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Abstract

The Weighted Vertex Coloring Problem of a vertex weighted graph is to partition
the vertex set into k disjoint independent sets such that the sum of the costs of
these sets is minimized, where the cost of each set is given by the maximum weight
of a vertex (representative) in that set. To solve this NP-hard problem, we present
the adaptive feasible and infeasible search algorithm (AFISA) that relies on a mixed
search strategy exploring both feasible and infeasible solutions. From an initial fea-
sible solution, AFISA seeks improved solutions by oscillating between feasible and
infeasible regions. To prevent the search from going too far from feasibility bound-
aries, we introduce a control mechanism that adaptively makes the algorithm to
go back and forth between feasible and infeasible solutions. To explore the search
space, we use a tabu search optimization procedure to ensure an intensified ex-
ploitation of candidate solutions and an adaptive perturbation strategy to escape
local optimum traps. We show extensive experimental results on 161 benchmark in-
stances and present new upper bounds that are useful for future studies. We assess
the benefit of the key features of the proposed approach. This work demonstrates
that examining both feasible and infeasible solutions during the search is a highly
effective search strategy for the considered coloring problem and could beneficially
be applied to other constrained problems as well.

Keywords: weighted vertex coloring; tabu search; heuristics; feasible and infeasible
search; adaptive penalty-based evaluation function.
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1 Introduction

Graph vertex coloring problems are very general and useful models to formu-
late numerous practical problems [23]. Given an undirected graph G = (V,E)
with the vertex set V = {1, 2, . . . , n}, the edge set E ⊂ V × V . Graph col-
oring typically involves assigning a color to each vertex of V such that two
vertices linked by an edge must receive different colors while optimizing a
given optimization objective. A coloring can also be considered as a partition
of the vertex set V into disjointed color classes (also called independent sets
or stables), where the vertices of each color class are not linked by an edge of
E. For instance, the very popular NP-hard Vertex Coloring Problem (VCP)
[8,26] is to find a legal coloring while minimizing the number of colors used
(the smallest number of colors needed is the chromatic number of the graph),
while the Equitable Vertex Coloring Problem [21], which is also NP-hard, is a
special case of the VCP such that the sizes of the stables of the coloring differ
by at most one. Graph coloring problems can also concern weighted graphs
where a weight (typically a positive value) is associated to each vertex. The
Weighted Vertex Coloring Problem (WVCP) considered in this work is a typ-
ical example of this class of coloring problems. Informally, the WVCP aims to
find a legal coloring such that the sum of the costs of its stables is minimized,
where the cost of each stable is given by the maximum weight of a vertex
(representative) in that stable. A formal definition of the problem is given in
Section 2.1 together with an illustrative example.

One notices that an instance of the NP-hard vertex coloring problem can
be conveniently reduced to an instance of the WVCP by defining a weight
of 1 for each vertex. As a result, the WVCP is NP-hard [10,24], and thus
computationally challenging in the general case. From a practical perspective,
the WVCP has a number of practical applications in different fields and arises
naturally in the context of buffer management in operating systems [28,30],
batch scheduling [11] and manufacturing [18]. As a result, effective solution
methods for the WVCP can help to solve these practical problems.

Our literature review given in Section 2.2 indicates that unlike the popular
vertex coloring problem for which numerous solution methods are available
(see the reviews [8,9,26]), research on algorithms for the WVCP is still in
its infancy with very few advanced methods. In this work, we aim to fill the
gap by investigating effective heuristics that can be used to find high-quality
approximate solutions for problem instances that cannot be solved exactly.
Our interest on heuristics for the WVCP is fully motivated by the hardness
of the considered problem. Indeed, unless P=NP , exact algorithms for the
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WVCP will have an exponential time complexity and can only be applied to
solve problem instances of limited sizes or with particular features.

Our work on investigating a feasible and infeasible search procedure is driven
by the following consideration. The WVCP is a constrained combinatorial opti-
mization problem where a feasible solution must satisfy the coloring constraint
(i.e., two adjacent vertices must receive different colors). Due to the presence
of the coloring constraint, the feasible region can be broken into several zones
that are separated from each other by infeasible regions in the search space. In
this case, an algorithm searching only feasible solutions could be blocked in a
particular feasible zone, thus miss the global optima or high quality solutions
located in other feasible zones. On the other hand, as illustrated in numerous
studies on constrained optimization, e.g., [4,15,19,20,22,27,29,31,32], methods
that are allowed to oscillate between feasible and infeasible regions constitute
an appropriate means to cope with such a situation. Indeed, allowing a con-
trolled exploration of infeasible solutions may facilitate transitions between
structurally different solutions and help discover high-quality solutions that
are difficult to locate if the search is limited to the feasible region. Based on
previous studies of examining feasible and infeasible solutions for solving other
constrained optimization problems, we present in the work the first study of
mixing both feasible and infeasible searches with the context of the WVCP.
We summarize the main contributions of this work as follows.

First, the adaptive feasible and infeasible search algorithm (AFISA) presented
in this work is the first heuristic method that explores both feasible and in-
feasible solutions for the WVCP. To prevent the search from going too far
away from the feasible boundary, we design an adaptive penalty-based eval-
uation function that is used to guide the search for a fruitful examination
of candidate solutions, by enabling the search to oscillate between feasible
and infeasible regions. To ensure an effective exploration of both feasible and
infeasible regions, we adopt the popular tabu search meta-heuristic [14] and
design specific search components to cope with the particular features of the
considered coloring problem.

Second, we assess the proposed algorithm on 111 conventional benchmark
instances from the literature (one set of 46 instances from the DIMACS and
COLOR competitions and two sets of 65 instances from matrix-decomposition
problems). We report especially 5 improved best solutions (new upper bounds).
We also present results on an additional set of 50 (larger) DIMACS instances.
These results and the proposed algorithm can serve as new references to assess
future WVCP algorithms and can be useful for the design of effective exact
algorithms as well.

The remainder of the paper is organized as follows. Section 3 presents the pro-
posed algorithm. Section 4 describes computational results and comparisons
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with state-of-the-art algorithms. Section 5 analyzes three essential components
of the proposed algorithm to shed light on how they affect the performance of
the algorithm. Conclusions and future work are discussed in the last section.

2 Problem definition and literature review

This section formally introduces the weighted vertex coloring problem con-
sidered in this work, followed by a review of the existing solution methods
available in the literature.

2.1 Weighted vertex coloring problem

Given an undirected graph G = (V,E) with the vertex set V = {1, 2, . . . , n},
the edge set E ⊂ V × V . Let W = {w1, w2, . . . , wn} be the set of positive
weights associated to the vertices of V . Recall that an independent set (a sta-
ble or a color class) of G is a subset of V such that any pair of its vertices
is not linked by an edge of E. A legal or feasible k-coloring of G is a parti-
tion of the vertex set V into k disjoint independent sets {V1, V2, . . . , Vk}. Let
s = {V1, V2, . . . , Vk} be a partition of the vertex set V , the Weighted Vertex
Coloring Problem can be stated as follows.

(WV CP ) minimize f(s) =
k∑
i=1

maxj∈Viwj (1)

subject to ∀u, v ∈ Vi, {u, v} /∈ E, i = 1, 2, . . . , k (2)

where the constraints (2) ensure that partition {V1, V2, . . . , Vk} is a legal k-
coloring (i.e., each Vi (i = 1, 2, . . . , k) is a stable) and the objective (1) is to
minimize the maximum weight of a vertex (representative) in each of the k
stables Vi (i = 1, 2, . . . , k). Notice that for a given graph, the number of colors
k is unknown before the optimal solution is discovered.

Figure 1(a) shows a graph G = (V,E) with 9 vertices whose weights are
indicated next to the vertices. Figure 1(b) shows a coloring with three stables,
leading to an objective value of 14 + 12 + 8 = 34, since the three stables have
respectively a maximum weight of 14 (gray stable), 12 (orange stable) and
8 (green stable). Figure 1(c) illustrates an optimal solution with a minimum
objective value of 14 + 12 + 5 = 31.
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(a) A graph G = (V,E) (b) A feasible coloring (c) An optimal solution

Fig. 1. A graph, a feasible solution, an optimal solution

2.2 Literature review on existing solution methods

From a perspective of solution methods for the WVCP in the general case,
several exact algorithms have been proposed. Specifically, a column generation
approach combined with the general branch-and-bound method was investi-
gated in [30]. A branch-and-price approach was presented in [6] and com-
putational results were shown on a subset of benchmark instances from the
DIMACS and COLOR competitions and two sets of instances from matrix-
decomposition problems. In [5], the WVCP was solved as Maximum Weight
Stable Set Problems on an associated graph, and this approach showed excel-
lent results on the tested benchmark graphs.

Given that the WVCP is a NP-hard problem, a number of heuristic algorithms
have also been investigated, which aim to provide high-quality solutions in ac-
ceptable computation time, but without provable optimal guarantee of the
attained solutions. Heuristic algorithms constitute an indispensable comple-
mentary approach with respect to exact algorithms to solve instances whose
optimal solutions cannot be attained. For example, a Greedy Randomized
Adaptive Search Procedure (GRASP) was introduced in [28] in the context
of a practical problem called TDMA traffic assignment (an application of the
WVCP). This algorithm iterates a mixed search strategy combining a random-
ized greedy construction procedure followed by a local optimization procedure.
In [25], an effective 2-phase algorithm was proposed, where in the first phase
a large number of independent sets are heuristically produced, and in the sec-
ond phase the set covering problem associated with these sets is solved by the
Lagrangian heuristic algorithm introduced previously in [3]. These heuristics
have reported interesting results on a number of benchmark instances and will
serve as our main references for our computational studies. One notices that
these methods only examine feasible solutions.

The above review indicates that despite the theoretical and practical signifi-
cance of the WVCP, solution methods for the problem are quite limited and
the WVCP benchmark instances are of small sizes in comparison with those
used for other graph coloring problems. To enrich the solution arsenal for
the WVCP and solve large problem instances, we present in this work a new
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heuristic algorithm that relies on a mixed strategy of exploring feasible and
infeasible solutions and show extensive computational results on both conven-
tional benchmark instances and new (larger) instances.

3 Adaptive feasible and infeasible search for the WVCP

In this section, we present the adaptive feasible and infeasible search algorithm
for solving the WVCP. We first show the general approach and then explain in
detail the components of the proposed algorithm including the search space,
the evaluation function, the neighborhood, the tabu search procedure, the
adaptive mechanism to control feasible and infeasible searches and the per-
turbation strategy.

3.1 General approach

Unlike existing methods for the WVCP [25,28] that only consider feasible
colorings, the adaptive feasible and infeasible search algorithm (AFISA) pro-
posed in this work enlarges the search to include both feasible and infeasible
colorings. Indeed, as explained in the introduction, methods that are allowed
to oscillate between feasible and infeasible regions can help to attain solutions
of high-quality that would not be discovered otherwise. Specifically, we first
generate an initial feasible solution with a greedy procedure (Section 3.2).
Then, we improve the solution by enlarging the search to include infeasible
solutions. To enable the search to oscillate between feasible and infeasible
regions, we devise an extended evaluation function F that combines the ob-
jective function of Eq. (1) with a penalty function (Section 3.3). To control
the importance given to the penalty function, we introduce an adaptive pa-
rameter that is dynamically adjusted according to the search context (Section
3.4.3). To explore the search space, we use a tabu search procedure that relies
on a neighborhood induced by the one-move operator and that is guided by
the penalty-based evaluation function (Section 3.4.2). Finally, to escape local
optimum traps, we introduce an adaptive perturbation strategy to generate
a new starting solution for the next round of tabu search (Section 3.5). The
pseudo-code of the proposed algorithm is presented in Algorithm 1.

3.2 Initial solution

The purpose of the initialization step is to generate an initial feasible solution
of acceptable quality. This is achieved by adopting the greedy procedure of [28]
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Algorithm 1 Main scheme of the AFISA algorithm for the WVCP
1: Input: Graph G
2: Output: The best solution found
3: s0 ← greedy initial(G) /∗ Generate an initial feasible k-coloring, Section 3.2 ∗/
4: sbest ← s0 /∗ Record the best legal solution ∗/
5: γ ← 0 /* γ is the counter for consecutive non-improving local optima */
6: s1 ← s0
7: L← L0/* Initialize the depth of perturbation, Section 3.5 */
8: ϕ← 1 /∗ Initialize penalty coefficient of the extended evaluation function, Sections

3.3 and 3.4.3 ∗/
9: while stopping condition is not met do

10: s2 ← tabu search(s1) /∗ Section 3.4 ∗/
11: if F (s2) < F (sbest) and F (s2) = f(s2) then
12: sbest ← s2 /∗ Record the best legal solution ∗/
13: L← L0 /∗ Reinitialize the depth of perturbation */
14: γ ← 0 /∗ Reset the counter for consecutive non-improving local optima */
15: else
16: γ ← γ + 1
17: end if
18: if γ = T then
19: L ← Lmax /* Increase the depth of perturbation if the best solution is not

updated during T consecutive tabu search runs */
20: end if
21: ϕ← adaptive parameter(s2, ϕ) /∗ Adjust penalty coefficient, Section 3.4.3 ∗/
22: s1 ← perturbation(s2, L) /∗ Section 3.5 ∗/
23: end while
24: return sbest

that iteratively assigns the vertices to a suitable color class (Algorithm 2). Let
{V1, V2, . . . , Vk} be the current partial solution with k color classes (initially
k is set to 1, V1 = ∅), we choose an unassigned vertex v (Algorithm 2, line 6)
and assign it to the color class Vi, 1 ≤ i ≤ k such that the objective function
f is minimized while the coloring constraint is met. If no suitable color class
Vi, 1 ≤ i ≤ k exists for vertex v, we create a new color class Vk by setting
k ← k + 1 and assign the vertex v to this new color class (Algorithm 2, line
15-16). This process is repeated until all vertices are assigned to a color class.

This initialization procedure provides thus the AFISA algorithm with a legal
k-coloring of certain quality, which will be further improved during the tabu
search phase of the algorithm.

3.3 Search space and penalty-based evaluation function

To further improve the initial solution provided by the above initialization
procedure, the search phase of the AFISA algorithm explores an enlarged
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Algorithm 2 Greedy initialization for the WVCP
1: Input: Graph G = (V,E)
2: Output: A legal k-coloring s
3: U ← V /∗ U is the set of unassigned vertices ∗/
4: i = 1, k = 1, Vi = ∅
5: while U 6= ∅ do
6: choose a vertex v from U with maximum weight
7: assign = 0 /* assign is a flag indicating if vertex v is assigned a color */
8: for i = 1, 2, . . . , k do
9: if there is no edge between v and any vertex of Vi then

10: Vi ← Vi ∪ {v} /∗ v is assigned to color class Vi ∗/
11: assign = 1 /∗ v is now assigned a color ∗/
12: end if
13: end for
14: if assign = 0 then
15: k ← k + 1
16: Vk ← Vk ∪ {v} /∗ Create a new color class Vk to hold v ∗/
17: end if
18: U ← U \ {v}
19: end while
20: return s = {V1, V2, . . . , Vk} /∗ s is a legal or feasible k-coloring ∗/

space Ω including both feasible and infeasible solutions. In other words, the
space Ω is composed of the partitions of the vertex set V into k disjoint subsets.

Ω = {{V1, V2, . . . , Vk} : ∪ki=1Vi = V, Vi ∩ Vj = ∅, 1 ≤ k ≤ |V |} (3)

where i 6= j, 1 ≤ i, j ≤ k.

Following the general idea of penalty function for constrained optimization,
we introduce an extended evaluation function F to asses both feasible and
infeasible solutions of Ω, which enriches the objective function f (Equation
(1)) with a penalty function P . Let s = {V1, V2, . . . , Vk} be a candidate solution
in Ω, we define its penalty P (s) as P (s) =

∑k
i=1 |C(Vi)| where C(Vi) counts

the number of pair of conflicting vertices in color class Vi that are linked by an
edge. In other words, P (s) indicates the number of conflicts in the candidate
solution s. Therefore, for the candidate solution s, if the penalty P (s) equals
0, then s corresponds to a feasible k-coloring satisfying the coloring constraint.
Otherwise (i.e., P (s) > 0), the solution includes at least two adjacent vertices
violating the coloring constraint, i.e., belonging to a same color class.

Then the quality of the solution s = {V1, V2, . . . , Vk} is given by the following
extended evaluation function:
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F (s) = f(s) + ϕP (s) (4)

where f(s) is the objective function value and ϕ ≥ 1 is a parameter that is
used to control the relative importance given to the penalty function.

Since F is to be minimized, increasing ϕ augments the value of F , making
thus the infeasible solution under consideration less attractive. Inversely, de-
creasing ϕ lowers the evaluation value, making the solution more attractive.
By varying ϕ, we can control the transition between feasible and infeasible
regions. We explain in Section 3.4.3 the adaptive technique to dynamically
tune ϕ according to the search situation. We investigate in Section 5.2 the
impact of the ϕ parameter.

Using the extended evaluation function F , we assess the relative quality of
two candidate solutions x and y as follows: x is better than y if F (x) < F (y).

3.4 Searching feasible and infeasible solutions with tabu search

3.4.1 Neighborhood and its evaluation

The AFISA algorithm examines the search space Ω by making transitions
from the current solution to one neighboring solution. A neighboring solution
is generated by using the popular “one-move” operator. Give a solution s =
{V1, V2, . . . , Vk}, the one-move operator displaces a vertex v from its current
color class Vi to a different color class Vj (i 6= j, j ∈ {1, 2, . . . , |V |}), leading
to a neighboring solution designated by s ⊕ < v, Vi, Vj >. The one-move
neighborhood is then given by:

N(s) = {s ⊕ < v, Vi, Vj > : v ∈ Vi, 1 ≤ i ≤ k, 1 ≤ j ≤ |V |, i 6= j} (5)

This neighborhood allows a vertex to be moved to a currently empty color
class Vj with j > k (thus the number of color classes can increase). Inversely,
a color class can also become empty and thus be removed when its last vertex
is transferred to another existing class (thus k is decreased). As a result, search
algorithms using this neighborhood like the tabu search procedure presented
in Section 3.4.2 typically visit solutions whose number of color classes varies
during the search.

Notice that this neighborhood is different from the one-move neighborhood
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used for other coloring problems (e.g., conventional vertex coloring [8,26] and
equitable coloring problem [21,31,32], because 1) in these studies the vertex
v ∈ Vi to be displaced must be a conflicting vertex (i.e., there exists in Vi at
least another vertex u such that v and u are adjacent in the graph), and 2)
the number of color classes k remains fixed.

Finally, one important issue concerns the evaluation of the neighborhood that
impacts significantly the computational efficiency of any local search algo-
rithm. In our case, we employ an incremental evaluation technique that is
similar to the evaluation technique designed for another graph coloring prob-
lem (i.e., equitable coloring) [21,31]. With this technique, the objective varia-
tion of each neighbor solution can be conveniently obtained in constant time.
We refer the readers to [21,31] for more details of this evaluation technique.

3.4.2 Tabu search

To explore the above neighborhood, the proposed AFISA algorithm uses the
well-known tabu search (TS) meta-heuristic [12,13] that has been applied to
many difficult combinatorial optimization problems [14]. In particular, TS
is known to be quite successful in solving several different graph coloring
problems such as general graph coloring [7,17], minimum sum coloring [19] and
equitable coloring [21]. As a general meta-heuristic, TS has some attractive
features. First, it can be adapted to graph coloring problems rather easily.
Moreover, TS offers simple strategies to promote a suitable and necessary
search balance between intensification (with the best-improvement principle
to explore a given neighbourhood) and diversification (with a tabu list).

In our case, the tabu search procedure make transitions between various k-
colorings guided by the extended evaluation function F of Section 3.3. Our
TS procedure is based on the popular TabuCol algorithm for the conventional
Vertex Coloring Problem [17] and adopts the improvements presented in [7].
For the sake of completeness, we show the pseudo-code of the tabu search
procedure in Algorithm 3 and provide the following description.

The tabu search procedure iteratively replaces the current solution s by a
neighboring solution s′ taken from the one-move neighborhood N(s) defined
in Section 3.4.1 until a stopping condition is met. At each iteration, TS ex-
amines the neighborhood and selects a best admissible neighboring solution
s′ (see below) to substitute s. After each iteration, the associate one-move is
recorded on the tabu list to prevent the search from revisiting s for the next
tt iterations (tt is called the tabu tenure). To tune the tabu tenure, we use
tt = Random(A) + αF where F stands for the extended evaluation function,
the function Random(A) returns a random number in {0, . . . ,A-1} (A is set
to 10 in this work) and α is a parameter set to 0.6. Meanwhile, the best so-
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lution found is updated if the new solution is better than all previous visited
solutions. A neighboring solution s′ is considered to be admissible if it is not
forbidden by the tabu list or if it is better (according to the extended eval-
uation function F ) than the best solution found. If the best solution is not
updated during β consecutive iterations (β is called the depth of tabu search),
then the current tabu search process is considered to be stagnating and stops.

Algorithm 3 Tabu search algorithm
1: Input: initial solution s, depth of tabu search β
2: Output: The best solution sb found during the tabu search process
3: sc ← s /* sc is the current solution */
4: sb ← sc /* sb is the best solution found */
5: d← 0 /* d counts the consecutive iterations during which sb is not updated */
6: repeat
7: Choose a best admissible neighboring solution s′ ∈ N(sc)

/* s′ is admissible if it is not forbidden by the tabu list or better than sb */
8: sc ← s′

9: /* Update the best solution */
10: if F (sc) < F (sb) then
11: sb ← sc
12: d← 0
13: else
14: d← d+ 1
15: end if
16: until d = β
17: return sb

3.4.3 Adaptive mechanism to control feasible and infeasible searches

The AFISA algorithm uses the extended evaluation function F (see Section
3.3) combining the objective function f and the penalty function P to assess
the quality of candidate solutions and guide the search process. By varying the
penalty coefficient ϕ of F , we can change the search trajectory according to the
search situation. Basically, a large (small) ϕ value strongly (weakly) penalizes
infeasible solutions and incites the search process to give more importance to
feasible (infeasible) solutions. To allow the search process to go back and forth
between feasible and infeasible zones, we devise an adaptive mechanism to dy-
namically adjust ϕ such that a suitable diversification-intensification balance
can be reached. This adaptive mechanism relies on known ideas proposed for
continuous optimization like those reviewed in [16].

The adaptive adjustment mechanism is shown in Algorithm 4. According to
whether the solution s (obtained from the last round of tabu search) is a
feasible k-coloring, we adjust ϕ to influence the search trajectory of the next
round of tabu search. Specifically, if P (s) 6= 0 (i.e., F (s) 6= f(s)) (Algorithm
4, line 3), which means solution s is an infeasible k-coloring, we increase ϕ
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to penalize more strongly the infeasible solutions. As such, if the tabu search
procedure always ends up with an infeasible solution during several consecutive
runs, the search is considered to perform enough exploration in infeasible zones
and thus encouraged to move towards feasible regions to intensify its search
during the next round of tabu search. Inversely, if P (s) = 0 (i.e., F (s) = f(s)),
the solution returned by the last round of tabu search is a feasible k-coloring,
indicating that the search just examined a feasible region. In this case, we
decrease ϕ to raise the chance of visiting infeasible regions during the next tabu
search run and thus diversify the search. The computational results of Section
4 show that the AFISA algorithm equipped with this adaptive mechanism of
exploring feasible and infeasible solutions reaches a high performance.

Algorithm 4 Adaptive adjustment mechanism for penalty coefficient ϕ
1: Input: Penalty coefficient ϕ, the best solution from the last round of tabu search s
2: Output: Adjusted penalty coefficient ϕ
3: if F (s) 6= f(s) then
4: ϕ ← ϕ + 1 /* Increase the penalty term to guide the search toward feasible

regions */
5: else
6: ϕ ← ϕ − 1 /* Decrease the penalty term to increase the chance of visiting

infeasible solutions */
7: end if
8: if ϕ ≤ 0 then
9: ϕ← 1

10: end if

3.5 Perturbation strategy

As illustrated in Section 3.4.2, the tabu search procedure ends up with a
local optimal solution. To enable the search to move to new search zones, we
apply a perturbation strategy to modify the last local optimum that is then
used as the new starting solution of the next round of tabu search (line 22,
Algorithm 1). To make the perturbation strategy as effective as possible, we
borrow ideas from breakout local search [2] whose perturbation strategy relies
on two factors: the jump magnitude L (also called depth of perturbation) and
the perturbation type.

The jump magnitude L indicates the number of perturbation moves to be
applied and in our case, is set to a small value (L0) in the beginning (line
7, Algorithm 1). If the search is observed to be stagnating (i.e., no better
feasible solution can be found during T consecutive tabu search runs), L is
increased to a large value (Lmax) to enable a stronger diversification (line 19,
Algorithm 1). Then each time the search moves to a new promising search
zone by discovering a better feasible solution, L is switched to L0 again (line
13, Algorithm 1).
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To perform a perturbation, two types of moves, both being based on the one-
move operator (see Section 3.4.1), are applied according to a probability P0.
The first type of perturbation, called tabu-based perturbation, relies on the
tabu principle and selects a one-move < v, Vi, Vj > that minimizes the objec-
tive degradation while considering the tabu list, as in Section 3.4.2. Starting
from an empty tabu list, each time a perturbation move is performed, the
move is recorded in the tabu list and will not be considered during the current
perturbation procedure (this is achieved by setting the tabu tenure to ∞).
The second type of perturbation, called direct perturbation, also chooses a
one-move that leads to the least objective degradation, but without consid-
ering any tabu restriction (this is achieved by setting the tabu tenure to 0).
Finally, during the perturbation procedure, if a feasible solution that is better
than the best solution found from the start of the search is reached, the best
recorded solution is updated accordingly.

3.6 Connections with existing studies

For the WVCP considered in this work, one notices that existing heuristic
algorithms [25,28] visit only feasible solutions while ignoring infeasible solu-
tions. As such, these algorithms could encounter difficulties when the feasible
solutions are scattered in different zones that are separated by infeasible zones.
In this work, we explore for the first time the idea of searching both feasible
and infeasible solutions for solving the WVCP. Indeed, as illustrated in other
settings, e.g., [4,27,31,32], such a mixed search strategy is highly effective for
solving several difficult problems (e.g., capacitated arc routing, capacitated
clustering and equitable coloring). Among these studies, two of them [31,32]
are worthy of a special mention, because they consider the related equitable
coloring problem (ECP). Given that the WVCP studied in this work and the
ECP considered in [31,32] are two different coloring problems, our work posses
several particular features that distinguish itself from these studies.

First, the proposed AFISA algorithm incorporates search components (dedi-
cated neighborhood, specific penalty-based evaluation function, perturbation
technique...) that are customized to the WVCP. Second, unlike [31,32] where
different algorithms are designed to search separately feasible and infeasible
solutions, AFISA uses the same tabu search procedure to exploit both types of
solutions, making the algorithm simpler in design and implementation. Third,
AFISA integrates an adaptive mechanism to dynamically control the feasible
and infeasible searches by the self-tuned parameter ϕ. Such a mechanism is
missing in the studies mentioned above. Fourth, unlike [31,32], AFISA does
not solve a series of k-coloring problems where each coloring problem is defined
for a fixed number of colors k. Instead, the number of colors k varies during
the search of our algorithm as explained in Section 3.4.1. Finally, as we show
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in Section 4, the proposed algorithm integrating these features competes very
favorably with the state of the art methods for the WVCP in the literature.

4 Experimental results and comparisons

This section is dedicated to a large experimental assessment of the proposed 
AFISA algorithm for solving the WVCP and comparisons with other state of 
the art methods. The study is based on 111 conventional benchmark instances 
in the literature as well as 50 new (large) instances from the DIMACS and 
COLOR competitions.

4.1 Benchmark instances

Test instances. We consider 111 instances from the literature on the WVCP 
[5,25,28] and 50 additional instances from the DIMACS and COLOR com-
petitions initially proposed for the conventional graph coloring problems 1 , 2 . 
We classify these instances into four sets.

(1) The first set contains 46 (small) instances from the DIMCAS/COLOR
competitions. Graphs of this set have DSJC∗, GEOM∗ or R∗ in their
name with up to 125 vertices. The exact algorithm (MWSS) [5] is able
to find the optimal solutions for 40 instances in this set. These instances
are tested in [5,25], whose results will be used as our references.

(2) The second set contains 35 instances from matrix-decomposition prob-
lems. These graphs named as pxx have up to 138 vertices and 1186 edges.
The exact algorithm (MWSS) [5] is able to find the optimal solutions
for all graphs in this set. These instances are tested in [5,25,28], whose
results will be used as our references.

(3) The third set contains 30 rxx instances proposed in [28] from matrix-
decomposition problems. These instances have the same structure as the
pxx instances, but are larger, having up to 301 vertices and 4122 edges.
These instances are tested in [5,28] and the exact algorithm (MWSS) [5]
is able to find the optimal solutions for all graphs in this set.

(4) The fourth set contains 50 additional larger instances (with at least 120
vertices) 3 . These instances are created by adding random vertex weights
between 1 to 20 to DIMACS/COLOR graphs.

1 http://www.dimacs.rutgers.edu/
2 http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
3 These new instances are available at:
http://www.info.univ-angers.fr/~hao/wvcp.html
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4.2 Experimental settings

The proposed algorithm was coded in C++ and compiled by GNU g++ 4.1.2
with -O3 flag (option). The experiments were conducted on a computer with
an Intel Xeon E5-2670 processor (2.5 GHz and 2 GB RAM) running Ubuntu
12.04. When solving the DIMACS machine benchmark procedure ‘dfmax.c’ 4

without compilation optimization flag, the run time on the computer is 0.46,
2.68 and 10.70 seconds for graphs r300.5, r400.5 and r500.5, respectively.

Parameters. The setting of the parameters is given in Table 1, which was
determined by a preliminary experiment. For this, we first identify a rough
range of values for each parameter. To identify the default value of a particular
parameter, we test different values from the range while fixing the other pa-
rameters to their default values (typically those of Table 1). As to the penalty
coefficient ϕ of the extended evaluation function F , it is tuned adaptively as
explained in Section 3.4.3. We use the default setting of Table 1 to report the
experimental results shown in the rest of the paper, though fine-tuning some
parameters could lead to improved results.

Table 1
Settings of important parameters
Parameters Description Value

L0, Lmax Small and large jump magnitude 0.05*N, 0.5*N

T Max number of non-improving local optima visited before strong perturb 50

P0 Probability for applying tabu-based or direct perturbation 0.7

β Depth of tabu search 100,N < 50

10000, N > 50

Reference algorithms. For our comparative study, we use the most recent
heuristic algorithms [25,28] as our references. The GRASP algorithm [28]
was run on an IBM 9672 model R34 mainframe computer under a limit of
1000 iterations. The 2 Phase algorithm [25] was run on a PIV 2.4 MHz with
512 MB RAM under Windows XP and tested by stopping phase 1 after 500
iterations and phase 2 after 75 seconds. When solving the DIMACS machine
benchmark procedure ‘dfmax.c’, the run time on the instance r500.5 reported
in [25] for this machine is 7 seconds (against 10.7 seconds for our computer).
We also include the lower and upper bounds reported by the exact algorithm
MWSS in [5]. The results of MWSS were obtained on a computer equipped
with an Intel Xeon E3-1220 at 3.10 GHz with 8 GB RAM, which spent 4.5
seconds to solve the benchmark instance r500.5 (this computer is roughly 2
times faster than our computer). These bounds provide useful information
when they are contrasted with the results (upper bounds) obtained by the
compared heuristic algorithms (GRASP , 2 Phase and AFISA).

4 dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Following [1], we show computational results in terms of solution quality and
computation time. Since computation time can be greatly biased by many
factors like computing platform, programming language, data structures and
so on, solution quality is the primary criterion while timing information is
provided only for indicative purposes.

Stopping condition. Following [25,28], we ran our AFISA algorithm 20 times
for the instances from the first, second and fourth sets with a cutoff time of 1
hour per run. For the rxx instances of the third set, a cutoff time of 4 hours
is used in [5] on their computer (Intel Xeon E3-1220 processor, 3.10 GHz and
8 GB RAM), which roughly corresponds to 8 hours on our computer. We set
a cutoff time of 2 hours for the instances with up to 200 vertices and 4 hours
for larger instances for our AFISA algorithm (longer times do not lead to
significantly improved results). Finally, note that for 8 instances of the first
set that cannot be solved by MWSS [5] in 1 hour, a large time limit of 10
hours was allowed (marked with ~ in Table 2), leading to optimality proof of
two instances (R100 1g and R100 1gb).

4.3 Computational results and comparisons with state-of-the-art algorithms

Table 2 reports the results of our AFISA algorithm on the first set of 46
DIMACS/COLOR instances commonly used in the literature, together with
the results of the reference algorithms MWSS [5] and 2 Phase [25]. The first
3 columns indicate for each instance its name, the number of vertices and
the number of edges. The fourth column shows the best-known value (BKV)
reported in the literature [5,25,28]. The next four columns show the results
of the AFISA algorithm for each instance: the best result (i.e., the smallest
objective function value) over 20 independent runs (Best), the success rate
(SR) to achieve the best result over 20 runs, the average result (Avg) and
the average computation time (in seconds) of the successful runs to obtain
the best result (t(s)) (0 is given if the time is less than 0.009 second). The
following four columns report the results and the computation time obtained
by the reference algorithms (MWSS and 2 Phase). For MWSS, the indicated
time corresponds to the time of 1000 iterations. For 2 Phase, the time is the
sum of the time of 500 iterations of phase 1 and the time of phase 2. The last
two columns (∆1,∆2) indicate the difference between our result (Best) and
the result of MWSS and 2 Phase. To verify the statistical significance of the
comparisons between AFISA and each reference algorithm, we show in the
row “p-values” the results from the non-parametric Friedman test applied to
the best values of AFISA and each compared algorithm, and a p-value smaller
than 0.05 implies a significant difference between two sets of compared results.

Additionally, the rows #Better, #Equal and #Worse indicate respectively the
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Table 2
Comparative results of AFISA with state-of-the-art algorithms on the 46 DIMACS
benchmark instances. Improved upper bounds are indicated in bold.

Instance |V | |E| BKV

AFISA MWSS[5] 2 Phase[25]

∆1 ∆2Best SR Avg t(s) Best t(s) Best t(s)

DSJC125 1g.col~ 125 736 24 23 2 24.0 3016.32 25 36000.0 24 152 -2 -1

DSJC125 1gb.col~ 125 736 95 90 1 92.5 402.57 95 36000.0 95 170 -5 -5

DSJC125 5g.col~ 125 3891 76 71 2 72.3 216.04 78 36000.0 76 180 -7 -5

DSJC125 5gb.col~ 125 3891 251 243 1 250.2 369.34 263 36000.0 251 182 -20 -8

DSJC125 9g.col 125 6961 169∗ 169∗ 3 169.9 16.00 169∗ 0.3 169∗ 162 0 0

DSJC125 9gb.col 125 6961 604∗ 604∗ 3 605.5 443.96 604∗ 0.4 605 237 0 -1

GEOM100.col 100 547 65∗ 65∗ 20 65.0 0.81 65∗ 3.8 65∗ 131 0 0

GEOM100a.col 100 992 89∗ 89∗ 10 89.5 110.42 89∗ 2.4 89∗ 112 0 0

GEOM100b.col 100 1050 32∗ 32∗ 1 33.1 59.11 32∗ 3.8 32∗ 15 0 0

GEOM110.col 110 638 68∗ 68∗ 20 68.0 33.81 68∗ 59.5 69 172 0 -1

GEOM110a.col 110 1207 97∗ 97∗ 6 97.8 176.76 97∗ 12.9 97∗ 111 0 0

GEOM110b.col 110 1256 37∗ 37∗ 14 37.9 130.85 37∗ 5.0 37∗ 5 0 0

GEOM120.col 120 773 72∗ 72∗ 20 72.0 33.14 72∗ 157 72∗ 157 0 0

GEOM120a.col 120 1434 105∗ 105∗ 1 106.3 156 .00 105∗ 7.0 105∗ 136 0 0

GEOM120b.col 120 1491 35∗ 35∗ 7 37.3 67.72 35∗ 16.5 35∗ 14 0 0

GEOM30b.col 30 81 12∗ 12∗ 20 12.0 0.02 12∗ 0.0 12∗ 0 0 0

GEOM40b.col 40 157 16∗ 16∗ 20 16.0 0.03 16∗ 0.1 16∗ 1 0 0

GEOM50b.col 50 249 18∗ 18∗ 20 18.0 0.02 18∗ 0.1 18∗ 0 0 0

GEOM60b.col 60 366 23∗ 23∗ 20 23.0 0.22 23∗ 0.5 23∗ 0 0 0

GEOM70.col 70 267 47∗ 47∗ 20 47.0 4.99 47∗ 0.3 47∗ 96 0 0

GEOM70a.col 70 459 73∗ 73∗ 20 73.0 4.42 73∗ 0.4 73∗ 3 0 0

GEOM70b.col 70 488 24∗ 24∗ 20 24.0 12.03 24∗ 0.9 24∗ 6 0 0

GEOM80.col 80 349 66∗ 66∗ 20 66.0 2.11 66∗ 1.1 66∗ 0 0 0

GEOM80a.col 80 612 76∗ 76∗ 19 76.1 137.1 76∗ 1.1 76∗ 102 0 0

GEOM80b.col 80 663 27∗ 27∗ 5 27.8 66.8 27∗ 2.5 27∗ 90 0 0

GEOM90.col 90 441 61∗ 61∗ 16 61.2 88.92 61∗ 2.0 61∗ 166 0 0

GEOM90a.col 90 789 73∗ 73∗ 3 74.0 512.41 73∗ 4.8 73∗ 157 0 0

GEOM90b.col 90 860 30∗ 30∗ 19 30.1 67.38 30∗ 1.7 30∗ 11 0 0

R100 1g.col~ 100 509 21∗ 21∗ 1 22.0 113.77 21∗ 28788.5 22 155 0 -1

R100 1gb.col~ 100 509 81∗ 81∗ 1 83.8 3.04 81∗ 9362.2 - 171 0 -

R100 5g.col~ 100 2456 59 59 5 60.1 6.97 59 36000.0 - 179 0 -

R100 5gb.col~ 100 2456 225 221 1 224.1 186.81 225 36000.0 - 179 -4 -

R100 9g.col 100 4438 141∗ 141∗ 15 141.3 21.36 141∗ 0.1 - 123 0 -

R100 9gb.col 100 4438 518∗ 518∗ 1 549.3 1152.83 518∗ 0.3 - 127 0 -

R50 1g.col 50 108 14∗ 14∗ 20 14.0 0.14 14∗ 0.8 14∗ 0 0 0

R50 1gb.col 50 108 53∗ 53∗ 20 53.0 0.24 53∗ 1.6 53∗ 95 0 0

R50 5g.col 50 612 37∗ 37∗ 20 37.0 0.95 37∗ 1.4 37∗ 167 0 0

R50 5gb.col 50 612 135∗ 135∗ 14 135.3 3.72 135∗ 1.5 137 145 0 -2

R50 9g.col 50 1092 74∗ 74∗ 20 74.0 0.74 74∗ 0.0 74∗ 36 0 0

R50 9gb.col 50 1092 262∗ 262∗ 20 262.0 12.61 262∗ 0.0 262∗ 33 0 0

R75 1g.col 70 251 18∗ 18∗ 12 18.4 10.96 18∗ 132.8 19 154 0 -1

R75 1gb.col 70 251 70∗ 70∗ 19 70.1 2.46 70∗ 192.2 72 166 0 -2

R75 5g.col 75 1407 51∗ 51∗ 12 51.4 0.08 51∗ 1056.0 53 172 0 -2

R75 5gb.col 75 1407 186∗ 186∗ 2 189.0 19.42 186∗ 989.3 190 173 0 -4

R75 9g.col 75 2513 110∗ 110∗ 20 110.0 2.65 110∗ 0.0 110∗ 79 0 0

R75 9gb.col 75 2513 396∗ 396∗ 12 396.4 145.89 396∗ 0.0 399 50 0 -3

#Better 5/46 0/46 0/41

#Equal 41/46 43/46 32/41

#Worse 0/46 3/46 9/41

p value - 2.5e-2 3.1e-4

number of instances for which an algorithm performs better, equally well or
worse compared to the best-known values (BKV).

Finally, an entry with ∗ indicates the optimal objective value. A bold entry
highlights an improved upper bound, i.e., an improved result over the current
best-known value. Entries with “-” mean that the corresponding results are
not available in the literature.

From Table 2, we observe that AFISA reaches a remarkable performance on
the first set of 46 DIMACS/COLOR instances. Compared to the most recent
exact algorithm MWSS, AFISA attains all known optimal results (40 cases).
For 5 out of the 6 remaining instances whose optimal values are still unknown,
AFISA improves the current best upper bounds (see negative entries in column
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Table 3
Comparative results of AFISA with state-of-the-art algorithms on the 35 pxx bench-
mark instances.

Instance |V | |E| BKV

AFISA MWSS[5] 2 Phase[25] GRASP [28]

∆1 ∆2 ∆3Best SR Avg t(s) Best t(s) Best t(s) Best t(s)

p06.col 16 38 565∗ 565∗ 20 565.0 0 565∗ 0.0 565∗ 0.4 565∗ 1.1 0 0 0

p07.col 24 92 3771∗ 3771∗ 20 3771.0 0.02 3771∗ 0.0 3771∗ 0.1 3771∗ 4.0 0 0 0

p08.col 24 92 4049∗ 4049∗ 20 4049.0 0.17 4049∗ 0.0 4049∗ 1.3 4049∗ 1.3 0 0 0

p09.col 25 100 3388∗ 3388∗ 16 3388.2 0.95 3388∗ 0.0 3388∗ 0.1 3388∗ 3.0 0 0 0

p10.col 16 32 3983∗ 3983∗ 20 3983.0 0.68 3983∗ 0.0 3983∗ 0.1 3983∗ 4.5 0 0 0

p11.col 18 48 3380∗ 3380∗ 20 3380.0 0.01 3380∗ 0.0 3380∗ 0.1 3380∗ 4.7 0 0 0

p12.col 26 90 657∗ 657∗ 20 657.0 0 657∗ 0.0 657∗ 0.1 657∗ 3.8 0 0 0

p13.col 34 160 3220∗ 3220∗ 17 3221.1 0.68 3220∗ 0.0 3225 2.3 3230 7.8 0 -5 -10

p14.col 31 110 3157∗ 3157∗ 20 3157.0 0 3157∗ 0.0 3157∗ 0.1 3157∗ 10.1 0 0 0

p15.col 34 136 341∗ 341∗ 20 341.0 1.81 341∗ 0.0 341∗ 0.1 341∗ 4.7 0 0 0

p16.col 34 134 2343∗ 2343∗ 20 2343.0 0.76 2343∗ 0.0 2343∗ 0.5 2343∗ 14.5 0 0 0

p17.col 37 161 3281∗ 3281∗ 7 3322.2 2.72 3281∗ 0.0 3281∗ 1.4 3281∗ 5.5 0 0 0

p18.col 35 143 3228∗ 3228∗ 20 3228.0 0.05 3228∗ 0.0 3228∗ 0.2 3228∗ 10.4 0 0 0

p19.col 36 156 3710∗ 3710∗ 20 3710.0 0.36 3710∗ 0.0 3710∗ 0.1 3710∗ 14.6 0 0 0

p20.col 37 142 1830∗ 1830∗ 13 1841.0 4.86 1830∗ 0.0 1830∗ 1.3 1860 20.0 0 0 -30

p21.col 38 155 3660∗ 3660∗ 19 3660.5 0.75 3660∗ 0.0 3660∗ 0.2 3660∗ 18.4 0 0 0

p22.col 38 154 1912∗ 1912∗ 18 1912.2 0.29 1912∗ 0.0 1912∗ 0.2 1912∗ 20.0 0 0 0

p23.col 44 204 3770∗ 3770∗ 3 3793.0 0.28 3770∗ 0.1 3770∗ 1.4 3810 21.4 0 0 -40

p24.col 34 104 661∗ 661∗ 20 661.0 0 661∗ 0.0 661∗ 0.1 661∗ 27.9 0 0 0

p25.col 36 120 504∗ 504∗ 20 504.0 0.28 504∗ 0.0 504∗ 0.1 504∗ 23.9 0 0 0

p26.col 37 131 520∗ 520∗ 20 520.0 0.11 520∗ 0.0 520∗ 0.1 520∗ 28.3 0 0 0

p27.col 44 174 216∗ 216∗ 20 216.0 0.08 216∗ 0.1 216∗ 0.2 216∗ 7.8 0 0 0

p28.col 44 174 1729∗ 1729∗ 14 1735.1 2.56 1729∗ 0.1 1729∗ 0.1 1729∗ 44.5 0 0 0

p29.col 53 254 3470∗ 3470∗ 20 3470.0 0.10 3470∗ 0.1 3470∗ 65.7 3470∗ 65.7 0 0 0

p30.col 60 317 4891∗ 4891∗ 20 4891.0 53.79 4891∗ 0.2 4891∗ 2.1 4891∗ 56.6 0 0 0

p31.col 47 179 620∗ 620∗ 20 620.0 3.69 620∗ 0.1 620∗ 0.1 620∗ 70.9 0 0 0

p32.col 51 221 2480∗ 2480∗ 20 2480.0 0.35 2480∗ 0.1 2480∗ 0.0 2480∗ 70.9 0 0 0

p33.col 56 258 3018∗ 3018∗ 7 3029.7 0.43 3018∗ 0.3 3018∗ 0.1 3018∗ 62.3 0 0 0

p34.col 74 421 1980∗ 1980∗ 19 1980.5 3.05 1980∗ 0.6 1980∗ 0.1 1980∗ 131.9 0 0 0

p35.col 86 566 2140∗ 2140∗ 15 2145.0 4.48 2140∗ 0.6 2140∗ 0.1 2140∗ 135.0 0 0 0

p36.col 101 798 7210∗ 7210∗ 12 7385.0 0.13 7210∗ 1.4 7210∗ 0.1 7210∗ 163.1 0 0 0

p38.col 87 537 2130∗ 2130∗ 1 2139.5 9.54 2130∗ 1.2 2130∗ 0.4 2130∗ 231.8 0 0 0

p40.col 86 497 4984∗ 4984∗ 1 5016.6 5.05 4984∗ 1.0 4984∗ 0.2 4984∗ 224.2 0 0 0

p41.col 116 900 2688∗ 2688∗ 2 2688.1 0.10 2688∗ 3.2 2688∗ 0.1 2688∗ 313.7 0 0 0

p42.col 138 1186 2466∗ 2466∗ 4 2671.2 930.96 2466∗ 3.2 2509 2.8 2480 405.8 0 -43 -14

#Better 0/35 0/35 0/35 0/35

#Equal 35/35 35/35 33/35 31/35

#Worse 0/35 0/35 2/35 4/35

p-value - - 1.6e-1 4.6e-2

∆1). AFISA also dominates the 2 Phase algorithm on the 41 instances tested
by both algorithms, by obtaining better results for 13 instances (see negative
entries in column ∆2) and the same results for the remaining 28 instances.
The small p-values (< 0.05) indicates that there is a significant difference
between our best results and those of the two reference algorithms MWSS
(p-value=2.5e-2) and 2 Phase (p-value=3.1e-4).

Table 3 reports the comparative results on the first set of 35 pxx instances from
matrix-decomposition problems with one more reference algorithm (GRASP )
[28]. One observes that AFISA performs very well on these pxx instances.
AFISA attains always the known optimal values of MWSS, while 2 Phase
and GRASP miss 2 and 4 instances respectively. The difference between
AFISA and 2 Phase is however not statistically significant (p-value of 1.6e-1),
while the difference between AFISA and GRASP is significant with a p-value
of 4.6e-2.

Table 4 shows the results of AFISA on the second set of 30 rxx instances from
matrix-decomposition problems, along with those of MWSS and GRASP .
Table 4 indicates that AFISA finds the optimal solutions for 26 out of the 30
rxx instances, which were previously obtained by the exact algorithm MWSS.
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Table 4
Comparative results of AFISA with state-of-the-art algorithms on the 30 rxx bench-
mark instances.

Instance |V | |E| BKV

AFISA MWSS[5] GRASP [28]

∆1 ∆2Best SR Avg t(s) Best t(s) Best t(s)

r01.col 144 1280 6724∗ 6724∗ 8 6727.8 49.57 6724∗ 17.6 6724∗ 887 0 0

r02.col 142 1246 6771∗ 6771∗ 3 6780.6 85.33 6771∗ 11.3 6771∗ 1041 0 0

r03.col 139 1188 6473∗ 6473∗ 10 6490.8 190.19 6473∗ 10.4 6475 966 0 -2

r04.col 151 1406 6342∗ 6342∗ 1 6403.2 467.37 6342∗ 11.4 6342∗ 989 0 0

r05.col 142 1266 6408∗ 6408∗ 1 6466.3 71.68 6408∗ 12.3 6409 904 0 -1

r06.col 148 1381 7550∗ 7550∗ 4 7555.9 29.24 7550∗ 10.3 7550∗ 899 0 0

r07.col 141 1253 6889∗ 6889∗ 3 7555.9 34.76 6889∗ 13.7 6889∗ 6889 0 0

r08.col 138 1191 6057∗ 6057∗ 1 6080.3 311.66 6057∗ 4.1 6076 810 0 -19

r09.col 129 1027 6358∗ 6358∗ 1 6393.8 395.24 6358∗ 9.5 6424 868 0 -66

r10.col 150 1409 6508∗ 6508∗ 1 6519.3 461.98 6508∗ 13.1 6525 1048 0 -17

r11.col 208 2247 7654∗ 7654∗ 1 7710.6 259.25 7654∗ 57.2 7669 2423 0 -15

r12.col 199 2055 7690∗ 7691 1 7710.4 9542.18 7690∗ 53.7 7691 2267 1 0

r13.col 217 2449 7500∗ 7521 1 7558.3 619.53 7500∗ 105.2 7524 2365 21 -3

r14.col 214 2387 8254∗ 8254∗ 1 8283.9 8044.07 8254∗ 65.3 8254∗ 2342 0 0

r15.col 198 2055 8021∗ 8021∗ 1 8126.8 2559.06 8021∗ 25.1 8021∗ 2395 0 0

r16.col 188 1861 7755∗ 7755∗ 2 7789.2 195.53 7755∗ 26.7 7755∗ 2696 0 0

r17.col 213 2392 7979∗ 7979∗ 2 8030.3 855.38 7979∗ 79.3 8025 3175 0 -46

r18.col 200 2079 7232∗ 7232∗ 1 7278.9 868.19 7232∗ 58.2 7232∗ 1902 0 0

r19.col 185 1803 6826∗ 6840 1 6868.1 395.5 6826∗ 32.7 6858 2082 14 -18

r20.col 217 2447 8023∗ 8023∗ 1 8102.0 1028.5 8023∗ 104.1 8027 3452 0 -4

r21.col 281 3554 9284∗ 9284∗ 1 9384.5 4588.72 9284∗ 390.0 9287 4948 0 -3

r22.col 285 3684 8887∗ 8887∗ 1 8959.3 12911 8887∗ 302.6 8887∗ 5603 0 0

r23.col 288 3732 9136∗ 9136∗ 1 9267.9 3251.96 9136∗ 375.3 9145 5887 0 -9

r24.col 269 3284 8464∗ 8464∗ 1 8572.9 13142.6 8464∗ 201.7 8464∗ 4997 0 0

r25.col 266 3177 8426∗ 8468 1 8560.8 874.75 8426∗ 225.6 8504 5139 42 -36

r26.col 284 3629 8819∗ 8819∗ 1 8927.9 14225.1 8819∗ 439.6 8819∗ 5462 0 0

r27.col 259 3019 7975∗ 7975∗ 1 8019.7 14074.9 7975∗ 248.1 7975∗ 5064 0 0

r28.col 288 3765 9407∗ 9407∗ 1 9599.4 8691.00 9407∗ 222.7 9407∗ 5874 0 0

r29.col 281 3553 8693∗ 8693∗ 1 8743.7 7613.14 8693∗ 388.0 8693∗ 4923 0 0

r30.col 301 4122 9816∗ 9816∗ 1 10003.2 8838.59 9816∗ 346.9 9816∗ 6145 0 0

#Better 0/30 0/30 0/30

#Equal 26/30 30/30 16/30

#Worse 4/30 0/30 14/30

p-value - 4.6e-2 3.2e-4

Among the four cases where AFISA misses the optimal solution, the gap to the
optimal value is no more than 0.498% (instance r25). Compared to the refer-
ence heuristic algorithm GRASP , AFISA (Column 4) dominates GRASP by
attaining 13 better and 17 equal results. The p-value of 4.6e-2 between AFISA
and MWSS indicates that there is a slight difference and the p-value of 3.2e-
4 between AFISA and GRASP indicates that there is significant difference
between the results of AFISA and GRASP .

Notice that according to [25], 2 Phase is able to find (in comparable com-
puting times) 3 solutions better than those of GRASP reported in [28], 9
solutions of equal quality and 18 worse solutions. However the detailed results
of 2 Phase on the rxx instances are not available.

Finally, Table 5 summarizes our results on the set of 50 additional (larger)
DIMACS/COLOR instances. Since these instances are not tested previously
by any WVCP method, we use the general MIP solver CPLEX (version 12.6)
as our reference method. We run CPLEX, with a cutoff limit of one hour,
to solve the 0/1 ILP model shown in Appendix A. Entries with − in Table 5
indicate that no feasible solution is found by CPLEX within the time limit and
this happens for 43 out of the 50 instances. The last column (∆) indicates the
difference between our best result and the upper bound of CPLEX (a negative
value implies thus a better result). We observe that only one instance can be
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Table 5
Comparative results of FISA with CPLEX on the additional set of 50 larger DI-
MACS/COLOR instances.

Instance |V | |E|
AFISA CPLEX[5]

∆Best SR Avg t(s) UB LB status

miles250.col 128 387 102∗ 8 102.7 56.61 102∗ 102∗ Optimal 0

miles500.col 128 1170 260 1 261.3 48.46 - - - -

miles1000.col 128 3216 432 1 444.7 480.02 437 31.692 Feasible -5

miles1500.col 128 5198 587 1 644.3 32.31 - - - -

mulsol.i.5.col 186 3973 367.0 20 367.0 416.91 360 109.034 Feasible 7

queen10 10.col 100 2940 166 3 169.2 68.43 - - - -

queen11 11.col 121 3960 178 1 182.3 55.24 - - - -

queen12 12.col 144 5192 194 1 198.6 92.7 208 47.000 Feasible -14

queen13 13.col 169 6656 204 2 207.5 199.85 - - - -

queen14 14.col 196 8372 224 2 227.4 360.05 316 23.000 Feasible -92

queen15 15.col 225 10360 237 1 241.2 183.44 - - - -

queen16 16.col 256 12640 253 2 256.3 300.85 365 22.033 Feasible -112

zeroin.i.1.col 211 4100 518 20 518.0 0 - - - -

zeroin.i.2.col 211 3541 336 3 337.6 440.84 300 26.103 Feasible 36

zeroin.i.3.col 206 3540 299 2 301.7 139.64 - - - -

DSJC250.1.col 250 3218 140 1 141.9 48.94 - - - -

DSJC250.5.col 250 15668 415 1 428.1 269.23 - - - -

DSJC250.9.col 250 55794 925 1 942.7 856.25 - - - -

DSJC500.1.col 500 12458 210 1 215.6 426.64 - - - -

DSJC500.5.col 500 125248 778 1 845.1 159.27 - - - -

DSJC500.9.col 500 224874 1790 1 1854.5 831.07 - - - -

DSJR500.1.col 500 3555 169 1 175.4 458.86 - - - -

DSJC1000.1.col 1000 99258 359 4 362.9 430.54 - - - -

DSJC1000.5.col 1000 499652 1357 1 1430.9 371.65 - - - -

DSJC1000.9.col 1000 898898 3166 1 3231.0 490.2 - - - -

inithx.i.1.col 864 18707 587 5 587.9 527.46 - - - -

inithx.i.2.col 645 13979 341 8 341.6 0.03 - - - -

inithx.i.3.col 621 13969 352 11 355.6 0.01 - - - -

le450 15a.col 450 8168 241 1 247.1 288.37 - - - -

le450 15b.col 450 8169 239 2 245.1 368.35 - - - -

le450 15c.col 450 16680 313 1 320.8 432.95 - - - -

le450 15d.col 450 16750 306 2 314.1 113.7 - - - -

le450 25a.col 450 8260 317 1 329.9 362.26 - - - -

le450 25b.col 450 8263 318 1 325.8 285.88 - - - -

le450 25c.col 450 17343 378 1 387.9 359.37 - - - -

le450 25d.col 450 17345 375 1 385.3 254.76 - - - -

flat1000 50 0.col 1000 245000 1289 1 1315.7 981.77 - - - -

flat1000 60 0.col 1000 245830 1338 1 1354 201.98 - - - -

flat1000 76 0.col 1000 246708 1314 1 1337.6 2396.63 - - - -

C2000.5.col 2000 999836 2400 1 2425.1 3133.97 - - - -

C2000.9.col 2000 1799532 6228 1 6284.0 2798.3 - - - -

latin square 10.col 900 307350 1690 1 1900.0 780.26 - - - -

wap01a.col 2368 110871 638 1 653.1 1133.51 - - - -

wap02a.col 2464 111742 637 1 638.1 3270.46 - - - -

wap03a.col 4730 286722 687 1 707.5 2901.51 - - - -

wap04a.col 5231 294902 698 1 709.0 4.79 - - - -

wap05a.col 905 43081 598 1 610.9 1574.52 - - - -

wap06a.col 947 43571 599 1 607.6 65.32 - - - -

wap07a.col 1809 103368 680 1 692.5 384.82 - - - -

wap08a.col 1870 104176 663 1 673.4 2627.2 - - - -

#Better 47/50 2/7

#Equal 1/50 1/7

#Worse 2/50 4/7

solved to optimality by CPLEX within the one hour time limit. For the six
instances for which CPLEX reaches a feasible solution, but fails to find the
optimal solution, its upper bounds are worse than the bounds of AFISA in
four cases. Due to the small number of instances solved by CPLEX, we omit
the statistical test.

To sum up, this computational assessment indicates that AFISA performs
very well on the four sets of benchmark instances. The new upper bounds (5
for the first set and the results for the fourth set) established by AFISA can
serve as valuable reference values to evaluate future algorithms for the WVCP.
Meanwhile, AFISA failed to attain the optimal values for four instances of
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the third set, indicating there is room for further improvement. Finally, this
experimental study confirms that like for many NP-hard problems, both exact
and heuristic algorithms are complementary and can be used to solve problem
instances of different sizes and different characteristics. These approaches can
even be combined to create powerful hybrid algorithms.

5 Analysis

This section performs additional experiments to analyze the benefits of three
important ingredients of the proposed AFISA algorithm: the penalty coeffi-
cient of the extended evaluation function, the strategy of visiting both feasible
and infeasible solutions and the perturbation strategy.

5.1 Impact of the penalty coefficient

AFISA uses the extended evaluation function F defined in Section 3.3 to ex-
plore both feasible and infeasible solutions. The oscillation between feasible
and infeasible zones is adaptively controlled by increasing or decreasing the
penalty coefficient ϕ (≥ 1). In this study, we analyze the impact of the in-
crement/decrement value used to adjust ϕ and for this purpose, we test the
following increment/decrement values: 1,2,3,4 (larger values make the search
oscillate too much between feasible and infeasible zones).

Box and whisker plots of the results on 4 representative instances from the
four benchmark sets (which are relatively difficult according to Tables 2-5) are
shown in Figure 2, where the X-axis indicates the tested increment/decrement
values and the Y-axis indicates the objective values. As a supplement, we also
compute the p-value for each tested instance. The results are based on 20
independent runs for each instance with a cutoff time of 300 seconds per run.
One observes that the performance of the AFISA algorithm is significantly
influenced by the increment/decrement value on the instances DSJC125 5gb
(p-value = 1.4e-2) and queen16 16 (p-value = 1.2e-4). This is less the case for
the instances p42 (p-value = 2.0e-1) and r05 (p-value = 7.6e-1). Furthermore,
the AFISA algorithm with the increment/decrement value of 1 gives the best
performance compared to other values. This explains why we adopt 1 as the
default increment/decrement value in this study. Finally, one notices that the
outcome of this experiment remains coherent with the intuitive understanding
that the search will go back and forth more frequently between feasible and
infeasible regions with a large increment/decrement value than with a small
value. This implies that a large increment/decrement value may make the
search leave each newly discovered (feasible or infeasible) zone too early before
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Fig. 2. Influence of the increment/decrement value of the penalty efficient

the search zone is sufficiently exploited.

5.2 Benefit of searching both feasible and infeasible solutions

To assess the strategy of oscillating between feasible and infeasible regions of
the proposed algorithm, we create a algorithmic variant (called Tabu Feasible)
in which the search visits only feasible solutions. For this, we set the penalty
coefficient ϕ of the extended evaluation function (Eq. (4), Section 3.3) to a
large value in order to penalize strongly any infeasible solution. In our case, ϕ
is set to the largest weight of vertices of the given graph. For this experiment,
we select 38 instances that are relatively difficult according to the results
reported in Tables 2-5, i.e., their best-known results cannot consistently be
attained by all algorithms. We ran both algorithms 20 times to solve each
selected instance with a cutoff time of 1 hour.

The comparative results of this experiment are presented in Table 6 with the
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Table 6
Assessment of searching both feasible and infeasible solutions.

Instance |V | |E|
AFISA Tabu Feasible

∆
Best SR Avg t(s) Best SR Avg t(s)

DSJC1000.1.col 1000 99258 359 4 362.9 430.54 354 1 358.9 450.15 5

DSJC1000.5.col 1000 499652 1357 1 1430.9 371.65 1354 1 1371.3 84.75 3

DSJC1000.9.col 1000 898898 3166 1 3231.0 490.2 3166 1 3231.1 490.2 0

DSJC125 1g.col 125 736 23 2 24.0 3016.32 23 4 23.8 1467.63 0

DSJC125 1gb.col 125 736 90 1 92.5 402.57 91 1 94.6 30.09 -1

DSJC125 5g.col 125 3891 71 2 72.3 216.04 71 1 72.5 199.14 0

DSJC125 5gb.col 125 3891 243 1 250.2 369.34 246 3 250.9 292.08 -3

DSJC125 9g.col 125 6961 169 3 170.0 16 169 4 170.2 42.1 0

DSJC125 9gb.col 125 6961 604 3 605.0 443.96 606 2 608.7 18.24 -2

DSJC250.1.col 250 3218 140 1 141.9 48.94 140 4 142.1 57.37 0

DSJC250.5.col 250 15668 415 1 428.1 269.23 421 1 431.2 318.86 -6

DSJC250.9.col 250 55794 925 1 942.7 856.25 948 1 965.8 365.4 -23

DSJC500.1.col 500 12458 210 1 215.6 426.64 212 1 215.3 84.83 -2

DSJC500.5.col 500 125248 778 1 845.1 159.27 780 1 796.1 450.89 -2

DSJC500.9.col 500 224874 1790 1 1854.5 831.07 1791 1 1869.2 345.13 -1

DSJR500.1.col 500 3555 169 1 175.4 458.86 170 2 171.9 272.89 -1

GEOM100.col 100 547 65 20 65.0 0.81 65 20 65.0 9.86 0

miles1500.col 128 5198 587 1 644.3 32.31 797 4 798.6 0.13 -210

p13.col 34 160 3220 17 3221.1 0.68 3220 16 3221.5 0.83 0

p20.col 37 142 1830 13 1841 4.86 1830 16 1835.5 0.76 0

p42.col 138 1186 2466 4 2671.2 930.96 2646 1 2659.7 12.51 -180

queen12 12.col 144 5192 194 1 198.6 92.7 196 2 199.0 96.04 -2

queen14 14.col 196 8372 224 2 227.4 360.05 225 1 227.7 129.47 -1

queen16 16.col 256 12640 253 2 256.3 300.85 250 1 254.8 14.15 3

r03.col 139 1188 6473 10 6490.8 190.19 6487 1 6536 119.3 -14

r05.col 142 1266 6408 1 6466.3 71.68 6495 1 6525.6 143.13 -87

R100 1g.col 100 509 21 1 22.0 113.77 21 3 21.9 533.65 0

R100 5g.col 100 2456 59 5 60.1 6.97 59 2 60.3 2.56 0

R100 5gb.col 100 2456 221 1 224.1 186.81 222 1 224.7 1362.52 -1

R100 9g.col 100 4438 141 15 141.3 21.36 141 11 141.5 2.43 0

R100 9gb.col 100 4438 518 1 549.3 1152.83 518 13 518.5 21.25 0

R50 5gb.col 50 612 135 14 135.3 3.72 135 18 135.3 0.11 0

R75 1g.col 70 251 18 12 18.4 10.96 18 10 18.5 32.89 0

R75 1gb.col 70 251 70 19 70.1 2.46 70 17 70.3 6.58 0

R75 5g.col 75 1407 51 12 51.4 0.08 51 7 51.7 5.11 0

R75 5gb.col 75 1407 186 2 189.0 19.42 186 2 189.2 31.93 0

R75 9gb.col 75 2513 396 12 396.4 145.89 396 9 396.7 4.35 0

zeroin.i.2.col 211 3541 336 3 337.6 440.84 336 13 336.4 0.91 0

#Better 16/38 23/38 3/38 13/38

#Equal 19/38 2/38 19/38 2/38

#Worse 3/38 13/38 16/38 23/38

p value - - 2.9e-3 4.6e-2

same information as before. The rows #Better/#Equal/#Worse indicate the
number of instances for which each algorithm attains a better, equal and worse
result compared to the other algorithm in terms of the best objective value
found. The last column indicates the difference between the best results of
AFISA and Tabu Feasible. We observe that even if both algorithms obtain 19
equal results, AFISA achieves 16 better results (against 3 for Tabu Feasible).
The small p-values (< 0.05) in terms of Best and Avg confirm the statistical
significance of the reported differences between AFISA and Tabu Feasible.
This experiment shows that searching both feasible and infeasible solutions
enables the algorithm to reach a better performance.

5.3 Impact of the perturbation operation

As shown in Section 3.5, the proposed algorithm uses a perturbation strategy
as an additional means of diversification. To assess this strategy, we compare
AFISA with a AFISA variant (denoted as AFISA−) where the perturbation
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Table 7
Assessment of the perturbation strategy.

Instance |V | |E|
AFISA AFISA−

∆
Best SR Avg t(s) Best SR Avg t(s)

DSJC1000.1.col 1000 99258 359 4 362.9 430.54 384 10 385.5 0.08 -25

DSJC1000.5.col 1000 499652 1357 1 1430.9 371.65 1427 10 1434.5 0.07 -70

DSJC1000.9.col 1000 898898 3166 1 3231.0 490.2 3291 10 3302.5 0.04 -125

DSJC125 1g.col 125 736 23 2 24.0 3016.32 33 6 33.7 0 -10

DSJC125 1gb.col 125 736 90 1 92.5 402.57 120 13 122.8 0 -30

DSJC125 5g.col 125 3891 71 2 72.3 216.04 87 14 88.5 0 -16

DSJC125 5gb.col 125 3891 243 1 250.2 369.34 293 20 293.0 0.01 -50

DSJC125 9g.col 125 6961 169 3 170.0 16 186 12 188.8 0 -17

DSJC125 9gb.col 125 6961 604 3 605.0 443.96 652 10 668.0 0 -48

DSJC250.1.col 250 3218 140 1 141.9 48.94 168 10 170.5 0.01 -28

DSJC250.5.col 250 15668 415 1 428.1 269.23 472 8 476.5 0 -57

DSJC250.9.col 250 55794 925 1 942.7 856.25 1039 11 1060.0 0 -114

DSJC500.1.col 500 12458 210 1 215.6 426.64 242 10 243.0 0.02 -32

DSJC500.5.col 500 125248 778 1 845.1 159.27 853 8 856.0 0.03 -75

DSJC500.9.col 500 224874 1790 1 1854.5 831.07 1937 20 1937.0 0.01 -147

DSJR500.1.col 500 3555 169 1 175.4 458.86 184 10 191.5 0.01 -15

GEOM100.col 100 547 65 20 65.0 0.81 74 9 74.6 0.01 -9

miles1500.col 128 5198 587 1 644.3 32.31 799 8 809.8 0 -212

p13.col 34 160 3220 17 3221.1 0.68 3568 7 3764.3 0 -348

p20.col 37 142 1830 13 1841.0 4.86 2270 20 2270 0.01 -440

p42.col 138 1186 2466 4 2671.2 930.96 2880 12 2887.2 0 -414

queen12 12.col 144 5192 194 1 198.6 92.7 229 9 230.0 0 -35

queen14 14.col 196 8372 224 2 227.4 360.05 254 14 255.5 0 -30

queen16 16.col 256 12640 253 2 256.3 300.85 280 9 282.2 0 -27

r03.col 139 1188 6473 10 6490.8 190.19 6603 1 6687.3 376.19 -130

r05.col 142 1266 6408 1 6466.3 71.68 6495 2 6637.7 0 -87

R100 1g.col 100 509 21 1 22.0 113.77 30 8 30.6 0 -9

R100 5g.col 100 2456 59 5 60.1 6.97 72 10 73.5 0 -13

R100 5gb.col 100 2456 221 1 224.1 186.81 260 1 264 0 -39

R100 9g.col 100 4438 141 15 141.3 21.36 153 9 157.4 0 -12

R100 9gb.col 100 4438 518 1 549.3 1152.83 548 9 551.5 0 -30

R50 5gb.col 50 612 135 14 135.3 3.72 152 8 156.8 0 -17

R75 1g.col 70 251 18 12 18.4 10.96 24 7 25.2 0 -6

R75 1gb.col 70 251 70 19 70.1 2.46 88 11 89.4 0 -18

R75 5g.col 75 1407 51 12 51.4 0.08 63 20 63.0 0 -12

R75 5gb.col 75 1407 186 2 189.0 19.42 231 11 233.7 0 -45

R75 9gb.col 75 2513 396 12 396.4 145.89 425 12 428.2 0.01 -29

zeroin.i.2.col 211 3541 336 3 337.6 440.84 337 13 337.7 0 -1

#Better 38/38 38/38 0/38 0/38

#Equal 0/38 0/38 0/38 0/38

#Worse 0/38 0/38 38/38 38/38

p-value - - 7.1e-10 7.1e-10

strategy is disabled (i.e., by removing line 22 in Algorithm 1). This experi-
ment is based on the 38 instances used in Section 5.2. We ran 20 times both
algorithms to solve each selected instance with a cutoff time of 1 hour.

The results of this experiment are shown in Table 7 with the same statistics
as before. We observe that AFISA dominates, in terms of Best and Avg,
the AFISA− variant by obtaining a better result for each instance. The small
p-values confirm the dominance of AFISA over AFISA−. This experiment
demonstrates the interest of the adopted perturbation strategy as a meaningful
means of diversification that enables the algorithm to better explore the search
space.

6 Conclusions

The weighted vertex coloring problem (WVCP) considered in this work is a
generalization of the conventional vertex coloring problem with a number of
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practical applications. Motivated by the observation that existing methods
limit their search to feasible solutions, we investigated for the first time the
benefit of examining both feasible and infeasible solutions for solving the prob-
lem. The resulting AFISA algorithm oscillates between feasible and infeasible
search zones guided by an extended evaluation function that combines the ini-
tial objective function and an adaptive penalty function. To explore feasible
and infeasible spaces, we introduced a tabu search procedure enhanced by a
dedicated perturbation strategy to escape local optima traps.

We assessed the performance of the AFISA algorithm on three sets of 111
instances commonly tested in the literature and an additional set of 50 (large)
DIMACS and COLOR instances initially proposed for graph coloring prob-
lems. We presented 5 improved best results (new upper bounds) among the
111 instances of the literature and the first upper bounds for the new set
of 50 instances. These new bounds can serve as valuable references to assess
future WVCP algorithms and might be used by a branch-and-bound algo-
rithm as high-quality initial bounds. This study demonstrates the benefit of
the search strategy examining both feasible and infeasible solutions for solv-
ing the WVCP. The computational results on different types of benchmark
instances also confirm that exact and heuristic algorithms are complementary
solution approaches that can be advantageously employed to handle instances
of different sizes with particular features.

For future work, several directions could be followed. First, other penalty-
based evaluation functions could be devised to enable a better strategic os-
cillation between feasible and infeasible spaces. Second, other neighborhoods
(rather than the one-move based neighborhood used in this work) can be
sought to further improve the performance of the search algorithm. Third,
the proposed algorithm could be advantageously integrated into a hybrid
population-based method (e.g., memetic search, path-linking) as a key inten-
sification component. Fourth, this work uses tabu search to explore candidate
solutions. Other meta-heuristics can be investigated to ensure this task while
reusing most algorithmic components of AFISA. Finally, few exact algorithms
are available for the WVCP, there is thus much room for research in this
direction. In this context, AFISA could be used to generate high-quality ini-
tial bounds or to obtain upper bound estimations of subproblems during the
search process.
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A ILP formulation of the WVCP

In this section, we describe the 0-1 integer linear programming (ILP) model for
the WVCP proposed in [25], extended with a symmetry breaking constraint.
This model is used for the computational experiment presented in Section 4.3
(Table 5). First, we define the following decision variables:

• Let s = {V1, V2, . . . , Vk} be a candidate solution.
• xvk ∈ {0, 1} is a binary decision variable that is equal to 1 if and only if

vertex v is part of set Vk, 0 otherwise for all v ∈ V and for all k ∈ {1, . . . , N}.
• Wk is a positive decision variable that is equal to the weight of stable Vk,

for all k ∈ {1, . . . , N}.

We obtain the following ILP model for the WVCP:

f(s) = min
N∑
k=1

Wk (A.1)



N∑
k=1

xvk = 1 ∀v ∈ V

xvk + xuk ≤ 1 ∀(u, v) ∈ E,∀k ∈ {1, . . . , N}

xvkwv ≤ Wk ∀(v, k) ∈ V × {1, . . . , N}

Wk ≥ Wk+1 ∀k ∈ {1, . . . , N − 1}

Wk ≥ 0 ∀k ∈ {1, . . . , N}

xvk ∈ {0, 1} ∀(v, k) ∈ V × {1, . . . , N}

The objective function (A.1) is to minimize the sum of the weights of the sta-
bles used. The first constraint ensures that each vertex belongs to exactly one
set. The second constraint enforces that the same color cannot be assigned to
adjacent vertices. The third constraint sets Wk to the weight of the maximum
weight vertex in the k-th set. The fourth constraint partially breaks symmetry
by enforcing that the stables are ordered by decreasing order of their sizes.
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