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Abstract

The Bipartite Boolean Quadratic Programming Problem with Partitioned Variables
(BBQP-PV) is an NP-hard problem with many practical applications. In this study,
we present an e�ective multiple phase tabu search algorithm for solving BBQP-
PV. The algorithm is characterized by a joint use of three key components: two
tabu search phases that employ a simple neighborhood and a very large-scale neigh-
borhood to achieve search intensi�cation, and a hybrid perturbation phase that
adaptively chooses a greedy perturbation or a recency-based perturbation for search
diversi�cation. Experimental assessment on 50 standard benchmarks indicates that
the proposed algorithm is able to obtain improved lower bounds for 5 instances and
match the previously best solutions for most instances, while achieving this perfor-
mance within competitive time. Additional analysis con�rms the importance of the
innovative search components.
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1 Introduction1

Let G = (I, J, E) denote a bipartite graph with the two vertex sets I =2

{1, 2, . . . ,m}, J = {1, 2, . . . , n} and the edge set E ⊆ I × J . The vertex set3

I is partitioned into p disjoint subsets S1, S2, . . . , Sp and the vertex set J is4

partitioned into k disjoint subsets T1, T2, . . . , Tk. Further, each vertex i ∈ I5

is associated with a weight ci, each vertex j ∈ J is associated with a weight6

dj, and each edge (i, j) ∈ E is associated with a weight qij. A subgraph7

G′ = (I ′, J ′, E ′) is said to be a representative subgraph of G, if the vertex set8

I ′ contains only one vertex, say αr, of each disjoint subset Sr, r = 1, 2, . . . , p,9

the vertex set J ′ contains only one vertex, say βu, of each disjoint subset10

Tu, u = 1, 2, . . . , k, and the edge set E ′ contains the edges connecting vertices11

between I ′ and J ′. Then, the Binary Quadratic Programming Problem with12

Partitioned Variables (BBQP-PV) is to �nd such a representative subgraph G′13

that receives the maximum sum of edge weights and vertex weights. Formally,14

let s = (sα, sβ) be a vertex set of G′ where sα = {α1, α2, . . . , αp} and sβ =15

{β1, β2, . . . , βk}, BBQP-PV is to maximize the following objective:16

max f(s) =
p∑
r=1

k∑
u=1

qαr,βu +
p∑
r=1

cαr +
k∑

u=1

dβu (1)

s.t. αr ∈ Sr, for r = 1, 2, . . . , p (2)

βu ∈ Tu, for u = 1, 2, . . . , k (3)

Equivalently, BBQP-PV can be formulated as a constrained 0-1 quadratic17

program as follows [28].18

max f(x, y) =
m∑
i=1

n∑
j=1

qijxiyj +
m∑
i=1

cixi +
n∑
j=1

djyj + c0 (4)

s.t.
∑
i∈Sr

xi = 1, for r = 1, 2, . . . , p (5)∑
j∈Tu

yj = 1, for u = 1, 2, . . . , k (6)

xi, yj ∈ {0, 1}, for i ∈ I, j ∈ J (7)

where xi (yj) takes the value of 1 if i = αr (j = βu), otherwise the value of xi19

(yj) takes the value of 0. Without loss of generality, the constant c0 is assumed20

to be 0.21

BBQP-PV is a constrained version of the Bipartite Boolean Quadratic Pro-22
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gramming Problem (BBQP) [8,18,27]. It was recently proposed in [28] and23

proved to be strongly NP-hard. Moreover, they indicate that when p = k = n24

and |Sr| = |Tu| = n for any r and u, BBQP-PV turns out to be the Bipartite25

Quadratic Assignment Problem (BQAP) which in turn is a generalization of26

well-studied quadratic assignment problem (QAP).27

BBQP-PV is a uni�ed model of several classic combinatorial optimization28

problems, such as the Biclique Problem [3,14,25], the Max-induced Subgraph29

Problem [32,33], the Maximum Cut Problem on a Bipartite Graph [9,11,21]30

and the Matrix Factorization Problem [20,29,34]. Applications of the BBQP-31

PV model include clustering [4,30], location problem [7], social network anal-32

ysis [17], bioinformatics [13,31] and many others.33

Previous literature has reported many approaches for solving the closely re-34

lated unconstrained BBQP problem. For example, [8] proposed an branch35

and bound algorithm and several iterated local search algorithms. [15] pro-36

posed multiple hybrid algorithms by combining tabu search and very large-37

scale neighborhood search strategies. [18] developed an e�ective Markov chain38

search algorithm. Moreover, bilinear programming algorithms are available39

for solving BBQP-PV [5,10,16] due to its bilinear objective function. How-40

ever, without exploiting speci�c properties and structures of BBQP-PV, these41

general algorithms can not e�ciently solve challenging BBQP-PV problem42

instances.43

In the literature. The �rst computational study is proposed in [28], where44

several tailored local search and hybrid algorithms are developed and compu-45

tational comparisons among the proposed algorithms are presented. Results46

show that the hybrid algorithms combining di�erent neighborhoods outper-47

form the algorithms that use these move operators in isolation and tabu search48

is a critical local search component. Another advanced metaheuristic algorithm49

recently proposed for solving BBQP-PV is an adaptive tabu search with strate-50

gic oscillation (ATS-SO) approach, which combines di�erent move operators51

to collectively conduct neighborhood exploration and a history information52

guided strategic oscillation phase to diversify the search when the search gets53

trapped in local optimum. Computational assessments reveal that the ATS-SO54

algorithm outperforms the hybrid algorithms proposed in [28].55

In this paper, we propose a new multiple phase tabu search (MPTS) algo-56

rithm for solving BBQP-PV. The proposed MPTS algorithm consists of a57

simple neighborhood based tabu search (SN-TS) phase and a very large-scale58

neighborhood based tabu search (VLSN-TS) phase for search intensi�cation59

and a hybrid perturbation phase for search diversi�cation [2,24,26]. The SN-60

TS phase aims to obtain a high-quality solution within a short period of time,61

while the VLSN-TS phase is dedicated to further re�ning the solution returned62

from the SN-TS phase. To escape local optimality and enable the search to63
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explore new promising regions, the hybrid perturbation phase is employed to64

build well-diversi�ed solutions. According to the diversi�cation requirement65

of the current search status, the perturbation phase adaptively chooses to use66

a greedy perturbation or a recency-based perturbation to improve diversi�ca-67

tion.68

Evaluated on �ve sets of BBQP-PV benchmarks with a total of 50 instances,69

the proposed MPTS algorithm is able to �nd improved solutions for 5 instances70

and match the best known results for most instances within competitive com-71

putation time, performing better than recently proposed state-of-the-art algo-72

rithms in the literature. Additional analysis sheds light on the e�ectiveness of73

the incorporated components to the performance of the algorithm.74

The rest of this paper is organized as follows. In Section 2, move operator75

de�nitions and fast evaluation methods are presented. Section 3 describes76

the main scheme and important components of the proposed algorithm. In77

Section 4, the computational results of our MPTS and the comparisons with78

state of the art algorithms in the literature are reported. Section 5 provides79

an experimental analysis of the key components used in the MPTS algorithm.80

Section 6 draws conclusions.81

2 Move de�nitions and fast evaluation methods82

In this section, we show two important properties of the BBQP-PV based on83

its graph representation. Then we present two types of moves along with their84

fast evaluation methods.85

2.1 Problem properties86

Based on the graph theoretical formulation of BBQP-PV given in Equations87

(1)-(3), we de�ne, for any vertex i ∈ I and j ∈ J ,88

Ci(sβ) =
k∑

u=1

qi,βu + ci, i = 1, 2, . . . ,m (8)

Cj(sα) =
p∑
r=1

qαr,j + dj, j = 1, 2, . . . , n (9)

Ci(sβ) is called the objective contribution of the vertex i to the solution sβ =89

(β1, β2, . . . , βk) when setting αr = i(i ∈ Sr) and Cj(sα) is called the objective90
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contribution of the vertex j to the solution sα = (α1, α2, . . . , αp) when setting91

βu = j(j ∈ Tu).92

Hence, the objective value f(s) can also be expressed in terms of the objective93

contribution Ci(sβ) and Cj(sα) as:94

f(s) =
p∑
r=1

Cαr (sβ) +
k∑

u=1

dβu =
k∑

u=1

Cβu (sα) +
p∑
r=1

cαr (10)

Furthermore, we obtain the following two properties of BBQP-PV which have95

also been used for designing the very large scale neighborhood in [15,18,28].96

Property 1: When sβ is �xed, the optimal s∗α = (α∗1, α
∗
2, . . . , α

∗
p) satis�es97

Cα∗r(sβ) = max
i∈Sr

Ci(sβ), r = 1, 2, . . . , p (11)

Property 2: When sα is �xed, the optimal s∗β = (β∗1 , β
∗
2 , . . . , β

∗
k) satis�es98

Cβ∗u(sα) = max
j∈Tu

Cj(sα), u = 1, 2, . . . , k (12)

2.2 Swap moves99

The SN-TS phase employs a simple swap move to perform neighborhood ex-100

ploration. The swap move consists in replacing a vertex selected in the cur-101

rent solution with any vertex in the same subset, which generates a total of102

m + n − p − k feasible neighbor solutions. The formal de�nition of the swap103

move is given as follows.104

swap move: Given a solution s = (sα, sβ), the swap move chooses a solution105

component αr and replaces it with another vertex i ∈ Sr\{αr} to transform s106

to its neighbor solution s′ = (s′α, sβ) or chooses a solution component βu and107

replaces it with another vertex j ∈ Tu\{βu} to transform s to its neighbor108

solution s′ = (sα, s
′
β).109

Given that the whole search process generally performs the swap move for110

millions of iterations, it's essential to be able to quickly evaluate the objective111

gain of each swap move in each iteration. Based on the properties in Section112

2.1, we employ a streamlined fast evaluation technique as follows. When a113

swap move is performed on s, the objective value of the resulting solution s′114

can be calculated by the following two equations. We apply Equation (13) if115
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αr is changed to α
′
r = i (i ∈ Sr\{αr}). We apply Equation (14) if βu is changed116

to β′u = j (j ∈ Tu\{βu}).117

f(s′) = f(s)− Cαr(sβ) + Cα′r(sβ) (13)

f(s′) = f(s)− Cβu(sα) + Cβ′u(sα) (14)

Since the current solution s is changed to s′, Ci(sβ) and Cj(sα) also need118

to be updated. If a swap move is performed on βu, we use Equation (15) to119

calculate Ci(s
′
β) and keep Cj(sα) unchanged. In the same token, if a swap120

move is performed on αr, we use Equation (16) to calculate Cj(s
′
α) and keep121

Ci(sβ) unchanged.122

Ci(s
′
β) = Ci(sβ)− qi,βu + qi,β′u (15)

Cj(s
′
α) = Cj(sα)− qαr,j + qα′r,j (16)

2.3 Very large-scale neighborhood moves123

Many researchers have pointed out that the very large-scale neighborhood124

moves can usually reach better local optimal solutions [2] and algorithms using125

large neighborhoods have been successfully applied to solve a number of NP-126

hard problems [1,22]. Our algorithm adopts two very large-scale neighborhood127

moves, which were also used in [15,18,28].128

α-optimal move: Given a solution s, choose a solution component αr and129

replace it with another vertex i ∈ Sr\{αr}. Based on the new s′α, determine130

the optimal s′β according to Property 2 to transform s to the neighbor solution131

s′.132

β-optimal move: Given a solution s, choose a solution component βu and133

replace it with another vertex j ∈ Tu\{βu}. Based on the new s
′
β, determine134

the optimal s′α according to Property 1 to transform s to the neighbor solution135

s′.136

Speci�cally, we use the α-optimal move as an example to illustrate the details137

and complexity of such a move. To execute an α-optimal move, we �rst change138

the value of any αr of sα to obtain s′α, which is actually a swap move on sα.139

Then based on s′α, we update all the Cj(sα) to Cj(s
′
α) using Equation (16). By140

following Property 2 and Cj(s
′
α), we update sβ to the optimal s′β. Finally, an141
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α-optimal move is performed. Furthermore, the time complexity of identifying142

the best optimal move is O(nm) which is much higher than �nding the best143

swap move with the complexity of O(n+m).144

Given the high computational complexity of the α-optimal and β-optimal145

moves, it's signi�cant to be able to quickly determine the objective gain of146

performing such moves. Below we use the α-optimal move as an example to147

show the streamlined fast evaluation method.148

Equation (9) indicates that a vertex i can in�uence Cj(sα) of the vertex j,149

if and only if qi,j 6= 0. De�ne V Ii = {j|qi,j 6= 0, 1 ≤ j ≤ n} and TIi =150

{Tu|Tu ∩ V Ii 6= ∅, 1 ≤ u ≤ k}. When an α-optimal move changes αr to α
′
r = i151

(i ∈ Sr\{αr}), the optimal s′β and f(s
′) can be obtained by the following steps.152

(1) Update Cj(sα) of each vertex j ∈ V Iαr ∪ V Iα′r to Cj(s′α) using Equation153

(16).154

(2) For each Tu, if Tu ∈ TIαr ∪ TIα′r , then β′u is updated to be the vertex155

j ∈ Tu whose Cj(s
′
α) is maximum; otherwise β′u = βu. In this way, the156

optimal s′β is obtained.157

(3) Update Ci(sβ) of each vertex i ∈ I to Ci(s
′
β) using Equation (15).158

(4) Calculate f(s′) using Equation (10).159

By following a similar procedure, the objective function value of performing a160

β-optimal move can be e�ciently calculated.161

The BBQP-PV instances usually have many pairs of vertices i and j whose162

edge weight qi,j = 0. It means that these types of vertices i and j are actually163

independent of each other. Thus we propose the above-mentioned method164

to remove unnecessary operations from the search procedure. However, it is165

obvious that for a BBQP-PV instance with many non-zero qij, this removal166

step will become helpless.167

3 Multiple phase tabu search algorithm168

In this section, we present the proposed multiple phase tabu search algo-169

rithm in details, including the main scheme, the initial solution generation,170

the simple neighborhood based tabu search phase (SN-TS), the very large-171

scale neighborhood based tabu search phase (VLSN-TS) and the perturbation172

phase.173
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3.1 Main scheme174

Algorithm 1 presents the main scheme of our multiple phase tabu search al-175

gorithm. From a random initial solution, the MPTS algorithm repeats the176

following search rounds. For each round, it �rst executes a SN-TS phase that177

performs swap moves to obtain a high-quality solution (see Sect. 3.3). Then,178

a VLSN-TS phase is performed that executes the α-optimal move and the β-179

optimal move alternately to further re�ne the solution quality (see Sect. 3.4).180

After these search phases, a hybrid perturbation phase is triggered to produce181

a new diversi�ed initial solution for the next round of tabu search. This per-182

turbation phase adaptively applies a greedy perturbation or a recency-based183

perturbation depending on the current search status (see Sect. 3.5). The MPTS184

algorithm repeats the above-mentioned search rounds until a given stopping185

condition is satis�ed.186

Algorithm 1 Multiple phase tabu search algorithm
1: Input: A BBQP-PV instance.
2: Output: The best solution s∗ found during the whole search procedure.
3: Set s∗ = ∅, f(s∗) = −∞, gpnum = 0.
4: Construct an initial solution s. (Sect. 3.2)
5: repeat
6: TLαi = 0, TLβj = 0, i ∈ I, j ∈ J . (Sect. 3.3)

7: Recαi = 0, Recβj = 0, i ∈ I, j ∈ J . (Sect. 3.5)
8: s ← SN-TS(s, TLα, TLβ, Recα, Recβ, N1). (Sect. 3.3)
9: if rand() mod 2 = 1 then
10: s ← VLSN-TS: α-OptimalMove(s, TLα, Recα, N2). (Sect. 3.4)
11: else

12: s ← VLSN-TS: β-OptimalMove(s, TLβ, Recβ, N2). (Sect. 3.4)
13: end if

14: if f(s) > f(s∗) then
15: s∗ = s, gpnum = 0.
16: else if gpnum < gplimit then
17: s ← GreedyPerturbation(s, gps). (Sect. 3.5)
18: gpnum = gpnum+ 1.
19: else

20: s ← RecencyPerturbation(s, Recα, Recβ, rps). (Sect. 3.5)
21: gpnum = 0.
22: end if

23: until a stopping criterion is satis�ed.
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3.2 Initial solution187

We use a two-step procedure to generate a feasible initial solution. First, each188

αr (1 ≤ r ≤ p) is assigned to a random vertex i ∈ Sr to construct sα. Then,189

based on property 2, the optimal sβ is obtained to complete the initial solution190

s. The complexity of this two-step initial solution generation procedure is191

bounded by O(p+n). Preliminary experiments indicate the advantage of this192

strategy over the customary pure random strategy.193

3.3 Simple neighborhood based tabu search phase194

The SN-TS phase continually performs the swap moves to improve a given195

initial solution. This phase employs two di�erent evaluation functions when196

selecting moves. The �rst evaluation function measures the exact objective197

gain, calculated as −Cαr(sβ)+Cα′r(sβ) shown in Equation (13) or −Cβu(sα)+198

Cβ′u(sα) shown in Equation (14). The second evaluation function incorporates199

�uctuation in the objective gain and measures Cα′r(sβ) or Cβ′u(sα), representing200

the objective gain of setting xα′r = 1 while xαr = 1 or setting xβ′u = 1 while201

xβu = 1. In the SN-TS phase, we use the �rst evaluation function with a202

probability of 0.9 and the second evaluation function with a probability of203

0.1. All the moves in this phase are categorized as tabu moves and non-tabu204

moves depending on a tabu rule and an aspiration criterion [6,19,23].205

The tabu rule requires that the reverse move of the performed move in each206

iteration is forbidden for the following tl iterations, where tl is called tabu207

tenure [12]. For this purpose, we use two lists TLα and TLβ to record the208

iterations when the moves on sα and sβ respectively are most recently per-209

formed. Assume that a move on sα is composed of assigning αr with the vertex210

i in place of the vertex j, then the tabu rule speci�es TLαi = TLαi + tl and211

TLαj = TLαj + tl to forbid αr from being assigned to j again for the next tl212

iterations. As long as a performed move does not include i and j, we assign213

TLαi = TLαi −1 and TLαj = TLαj −1. Hence, a move is determined as non-tabu214

if at least one of TLαi and TLαj equals 0 and is determined as tabu otherwise.215

Moreover, an aspiration criterion is applied to override the tabu rule if per-216

forming a tabu move is able to produce a solution that is better than the best217

solution found so far.218

The SN-TS phase works as follows. Starting with an initial solution, it re-219

peatedly performs iterations until the best solution can not be improved for220

N1 consecutive iterations. Each iteration includes the following three steps: 1)221

identify the tabu moves and non-tabu moves, 2) select an evaluation function222

and measure the objective values of all the moves using the fast evaluation223
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technique, 3) perform the non-tabu move with the maximum objective value224

or the move that satis�es the aspiration criterion. When the SN-TS phase225

�nishes, it returns the best solution s found so far and the updated tabu lists.226

3.4 Very large-scale neighborhood based tabu search phase227

In order to improve the solution obtained from the SN-TS phase, the VLSN-228

TS phase is followed that alternatively uses the α-optimal moves and the β-229

optimal moves to perform the search. We use two similar evaluation functions230

in a probabilistic way as in the SN-TS phase, where the �rst measures the231

exact objective gain of performing a α-optimal move or a β-optimal move and232

the second measures Cα′r(sβ) when performing a α-optimal move or Cβ′u(sα)233

when performing a β-optimal move. The working scheme of the VLSN-TS234

phase is similar to the SN-TS phase but di�ers in the following aspects. First,235

the initial solution of the VLSN-TS phase is the best solution obtained in the236

SN-TS phase. Hence, it's more challenging to obtain an improving solution in237

the VLSN-TS phase. Second, a new tabu rule is designed for the α-optimal238

move and the β-optimal move. Since the optimal sβ is fully dependent on the239

swap move on sα for a α-optimal move, we only use TLα as the tabu list and240

apply a tabu rule that forces the performed swap moves to be forbidden for the241

following tl iterations. The tabu rule for the β-optimal moves follows the same242

idea. It's noteworthy that the initial tabu lists TLα and TLβ are inherited243

from the SN-TS phase. Third, the maximum consecutive non-improvement244

iterations N2 to terminate the VLSN-TS phase is set to be much smaller than245

N1 in the SN-TS phase, considering that the evaluation of each α-optimal246

move and β-optimal move is more expensive than that of a swap move. Further247

experimental analysis con�rms the e�ectiveness of the VLSN-TS phase to248

enhance the performance of the MPTS algorithm (see Section 5.1).249

3.5 Perturbation phase250

The perturbation phase starts to execute when the VLSN-TS phase �nishes,251

which adaptively selects a greedy perturbation strategy or a recency-based252

perturbation strategy according to the diversi�cation required in the current253

search status.254

According to preliminary experimental observations, using the α-optimal move255

in the perturbation phase generally produces better results than the swap256

move. Thus, the greedy perturbation strategy employs the α-optimal move on257

the best solution found by the VLSN-TS phase to transform the input solu-258

tion to a new initial solution for the next round of tabu search. Speci�cally,259

the greedy perturbation phase continually performs gps greedy steps (gps is a260
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parameter called the greedy perturbation strength), where each step assigns261

αr = argmax Ci(sβ), i ∈ Sr\{αr} for a randomly chosen subset Sr and deter-262

mines the optimal sβ. This greedy perturbation strategy does not deteriorate263

the objective value of the best solution too much and thus is bene�cial to keep264

the new initial solution with good quality.265

When the best solution can not be improved for consecutive gplimit rounds,266

the current search is judged as falling into a deep local optimum and a strong267

diversi�cation is required. For this purpose, the recency-based perturbation268

phase is triggered that chooses a least recent assigned vertex from each sub-269

set and assigns the chosen vertices to generate a new solution. Speci�cally,270

during the search phases, we use two vectors Recα and Recβ to store the271

latest iterations when the vertex i is assigned to αr and the vertex j is as-272

signed to βu, respectively. The recency-based perturbation phase continually273

performs rps steps (rps is a parameter called the recency-based perturbation274

strength), where each step randomly chooses a subset Sr and assigns the ver-275

tex i ∈ Sr\{αr} with the minimum Recαi or randomly chooses a subset Tu and276

assigns a vertex j ∈ Tu\{βu} with the minimum Recβj .277

4 Computational experiments278

This section reports the computational results of our proposed MPTS algo-279

rithm and comparisons with the state-of-the-art algorithms in the literature.280

Speci�cally, we �rst describe the benchmark instances and experimental pro-281

tocol used in assessing the MPTS algorithm. Then we perform the parameter282

sensitivity analysis to show the e�ectiveness of the chosen values. Finally, we283

present experimental results and comparisons in details.284

4.1 Benchmark instances and experimental protocol285

We use the �ve benchmark sets of BBQP-PV instances generated in [28] to286

assess our algorithm, where each benchmark set contains 5 medium instances287

with m = 200, 400, 600, 800, 1000 and n = 1000 and 5 large instances with288

m = 1000, 2000, 3000, 4000, 5000 and n = 5000. Based on a bipartite graph289

G = (I, J, E) where wij is the weight of edge (i, j) ∈ E, ci and dj are weights290

of the vertices i ∈ I and j ∈ J , respectively, the instances of each benchmark291

set present the following characteristics:292

• Random instances: wi,j, ci, dj obey normal distribution N(0, 1002) and qi,j =293

wi,j.294

• Max Biclique instances: If (i, j) ∈ E, then wi,j obeys normal distribution295

11



N(100, 1002); otherwise wi,j is a large negative number. And qi,j = wi,j,296

ci = 0, dj = 0.297

• Max Induced Subgraph instances: If (i, j) ∈ E, then wi,j obeys normal298

distribution N(100, 1002); otherwise wi,j = 0. And qi,j = wi,j, ci = 0, dj = 0.299

• Max Cut instances: If (i, j) ∈ E, then wi,j obeys normal distributionN(100, 1002)300

and qi,j = −2wi,j; otherwise qi,j = wi,j = 0. And ci =
∑n
j=1wi,j, dj =301 ∑m

i=1wi,j.302

• Matrix Factorization instances: De�ne a random matrix H = (hi,j) and303

each hi,j has a probability of 0.5 to be assigned value 0 or value 1. Then304

qi,j = 1− 2hi,j and ci = 0, dj = 0.305

Our MPTS algorithm is coded in C++ and compiled by GNU g++ on a306

computer with an Intel Xeon E5440 2.83GHz processor and 8GB RAM. The307

stopping condition is set to be 5 minutes for each medium instance and 60308

minutes for each large instance. Given the stochastic nature of the proposed309

algorithm, each instance is solved by 20 independent runs. Table 1 presents310

the parameter setting in the MPTS algorithm.311

Table 1
Settings of parameters

Parameters Section Description Values

tl 3.3 tabu tenure 22

N1 3.3 continuous non-improvement iterations to terminate the SN-TS phase 50000

N2 3.4 continuous non-improvement iterations to terminate the VLSN-TS phase 25

gps 3.5 greedy perturbation strength 0.6

rps 3.5 recency-based perturbation strength 0.5

gplimit 3.5 continuous non-improvement tabu search rounds to switch the perturbation strategies 10

4.2 Parameter sensitivity analysis312

To con�rm the e�ectiveness of the values in Table 1, we additionally perform313

a parameter sensitivity analysis. We choose 10 representative instances to314

perform the experiment. For the experiment, we change the value of a chosen315

parameter while keeping the settings of all the other parameters unchanged316

and run the MPTS algorithm to solve each of the 10 instances. For each317

parameter setting and each instance, the average objective value over 20 runs318

is recorded.319

For the results of each parameter, we apply the Friedman test to see if there320

exist statistical di�erences among di�erent parameter settings. A parameter is321

sensitive if signi�cant di�erences are observed among di�erent settings. Oth-322

erwise, this parameter is considered as insensitive. The returned p-values of323

varying the values of parameters N1, N2, gps and rps are 0.069, 0.483, 0.967324

and 0.763, respectively, meaning that there are no signi�cant di�erences among325
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the considered settings for these parameters. However, changing the parame-326

ters tl and gplimit leads to signi�cant di�erences with p-values of 6.411e-04327

and 0.012, respectively.328

Tables 2 and 3 further present the average objective values of using each329

setting for the parameters tl and gplimit. As can be seen from the tables, the330

setting of tl = 22 and gplimit = 10 can achieve the best results for 5 out of331

the 10 tested instances, superior to other settings.332

Table 2
Sensitivity analysis of the parameter tl

Instances/tl

favg

12 17 22 27 32 37 42

rand1000×5000 131858 131869 132050 131171 131606 131067 131109

rand2000×5000 203184 204232 204398 204042 203811 203750 201915

biclique1000×5000 311344 311344 311344 311344 311344 311344 311344

biclique2000×5000 567896 568225 568914 568688 567785 567571 568890

bimaxcut1000×5000 816968 816968 816968 816968 816968 816968 816968

bimaxcut2000×5000 1264870 1264870 1264870 1264870 1264870 1264870 1264870

maxinduced1000×5000 118398 118468 119001 118708 117914 118398 117599

maxinduced2000×5000 184509 184509 184509 184509 184509 184509 184509

matrixfactor1000×5000 1238 1234 1238 1230 1222 1220 1232

matrixfactor2000×5000 1956 1960 1964 1950 1954 1938 1942

Table 3
Sensitivity analysis of the parameter gplimit

Instances/gplimit

favg

6 7 8 9 10 11 12

rand1000×5000 131789 131842 131993 131908 132050 131737 131842

rand2000×5000 204123 203897 204232 204019 204398 204155 203898

biclique1000×5000 310644 311344 310930 311344 311344 311344 311344

biclique2000×5000 568688 569350 569350 569350 568914 568890 569072

bimaxcut1000×5000 816968 816968 816968 816968 816968 816968 816968

bimaxcut2000×5000 1264870 1264870 1264870 1264870 1264870 1264870 1264870

maxinduced1000×5000 118468 118442 118398 118708 119001 118708 118118

maxinduced2000×5000 184509 184509 184509 184509 184509 184509 184509

matrixfactor1000×5000 1230 1230 1234 1234 1238 1230 1234

matrixfactor2000×5000 1950 1954 1956 1954 1964 1952 1958

13



Table 4
Comparative results on medium instances

Instances BKR
STS-OSLS ATS-SO MPTS

Gapbst Gapavg time Gapbst Gapavg time Gapbst Gapavg time

rand200×1000 95587 0 0 82.5 0 0 8.1 0 0 1.1

rand400×1000 149408 0 0 30.8 0 0 14.4 0 0 11.4

rand600×1000 195354 0 0 79.5 0 0 83.3 0 0 93.4

rand800×1000 244826 0 0 182.5 0 0 38.8 0 0 33.5

rand1000×1000 285491 0 -1 216.4 0 0 48.1 0 0 72.5

biclique200×1000 256419 0 -14 273.5 0 0 31.1 0 0 12.6

biclique400×1000 486625 0 0 75.4 0 0 18.3 0 0 27.9

biclique600×1000 709340 0 0 10 0 0 28.8 0 0 6.0

biclique800×1000 934429 0 0 52.4 0 0 110.3 0 0 14.1

biclique1000×1000 1152607 0 -135 162.8 0 0 36.4 0 0 105.9

bimaxcut200×1000 255582 0 0 1.5 0 0 9.7 0 0 0.6

bimaxcut400×1000 387937 0 0 5.5 0 0 10.2 0 0 1.3

bimaxcut600×1000 501074 0 0 8.6 0 0 9.7 0 0 7.17

bimaxcut800×1000 628120 0 0 17.3 0 0 20.4 0 0 2.3

bimaxcut1000×1000 762194 0 0 19.1 0 0 21.1 0 0 2.8

maxinduced200×1000 80289 0 0 78.7 0 0 13.7 0 0 2.9

maxinduced400×1000 124363 0 0 21.1 0 0 8.1 0 0 10.6

maxinduced600×1000 164565 0 0 20.4 0 0 36.9 0 0 11.3

maxinduced800×1000 208349 0 0 9.9 0 0 11.7 0 0 3.8

maxinduced1000×1000 245263 0 0 17.2 0 0 16.1 0 0 5.3

matrixfactor200×1000 930 0 0 76.3 0 0 10 0 0 1.1

matrixfactor400×1000 1446 0 0 41.6 0 0 17.3 0 0 6.4

matrixfactor600×1000 1940 0 0 86.3 0 0 39 0 0 12.3

matrixfactor800×1000 2392 0 0 97.9 0 0 33.6 0 0 16.9

matrixfactor1000×1000 2828 0 -1 210.5 0 0 72.4 0 0 165.9

4.3 Computational comparisons333

In this section, we present experimental comparisons of the proposed MPTS334

algorithm with the STS-OSLS algorithm in [28] and the ATS-SO algorithm335

in [35]. It's noteworthy that ATS-SO and STS-OSLS are the best BBQP-PV336

algorithms recently published in the literature. All the algorithms were run337

on the same computing platform under the same stopping condition. Tables 4338

and 5 present the results of MPTS, STS-OSLS and ATS-SO on the 25 medium339

instances and 25 large instances, respectively. For each algorithm, we report340

the best gaps Gapbst between the best objective value fbst obtained by each341

algorithm and the best known result BKR, the average gaps Gapavg between342

the average objective value favg obtained by each algorithm and the best343

known result BKR, and the average running time time in seconds to attain344

the best objective value.345
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Table 5
Comparative results on large instances

Instances BKR
STS-OSLS ATS-SO MPTS

Gapbst Gapavg time Gapbst Gapavg time Gapbst Gapavg time

rand1000×5000 132830 -3851 -5094 2284.7 0 0 1135.2 0 -780 2007.5

rand2000×5000 205455 -2275 -4195 1830.3 0 -573 1727.7 0 -1057 1458.8

rand3000×5000 270961 -1797 -2906 2071.9 0 -1263 1752.7 157 -1226 2217.1

rand4000×5000 333074 -2971 -4847 2330.8 0 -2049 2030.8 -218 -3137 2386.6

rand5000×5000 392923 -4105 -6297 1854.4 0 -3021 2350.3 -44 -3835 2049.4

biclique1000×5000 311344 0 -1097 2452.6 0 0 336.6 0 0 1954.0

biclique2000×5000 569350 -3863 -6084 1771.8 0 -43 1470.3 0 -436 2005.6

biclique3000×5000 824453 -28 -1096 1385 0 -18 1806.5 0 -788 2158.3

biclique4000×5000 1073688 0 -1201 1939.2 0 -147 1681 0 -1188 1772.2

biclique5000×5000 1324514 0 -979 1657.9 0 -53 2066.3 0 -814 1783.7

bimaxcut1000×5000 816968 0 0 46.3 0 0 70.8 0 0 11.7

bimaxcut2000×5000 1264870 0 0 33.5 0 0 96.1 0 0 13.9

bimaxcut3000×5000 1835507 0 0 37.1 0 0 117.4 0 0 18.6

bimaxcut4000×5000 2144147 0 0 72.4 0 0 130.8 0 0 35.6

bimaxcut5000×5000 2621300 0 0 211.4 0 0 141.3 0 0 30.7

maxinduced1000×5000 119222 -2285 -3344 2188.6 0 0 391.2 0 -221 1796.4

maxinduced2000×5000 184509 0 -2835 2013.4 0 0 533.9 0 0 707.2

maxinduced3000×5000 243649 -761 -1565 1792.8 0 -478 1963.9 0 -1125 1883.7

maxinduced4000×5000 298445 -686 -1693 1936.2 0 -771 2018.6 0 -1748 1206.4

maxinduced5000×5000 352207 -1463 -2710 1582.1 0 -1360 1830.6 0 -2006 1856.8

matrixfactor1000×5000 1252 -44 -53 1543.4 0 -5 1667.3 0 -13 1471.0

matrixfactor2000×5000 1972 -20 -36 1526.9 0 -8 1657.5 10 -7 1693.5

matrixfactor3000×5000 2618 -18 -27 1867 0 -11 1736.7 10 -12 1839.4

matrixfactor4000×5000 3230 -26 -47 1772.3 0 -15 2110.8 10 -16 1887.7

matrixfactor5000×5000 3818 -30 -60 1982.6 0 -19 1811.8 8 -25 1811.9

From Table 4, we �nd that our MPTS algorithm performs as well as ATS-SO346

and STS-OSLS in terms of the best objective values. In terms of the average347

objective values, MPTS and ATS-SO are able to reach BKR in each run,348

performing better than STS-OSLS which fails to do so for 4 instances. The349

computational time of MPTS is comparable to that of ATS-SO and much350

shorter than that of STS-OSLS.351

From Table 5, we observe that MPTS performs better than ATS-SO and352

STS-OSLS by �nding improved lower bounds for 5 instances and matching353

best known lower bounds for all except 2 instances. In terms of the average354

objective values, both MPTS and ATS-SO outperform STS-OSLS, but ATS-355

SO generally performs better than MPTS.356
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5 Analysis357

To shed light on the behavior of the proposed algorithm, we assess in this358

section its essential ingredients including the combined use of two tabu search359

phases, the inherited tabu list strategy, the use of two evaluation functions in360

the search phases and the perturbation mechanism. All additional experiments361

shown below are conducted on 20 challenging instances and use the same362

parameter settings and stopping condition as indicated in Section 4.1.363

5.1 E�ectiveness of the combined use of the SN-TS and VLSN-TS phases364

Our MPTS algorithm integrates the SN-TS phase with the VLSN-TS phase to365

improve an initial solution. In order to con�rm its merit, we remove the SN-TS366

phase and the VLSN-TS phase respectively, while keeping other components367

unchanged to produce two variants: MPTS-NO-SN and MPTS-NO-VLSN.368

To perform the experiment, we run MPTS-NO-SN and MPTS-NO-VLSN on369

each tested instance and summarize in Figure 1 the average objective gap (in370

percent) obtained by each variant with respect to MPTS, i.e., favg(V ariant)−favg(MPTS)
favg(MPTS)

.371

Figure 1 shows that MPTS performs better than MPTS-NO-VLSN and much372

better than MPTS-NO-SN. Speci�cally, MPTS-NO-VLSN �nds worse average373

objective values than MPTS for 19 out of 20 instances and obtains an aver-374

age percent gap of -1.04% over the 20 instances. MPTS-NO-SN �nds worse375

average objective values than MPTS for all the instances and obtains an aver-376

age percent gap of -2.34% over the 20 instances. To conclude, this experiment377

con�rms that the performance of the proposed MPTS algorithm is enhanced378

by integrating the SN-TS phase and the VLSN-TS phase for conducting the379

neighborhood search.380

5.2 E�ectiveness of the inherited tabu list381

Recall that in our MPTS algorithm, the VLSN-TS phase inherits the tabu382

list from the SN-TS phase rather than to use an independent tabu list. To383

evaluate the role of this strategy, we produce a new variant MPTS-NO-ITL384

that does not share the tabu list between the SN-TS phase and the VLSN-TS385

phase.386

Figure 2 shows the average objective gaps obtained by MPTS-NO-ITL with387

respect to MPTS for each tested instance. The results indicate that MPTS388

performs better than MPTS-NO-ITL in terms of the average objective value.389

To be speci�c, MPTS-NO-ITL reaches worse average objective values for all390
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Fig. 1. Experimental comparisons among MPTS-NO-SN, MPTS-NO-VLSN and
MPTS

instances and obtains an average gap of -0.58% over the 20 instances. This391

observation con�rms that the search information recorded in the tabu list392

of the SN-TS phase is helpful to guide the subsequent VLSN-TS phase for393

reaching better solutions.394

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Instances

A
ve

ra
ge

 o
bj

ec
tiv

e 
ga

ps
 (

%
) 

to
 M

P
T

S

 

 

 r
an

d1
00

0x
50

00

 r
an

d2
00

0x
50

00

 r
an

d3
00

0x
50

00

 r
an

d4
00

0x
50

00

 r
an

d5
00

0x
50

00

 b
ic

liq
ue

10
00

x5
00

0

 b
ic

liq
ue

20
00

x5
00

0

 b
ic

liq
ue

30
00

x5
00

0

 b
ic

liq
ue

40
00

x5
00

0

 b
ic

liq
ue

50
00

x5
00

0

 m
ax

in
du

ce
d1

00
0x

50
00

 m
ax

in
du

ce
d2

00
0x

50
00

 m
ax

in
du

ce
d3

00
0x

50
00

 m
ax

in
du

ce
d4

00
0x

50
00

 m
ax

in
du

ce
d5

00
0x

50
00

 m
at

rix
fa

ct
or

10
00

x5
00

0

 m
at

rix
fa

ct
or

20
00

x5
00

0

 m
at

rix
fa

ct
or

30
00

x5
00

0

 m
at

rix
fa

ct
or

40
00

x5
00

0

 m
at

rix
fa

ct
or

50
00

x5
00

0

MPTS
MPTS−NO−ITL

Fig. 2. Experimental comparisons between MPTS-NO-ITL and MPTS

5.3 E�ectiveness of incorporating a second evaluation function395

Our SN-TS and VLSN-TS search phases use two evaluation functions in a396

probabilistic way to evaluate moves. In order to show its e�ectiveness, we397
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produce a variant MPTS-NO-SEF that only keeps the customary objective398

function as the evaluation function in both search phases. For the tested in-399

stance, we show in Figure 3 the percent gaps of the average objective values400

obtained by MPTS-NO-SEF from those obtained by MPTS.401

The results shows that MPTS-NO-SEF performs worse than MPTS for all402

instances and yields an average percent gaps of -0.47% over the 20 instances.403

Hence, this experiment demonstrates the merit of the incorporated additional404

evaluation function to the performance of the proposed MPTS algorithm.405
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Fig. 3. Experimental comparisons between MPTS-NO-SEF and MPTS

5.4 E�ectiveness of the proposed perturbation phase406

The search diversi�cation in the designed MPTS algorithm is achieved by407

adaptively selecting a greedy perturbation procedure or a recency-based per-408

turbation procedure. To evaluate the impact of this hybrid perturbation strat-409

egy, we create two variants MPTS-NO-GP and MPTS-NO-RP by removing410

the greedy perturbation procedure and the recency-based perturbation pro-411

cedure respectively. For each tested instance, the percent gaps of the average412

objective values of each variant to the average objective values of MPTS are413

shown in Figure 4.414

Figure 4 shows that MPTS �nds better average objective values than MPTS-415

NO-GP and MPTS-NO-RP for 19 instances and 20 instances respectively.416

Moreover, the percent gaps of the average objective values over 20 instances417

obtaind by MPTS-NO-GP and MPTS-NO-RP to those obtained by MPTS418
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Table 6
Results summary of MPTS and all the analyzed variants
Average MPTS MPTS-NO-SN MPTS-NO-VLSN MPTS-NO-ITL MPTS-NO-SEF MPTS-NO-GP MPTS-NO-RP

fbst 331553.8 326427.2 330163.2 330584.9 330713.6 330320.6 330762.0

favg 332472.3 328649.2 331211.1 331625.1 331715.3 331638.3 331728.4

time 1797.4 1785.3 1714.8 1787.1 1696.0 1762.2 1638.1

are -0.70% and -0.52%, respectively. To sum, this experiment demonstrates419

the superiority of the proposed hybrid perturbation strategy over the use of420

di�erent perturbation strategies in isolation.421
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Fig. 4. Experimental comparisons among MPTS-NO-GP, MPTS-NO-RP and MPTS

5.5 Summary422

Table 6 shows computational comparisons between MPTS and all the vari-423

ants analyzed in previous experiments. For each algorithm, we summarize the424

averages of the best objective values fbst, of the average objective values favg425

and of the computation time time over the 20 tested instances. From this ta-426

ble, we �rst observe that removing any component from our MPTS algorithm427

deteriorates the performance of the algorithm in terms of the best and average428

objective values. In addition, MPTS-NO-SN performs the worst, suggesting429

that removing the SN-TS phase is most destructive to the performance of our430

MPTS algorithm. Moreover, MPTS-NO-RP performs the best among all the431

variants, suggesting that removing the recency-based perturbation component432

has the least deterioration to the performance of the algorithm. To conclude,433

this summary provides insights into how di�erent components contribute to434

the performance of the MPTS algorithm.435
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6 Conclusion436

In this study, an e�ective multiple phase tabu search algorithm is developed to437

solve the challenging Bipartite Boolean Quadratic Programming Problem with438

Partitioned Variables. The proposed algorithm combines a simple neighbor-439

hood based tabu search phase with a very large-scale neighborhood based tabu440

search phase to achieve search intensi�cation and employs a hybrid perturba-441

tion phase that adaptively selects a greedy perturbation or a recency-based442

perturbation to ensure search diversi�cation. Extensive experiments indicate443

that the proposed algorithm is able to discover improved best solutions for 5444

instances and match the previously best known solutions for most instances445

within competitive computation time.446

Furthermore, we performed additional experiments to show the e�ectiveness of447

the chosen parameter settings, the importance of the inherited tabu list from448

the simple neighborhood based tabu search phase to guide the subsequent very449

large-scale neighborhood based tabu search phase for reaching high quality450

solutions, the merit of combining multiple tabu search phases,the advantage451

of incorporating a second evaluation function, as well as the role of the hybrid452

perturbation strategy.453

Several important search strategies proposed in this work are general and454

could be applicable to solve other combinatorial optimization problems. For455

example, the hybrid perturbation strategy that adaptively applies a greedy456

perturbation or a recency-based perturbation depending on the current search457

status to locate starting solutions in promising search areas can be used as a458

general diversi�cation component in various metaheuristics. When a solution459

is improved by multiple tabu search phases, an integrated tabu list could460

be more advantageous than several independent tabu lists. Furthermore, the461

strategy of integrating basic tabu search with very large-scale neighborhood462

based tabu search could be useful for a better search intensi�cation.463
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