
Multi-wave tabu search for the boolean

quadratic programming problem with

generalized upper bound constraints

Zhen Shang a, Jin-Kao Hao c, Songzheng Zhao b, Yang Wang b,∗
Fei Ma a,

aSchool of Economics and Management, Chang’an University, Middle-section of
Nan’er Huan Road, 710064 Xi’an, China

bSchool of Management, Northwestern Polytechnical University, 127 Youyi West
Road, 710072 Xi’an, China

cLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Computers & Operation Research, November 2022
https://doi.org/10.1016/j.cor.2022.106077

Abstract

The boolean quadratic programming problem with generalized upper bound constraints
(BQP-GUB) is an NP-hard problem with many practical applications. In this study,
we propose an effective multi-wave tabu search algorithm for solving BQP-GUB.
The algorithm performs a sequence of search waves, where each wave alternates
between the forward and reverse phases, and the transition between two adjacent
waves depends on a hybrid perturbation phase. The forward phase employs tabu
search to reach a critical solution and the reverse phase follows to reverse previously
performed moves and perform an equal number of moves by referring to the search
information gathered from the latest search process. The hybrid perturbation phase
randomly chooses a directed strategy, a frequency guided strategy and a recency
guided strategy to achieve search diversification. Experimental results on 78 standard
instances indicate that the proposed algorithm is able to improve the lower bounds
for 6 instances and match the best solutions in the literature for most instances
within competitive time.

Keywords: Binary quadratic programming; Tabu search; Hybrid metaheuristic;
Graph theory.

∗ Corresponding author.
Email addresses: sz email@qq.com (Zhen Shang),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), zhaosongzheng@nwpu.edu.cn
(Songzheng Zhao), yangw@nwpu.edu.cn (Yang Wang), mafeixa@chd.edu.cn (Fei

Preprint submitted to Elsevier 14 November 2022

1 Introduction

Let I = {1, 2, ..., n} be a finite set and ci be a profit of i ∈ I. For each pair of
element (i, j) ∈ E = I×I, a profit qij is given. And we have a quadratic profit
matrix Q = (qij)n×n and a linear profit vector C = (c1, c2, ..., cn). Suppose I is
partitioned to m mutually disjoint subsets S1, S2, . . . , Sm. Then, the boolean
quadratic programming problem with generalized upper bound constraints
(BQP-GUB) can be formulated as follows (Wang and Punnen, 2017):

max f(x) =
n∑
i=1

n∑
j=1

qijxixj +
n∑
i=1

cixi (1)

s.t.
∑
i∈Sk

xi = 1, for k = 1, 2, ...,m (2)

xi ∈ {0, 1}, for i = 1, 2, ..., n. (3)

A graph theoretic description can be given, if I is a vertex set, E is an edge
set, and the profit of each edge (i, j) is qij + qji. Then BQP-GUB is to find the
induced subgraph G′ = (I ′, E ′) of graph G = (I, E) that maximizes the total
profit, where I ′ takes one vertex, say αk, from each Sk (k = 1, 2, . . . ,m), and
E ′ = I ′ × I ′. For example, Fig. 1 presents a graph with partitioned vertices.
We choose vertices α1 = 1, α2 = 3 and α3 = 5, from subsets S1, S2 and S3

to construct an induced subgraph. In this way, we need to find the induced
subgraph with the maximum profit. Further, we define α = {α1, α2, . . . , αm} as
a solution of BQP-GUB, then the original model can be simplified as follows:

max f(α) =
m∑
t=1

m∑
k=1

qαt,αk
+

m∑
k=1

cαk
(4)

s.t. αk ∈ Sk, for k = 1, 2, . . . ,m. (5)

From the perspective of algorithm design, the symmetric matrix is usually
beneficial to the efficiency. Hence, without loss of any generality, the quadratic
profit matrixQ is assumed to be symmetric, i.e., qij = qji (i, j ∈ I), in following
sections. If Q is not symmetric for certain instances, Q can be replaced by
symmetric 1

2
(Q+QT), which does not affect the optimal solution set and the

objective value.

BQP-GUB is a generalization of the well-studied quadratic semi-assignment
problem (QSAP) that can be seen as a special case with subsets containing

Ma).

2

Fig. 1. An example of the BQP-GUB problem

an equal number of vertices. Hence BQP-GUB can be applied in applications
of QSAP, including transit network design (Bookbinder and Désilets, 1992;
Daduna and Voß, 1995), scheduling (Malucelli, 1996; Bullnheimer, 1997; Skutella,
2001), clustering (Glasner et al., 2011; Manohar et al., 2011; Duffuaa and
Fedjki, 2012; Li et al., 2018) and many others. By adjusting coefficients,
BQP-GUB can express the cluster-restricted maximum induced subgraph problem
(MISP) and maximum clique problem (MCP), which further extends its applications
to social network analysis(Pattillo et al., 2012), data mining (Cook and Holder,
2000), chemistry and biology (Raymond and Willett, 2002; Yamaguchi et al.,
2004). In addition, through introducing additional variables and modifying
coefficients, BQP-GUB can be recast into the unconstrained boolean quadratic
programming problem (UBQP) (Lü et al., 2010; Samorani et al., 2019; Chen
et al., 2020), indicating that the algorithms for UBQP can also be used to
solve BQP-GUB.

Wang and Punnen (2017) have conducted systematic analyses of BQP-GUB’s
complexity and algorithms. This research proved that BQP-GUB is strongly
NP-hard, even when |Sk| ≤ 2, profit matrix Q = (qi,j) is rank one and
vector C = (ci) is zero. The authors reformulated BQP-GUB as UBQP, and
applied the path relinking algorithm (PR1) (Wang et al., 2012), which is a
state-of-the-art general algorithm for UBQP, to solve the converted model.
However, experiments show that this general solver is not very effective in
solving BQP-GUB. Instead, they proposed three tailored algorithms for the
problem, including variable neighborhood search (VNS), iterated local search
(ILS) and iterated tabu search (ITS). Computational experiments on 78 benchmark
instances disclose that ITS, which is enhanced by an adaptive perturbation
scheme and a historical information guided solution generation, outperforms
the VNS and ILS algorithms.

Glover (2016) presented a new general multi-wave search framework, which can

3

enhance search performance by considering candidate list, persistent attractiveness
and effects of sequential decisions in memory based strategies. The whole
search process consists of multiple waves, each search wave alternates between
vertical phases and horizontal phases. The Vertical-Phase can be regarded as a
special hill climbing approach, which performs improving moves and employs
an ordered set called Active Move Record (AMR) to record performed moves
by occurrence time. Since early decisions are usually made by insufficient
information, the Horizontal-Phase is introduced to replace imperfect early
performed moves with new moves according to AMR and the latest information,
which can be considered as a kind of backtracking. This framework has been
successfully used to solve challenging problems. For example, Glover et al.
(2018) developed a multi-wave algorithm embracing a strategic oscillation to
solve the uncapacitated facility location problem; Song et al. (2019) presented
an effective multi-wave algorithm with five phases cooperating within a wave to
solve the max-mean dispersion problem. Given that the forward and reverse
moves are performed, we rename “Vertical-Phase” and “Horizontal-Phase”
used in Glover (2016) as “Forward-phase” and “Reverse-phase”, respectively
to better understand the terminology of the multi-wave algorithm.

In this study, we introduce a multi-wave tabu search algorithm (MWTS) for
solving the challenging BQP-GUB problem. The proposed algorithm employs
multiple memory based strategies to guide the search process, including AMR,
tabu list, frequency and recency vectors. MWTS performs a sequence of search
waves for intensification, where each wave consists of tabu search based forward
phases and reverse phases. Between waves, the hybrid perturbation is triggered
to build well-diversified solutions, which embraces a directed strategy, a frequency
guided strategy and a recency guided strategy. Computational experiments
on 78 benchmark instances indicate that MWTS is able to improve the lower
bounds for 6 instances and match the best solutions for most instances within
competitive time.

The rest of this paper is organized as follows. In Section 2, the move definitions,
fast evaluation methods, and AMR are described. Section 3 presents the
general framework and the main components of the proposed algorithm. Section
4 reports the experimental results and comparisons with a state-of-the-art
algorithm in literature. Section 5 conducts systematic analyses for key parameters
and ingredients of our algorithm on the performances. Finally, Section 6 draws
conclusions.

2 Basic definitions

This section presents the fundamental ingredients of our algorithm. We first
define the concepts of the forward and reverse moves. Then the fast evaluation

4

methods is proposed to calculate the objective gains of performing moves.
Finally, we introduce the key ingredient of the multi-wave framework, i.e.,
Active Move Record (AMR) and its updating method.

2.1 Forward move and reverse move

“Forward move” and “Reverse move” are fundamental components of the
multi-wave search framework for solution modification (Glover, 2016). Since
the general framework is proposed for a variety of scenarios, these concepts
focus on the general role of moves in the search process, rather than specific
operation details. The “Forward” terminology refers to constructive moves for
constructive algorithms or improving moves for neighborhood search algorithms.
The “Reverse” terminology represents the moves that destruct the current
solution or cancel previous performed moves. For example, in a binary optimization
problem, a forward move sets xi as 0 or 1, then the corresponding reverse move
assigns xi = 1− xi, which eliminates the effect of a performed move.

For the BQP-GUB problem, the proposed MWTS algorithm is a neighborhood
search algorithm. Hence, we define the forward move as such a move that can
lead to an improved solution by assigning a new vertex to the corresponding
solution component, and the total number of neighbor solutions is n−m. Given
a solution α = (α1, α2, ..., αm), forward move (αk, i) consists in assigning the
vertex i ∈ Sk to a solution component αk to convert the solution α into its
neighbor solution α′, which leads to an improvement of the current solution.
The forward move essentially swaps the new and old vertices for a solution
component by overwriting the value of αk. In addition, since the proposed
algorithm employs tabu search strategy, in each search iteration, the algorithm
selects the best move as forward move to improve the current solution, based
on a tabu rule and an aspiration rule. Once a forward move is performed,
the algorithm records it in the Active Move Record (AMR) for subsequent
modifications. Further, we provide the formal definition of the reverse move
as follows.

Correspondingly, the reverse moves of (αk, i) consist of all such candidate
moves (αk, i

′) satisfying i′ ∈ Sk, i
′ 6= i, which can eliminate the effect of

move (αk, i). Once a reverse move is performed, the involved forward move is
canceled, i.e., the record from AMR is removed. The definitions show that both
kinds of moves overwrite solution components for vertices exchange. However,
they play different roles in a search wave and trigger different operations on
AMR.

5

2.2 Move evaluation method

An efficient move evaluation method is essential for the algorithm to quickly
find high-quality moves. For BQP-GUB problem, Anacleto et al. (2021) proposed
two closed-form formulae to accelerate the process of evaluating r-flip moves,
which are applicable to binary solutions. In this study, we use the change
of objective value (objective gain) as a direct quality indicator of forward
and reverse moves, however the time complexity of applying Equation (4)
is O(m2). Hence, we introduce an incremental streamlining method for move
evaluation, which is a standard approach for various algorithms, such as: Wang
and Punnen (2017); Song et al. (2019).

Assume that αk = i is a component of the solution α. If the move (αk, i
′) is

performed on α, then the vertex i is replaced by the vertex i′. The exchange
between two vertices causes the change of the objective value. Based on this,
we define Ci′(α) and Ci(α) as the objective differences caused by the vertex i′

and the vertex i respectively, which are calculated as follows.

Ci′(α) =
m∑

t=1,t6=k
2qi′αt + 2qi′i′ + ci′ , i

′ /∈ α, i′ ∈ Sk (6)

Ci(α) = −
m∑

t=1,t 6=k
2qiαt − 2qii − ci, i ∈ α, i ∈ Sk (7)

According to Equations (6)-(7), the total objective gain of the move (αk, i
′)

is Ci′(α) + Ci(α), which can be used to evaluate forward and reverse moves.
Further, the resulting objective value f(α′) after performing the move (αk, i

′)
can be easily calculated according to Equation (8).

f(α′) = f(α) + Ci′(α) + Ci(α) (8)

Once the current solution α is updated to α′, for any vertex j ∈ St (t =
1, 2, ...,m), Cj(α) can be updated to Cj(α

′) through Equations (9)-(12), which
is supposed to help achieve the objective gain in the next iteration.

Cj(α
′) = Cj(α)− 2qji + 2qji′ , (t 6= k, αt 6= j) (9)

Cj(α
′) = Cj(α) + 2qji − 2qji′ , (t 6= k, αt = j) (10)

6

Cj(α
′) = −Cj(α), (t = k, j = i′orj = αk) (11)

Cj(α
′) = Cj(α), (t = k, j 6= i′, j 6= αk) (12)

The above methods show that the time complexities of calculating resulting
objective value and objective gain are reduced to O(1), and updating Cj(α)
for all vertices takes O(n), which means that the incremental streamlining
based approach can significantly boost the search efficiency.

2.3 Active move record

The Active Move Record (AMR) is the structure used to record forward moves
that have been performed and not cancelled yet by reverse moves. During the
whole search process, AMR is applied and maintained as a queue where the
earlier moves precede later ones. For a move (αk, i), we record its index k in
AMR. In order to assure the feasibility of solutions, a move and its reverse
move can not be simultaneously recorded in AMR. Hence, for any move (αk, i)
in AMR, if its reverse move (αk, i

′) is performed, we drop the move (αk, i) by
deleting the index k from AMR and ignore reverse move (αk, i

′), which leads
to a decrease in the length of AMR.

Fig. 2 presents a simple example to illustrate how AMR is updated. At first,
α is an initial solution and AMR is an empty queue. The forward moves
(α1, 3) and (α4, 5) are successively performed to transfer the solution α to
α(2). Meantime, the indexes 1 and 4 are added to the end of AMR. Then the
forward move (α1, 2) is performed to generate the solution α(3). Since move
(α1, 2) is the reverse move of move (α1, 3), the index 1 is dropped from AMR
and the length of AMR decreases.

7

Fig. 2. An example of the AMR update

AMR essentially records the sequential decisions of optimization in the perspective
of occurrence time. Different from the tabu list, AMR stores all the performed
forward moves (not cancelled) instead of the moves that are prohibited within
a certain period of time. Since the earlier decisions are usually made based on
incomplete information (Glover, 2016; Song et al., 2019), with the help of the
AMR, it is possible for the algorithm to remove the earlier forward moves and
perform new high-quality moves according to the latest search information.

3 Multi-wave tabu search

In this section, we discuss the details of the proposed multi-wave tabu search
(MWTS), including the main scheme, the parameter initialization method, the
tabu search based forward phase, the reverse phase and the hybrid perturbation
phase that randomly performs three different perturbation strategies.

3.1 Main scheme

Algorithm 1 shows the main scheme of the proposed algorithm. Starting with a
random initial solution, MWTS performs multiple search waves until meeting
a given stopping criterion (lines 5-29). During each wave, the algorithm first
initializes key parameters hspot and hspace, which determine the timing of
search waves switching from forward phases to reverse phases (line 10, Sect.3.2).
Then a tabu search based forward phase repeatedly performs forward moves
to improve the current solution along with AMR updating (line 12, Sect.3.3).
Once the length of AMR reaches an interrupting point hspot, the forward
phase stops, and the reverse phase continues to correct the imperfect parts of

8

the current solution by cancelling early performed moves recorded in AMR,
and performing an equal number of forward moves according to the latest
search information (line 19, Sect.3.4). The resulting solution is sent to the
next forward phase for further refinement. These two phases are alternately
performed until the number of cycles reaches parameter hn. Finally, based on
the current search status, the algorithm adaptively selects a hybrid oscillation
or a random restart procedure to produce a new starting solution for the next
wave (lines 23-28, Sect.3.5).

Algorithm 1 Main Scheme of Multi-wave tabu search algorithm

1: Input: Q,S1, S2, ..., Sm.
2: Output: The best found solution α∗ and its objective value f ∗.
3: Construct a random initial solution α and calculate its objective value f .
4: Set α∗ = α, f ∗ = f , NonImp = 0.
5: repeat
6: Set AMR = ∅, F re = ∅, Rec = ∅.
7: /*Search wave begins*/
8: for i from 1 to hn+ 1 do
9: if i = 1 then

10: (hspot, hspace) ← Parameters-Initialization().
11: end if
12: (α, f, α(h), hspot, AMR,Rec, Fre)← Forward-Phase(α, f, hspot, AMR).
13: if f > f ∗ then
14: α∗ = α, f ∗ = f , NonImp = 0.
15: else
16: NonImp = NonImp+ 1.
17: end if
18: if i ≤ hn then
19: (α, f, AMR) ← Reverse-Phase(α(h), AMR,Fre).
20: end if
21: end for
22: /*Search wave terminates*/
23: if NonImp < ns then
24: (α, f) ← Hybrid-Perturbation(α,Rec, Fre).
25: else
26: (α, f) ← Random-Restart().
27: NonImp = 0.
28: end if
29: until a stopping criterion is satisfied

9

3.2 Parameters initialization

Parameters hspot and hspace are key parameters for the algorithm to dispatch
the forward phase and the reverse phase during each search wave. They are
closely related to AMR and need to be initialized before each wave begins.
Parameter hspot is a mark on the length of AMR, which is a signal for the
algorithm to stop the forward phase and start the reverse phase. Parameter
hspace is the step size for hspot updating. When the forward phase finishes,
hspot is updated by hspot = hspot + hspace for the algorithm to control the
next forward phase.

We determine the initial values of hspot and hspace by using an estimate
length of the final AMR when the local optimum is achieved. Before a search
wave begins, the algorithm performs a preliminary forward phase without any
interruption. When this forward phase terminates, the algorithm records the
length L of AMR, which indicates the rough number of performed forward
moves required for obtaining the local optimum. Then we set hspace = L/hn
where hn is a given parameter implying the number of cycles for the forward
phase and the reverse phase during a wave, and set hspot = hspace for the first
forward phase in the current wave. After the initialization procedure finishes,
hspot continues to be updated for the next forward phase and hspace keeps
unchanged.

3.3 Forward phase

The tabu search based forward phase is the key intensification component of
the multi-wave search framework, which also has the capabilities of updating
AMR and collecting useful information for the following phases. The details
are presented in Algorithm 2.

The objective gain indicates the change of objective value caused by a performed
move. For maximization problems, moves with a higher objective gain make
the objective value increase faster. Hence, the forward phase uses the objective
gain Ci′(α) + Ci(α) to evaluate the quality of the forward moves. This phase
continually performs high-quality forward moves to improve the current solution.
Specifically, all the forward moves are classified as tabu moves and non-tabu
moves according to a tabu rule and an aspiration rule (Ma et al., 2017; Shang
et al., 2019; Chang et al., 2021). The tabu rule demands that a recently
performed forward move can not be reversed for the next t iterations. Hence,
a tabu list TL is applied to record the prohibited iterations when a forward
move is performed. Assume that in the iter iteration, a forward move on
αk = i replaces the vertex i with the vertex j in the current solution, then

10

we set TL(i) = iter + t and TL(j) = iter + t to forbid the two vertices from
exchanging for the following t iterations. We determine a move (αk, j) as tabu
if iter 6 TL(αk)

⋂
iter 6 TL(j), otherwise as non-tabu. Furthermore, an

aspiration rule is utilized to override the tabu rule, if a tabu forward move is
able to generate a solution that is better than the best solution found so far.

Algorithm 2 Procedures for Forward Phase

1: Input: α, f, hspot, AMR.
2: Output: α, f, α(h), hspot, AMR,Rec, Fre.
3: Set α(b) = α, f (b) = f,N = 0, iter = 0, f lag = 0.
4: while N < nt do
5: (move(αk, i

′),α, f) ← Perform Best-NonTabu or Aspiration-Move().
6: Update tabu list (TL, move(αk, i

′)).
7: if f(α) > f(α(b)) then
8: α(b) = α, f (b) = f , N = 0.
9: else

10: N = N + 1.
11: end if
12: Fre(i′) = Fre(i′) + 1.
13: Rec(i′) = iter.
14: if flag = 0 then
15: Add k to the end of AMR.
16: end if
17: if |AMR| = hspot then
18: Set α(h) = α, flag = 1, hspot = hspot+ hspace.
19: end if
20: iter = iter + 1.
21: end while
22: Set α = α(b), f = f (b).

Different from the typical tabu search (Glover et al., 2007; Lü and Hao, 2010),
the forward phase employs AMR to record the execution order of forward
moves. When the length of AMR reaches the interrupting point hspot, the
current solution α is saved as α(h) waiting for further adjustment by the
reverse phase, and the AMR updating stops. According to Glover (2016), the
interrupting point is a signal for finishing the forward phase. However, since
the tabu search has been running for numerous iterations, in order to check the
local optimums as many as possible, we let the tabu search continue without
AMR until the continuous non-improvement number of iterations N reaches
a given cutoff nt. Finally, the algorithm terminates the current forward phase
and sets hspot = hspot+ hspace for the next forward phase.

In addition, the forward phase employs the vectors Fre and Rec to collect
valuable information during the search process so as to guide the reverse phase
and the hybrid perturbation phase. Specifically, the vector Fre records the

11

frequency of each vertex involved in the performed moves, and the vector Rec
records the latest iteration when a vertex is selected. For any vertex i, the
initial values of Fre(i) and Rec(i) are 0. Assume that the vertex i is assigned
to αk in the iter iteration, then Fre(i) = Fre(i) + 1 and Rec(i) = iter. The
above information is essential for the subsequent phases, since a vertex with
higher Fre value may contribute more to the final solution, and a higher Rec
value indicates that the neighborhood of the vertex has been explored recently.

3.4 Reverse phase

According to the principle of the marginal conditional validity (MCV principle),
due to the lack of information, the forward moves that perform earlier may
not be good decisions (Glover, 2000, 2016). As the search process moves on,
the search information becomes richer and more reliable, it is worthwhile to
modify the previous performed moves based on the latest search information.
Hence we design the reverse phase to adjust the solution α(h) by replacing the
forward moves in AMR. The details are presented in Algorithm 3.

The reverse phase is composed of the dropping operation and the updating
operation, which are alternately performed until all the early moves recorded
in AMR are cancelled and replaced with new forward moves. The dropping
operation cancels d forward moves from the beginning of AMR by performing
the corresponding reverse moves. To be specific, we choose a vertex i ∈
Sk/{α(h)

k } with the highest Ci(α
(h)) as the reverse move to cancel its forward

move in AMR. In addition, we introduce a vector Fre based vertex fixation
strategy to avoid those vertices that obtain high Fre values from being dropped.
If a vertex i is assigned to α

(h)
k for many times in the previous search process,

then this vertex is assessed as a good option for the current solution. Accordingly,
for any vertex i with Fre(i) ≥ ρ, the algorithm maintains its corresponding
index k in AMR and fixes the vertex i in the current solution.

After dropping d forward moves, the updating operation is to add d forward
moves to the end of AMR. For each move to be added, we first select clh
forward moves with the highest move gain Ci′(α

(h))+Ci(α
(h)) into a candidate

list, from which one move is randomly performed. In addition, we require that
the selected forward move is not the reverse move of any performed moves
in AMR and its Fre value is not higher than ρ, which leads the updating
operation to choose the forward moves that have higher qualities but fewer
chances to be selected.

12

Algorithm 3 Procedures for Reverse Phase

1: Input: α(h), AMR,Fre.
2: Output: α, f, AMR.
3: Set n = 0.
4: repeat
5: repeat /*Dropping operation*/

6: Get k from the front of AMR and α
(h)
k = i from solution α(h).

7: if Fre(i) < ρ then
8: n = n+ 1.
9: (α(h), f (h)) ← Perform the reverse move(α

(h)
k , i′) with the highest

Ci′(α
(h)).

10: Fre(i′) = Fre(i′) + 1.
11: Delete k from AMR .
12: end if
13: Check the next index in AMR.
14: until n = d
15: repeat /*Updating operation*/
16: n = n− 1.
17: Select clh moves with highest move gain into the candidate list.
18: /* These moves are not the reverse moves of those in AMR and their

Fre values are under ρ. */

19: (α(h), f (h)) ← Randomly select move(α
(h)
k , i′) from the candidate list

and perform it.
20: Fre(i′) = Fre(i′) + 1.
21: Add k to the end of AMR.
22: until n = 0
23: until All moves in AMR have been modified
24: Set α = α(h), f = f (h).

Fig. 3 illustrates the process of the reverse phase. Assume that α(h) = (1, 3, 5, 7, 9, 11, 13, 15),
AMR = [1, 2, 4, 5], d = 2, ρ = 3. At first, the dropping operation performs
the reverse moves (α1, 2), (α2, 4) to cancel forward moves (α1, 1), (α2, 3), and
drop the indexes 1, 2 from AMR. Meanwhile the updating operation performs
two qualified moves (α3, 6), (α6, 12), and adds the indexes 3, 6 into the AMR.
Then, the dropping operation checks forward moves (α4, 7), (α5, 9) and finds
the Fre(9) > 3. Hence only the reverse move (α4, 8) is performed with index
4 dropped. The vertex 9 and the index 5 are kept unchanged. Finally. the
updating operation performs forward moves (α7, 14), (α8, 16), and adds the
indexes 7, 8 into AMR. Since AMR is renovated, the reverse phase terminates.

13

Fig. 3. An example of the reverse phase

3.5 Hybrid perturbation phase

Since BQP-GUB is a generalization of several different problems, MWTS may
encounter various situations in practical use, and it is difficult to determine
an appropriate perturbation approach to enhance the search diversification.
Hence, we design a hybrid perturbation phase that introduces a directed
strategy, a frequency guided strategy and a recency guided strategy. After
a search wave terminates, the hybrid perturbation phase randomly performs
one strategy to create a diversified initial solution by changing nearly 40% of
the current solution. The details are described as follows.

The directed strategy creates a diversified new solution by continually performing
high-quality forward moves on the best solution generated by the previous
search wave. Specifically, in each perturbation iteration, the directed strategy
selects top clp forward moves with the highest move gains into a candidate
list, from which one forward move is chosen to be performed.

The frequency guided strategy is dedicated to drive the search wave to an
unexplored distant region. Generally speaking, the vertices with fewer opportunities
involving in the performed moves are usually related to such solutions that
lie in the neighborhoods not fully explored. Recall that the vector Fre holds
the frequency information of each vertex being selected during a search wave.
Hence, according to the vector Fre, in each perturbation iteration, this strategy
chooses the vertices with the minimum Fre values to yield the diversified
initial solution.

14

The recency guided strategy aims to prevent the search wave from getting
trapped into a local optimum. Revisiting the recently selected vertices may
lead the search wave to the same neighborhoods where the local optimum has
already been found. The vector Rec stores the latest iteration number when a
vertex is selected. The smaller the Rec value is, the earlier the vertex is visited.
Accordingly, considering the vector Rec, in each perturbation iteration, this
strategy selects the vertices with the minimum Rec values to generate the new
initial solution.

4 Computational experiments

This section presents computational experiments to assess the performance of
the MWTS algorithm. Specifically, we first introduce the benchmark instances,
experimental protocol and recommended parameter settings. Then we make a
comparison between the MWTS algorithm and the state of the art algorithm
from Wang and Punnen (2017).

4.1 Benchmark instances and experimental protocol

Four benchmark sets with a total of 78 instances from Wang and Punnen
(2017) are used in the experiments. The characteristics of these instances are
described as follows:

• ORLIB benchmark: 30 UBQP instances from ORLIB, where n ranges from
500 to 2500, m = 0.1 ∗n, qij is a random integer ranging from −100 to 100.
• Palubeckis benchmark: 18 UBQP instances from Palubeckis, where n ranges

from 3000 to 6000, m = 0.1 ∗ n and qij is a random integer ranging from
−100 to 100.
• CMIS benchmark: 15 Clustered Max Induced Subgraph instances, where
n ranges from 1000 to 5000, m is various, and if edge (i, j) exists, qij is a
random integer ranging from 0 to 100, otherwise qij = 0.
• CMC benchmark: 15 Clustered Max Clique instances, where n ranges from

1000 to 5000, m is various, and if edge (i, j) exists, qij is a random integer
ranging from 0 to 10, otherwise qij equals a very small negative number M .

The MWTS algorithm is programmed in C++ and compiled by GNU g++
on a computer running Linux with an Intel Xeon E5440 2.83GHz processor
and 8GB RAM. The time limits for instances with 500, 1000 and 2500 vertices
are set at 1, 2, and 10 minutes, and for the larger instances with 3000, 4000,
5000 and 6000 vertices are set to be 1, 1, 2 and 4 hours respectively (same
as Wang and Punnen (2017)). Given the stochastic nature of the MWTS

15

algorithm, each instance is solved 20 times independently. Table 1 provides the
recommended parameter settings for the proposed algorithm, and the detailed
parameter analyses are presented in Sect. 5.1.

Table 1
Settings of parameters

Parameters Section Description Values

ns 3.1 Maximum continuous non-improvement iterations to restart the search procedure 5

nt 3.3 Maximum continuous non-improvement iterations to terminate the tabu search 5 ∗ n

t 3.3 Tabu tenure 0.01 ∗ (n−m)

clp 3.5 The size of candidate move list in the hybrid perturbation phase 20

hn 3.2 The number of cycles for the forward and reverse phases during a wave 5

clh 3.4 The size of candidate move list in the reverse phase 2

ρ 3.4 Maximum vertex selected times to maintain a vertex in the solution 5

4.2 Computational comparisons

This section provides detailed experimental comparisons between the proposed
MWTS algorithm and the best ITS algorithm from Wang and Punnen (2017).
Both algorithms run on the same computer and follow the same experimental
protocol. The two-tailed sign test (Demšar, 2006; Zhou et al., 2020) is applied
to determine if there exists a statistical significant performance difference
between two algorithms. For a pairwise comparison with N instances, if an
algorithm wins at least CV N

0.05 = N/2 + 1.96
√
N/2 times, then it is the overall

winner with a significant level of 0.05. In addition, the number of tied matches
is counted by splitting it equally between two algorithms.

Tables 2-5 summarize the computational results of MWTS and ITS on ORLIB,
Palubeckis, CMIS and CMC benchmarks respectively. In each table, Columns
1 and 2 present the name of each instance and the best known result (BKR) in
the literature. Columns marked by MWTS and ITS report the best result gap
(Gapbst = fbst−BKR) between the best objective value (fbst) and BKR, the
average result gap (Gapavg = favg−BKR) between the average objective value
(favg) and BKR, and the average time in seconds to reach the best objective
value.

Table 2 indicates that both MWTS and ITS are able to reach the BKR values
for all ORLIB instances. In terms of the average objective value, MWTS
attains 3 better, 17 equal and 0 worse results compared to ITS. However, since
ORLIB instances are easy for both algorithms, MWTS performs marginally
better than ITS on this benchmark set (11 < CV 30

0.05 ≈ 20). Table 3 shows that
none of these algorithms can improve the BKR values of Palubeckis instances.
With respect to the average objective value, MWTS performs significantly
better than ITS with 12 better, 3 equal and 3 worse results (13 = CV 18

0.05 ≈ 13).

16

These results demonstrate the stability of MWTS for solving ORLIB and
Palubeckis instances.

The performance differences between MWTS and ITS are more evident when
solving CMIS and CMC instances. From Table 4, we observe that MWTS
performs better than ITS by improving the BKR value for 1 CMIS instance.
For the average objective value, MWTS performs slightly better than ITS with
6 better, 8 equal and 1 worse results (10 < CV 15

0.05 ≈ 11). From Table 5, we
find that MWTS is able to improve the lower bounds for 5 CMC instances,
and significantly outperforms ITS in terms of the average objective value (10
better and 5 equal, 12 > CV 15

0.05 ≈ 11). To conclude, these results confirms
that the multi-wave framework enables the tabu search to achieve high-quality
solutions more efficiently than the typical ITS using similar computational
resources.

17

Table 2
Computational results of MWTS and ITS for ORLIB benchmark

Instances BKR
MWTS ITS

Gapbst Gapavg time Gapbst Gapavg time

ORLIB500-50-1 18547 0 0 0.44 0 0 0.64

ORLIB500-50-2 19529 0 0 0.03 0 0 0.09

ORLIB500-50-3 18797 0 0 0.50 0 0 0.52

ORLIB500-50-4 19193 0 0 0.08 0 0 0.12

ORLIB500-50-5 19705 0 0 0.02 0 0 0.06

ORLIB500-50-6 18772 0 0 0.25 0 0 0.30

ORLIB500-50-7 19597 0 0 0.04 0 0 0.10

ORLIB500-50-8 19616 0 0 0.05 0 0 0.13

ORLIB500-50-9 19224 0 0 0.05 0 0 0.10

ORLIB500-50-10 19234 0 0 0.06 0 0 0.11

ORLIB1000-100-1 53012 0 0 3.44 0 0 3.44

ORLIB1000-100-2 53097 0 0 5.67 0 0 10.30

ORLIB1000-100-3 53741 0 0 2.28 0 0 2.91

ORLIB1000-100-4 53578 0 0 1.85 0 0 2.79

ORLIB1000-100-5 52514 0 0 17.26 0 0 12.36

ORLIB1000-100-6 53499 0 0 2.54 0 0 2.17

ORLIB1000-100-7 53535 0 0 5.28 0 0 13.81

ORLIB1000-100-8 53721 0 0 0.80 0 0 0.63

ORLIB1000-100-9 53158 0 0 1.65 0 0 1.87

ORLIB1000-100-10 52754 0 0 1.37 0 0 1.00

ORLIB2500-250-1 209965 0 0 245.43 0 -34.50 191.84

ORLIB2500-250-2 209369 0 0 62.01 0 0 109.95

ORLIB2500-250-3 208700 0 0 107.67 0 -8.25 126.13

ORLIB2500-250-4 209761 0 0 121.88 0 0 209.42

ORLIB2500-250-5 211227 0 0 46.68 0 0 54.02

ORLIB2500-250-6 209280 0 0 104.34 0 0 241.12

ORLIB2500-250-7 211233 0 0 112.01 0 0 126.09

ORLIB2500-250-8 209380 0 0 340.67 0 -3.75 172.61

ORLIB2500-250-9 210425 0 0 74.19 0 0 86.62

ORLIB2500-250-10 210373 0 0 83.33 0 0 151.14

18

Table 3
Computational results of MWTS and ITS for Palubeckis benchmark

Instances BKR
MWTS ITS

Gapbst Gapavg time Gapbst Gapavg time

P3000.1 603303 0 0 391.25 0 0 897.79

P3000.2 765619 0 0 1107.51 0 -177.65 1375.79

P3000.3 770868 0 0 707.47 0 0 1050.06

P3000.4 858994 0 0 558.92 0 -872.55 740.06

P3000.5 855323 0 0 1380.59 0 0 757.87

P4000.1 935001 0 -1.10 1475.21 0 -22.05 1593.67

P4000.2 1179507 0 -117.85 1998.33 0 -386.05 1506.31

P4000.3 1180881 0 -7.25 1408.47 0 -142.55 1306.00

P4000.4 1315725 0 -294.45 1856.91 0 -879.65 959.56

P4000.5 1331694 0 -55.60 956.37 0 -278.00 1308.01

P5000.1 1303741 0 -445.35 4193.69 0 -659.40 3294.83

P5000.2 1649346 0 -1747.75 4074.21 0 -1290.20 3308.75

P5000.3 1641435 0 -85.05 3964.01 0 -118.35 3029.14

P5000.4 1848641 0 -1470.00 3365.41 0 -741.45 3975.82

P5000.5 1854488 0 -733.80 3405.77 0 -767.35 2557.94

P6000.1 1713855 0 -2664.35 7744.10 0 -3165.50 8529.13

P6000.2 2174890 0 -1397.30 7012.88 0 -380.90 6125.35

P6000.3 2434187 0 -3090.35 7799.52 0 -3169.40 9161.35

Table 4
Computational results of MWTS and ITS for CMIS benchmark

Instances BKR
MWTS ITS

Gapbst Gapavg time Gapbst Gapavg time

CMIS1000-20 22291 0 0 1.29 0 0 1.59

CMIS1000-50 103519 0 0 3.17 0 0 5.35

CMIS1000-100 346271 0 0 1.98 0 0 1.82

CMIS1000-200 1210755 0 0 2.28 0 0 2.33

CMIS1000-400 4372252 0 0 0.82 0 0 1.04

CMIS3000-50 111833 0 -20.35 1181.61 0 -137.10 1017.30

CMIS3000-100 373454 0 -23.45 1211.64 0 -61.75 1662.39

CMIS3000-200 1302202 0 0 1004.7 0 0 433.00

CMIS3000-500 7137065 0 0 524.04 0 0 301.21

CMIS3000-1000 26671242 0 0 162.09 0 0 549.05

CMIS5000-50 114866 228 -71.45 3678.86 0 -145.40 3132.34

CMIS5000-200 1335681 0 -1296.50 3902.63 0 -1305.10 2827.41

CMIS5000-500 7312462 0 -504.65 3800.53 0 -417.90 3126.76

CMIS5000-1000 27311381 0 -98.70 3678.42 0 -101.70 3799.58

CMIS5000-2000 104128699 0 0 1254.36 0 -133.20 3842.59

19

Table 5
Computational results of MWTS and ITS for CMC benchmark

Instances BKR
MWTS ITS

Gapbst Gapavg time Gapbst Gapavg time

CMC1000-20 989 0 0 15.87 0 0 27.12

CMC1000-50 1179 0 0 26.67 0 0 39.18

CMC1000-100 1179 0 0 50.04 0 0 50.17

CMC1000-200 1179 0 0 58.58 0 0 144.47

CMC1000-400 1179 0 0 87.10 0 0 688.29

CMC3000-50 1411 0 -25.70 1800.50 0 -60.95 1637.05

CMC3000-100 1482 0 -89.40 2147.64 0 -113.45 1856.96

CMC3000-200 1417 65 -39.60 2096.12 0 -48.40 1519.60

CMC3000-500 1482 0 -130.90 1966.93 0 -155.45 1722.02

CMC3000-1000 1399 14 -59.50 1811.22 0 -99.25 1506.18

CMC5000-50 1641 0 -118.80 3486.37 0 -162.95 3832.24

CMC5000-200 1597 46 -94.90 3711.54 0 -111.00 4065.25

CMC5000-500 1618 22 -179.60 4149.87 0 -196.75 3319.48

CMC5000-1000 1711 -85 -264.60 4454.60 0 -270.85 4121.26

CMC5000-2000 1490 28 -89.15 3318.59 0 -114.45 3370.62

5 Analysis

This section presents systematic analyses of key parameters and algorithmic
components in the MWTS algorithm. We first describe the details of parameter
turning and conduct sensitivity analyses to see if there exists statistical differences
among different parameter settings. Then, to shed light on the effects of various
components, we compare the performances of the MWTS algorithm with its
variants whose essential ingredients are modified.

5.1 Parameter analysis

The MWTS algorithm utilizes two kinds of parameters. The general control
related parameters include: two thresholds of non-improvement iterations for
restarting the search process and terminating the tabu search respectively
(ns and nt), the tabu tenure (t) and the size of candidate list in the hybrid
perturbation phase (clp), which use the recommended settings of Wang and
Punnen (2017). The multi-wave related parameters include: the number of
cycles for the forward and reverse phases during a wave (hn), the size of
candidate list in the reverse phase (clh) and the threshold for fixing a vertex in

20

the solution (ρ), whose recommended settings are determined by experiments
with partial instance sets.

We select 10 representative instances for parameter tuning. Inspired by Glover
(2016) and Song et al. (2019), the ranges of parameters hn, clh and ρ are
set as {4, 5, 6, 7}, {2, 3, 4, 5} and {4, 5, 6, 7} respectively. For each parameter,
we change its value within the range while keeping the other parameters
unchanged, and perform the MWTS algorithm to solve each instance for
20 times. Then, by comparing the average result gap between BKR and the
average objective value (Gapavg = (BKR − favg)/BKR ∗ 100), we find that
hn = 5, clh = 2 and ρ = 5 are the most appropriate setting in the current
situation.

Table 6-8 report the average result gaps obtained by MWTS when parameters
are tuned based on hn = 5, clh = 2 and ρ = 5, which show that this parameter
setting can achieve better results for 10 instances, and is significantly better
than other settings according to two-tailed sign test (10 > CV 15

0.05 ≈ 8). In
addition, the Friedman test confirms that there exists statistical differences
among different settings, and changing the value of hn, clh and ρ leads to
significant differences with p-values of 0.0001, 0.0005 and 0.0001 respectively.

Table 6
Average result gaps under different hn (%)

Instances\hn 4 5 6 7

cmc3000-50 2.1368 1.8427 4.0184 4.9398

cmc3000-100 6.7578 6.0729 6.8623 7.9993

cmc3000-200 5.6281 2.8229 3.3169 2.8934

cmc3000-500 10.6545 8.8394 10.1923 10.6511

cmc3000-1000 5.9507 4.2888 4.4174 5.8327

cmis3000-50 0.0393 0.0188 0.0885 0.0724

cmis3000-100 0.0187 0.0064 0.0123 0.0246

cmis3000-200 0.0017 0.0000 0.0002 0.0002

cmis3000-500 0.0001 0.0000 0.0001 0.0001

cmis3000-1000 0.0002 0.0000 0.0002 0.0002

21

Table 7
Average result gaps under different clh (%)

Instances\clh 2 3 4 5

cmc3000-50 1.8427 2.4238 3.1999 3.1892

cmc3000-100 6.0729 7.6248 6.6700 7.8644

cmc3000-200 2.8229 3.3239 3.7368 3.4263

cmc3000-500 8.8394 10.4690 11.1808 10.2362

cmc3000-1000 4.2888 6.1115 6.6619 6.0186

cmis3000-50 0.0188 0.0420 0.1207 0.0769

cmis3000-100 0.0064 0.0150 0.0062 0.0123

cmis3000-200 0.0000 0.0032 0.0017 0.0002

cmis3000-500 0.0000 0.0001 0.0001 0.0001

cmis3000-1000 0.0000 0.0002 0.0002 0.0002

Table 8
Average result gaps under different ρ (%)

Instances\ρ 4 5 6 7

cmc3000-50 3.5897 1.8427 4.8228 3.2140

cmc3000-100 8.8192 6.0729 7.9453 8.3063

cmc3000-200 3.8215 2.8229 5.1306 5.6351

cmc3000-500 11.7780 8.8394 11.6734 11.0290

cmc3000-1000 6.6405 4.2888 5.7505 7.6483

cmis3000-50 0.1878 0.0188 0.1207 0.1493

cmis3000-100 0.0372 0.0064 0.0383 0.0396

cmis3000-200 0.0032 0.0000 0.0032 0.0048

cmis3000-500 0.0001 0.0000 0.0001 0.0001

cmis3000-1000 0.0002 0.0000 0.0002 0.0002

5.2 Component analysis

In order to verify the effectiveness of the important ingredients in the proposed
algorithm, we compare our MWTS algorithm with four variants, where the
reverse moves are treated as the forward moves during AMR updating, the
pure descent is applied in the forward phase instead of tabu search, the vertex
fixation strategy and the hybrid perturbation phase are removed.

22

The additional experiments on 15 representative instances are carried out
under the same experimental conditions as Sect. 4.1. We report the average
result gaps between BKR and the average objective value (Gapavg = (BKR−
favg)/BKR ∗ 100) in Table 9, and analyze their performances in following
sections.

Table 9
Average result gaps obtained by MWTS and its variants (%)

Instances MWTS MWTS-AMR MWTS-DES MWTS-NF MWTS-NP

CMC3000-50 1.8426 2.2537 22.5584 2.6187 2.5372

CMC3000-100 6.0728 6.7510 26.4136 7.8171 6.8927

CMC3000-200 2.8228 3.0345 21.7819 3.6344 3.6062

CMC3000-500 8.8394 9.9055 25.9075 10.2834 9.4568

CMC3000-1000 4.2887 5.6754 22.6554 6.0686 5.6468

CMIS3000-50 0.0187 0.0464 2.3096 0.0563 0.0903

CMIS3000-100 0.0064 0.0042 1.6400 0.0064 0.0125

CMIS3000-200 0 0 0.9930 0.0016 0

CMIS3000-500 0 0 0.2948 0 0

CMIS3000-1000 0 0 0.0695 0 0

P4000.1 0.0026 0.0272 3.9761 0 0.0238

P4000.2 0.0100 0.0209 4.2489 0.0319 0.0124

P4000.3 0.0006 0.0127 3.9445 0.0195 0.0204

P4000.4 0.0224 0.0482 3.9715 0.0345 0.0703

P4000.5 0.0042 0.0220 4.1416 0.0040 0.0003

5.2.1 Effectiveness of AMR update strategy

During the forward phase, when a forward move happens to be another performed
move’ s reverse move, the algorithm deletes the record from AMR and ignores
this reverse move, which leads to a decrease in the length of AMR. To assess
its rationality, we produce a variant MWTS-AMR, where reverse moves are
treated as normal forward moves and recorded in AMR, which makes the
length of AMR unchanged. Table 9 shows that MWTS performs significantly
better than the variant with 11 better, 3 equal and 1 worse results (12 >
CV 15

0.05 ≈ 11). Further, Fig. 4 provides a group of box plots to compare the
ranges and distributions of the average result gaps in Table 9, which shows
that the dispersion degrees of two algorithms are similar, and the average
results from MWTS are closer to BKR for CMC and Palubeckis instances,
since the medians of MWTS are lower than the variant.

23

MWTS MWTS-AMR

(a) CMC instances

1

2

3

4

5

6

7

8

9

10

MWTS MWTS-AMR

(b) CMIS instances

-0.01

0

0.01

0.02

0.03

0.04

MWTS MWTS-AMR

(c) Palubeckis instances

0

0.01

0.02

0.03

0.04

0.05

Fig. 4. Box plots of average result gaps obtained by MWTS and MWTS-AMR (%)

The observation confirms the effectiveness of the original AMR update strategy
in MWTS. One possible reason for this result is that the AMR of the variant
never decreases in any circumstances, which results in the excessive AMR
growth and the early end of the search wave. Due to the short duration of
the search wave, the search region may not be fully explored by the variant,
which further causes the quality deterioration of the final solutions.

5.2.2 Effectiveness of the tabu search based forward phase

The MWTS algorithm employs tabu search for forward move selection in
forward phase. To evaluate the merit of tabu search, we produce a variant
MWTS-DES by replacing tabu search with pure descent as the main intensification
component. Table 9 shows that MWTS obtains better average objective values
than the variant for all 15 instances, and Fig. 5 indicates that without enhancements
of tabu search, the average results of the variant become more unstable and
far away from BKR.

24

MWTS MWTS-DES

(a) CMC instances

5

10

15

20

25

MWTS MWTS-DES

(b) CMIS instances

0

0.5

1

1.5

2

MWTS MWTS-DES

(c) Palubeckis instances

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 5. Box plots of average result gaps obtained by MWTS and MWTS-DES (%)

This experiment concludes that the intensification of the MWTS algorithm
is significantly enhanced by the tabu search. By prohibiting performed moves
for a period of time, tabu search is able to avoid the trap of local optimum
and achieve a strong search ability. Although the reverse phase can modify
the current solution based on search information, the overall performance of
the variant is not as good as the tabu search based MWTS algorithm, which
further confirms the necessity of strengthening the forward phase.

5.2.3 Effectiveness of the vertex fixation strategy

During each search wave, the reverse phase implements the vertex fixation
strategy to avoid those high value vertices from being dropped. To assess
the impact of this strategy, we produce a variant MWTS-NF by removing
this strategy from the MWTS algorithm while keeping other components
unchanged. Table 9 indicates that MWTS achieves better performances than
the variant with 10 better, 3 equal and 2 worse results (11 = CV 15

0.05 ≈ 11).
In Fig. 6, the average results of MWTS do not vary much for CMIS and
Palubeckis instances and have lower medians for all instance sets, which means
that MWTS is more stable than the variant and its average results are closer
to BKR generally.

25

MWTS MWTS-NF

(a) CMC instances

1

2

3

4

5

6

7

8

9

10

MWTS MWTS-NF

(b) CMIS instances

-0.01

0

0.01

0.02

0.03

0.04

0.05

MWTS MWTS-NF

(c) Palubeckis instances

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Fig. 6. Box plots of average result gaps obtained by MWTS and MWTS-NF (%)

The results disclose that the vertex fixation strategy is essential for the performance
of the proposed algorithm. As more vertices are tried during the search process,
the frequency information becomes progressively effective to evaluate the value
of each vertex for the solution. Hence, it is worthwhile to utilize the information
provided by vector Fre to inherit the good parts of the last solution. However,
since the vector Fre based vertex fixation strategy has been removed, the
variant can not guide the reverse phase based on frequency information, which
causes the decline of the overall solution quality.

5.2.4 Effectiveness of the hybrid perturbation phase

The search diversification of our algorithm is enhanced by randomly performing
the directed perturbation, the frequency guided perturbation and the recency
guided perturbation. To assess the effectiveness of this approach, we design
a variant MWTS-NP by removing the hybrid perturbation phase from the
original algorithm. Table 9 shows that MWTS achieves 11 better, 3 equal
and 1 worse results (12 > CV 15

0.05 ≈ 11), which is significantly better than the
variant. Fig. 7 indicates that MWTS performs more stably than the variant for
CMIS and Palubeckis instances, and obtains better average results for CMC
and Palubeckis instances.

26

MWTS MWTS-NP

(a) CMC instances

1

2

3

4

5

6

7

8

9

MWTS MWTS-NP

(b) CMIS instances

-0.02

0

0.02

0.04

0.06

0.08

MWTS MWTS-NP

(c) Palubeckis instances

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 7. Box plots of average result gaps obtained by MWTS and MWTS-NP (%)

This experiment demonstrates the necessity of the hybrid perturbation phase
in the proposed algorithm. Different from Glover (2016), MWTS still keeps
the tabu search running, when the forward phase encounters the interrupting
point. In some respects, the reverse phase plays a similar role to the perturbation
phase. However, the design purpose of the reverse phase is to adjust the
solution based on the latest search information. The general performance of the
variant confirms that once removing the perturbation component, the reverse
phase alone can not guide the search process to a distant region.

6 Conclusion

In this study, we presented an effective multi-wave tabu search algorithm
(MWTS) to solve the challenging boolean quadratic programming problem
with generalized upper bound constraints. The proposed algorithm conducts
waves to achieve search intensification. Each wave combines two alternating
phases, a tabu search based forward phase that successively improves current
solutions with AMR updating, and a reverse phase that adjusts current solutions
according to AMR. The alternation repeats until reaching a local optimum.
Between two waves, a hybrid perturbation phase that randomly chooses three
different perturbation strategies is applied to ensure search diversification.

Computational experiments on four sets of benchmark instances indicate that
the proposed algorithm is able to discover improved best solutions for 6
instances and match the previously best known solutions for most instances
within competitive time. Furthermore, we conducted additional experiments
to show the importance of the AMR update strategy, the advantage of the
tabu search based forward phase, the necessity of the vertex fixation strategy
and the hybrid perturbation phase.

27

Several important strategies applied in this work are general and could be
applicable to solve other combinatorial optimization problems. For example,
the strategy that guides the reverse and perturbation phases by frequency
and recency information can be used in various metaheuristics. Moreover, the
experimental evidences highlight the advantage of blending AMR and tabu
list in the neighbourhood search for solving BQP-GUB, which inspire us to
introduce automated tool, such as the conditional Markov Chain based method
(Karapetyan et al., 2017), to evaluate the current algorithmic components,
tune the key parameters and create effective metaheuristics.

Acknowledgements

We are grateful to the reviewers for their insightful and constructive comments,
which helped us to significantly improvement the paper. This work was partially
supported by the National Natural Science Foundation of China (No. 71971172),
the Natural Science Basic Research Program of Shaanxi (No. 2020JM-089,
No. 2020JQ-224, No. 2022JM-423), the Fundamental Research Funds for the
Central Universities (No. 300102231656, No. D5000210834), Scientific Research
Plan Project of Shaanxi Provincial Department of Education (No. 21JP007).

References

Anacleto, E. A., Meneses, C. N., and Liang, R. N. (2021). Fast r-flip move
evaluations via closed-form formulae for boolean quadratic programming
problems with generalized upper bound constraints. Computers &
Operations Research, 132:105297.

Bookbinder, J. H. and Désilets, A. (1992). Transfer optimization in a transit
network. Transportation Science, 26(2):106–118.

Bullnheimer, B. (1997). An examination scheduling model to maximize
students’ study time. In International Conference on the Practice and
Theory of Automated Timetabling, pages 78–91. Springer.

Chang, J., Wang, L., Hao, J.-K., and Wang, Y. (2021). Parallel
iterative solution-based tabu search for the obnoxious p-median problem.
Computers & Operations Research, 127:105155.

Chen, M., Chen, Y., Du, Y., Wei, L., and Chen, Y. (2020). Heuristic algorithms
based on deep reinforcement learning for quadratic unconstrained binary
optimization. Knowledge-Based Systems, 207:106366.

Cook, D. J. and Holder, L. B. (2000). Graph-based data mining. IEEE
Intelligent Systems and Their Applications, 15(2):32–41.

Daduna, J. R. and Voß, S. (1995). Practical experiences in schedule

28

synchronization. In Computer-Aided Transit Scheduling, pages 39–55.
Springer.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. The Journal of Machine Learning Research, 7:1–30.

Duffuaa, S. O. and Fedjki, C. A. (2012). General forms of the quadratic
assignment problem. International Journal of Operational Research,
13(2):185–199.

Glasner, D., Vitaladevuni, S. N., and Basri, R. (2011). Contour-based joint
clustering of multiple segmentations. In CVPR 2011, pages 2385–2392.
IEEE.

Glover, F. (2000). Multi-start and strategic oscillation methods—principles to
exploit adaptive memory. In Computing Tools for Modeling, Optimization
and Simulation, pages 1–23. Springer.

Glover, F. (2016). Multi-wave algorithms for metaheuristic optimization.
Journal of Heuristics, 22(3):331–358.

Glover, F., Hanafi, S., Guemri, O., and Crevits, I. (2018). A simple multi-wave
algorithm for the uncapacitated facility location problem. Frontiers of
Engineering Management, 5(4):451–465.

Glover, F., Laguna, M., and Marti, R. (2007). Principles of tabu search.
Approximation Algorithms and Metaheuristics, 23:1–12.

Karapetyan, D., Punnen, A. P., and Parkes, A. J. (2017). Markov chain
methods for the bipartite boolean quadratic programming problem.
European Journal of Operational Research, 260(2):494–506.

Li, Z., Cheong, L.-F., Yang, S., and Toh, K.-C. (2018). Simultaneous
clustering and model selection: Algorithm, theory and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(8):1964–1978.

Lü, Z., Glover, F., and Hao, J.-K. (2010). A hybrid metaheuristic approach
to solving the ubqp problem. European Journal of Operational Research,
207(3):1254–1262.

Lü, Z. and Hao, J.-K. (2010). Adaptive tabu search for course timetabling.
European Journal of Operational Research, 200(1):235–244.

Ma, F., Hao, J.-K., and Wang, Y. (2017). An effective iterated tabu search
for the maximum bisection problem. Computers & Operations Research,
81:78–89.

Malucelli, F. (1996). A polynomially solvable class of quadratic
semi-assignment problems. European Journal of Operational Research,
91(3):619–622.

Manohar, V., Vitaladevuni, S. N., Cao, H., Prasad, R., and Natarajan,
P. (2011). Graph clustering-based ensemble method for handwritten
text line segmentation. In 2011 International Conference on Document
Analysis and Recognition, pages 574–578. IEEE.

Pattillo, J., Youssef, N., and Butenko, S. (2012). Clique relaxation models
in social network analysis. In Handbook of Optimization in Complex
Networks, pages 143–162. Springer.

29

Raymond, J. W. and Willett, P. (2002). Maximum common subgraph
isomorphism algorithms for the matching of chemical structures. Journal
of Computer-aided Molecular Design, 16(7):521–533.

Samorani, M., Wang, Y., Lv, Z., and Glover, F. (2019). Clustering-driven
evolutionary algorithms: an application of path relinking to the quadratic
unconstrained binary optimization problem. Journal of Heuristics,
25(4):629–642.

Shang, Z., Zhao, S., Hao, J.-K., Yang, X., and Ma, F. (2019). Multiple phase
tabu search for bipartite boolean quadratic programming with partitioned
variables. Computers & Operations Research, 102:141–149.

Skutella, M. (2001). Convex quadratic and semidefinite programming
relaxations in scheduling. Journal of the ACM (JACM), 48(2):206–242.

Song, J., Wang, Y., Wang, H., Wu, Q., and Punnen, A. P. (2019). An effective
multi-wave algorithm for solving the max-mean dispersion problem.
Journal of Heuristics, 25(4):731–752.

Wang, Y., Lü, Z., Glover, F., and Hao, J.-K. (2012). Path relinking for
unconstrained binary quadratic programming. European Journal of
Operational Research, 223(3):595–604.

Wang, Y. and Punnen, A. P. (2017). The boolean quadratic programming
problem with generalized upper bound constraints. Computers &
Operations Research, 77:1–10.

Yamaguchi, A., Aoki, K. F., and Mamitsuka, H. (2004). Finding the maximum
common subgraph of a partial k-tree and a graph with a polynomially
bounded number of spanning trees. Information Processing Letters,
92(2):57–63.

Zhou, Y., Hao, J.-K., Fu, Z.-H., Wang, Z., and Lai, X. (2020). Variable
population memetic search: A case study on the critical node problem.
IEEE Transactions on Evolutionary Computation, 25(1):187–200.

30

