CPLEX (B&B) [3].

Table 6
Comparison between LMILS and reference algorithms on the third-category in-
stances

Instance BKV
ITS Parallel ITS LMILS

fbest favg tavg(s) fbest favg tavg(s) fbest favg tavg(s)

E1 623,606 619,800 618,852.0 10,672.3 623,606 621,962.0 19,931.6 623,606 623,606.0 8,319.8

E2 449,288 449,288 446,976.2 13,304.7 449,257 448,898.8 26,094.4 452,622 452,286.4 18,274.8

E3 551,531 548,110 545,262.2 12,292.0 551,531 549,323.0 32,071.5 557,209 554,594.8 15,978.8

E4 637,825 637,010 636,065.4 23,821.0 637,825 636,640.4 27,843.8 639,875 639,440.6 21,025.4

E5 474,222 472,158 470,955.4 23,995.0 474,222 471,652.8 31,226.6 478,340 476,494.8 17,544.9

F1 501,319 500,797 498,983.6 25,870.0 501,319 500,452.8 30,375.0 505,729 505,194.2 12,074.6

F2 495,887 494,333 490,600.4 27,228.5 495,887 494,511.6 33,638.6 498,074 497,519.0 21,244.8

F3 485,865 485,309 483,177.8 28,846.7 485,865 484,909.0 28,714.5 488,811 488,300.8 19,030.4

F4 485,126 484,835 481,769.8 21,927.3 485,126 484,126.4 20,739.4 493,675 489,719.4 23,055.4

F5 498,559 495,066 494,008.2 28,913.7 498,559 496,947.2 19,073.3 503,416 501,358.6 25,414.8

Avg. 520,322.8 518,670.6 516,665.1 21,687.1 520,320 518,942.4 26,970.9 524,135.7 522,851.5 18,196.4

#Best 0 0 1 0 10 10

p-value 0.0016 0.0016 0.0027 0.0016

Specifically, LMILS performs better than ITS for all instances, and better than
Parallel ITS with 9 better and 1 equal results. In terms of favg, LMILS finds
better results for all instances than ITS and Parallel ITS. The small p-values
confirm the significant dominance of LMILS over reference algorithms. These
results demonstrate the superiority of LMILS over each reference algorithm in
terms of the best or/and average results.

To sum up, LMILS updates the best-known results for 18 instances among the
30 instances (60%) and matches the best-known results for the other cases,
including 7 known optimal results.

4 Analysis

The essential components of LMILS are the two learning-based mechanisms,
the swap-based descent search, the incremental evaluation technique, and the
intensified search mechanism. We analyze here their influences on the perfor-
mance of LMILS. Following analysis adopted the same cutoff time limits as
above.

4.1 Effectiveness of two learning-based mechanisms

As explained in Sections 2.2 and 2.3.2, LMILS jointly applies learning mecha-
nisms in the solution construction procedure and the perturbation procedure.
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To justify their merits, two variants of LMILS, called LMILS1 and LMILS2, are
created for comparison. LMILS1 randomly constructs initial solutions without
using the historical information vector η and LMILS2 randomly selects a per-
turbation operator without the perturbation probability vector γ. Figure 4
shows their best results fbest and average results favg (over 5 runs). The X-
axis indicates the instances that are numbered according to the order they
appear in Tables 4-6. The Y-axis indicates the gap between fbest or favg and
the new lower bound NLB from LMILS, i.e., gap = NLB−fbest

NLB
× 100% for

Figure 4(a) and gap = NLB−favg
NLB

× 100% for Figure 4(b).

(a) Best results (fbest) (b) Average results (favg)

Fig. 4. Comparisons of LMILS (in red) with its variants LMILS1 (in black) and
LMILS2 (in blue)

The best results in Figure 4(a) justify the significance of the two learning-
based mechanisms in LMILS by 12 better, 15 equal and 3 worse results against
LMILS1, and 11 better, 14 equal and 5 worse results against LMILS2. The aver-
age results in Figure 4(b) also demonstrate the advantage of the two learning-
based mechanisms by 13 better, 13 equal and 4 worse results against LMILS1,
and 9 better, 15 equal and 6 worse results against LMILS2.

4.2 Impacts of the swap-based descent search

As described in Section 2.3.1, LMILS employs a two-phase local search, i.e.,
flip-based tabu search and swap-based descent search. To ensure a meaning-
ful contribution of the swap descent search, we compare the performance of the
modified LMILS without swap-based descent search (i.e., LMILS-WithoutSwap)
and the normal LMILS on all 30 instances under the same experiment condi-
tions as in Section 3.2. Figure 5 provides the results of their best and average
performance (over 5 runs).

Figure 5 shows that LMILS obtains better fbest values for 18 instances, and
better favg values for 22 instances compared with LMILS-WithoutSwap. Be-
sides, removing the swap-based descent search deteriorates the performance
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(a) Best results (fbest) (b) Average results (favg)

Fig. 5. Comparisons of LMILS with its weakened version that excludes swap-based
descent search

of LMILS for relatively difficult instances of each category, meaning that the
swap-based descent search is essential for solving difficult instances.

4.3 Impacts of the incremental evaluation

To assess the usefulness of the fast incremental evaluation technique for the
flip and swap operators, we compare LMILS with two variants (LMILS-1st and
LMILS-2nd) by respectively 1) disabling the fast evaluation strategy of the
flip operator; 2) disabling the fast evaluation strategy of the swap operator.

(a) Best results (fbest) (b) Average results (favg)

Fig. 6. Comparisons of LMILS (in red) with its variants LMILS-1st (in black) and
LMILS-2nd (in blue)

Figure 6 exhibits the best and average results (over 5 runs) of LMILS as com-
pared with LMILS-1st and LMILS-2nd. Specifically, in terms of fbest, LMILS
dominates LMILS-1st by obtaining 24 better and 6 equal results, and beats
LMILS-2nd by obtaining 10 better, 16 equal, and 4 worse results. As for favg,
LMILS performs better than LMILS-1st for 28 instances and LMILS-2nd for
9 instances. This indicates that these two fast evaluation strategies are key
elements that ensure the high performance of LMILS. Moreover, LMILS-2nd
outperforms LMILS-1st by reaching 24 better results in terms of fbest, and 28
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better results in terms of favg. This implies that the fast evaluation strategy
for the flip operator is more important than that for the swap operator. This
is reasonable because the number of iterations of the flip-based tabu search is
much larger than that of the swap-based descent search.

4.4 Cartography of search space

To know better the necessity of the intensified search mechanism (Section
2.3), this section conducts a study on the spatial distribution of high-quality
solutions as in [13,21]. Our LMILS algorithm was run 10 times on each of
4 random instances (B5, D1, E1, and F5), and all local optimal solutions
of high quality visited by LMILS were collected to characterize their spatial
distribution. Here, a solution X with an objective value f(X) larger than
0.999 × NLB (f(X) > 0.999 × NLB) is considered to be of high-quality.
Following [13,21], we adopted the multidimensional scaling (MDS) method to
approximately present the spatial distribution of high-quality solutions in the
Euclidean space R3 as follows. First, we calculated a distance matrix Dl×l,
where l is the number of local optimal solutions, and dij ∈ Dl×l is the distance

between solutions Xi and Xj given by dij = |Xi|+|Xj |−2|Xi∩Xj |
|Xi|+|Xj | . Then, according

to the distance matrix obtained, we used the cmdscale method to obtain
l coordinate points in the R3 space to minimize the distortion of distance
among the obtained coordinate points. In the end, the scatter graph of the
resulting points was plotted in R3.

Figure 7 shows the spatial distribution of the collected high-quality solutions
visited by LMILS for the four selected instances. The high-quality solutions
are clustered respectively within a sphere of small diameters. This implies that
high-quality neighboring solutions can be found around a discovered high-
quality solution. Thus, LMILS systematically starts the perturbation proce-
dure from each best solution Xbest ever found in the IILS procedure to discover
other high-quality solutions. Second, the clusters are far separated. Thus, to
move from a promising area (i.e., a cluster of high-quality solutions) to a new
promising area (a different cluster of high-quality solutions), it is indispensable
for the algorithm to jump far and perform strong diversification. In LMILS,
this is achieved by the learning-driven solution construction procedure and
perturbation procedure. This experiment provides highly relevant supporting
information for the design of our algorithm.
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(a) Distribution of 283 local optima for B5 (b) Distribution of 538 local optima for D1

(c) Distribution of 772 local optima for E1 (d) Distribution of 1325 local optima for F5

Fig. 7. Distribution of the high-quality local optima for four instances

4.5 Convergence analysis

This section is dedicated to a convergence analysis of the LMILS algorithm by
studying the convergence profiles of the algorithm on 4 representative instances
(B5, D1, E1, F5). The experiment for this study follows the same experimental
and stopping conditions of Section 3.2. Figure 8 shows the convergence profiles
of LMILS where the X-axis indicates the computation time in seconds and
the Y-axis indicates the objective values (red curves represent the average
best objective values and blue curves represent the average current objective
values over 5 independent runs, respectively).

From Figure 8, we can make the following comments. At the beginning of
the search, the solution quality of the algorithm improves dramatically and
rapidly. Then, as the quality improvement slows down, the algorithm gradually
converges to its best solution. For all four instances (B5, D1, E1 and F5),
the quality fluctuations of the current solutions are important throughout
the search process. This behavior is beneficial to the algorithm, as it allows
the algorithm to escape many local optimal solutions. This experiment is a
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(a) B5 (b) D1

(c) E1 (d) F5

Fig. 8. Convergence profiles of LMILS on four instances (B5, D1, E1, F5)

relevant indicator for the explanation of the good performance of the LMILS
algorithm.

5 Conclusions

The profit maximization set covering problem (PMSCP) is a useful model for a
number of applications. However, solving the problem remains a difficult task.
We presented in this work a learning-based multi-start iterated local search
to solve this computationally challenging problem. The algorithm features
several complementary search components including an intensification-driven
local search to perform effective examination of candidate solution exploration,
a learning-driven construction to obtain promising starting solutions, and a
learning-based perturbation to select a proper perturbation.

We verified the performance of the proposed algorithm on 30 instances against
the state-of-the-art methods. The comparative study revealed that our al-
gorithm performs remarkably well by discovering 18 new lower bounds and
reaching the current best results for the 12 rest instances, including 7 known
optimal values. Besides, the benefits of the learning-based strategy and the
intensification-driven local search were also investigated.
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Future studies can be conducted at following directions. First, this work uses
simple learning techniques for initial solution construction and perturbation
selection. To go further, new search algorithms driven by other learning tech-
niques such as reinforcement/probability learning [30,15] and opposition-based
learning [31] can be researched. Second, other general search frameworks can
be adapted to solve the PMSCP, including frequent pattern-based search [29],
fixed set search [11,10] and memetic search [19]. The algorithm presented in
this work can be beneficially used as a key intensification component. Third,
the basic ideas of the proposed approach are rather general. As such, it would
be interesting to test these ideas on other related problems, such as the clus-
tered set covering problem [1], the maximum group set coverage problem [8],
and budgeted maximum coverage problem [15]. Finally, as far as the exact so-
lution of the problem is concerned, only the general CPLEX solver (B&B) has
been studied in the literature. It would be interesting to design dedicated ex-
act algorithms capable of exploring special features of the profit maximization
set covering problem.
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A Importance of the reduction procedure

The reduction procedure described in Section 2.1 is a significant component
of the LMILS algorithm. To demonstrate its effectiveness, we additionally
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compared the LMILS algorithm with the LMILS DR, a LMILS variant in
which the reduction procedure is disabled. We ran both algorithms 5 times
on each of 30 instances under the same experimental conditions as in the
paper. The results are summarized in Table A.1. Column 1 shows the name
of instances, columns 2-3 respectively report the number of subsets before
and after the reduction procedure. The next 6 columns indicate the detailed
results (fbest, favg and tavg) of LMILS and LMILS DR. The row Avg. shows
the average value for each column.

Table A.1
Comparison between LMILS and LMILS DR on all the 30 instances

Instance
Number of Number of reduced LMILS DR LMILS

subsets |S| subsets |S0| fbest favg tavg(s) fbest favg tavg(s)

A1 3,493 3,212 150,386 150,386.0 411.2 150,386 150,386.0 223.2

A2 4,308 4,060 179,973 179,973.0 175.7 179,973 179,973.0 26.3

A3 6,657 6,015 155,266 155,266.0 54.0 155,266 155,266.0 106.8

A4 13,076 11,900 156,559 156,547.4 480.1 156,559 156,546.8 496.1

A5 82,635 76,932 160,845 160,626.2 1,097.8 160,786 160,543.6 1,939.4

B1 6,924 6,362 152,335 152,335.0 110.4 152,335 152,335.0 65.4

B2 10,617 9,638 155,752 155,672.8 554.4 155,752 155,633.2 551.1

B3 26,043 23,654 158,176 157,944.6 645.8 158,197 157,923.6 667.3

B4 40,351 36,601 158,429 158,303.6 814.3 158,488 158,352.2 899.8

B5 70,899 64,087 159,811 159,475.6 856.8 160,168 159,718.0 1,021.4

C1 6,633 5,891 246,121 246,121.0 1.2 246,121 246,121.0 1.0

C2 12,088 10,651 247,455 247,455.0 226.4 247,455 247,455.0 328.8

C3 24,007 21,312 249,070 249,070.0 43.2 249,070 249,070.0 31.1

C4 36,689 32,516 249,124 249,112.0 491.5 249,124 249,118.0 684.9

C5 63,635 56,449 249,935 249,935.0 814.3 249,935 249,935.0 925.9

D1 15,252 13,303 247,250 247,247.6 492.7 247,250 247,250.0 273.4

D2 28,303 24,694 248,424 248,424.0 283.0 248,424 248,424.0 474.3

D3 55,975 49,034 249,269 249,073.8 2,146.6 249,187 249,060.8 1,735.1

D4 85,978 75,264 249,354 249,227.8 2,793.3 249,389 249,195.4 2,794.0

D5 117,274 103,760 250,617 250,484.0 2,375.4 250,597 250,536.6 3,823.9

E1 10,325 8,521 623,606 623,464.8 18,998.5 623,606 623,606.0 8,319.8

E2 23,215 16,264 451,416 450,878.2 13,251.9 452,622 452,286.4 18,274.8

E3 38,805 30,673 554,885 553,098.6 17,137.5 557,209 554,594.8 15,978.8

E4 61,207 57,508 639,863 639,434.0 15,156.6 639,875 639,440.6 21,025.4

E5 78,331 67,368 475,706 475,183.4 16,964.6 478,340 476,494.8 17,544.9

F1 94,685 86,308 505,716 504,329.0 19,060.8 505,729 505,194.2 12,074.6

F2 122,973 105,959 498,173 497,231.4 22,499.1 498,074 497,519.0 21,244.8

F3 167,911 148,104 490,554 489,111.0 15,717.7 488,811 488,300.8 19,030.4

F4 276,521 239,350 490,289 488,855.6 20,125.3 493,675 489,719.4 23,055.4

F5 462,666 408,734 501,541 500,755.6 18,170.9 503,416 501,358.6 25,414.8

Avg. 68,249.2 60,137.5 310,196.7 309,834.1 6,398.4 310,527.3 310,045.3 6,634.4

One observes from Table A.1 that LMILS obtained better results than LMILS DR
for 11 instances in terms of fbest and for 14 instances in terms of favg. This
proved that the reduction procedure adopted in this study plays an important
role for the high performance of the LMILS algorithm.
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