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Abstract

The Traveling Repairman Problem with Profits is to select a subset of nodes (cus-
tomers) in a weighted graph to maximize the collected time-dependent revenues.
We introduce an intensification-driven local search algorithm for solving this chal-
lenging problem. The key feature of the algorithm is an intensification mechanism
that intensively investigates bounded areas around each very-high-quality local op-
timum encountered. As for its underlying local optimization, the algorithm employs
an extended variable neighborhood search procedure which adopts for the first time
a K-exchange sampling based neighborhood and a concise perturbation procedure
to obtain high-quality solutions. Experimental results on 140 benchmark instances
show a high performance of the algorithm by reporting 36 improved best-known re-
sults (new lower bounds) and equal best-known results for 95 instances. Additional
experiments are conducted to investigate the usefulness of the key components of
the algorithm.
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1 Introduction

Problem statement. The traveling repairman problem (TRP) (Blum et al.,
1994) is a popular combinatorial optimization problem, which is known to be
NP-hard in Afrati et al. (1986). Generally, the problem can be defined as
follows. Given a complete weighted graph G(V,E), V represents the vertex
set and E is the edge set. The vertex set V is partitioned into V = {0} ∪ Vc
where 0 is the depot and Vc = {1, 2, ..., n} represents the set of n customers.
Each edge (i, j) ∈ E = {(i, j) : i, j ∈ V, i 6= j} is associated with a symmetric
weight di,j = dj,i representing the travel time (or distance) between the two
vertices. The objective of the TRP is to find a Hamiltonian path such that
the total waiting time

∑n
i=0 l(i) is minimal, where l(i) is the waiting time of

customer i with l(0) being set to 0.

The traveling repairman problem with profits (TRPP) (Dewilde et al., 2013)
generalizes the TRP by adding a non-negative profit pi to each vertex i. A re-
pairman starts his travel from vertex 0 (depot) and collects a revenue pi− l(i)
from each visited vertex (customer). The TRPP distinguishes itself from the
TRP by selecting a subset of customers to visit, which means that it is unnec-
essary to visit all customers and the trip stops when no positive revenue can
be further collected. The whole study is restricted in the Euclidean plane. The
objective of the TRPP is to find the open Hamiltonian circuit to maximize the
total collected revenue. Formally, for a given solution ϕ = {x0, x1, x2, ..., xm}
(x0 = 0 and xi ∈ Vc, i = 1, 2, ..,m), the objective function value is given by:

f(ϕ) =
m∑
i=0

[pxi − l(xi)]
+ . (1)

where m is the number of visited customers and the revenue collected for each
visited customer [pxi − l(xi)]

+ is obtained as follows.

[pxi − l(xi)]
+ =

pxi − l(xi), if pxi − l(xi) ≥ 0,

0, otherwise.
(2)

Equation (1) can be reformulated into another form if the collected revenue
pxi − l(xi) is non-negative for all the customers in ϕ:

f(ϕ) =
m∑
i=0

pxi −
m−1∑
i=0

(m− i) · dxi,xi+1
. (3)

Equation (3) is significant to perform fast evaluations during the search process
(Pei et al., 2020), which is also adopted in this study.
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The TRPP can be reduced to the TRP by setting the profit of each vertex to an
extremely large value, and was shown to beNP-hard (Dewilde et al., 2013). As
indicated in the literature (Avci & Avci, 2017; Dewilde et al., 2013; Lu et al.,
2019), the TRPP model has relevant applications in relief efforts management
such as humanitarian and emergency relief logistics. For example, after an
earthquake, assuming that pi persons are in danger for each village i, a person
will die at each time moment. A rescue team starts from its base and visit the
damaged villages to save lives. Consequently, the goal of the rescue team is to
save as many lives as possible

∑
i [pi − l(i)]

+, where l(i) is the arriving time of
the rescue team for village i.

Literature review. In 2013, Dewilde et al. (2013) introduced a mixed 0/1
linear programming model of the TRPP. They also proposed a tabu search
(TS) algorithm with multiple neighborhoods (e.g., remove-insert, move-down,
move-up, swap, 2-opt, or-opt...) as well as a greedy initialization procedure. Six
sets of 120 benchmark instances with n = 10, 20, 50, 100, 200, 500 were created
based on various graphs of TSPLIB 1 . The TS algorithm was shown to be able
to find high-quality solutions within a short time even for large instances. They
also reported optimal values for small instances with n = 10, 20 by solving the
0/1 linear program with CPLEX.

In 2017, Avci & Avci (2017) introduced a greedy randomized adaptive search
procedure with iterated local search (GRASP-ILS). In addition to its greedy
randomized solution construction procedure, the proposed algorithm is charac-
terized by its ILS procedure which combines a tabu-enhanced variable neigh-
borhood descent algorithm with an adaptive perturbation mechanism. This
algorithm improved 46 best results reported by Dewilde et al. (2013) and
matched the best-known results for the remaining instances.

Later in 2019, the same authors (Avci & Avci, 2019) proposed an adaptive
large neighborhood search algorithm (ALNS) for the related multiple traveling
repairman problem with profits (MTRPP) and the TRPP. ALNS consists of
a couple of problem-specific destroy operators and two new randomized repair
operators. Tested on the benchmark instances of the TRPP, ALNS updated
36 previous best-known results.

In 2019, Lu et al. (2019) presented a population-based hybrid evolutionary
search algorithm (HESA) for solving the TRPP. The algorithm employs a ran-
domized greedy construction method to create initial solutions, two crossover
operators to generate new solutions and a dedicated variable neighborhood
search to improve each new solution. Computational results on six sets of 120
instances showed that this HESA was able to improve the best-known results
for 39 instances and match the best-known results for the remaining instances.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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In 2020, a general variable neighborhood search approach for solving the
TRPP (GVNS-TRPP) was introduced in Pei et al. (2020). This algorithm
integrates different neighborhoods (Insertion, 2-opt, Swap, Add, Drop...) and
auxiliary data structures to improve the efficiency of the search. They stud-
ied six different variants of the deterministic variable neighborhood descent
(VND) applied to these neighborhoods according to six specific orders as well
as a VND variant where the neighborhoods are applied at random (VND-R).
They tested their GVNS-TRPP algorithm with VND-R on 120 instances and
improved 40 best-known results. To further assess the algorithm, they also re-
ported computational results on a new set of 20 large instances with n = 1000.
According to the reported computational result, GVNS-TRPP can be consid-
ered to represent the state-of-the-art for solving the TRPP. As a result, this
algorithm is used as the main reference algorithm in this study.

Contributions. This study aims to enrich the toolbox of practical solution
methods for the TRPP and introduces an intensification-driven local search
algorithm. The contributions are summarized as follows.

In terms of algorithm design, the proposed intensification-driven local search
for the TRPP (IDLS-TRPP) integrates an original mechanism that examines
bounded areas around each very-high-quality local optimum discovered by
the underlying local optimization procedure. This mechanism uses the elite
local optimum as the search center from which local optimization is repeti-
tively launched to explore the surrounding areas to locate other high-quality
local optima. The underlying local optimization procedure extends the vari-
able neighborhood search by introducing for the first time a K-exchange sam-
pling based neighborhood and combining it with a random exploration of four
other known neighborhoods (Swap, Insert, 2-opt and Or-opt). IDLS-TRPP
additionally adopts the first neighborhood reduction technique (using candi-
date sets) and integrates known streamlining techniques to ensure an efficient
neighborhood evaluation.

Intensive computational evaluations on the 140 TRPP benchmark instances
in the literature demonstrate a remarkable performance of the proposed algo-
rithm. It discovers new best-known solutions (improved lower bounds) for 36
large instances and matches the best-known results for 95 other instances.

Outline. The remainder of this paper is organized as follows. Section 2 intro-
duces the general scheme of the proposed algorithm, the greedy initialization
procedure, the extended variable neighborhood search procedure as well as
the concise perturbation phase. Section 3 presents computational results and
comparisons with the literature. Section 4 experimentally investigates the in-
fluences of the key components of IDLS-TRPP over the performance of the
algorithm. Section 5 draws conclusions and provides perspectives.
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2 An intensification-driven local search for the TRPP

2.1 General scheme

The IDLS-TRPP algorithm is inspired by the Distance Guided Local Search
(DGLS) framework (Porumbel & Hao, 2020), which provides an effective way
to enhance the intensification capacity of an underlying local search procedure.
The basic idea of DGLS is to perform intensified exploration around each very-
high-quality local optimum (elite solution) ϕe in a systematic way to find other
still better solutions. This is achieved by launching repetitively the underlying
local search procedure starting from ϕe and each local search runs within a
sphere of radius R. As such, unlike a conventional local search whose search
trajectory is a continuous search path, a DGLS search trajectory is a tree-like
structure, reducing thus the possibility for the search process to miss nearby
high-quality solutions, which may happen with the conventional local search
(Porumbel & Hao, 2020).

Based on the above idea of DGLS, the proposed algorithm for the TRPP
adopts a simplified approach to explore the nearby solutions around elite local
optima. Let ϕ∗ be the best solution found so far, IDLS-TRPP repetitively runs
from ϕ∗ a underlying local search, which is composed of an extended variable
neighborhood search phase and a concise perturbation phase. Each run of
the local search repeats these two phases until a solution better than ϕ∗ is
encountered or the repetitions reach a search depth fixed by a parameter R
(which mimics the radius parameter of DGLS). If the local search reaches the
fixed search depth, a new local search is launched again starting from a slightly
perturbed ϕ∗. During a local search run, if a new solution better than ϕ∗ is
found, IDLS-TRPP uses the new best solution to update ϕ∗, from which a
new cycle of local search runs is performed to explore the nearby local optima
around the newly discovered elite solution. Figure 1 illustrates the tree-like
search structure of the IDLS-TRPP algorithm.

The pseudo-code of the proposed algorithm is shown in Algorithm 1, which
relies on three components: greedy initialization procedure (GreedyIniSol),
extended variable neighborhood search procedure (EVNS) and concise per-
turbation procedure (CPerturb).

IDLS-TRPP starts by generating an initial solution ϕ with the GreedyIniSol
procedure (line 7), constructing the candidate sets by IniCandidateSet (line 8)
and initiating the best found solution ϕ∗ as well as the search depth counter
Ct (lines 9-10). Then it enters the main loop (lines 11-24) to explore new
solutions by iterating the EVNS procedure and the CPerturb procedure. For
each while loop, the current solution is first improved by EVNS (Section 2.3),
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Fig. 1. Illustration of the tree-like search structure of the IDLS-TRPP algorithm.
Around each new elite solution ϕ∗, the underlying local search procedure is repet-
itively run to explore nearby local optima with a search depth limited to R (blue
dotted lines). Once a new improving solution is found (red lines), the best found
solution ϕ∗ is updated and a new bounded search area is created based on this new
found solution (within the green dotted lines).

the CPerturb procedure is then applied either to the current or the best found
solution. First, if the previous best solution ϕ∗ is not updated and the search
depth R is not reached (Ct < R), the counter Ct is incremented and CPerturb
is operated on the current solution ϕ (lines 13-15). This allows EVNS to
continue its trajectory from a slightly modified solution. Second, if EVNS
reaches the search depth limit (Ct ≥ R), the counter Ct is reset to 0 and
CPerturb is applied to perturb the best solution ϕ∗ (lines 16-18). This triggers
a new search trajectory from ϕ∗. Finally, if EVNS reaches a solution ϕ better
than the best solution ϕ∗, the best solution ϕ∗ is updated, the counter Ct
is reset to 0, and the perturbation is performed on the new elite solution ϕ∗

(lines 19-23). This enables the algorithm to move definitively to the new search
area centered at the newly discovered elite solution. The whole algorithm stops
when the given cutoff-time Tmax is reached and the best solution ϕ∗ ever found
is returned (line 25).

2.2 Greedy initialization procedure

In the greedy initialization procedure, the main operation is to add a customer
to the current partial solution iteratively until all the customers are used to

6



Algorithm 1 Intensification-driven local search for the TRPP (IDLS-TRPP)

1: Input: Input graph G(V,E), search depth limit R, evaluation function f and cutoff-
time Tmax

2: Output: Best found solution ϕ∗

3: /* GreedyIniSol is used to generate a good-quality solution. */
4: /* IniCandidateSet is used to initialize the candidate sets. */
5: /* EV NS is used to perform the local optimization. */
6: /* CPerturb is used to modify (slightly) the input local optimum. */
7: ϕ← GreedyIniSol() // See Section 2.2
8: IniCandidateSet() // See Section 2.3.1
9: ϕ∗ ← ϕ

10: Ct← 0
11: while Tmax is not reached do
12: ϕ← EV NS(ϕ) // See Section 2.3
13: if f(ϕ) < f(ϕ∗) and Ct < R then
14: Ct← Ct + 1
15: ϕ← CPerturb(ϕ) // See Section 2.4
16: else if f(ϕ) < f(ϕ∗) and Ct ≥ R then
17: Ct← 0
18: ϕ← CPerturb(ϕ∗)
19: else
20: Ct← 0
21: ϕ∗ ← ϕ
22: ϕ← CPerturb(ϕ)
23: end if
24: end while
25: return ϕ∗

construct a complete solution ϕ (an array), where ϕ(k) denotes the customer
on position k 2 . To determine the customer for a position, we consider the
profit-distance ratio of a vertex xj with respect to another vertex xi, given by
rxi,xj =

pxj
dxi,xj

.

The pseudo-code of this procedure is presented in Algorithm 2. At first, the
depot is added to the initial empty solution ϕ, the set of customers Vr is
initialized and k is set to 1 (lines 4-6). Then the algorithm iteratively assigns
a customer to each position (lines 7-12). For position k, a subset Va ⊆ Vr is
generated by selecting the min(q, n−k+1) 3 customers with the largest profit-
distance ratio with respect to the customer of the previous position ϕ(k − 1)
(line 8). Then, a random customer from Va is assigned to ϕ(k) and removed
from Vr (lines 9-10). The process is repeated until all customers are assigned
a position. In our work, q (maximum size of the subset) is set to 3. The whole
initialization procedure can be finished in a time complexity O(n2).

2 The notion ‘position’ here represents the index in an array.
3 min(a, b) denotes the smaller value between a and b.
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Algorithm 2 Greedy initialization procedure (GreedyIniSol)

1: Input: Input graph G(V,E) and the maximum size of the subset q.
2: Output: Current solution ϕ.
3: /* ϕ is a permutation where ϕ(k) denotes the customer on position k */
4: ϕ(0)← 0
5: Vr ← {1, 2, ..., n}
6: k ← 1
7: repeat
8: Va ← subset of Vr with the min(q, n− k + 1) customers which have the largest

ratio of profit-distance with respect to the previous customer ϕ(k − 1)
9: ϕ(k)← randomly select one customer from Va

10: Vr ← Vr \ {ϕ(k)}
11: k ← k + 1
12: until All customers receive a position.
13: return ϕ

Algorithm 3 Extended Variable Neighborhood Search (EVNS)

1: Input: Evaluation function f and current solution ϕ
2: Output: Local best solution ϕ
3: /* N1, N2, N3, N4 represent Swap, Insert, 2-opt and Or-opt neighborhoods. */
4: /* NAdd, NDrop, Nkes denote Add, Drop and K-exchange sampling neighbor-

hoods. */
5: repeat
6: ϕlb ← ϕ
7: ϕ← LocalSearch(ϕ,NAdd)
8: NL← {N1, N2, N3, N4}
9: while NL 6= ∅ do

10: Randomly choose a neighborhood N ∈ NL
11: ϕ← LocalSearch(ϕ,N)
12: ϕ← LocalSearch(ϕ,NDrop)
13: NL← NL \ {N}
14: end while
15: ϕ← LocalSearch(ϕ,Nkes)
16: ϕ← LocalSearch(ϕ,NDrop)
17: until f(ϕlb) ≥ f(ϕ)
18: return ϕ

2.3 Extended variable neighborhood search

The variable neighborhood search (VNS) method (Hansen & Mladenović,
2005) has been applied to a number of routing problems (Vincent et al., 2020;
Karakostas et al., 2020; Xu & Cai, 2018; Soylu, 2015; Mladenović et al., 2012;
Frifita et al., 2017; Karakostas et al., 2019). It has also proved to be quite
successful for solving the TRPP, as illustrated in the literature (Pei et al.,
2020; Avci & Avci, 2017; Lu et al., 2019; Avci & Avci, 2019). For this reason,
we also adopt the VNS framework to build our underlying local optimization
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component and we explain the main differences between our approach and
the existing approaches in Section 2.5. The proposed approach is an extended
VNS procedure (EVNS) composed of two phases. The first phase uses the de-
scent local search to explore four neighborhoods (generated by Swap, Insert,
2-opt, Or-opt) in a random order (See Section 2.3.2), similar to the VND-R
procedure in Pei et al. (2020). The second phase employs a new K-exchange
sampling based neighborhood to further improve the local optimum from the
first phase (See Section 2.3.3). Both phases employ the first-improving strategy
(accepting the first improved solution encountered). This is the first time that
this strategy is adopted to solve the TRPP and we will assess its usefulness
in Section 4.2.

The pseudo-code of EVNS is presented in Algorithm 3. At first, the current
solution ϕ is recorded as the local best solution ϕlb (line 6). Then a local
optimization based on the Add operator is used to add customers to the so-
lution (line 7). The set of neighborhoods NL is initialized by N1, N2, N3, N4

which represent the Swap, Insert, 2-opt and Or-opt neighborhoods respec-
tively (Section 2.3.2). In the inner loop (lines 9-14), these four neighborhoods
are explored by the descent local search in a random order, each descent be-
ing followed by a descent with the Drop neighborhood. When this local search
with these four neighborhoods terminates, a local optimization based on the
K-exchange sampling neighborhood (Nkes) is performed, followed by a de-
scent with the Drop neighborhood (lines 15-16). This process is repeated until
the local best solution ϕ cannot be further improved any more (line 17). At
this point, the search is considered to be trapped into a deep local optimum
and the concise perturbation (Section 2.4) is triggered to displace the search
to a new area according to the strategy explained in Section 2.1.

2.3.1 Candidate set

To accelerate the calculation for solving the traveling salesman problem (TSP)
(Flood, 1956) and the vehicle routing problem (VRP) (Dantzig & Ramser,
1959), researchers usually examine a number of most promising neighboring
solutions rather than all solutions in the neighborhood. For example, the Lin-
Kernighan (LK) heuristic (Lin, 1965) usually restricts the inclusion of links
in the tour to the five nearest neighbors to a given vertex. This technique is
realized by introducing a candidate set (candidate list) containing a limited
number of candidates for a given customer. For routing problems (Lust &
Jaszkiewicz, 2010; Bentley, 1992), there are several methods to construct the
candidate set, such as the nearest method (Lin, 1965), the α-nearest method
(Helsgaun, 2000) and the granular neighborhood method (Toth & Vigo, 2003).
In this work, we employ the nearest method to generate two candidate sets
Skes and Snf , where Skes is constructed for the K-exchange sampling neigh-
borhood (Section 2.3.3) and Snf is prepared for the other neighborhoods gen-

9



erated by Swap, Insert, 2-opt, Or-opt (Section 2.3.2). The maximum size lkes
and lnf for the candidate sets Skes and Snf are determined in Section 3.2.

2.3.2 Classic neighborhoods

The six operators to generate neighborhoods were used in previous studies (Pei
et al., 2020; Avci & Avci, 2017; Lu et al., 2019; Avci & Avci, 2019). However,
candidate lists are also employed to generate these six neighborhoods, where
N1-N4 only change the visiting order of the selected customers and NAdd as
well as NDrop change the list of visited customers.

For a given solution ϕ = {x0, x1, ..., xm}, let m be the number of visited
customers and lnf represent the maximum size of the candidate set Snf . These
six neighborhoods are defined as follows:

1) N1 (Swap): The positions of two customers are exchanged. Exploring the
Swap neighborhood with respect to Snf could be finished within O(m · lnf )
(see below):

N1(ϕ) = {ϕ′ = ϕ⊕ Swap(xi, xj), 0 < i ≤ m, 0 < j ≤ m,xj ∈ Snf (xi)}

where ϕ′ = ϕ ⊕ Swap(xi, xj) denotes the solution obtained by exchanging
the positions of xi and xj from the current solution ϕ.

2) N2 (Insert): A customer is removed from its position and inserted between
two adjacent customers. Exploring the Insert neighborhood with respect
to Snf requires O(m · lnf ) time (Pei et al., 2020):

N2(ϕ) = {ϕ′ = ϕ⊕ Insert(xi, xj), 0 < i ≤ m, 0 ≤ j ≤ m,xj ∈ Snf (xi)}

where ϕ′ = ϕ⊕ Insert(xi, xj) depicts the solution obtained by inserting xi
to the position between xj and xj+1 from the current solution ϕ.

3) N3 (2-opt): Two non-adjacent edges are removed and replaced by two new
edges to reconnect the circuit. Exploring the 2-opt neighborhood with re-
spect to Snf can be finished within O(m · lnf ) (Pei et al., 2020):

N3(ϕ) = {ϕ′ = ϕ⊕2-opt(xi, xj), 0 ≤ i < m, 0 ≤ j < m, |i−j| > 1, xj ∈ Snf (xi)}

where ϕ′ = ϕ ⊕ 2-opt(xi, xj) represents the solution obtained by removing
two edges ((xi, xi+1) and (xj, xj+1)), as well as reconnecting two new edges
((xi, xj) and (xi+1, xj+1)) from the current solution ϕ.

4) N4 (Or-opt): A block of h (h = 2, 3) consecutive customers is removed and
inserted between two adjacent customers. Exploring the Or-opt neighbor-
hood with respect to Snf requires O(h ·m · lnf ) time (Pei et al., 2020):

N4(ϕ) = {ϕ′ = ϕ⊕Or-opt(xi, xj, h), 0 < i ≤ m+1−h, 0 < j ≤ m,xj ∈ Snf (xi)}
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where ϕ′ = ϕ⊕ Or-opt(xi, xj, h) depicts the solution obtained by inserting
the sequence of (xi, xi+1, ..., xi+h−1) to the position between xj and xj+1

from the current solution ϕ.
5) NAdd (Add): One unselected customer is added to some position of the

solution. The complexity of exploring the complete Add neighborhood is
O((n−m) ·m) (Pei et al., 2020).

6) NDrop (Drop): One selected customer is dropped from the solution. The
complexity of exploring the completeDrop neighborhood is O(m) (Pei et al.,
2020).

According to Pei et al. (2020), evaluating one neighboring solution of Insert,
2-opt, Or-opt, Inter-swap 4 , Add and Drop requires O(1) time. We show here
the complexity for evaluating one neighboring solution of Swap neighborhood
N1 and the whole neighborhood.

Proof 1 Let ϕ = {x0, ..., xi−1, xi, xi+1, ..., xj−1, xj, xj+1, ..., xm} be a solution
with m selected customers. Swapping xi and xj (0 < i < j ≤ m) leads to
a neighboring solution ϕ′ = {x0, ..., xi−1, xj, xi+1, ..., xj−1, xi, xj+1, ..., xm}. As
the set of selected customers is not changed, we only calculate the change
of the accumulated distance. By Equation (3), the change of objective value
∆f = f(ϕ′)− f(ϕ) can be easily calculated as follows.

1) If xi and xj are not adjacent, then

∆f = (m− i+ 1) · (dxi−1,xi − dxi−1,xj) + (m− i) · (dxi,xi+1
− dxj ,xi+1

)

+ (m− j + 1) · (dxj−1,xj − dxj−1,xi) + (m− j) · (dxj ,xj+1
− dxi,xj+1

)

2) If xi and xj are adjacent, then

∆f = (m− i+ 1) · (dxi−1,xi − dxi−1,xj) + (m− j) · (dxj ,xj+1
− dxi,xj+1

)

In other words, ∆f for any neighboring solution can be obtained in O(1). As
a result, the complexity of exploring the N1 neighborhood is O(m · lnf ).

Finally, there may exist several nodes in the solution whose collected revenues
pxi − l(xi) are negative during the search process while Equation (3) only
considers non-negative profits. To eliminate this difficulty, we implement a
local optimization based on the Drop operator after applying local search
with other neighborhoods (See lines 12 and 16 in Algorithm 3). It is worth
noting that dropping the nodes with negative revenues leads to a solution of
better or equal quality, whose simple proof is given in Proof 2. That is the
reason why here applying the Drop operator based on the descent local search

4 Inter-Swap denotes the operation by exchanging a selected customer with an
unselected customer. However, Pei et al. (2020) named it as Swap in their work.
Here, we call it Inter-Swap to distinguish itself from Swap in our work.
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(only accepting the better solution) is able to efficiently eliminate the nodes
with negative revenues.

Proof 2 Given a graph G(V,E) in the Euclidean space, we have a feasible
solution

ϕ = {x0, x1, x2, ...xj−1, xj, xj+1, ...xm}
where the revenue collected of the node xj is negative (pxj−l(xj) < 0). Deleting
the node xj, a new solution ϕ′ is obtained.

ϕ′ = {x0, x1, x2, ...xj−1, xj+1, ...xm}

According to the Equation.1, we could get

f(ϕ′)− f(ϕ) =
i=m∑
i=j+1

([pxi − l(xi) + δ]+ − [pxi − l(xi)]
+)−

[
pxj − l(xj)

]+
≥ 0

where
[
pxj − l(xj)

]+
equals to 0 (because pxj − l(xj) < 0) and δ = wxj−1,xj +

wxj ,xj−1
− wxj−1,xj+1

is non-negative due to the triangle inequality in the Eu-
clidean space. Therefore, dropping the nodes with negative revenues leads to a
solution of better or euqal quality.

2.3.3 K-exchange sampling based neighborhood

This section presents a new neighborhood – the K-exchange sampling (KES)
neighborhood Nkes, which is constructed by the solutions randomly sampled
from the K-exchange neighborhood 5 . To efficiently explore Nkes, we also pro-
pose a corresponding KES heuristic, which is inspired by the popular LK
heuristic (Lin, 1965). The main difference between KES heuristic and LK
heuristic is stated as follows. With the four criterion 6 , the LK heuristic ef-
ficiently explores the complete K-exchange neighborhood to obtain the best
solution in the neighborhood (K-opt). On the contrary, our KES heuristic
does not target the optimality of the found solution and only samples at ran-
dom a portion of the solutions from the K-exchange neighborhood.

We describe now the KES heuristic for exploring Nkes. Starting from a random
node, the KES heuristic successively swaps pairs of edges between the nodes
until an improving solution is found or the maximum number of swaps K (K
is a parameter) is reached. This procedure is called one ‘simulation’. The KES
heuristic repeats the simulation until no improvement is reached during m · dl
successive simulations, where m is the number of selected customers and dl is

5 The K-exchange neighborhood consists of the solutions by replacing at most K
edges from the current solution.
6 They are the sequential exchange criterion, the feasibility criterion, the positive
gain criterion and the disjunctivity criterion (Helsgaun, 2000).
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a parameter called ‘exploration limit’. In our work, the nodes for a edge swap
with respect to customer xi are restricted to the candidate set Skes(xi). The
parameters dl and K are determined in Section 3.2.

Figure 2 illustrates the process of the KES heuristic on a 20-customer graph,
with an initial solution ϕa shown in Figure 2(a). The maximum number of
swaps K is set to 3 and the parameter dl is set to 5. A simulation starts by
selecting a random node from the solution (node x4 marked in blue in Figure
2(a)) and the connection between x4 and x5 is broken. Here, we call the node
to seek for new connection as the target node (x5). The KES heuristic repeats
the following four steps.

1) ‘Identify’: We identify the candidate set of the target node. In Figure 2(a),
the candidate set for the target node x5 is given by Skes(x5) = {x8, x11, x16}
marked in orange (the candidate set is determined by the input graph).

2) ‘Choose’: We randomly choose a node from the candidate set of the target
node. In this example, we choose x8.

3) ‘Swap’: We swap the edges between the two pair of nodes. From Figure 2(a)
to Figure 2(b), we break the connection between x7 and x8 and reconnect
x5 and x8 as well as x4 to x7 to get a new solution ϕb.

4) ‘Evaluate’: We evaluate the new solution to determine whether we continue
this simulation. If ϕb is better than ϕa in terms of the objective value,
ϕb replaces solution ϕa, this simulation is ended, and a new simulation is
started with the newly obtained solution. Otherwise, we repeat the above
procedure using the new target node x7 based on the intermediate solution
in Figure 2(c).

Following the same rule, we reconnect x7 and x13 (one candidate node of x7
marked in orange in Figure 2(c)) to get a temporary solution in Figure 2(d).
We repeat the same procedure and reconnect x12 and x18 to get the solution in
Figure 2(e). Here we performed three edge swaps and reached the maximum
number K. Hence we reconnect x4 and x17 and finish this simulation.

Following the step of ‘Evaluate’, if the solution ϕf in Figure 2(f) is better than
the original solution ϕa, it is recorded and a new simulation is stimulated based
on the solution ϕf . Otherwise, we restart a new simulation from the original
solution ϕa. The maximum number of simulations is equal to m · dl = 20 · 5 =
100 where m represents the number of selected customers. The KES heuristic
stops when there is no improvement over 100 successive simulations.

More explanations about the differences between the LK heuristic and the
KES heuristic are given in Section 2.5.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of the KES heuristic on a 20-customer graph.

2.4 Concise perturbation

After EVNS, a concise perturbation phase is used to help the search escape
from the deep local optimum. As explained in Section 2.1, the perturbation
operates either on the current solution ϕ or the best found solution ϕ∗ accord-
ing to the dedicated rule. To perform the perturbation, we apply Insert and
Add to transform the chosen solution. We firstly execute the Insert opera-
tion p1 times by randomly choosing a customer xr from the set of the visited
customers and inserting it to a random position. Then we apply the Add oper-
ator min(p2, |V | − |Vs|) times by adding at each time an unselected customer
xi ∈ V \ Vs to the position behind a random vertex xj ∈ Vs ∩ Snf (xi) where
Vs is the set of selected customers. p1 and p2 are two parameters determined
in Section 3.2. We also experimented other perturbation operations, but this
concise perturbation method proves to be the most suitable.

2.5 Novelties with respect to the existing algorithms

We discuss now the novelties of the proposed IDLS-TRPP algorithm with
respect to the existing TRPP methods.
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First, the IDLS-TRPP algorithm uses the intensification mechanism intro-
duced in Section 2.1 to ensure an intensified exploration of every elite solution
encountered during the search. This mechanism uses the latest best solution
as the search center and explores multiple search directions by repetitively
launching the underlying EVNS procedure from this center. This strategy en-
ables IDLS-TRPP to find additional high-quality solutions that may be missed
by conventional local search methods.

Second, like the algorithms (Pei et al., 2020; Dewilde et al., 2013; Avci &
Avci, 2017; Lu et al., 2019; Avci & Avci, 2019) for solving the TRPP, our
algorithm also relies on the VNS framework to perform the local optimiza-
tion. The employment of the candidate lists helps our algorithm to explore
the neighborhoods more efficiently compared to the main reference algorithm
(Pei et al., 2020). The detailed comparisons are listed in Table 1. Besides that,
our EVNS procedure enhances the exploration of four known neighborhoods
(Swap, Insert, 2-opt and Or-opt) by a K-exchange sampling based neighbor-
hood Nkes, which was never applied in the literature for solving the TRPP.
This generally allows the algorithm to find still better solutions from the best
local optimum generated by the other neighborhoods.

Table 1
Summary of the classical neighborhood structures as well as their complexities in Pei
et al. (2020) and the proposed algorithm, where n depicts the number of customers,
m is the number of selected customers, h is the number of consecutive customers in
the block for Or-opt, and lnf is maximum size of the candidate set Snf .

Neighborhood
GVNS-TRPP (Pei et al., 2020) IDLS-TRPP

Employment Complexity Employment Complexity

Swap # - ! O(m · lnf )

Insert ! O(m2) ! O(m · lnf )

2-opt ! O(m2) ! O(m · lnf )

Or-opt ! O(h ·m2) ! O(h ·m · lnf )

Inter-Swap ! O((n−m) ·m) # -

Add ! O((n−m) ·m) ! O((n−m) ·m)

Drop ! O(m) ! O(m)

It is worth mentioning that, we employ the newly introduced KES heuristic
instead of the LK heuristic to explore the K-exchange neighborhood to avoid
the high computational complexity of the LK heuristic. Indeed, effective fast
evaluation techniques applied in the TSP are not applicable due to the poten-
tial negative profit nodes for the TRPP. Hence, the LK heuristic has a high
computational cost. On the contrary, the KES heuristic is computationally
advantageous since it only samples partially the K-exchange neighborhood.

Finally, the TRPP algorithms in the literature explore each neighborhood
completely. By contrast, our algorithm utilizes the candidate set strategy to
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reduce each neighborhood, which consequently increases the computational
efficiency of the algorithm.

As we demonstrate in Section 3, the IDLS-TRPP algorithm integrating these
features as well as the fast neighborhood evaluation techniques from Pei et al.
(2020) bypasses existing methods on the popular benchmark instances. In
Section 4, we further verify experimentally the effectiveness of the new features
of the proposed algorithm.

3 Experimental results

This section aims to assess the performance of the proposed algorithm. For this
purpose, we perform computational experiments over the benchmark instances
in the literature and present comparisons with the best TRPP algorithm.

3.1 Experimental setup

Seven sets of 140 benchmark instances available in the literature are used,
which include different numbers of customers (n=10, 20, 50, 100, 200, 500
and 1000). Each set contains 20 instances 7 . The first six sets were firstly
introduced by Dewilde et al. (2013) based on graphs from TSPLIB, and the
last set (with 1000 customers) was proposed by Pei et al. (2020).

IDLS-TRPP was coded in the C++ programming language and compiled with
the g++ 7.5.0 compiler and the optimization flag -O3 8 . The experiments were
performed on a computer with a 2.8GHz AMD-opteron-4184 CPU running
Linux OS. Considering the stochastic nature of the algorithm, IDLS-TRPP
was independently executed 20 times on each instance with different random
seeds. The cutoff-time Tmax (in seconds) per run is set to be the number of
customers in accordance with the setting in Pei et al. (2020). Given that our
2.8GHz computer is slightly slower than the 3.2GHz computer used in Pei
et al. (2020). This stopping condition can be considered to be fair for the
comparative study with respect to the main reference algorithm of Pei et al.
(2020).
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Table 2
Description and ranges of the parameters of IDLS-TRPP used for automatic pa-
rameter tuning with Irace (López-Ibáñez et al., 2016).

Parameter Description Type Value range

lnf Maximum size of the candidate set
Snf

Categorical {10, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70, 100, 200, 250}

lkes Maximum size of the candidate set
Skes

Categorical {3, 5, 6, 10, 15, 20, 30, 35, 40,
45, 50, 60, 70}

K Maximum number of switching in
Nkes

Categorical {3, 5, 10, 15, 20, 30, 35, 40, 45,
50, 60, 70, 100}

R Radius of the bounded area Integer [0, 30]

p1 Strength of the Insert perturbation Integer [0, 30]

p2 Strength of the Add perturbation Integer [0, 30]

dl Exploration limit of Nkes Real [0.0, 15.0]

3.2 Tuning of parameters

We used the Irace automatic algorithm configuration package (López-Ibáñez
et al., 2016) to determine a suitable setting for the parameters listed in Table
2, which also includes the range of values of each parameter. For this tuning
experiment, the maximum number of runs (tuning budget) used by Irace is
set to 2000. From the instances of large size (n=500 and 1000), we selected a
subset of 10 training instances which are 500.1, 500.6, 500.12, 500.16, 500.17,
1000.1, 1000.2, 1000.5, 1000.6 and 1000.7. This experiment with Irace led to
the following parametter setting: lnf = 25, lkes = 5, K = 10, R = 2, p1 = 2,
p2 = 1 and dl = 5.9, which was consistently used for all the experiments
reported in this paper. This parameter setting can also be considered to be
the default setting of the IDLS-TRPP algorithm.

3.3 Comparisons with state-of-the-art algorithms

This section presents the computational results obtained by IDLS-TRPP with
respect to the reference algorithm GVNS-TRPP (Pei et al., 2020) over the
140 benchmark instances. We used GVNS-TRPP as the main reference, be-
cause the computational results reported in the literature indicate that GVNS-
TRPP clearly dominates all other TRPP algorithms and holds the state-of-
the-art results for the 140 instances.

Table 3 summarizes the results of IDLS-TRPP compared to GVNS-TRPP
over the seven sets of instances (better results are indicates in bold). Column

7 These instances can be download from: https://github.com/thetopjiji/TRPP
8 The source code will be made available on https://github.com/thetopjiji/

TRPP upon the publication of this work.
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‘Size’ describes the size of the instances in each set. Columns ‘Best’, ‘Average’
and ‘Tavg’ (columns 2-4) indicate respectively the best found results, average
found results and average time to attain the best objective value obtained by
GVNS-TRPP (averaged over the 20 instances in each set), while columns 5-7
depict the same information for our IDLS-TRPP algorithm. The last column
‘imp’ presents the improvement in percentage of the best objective value found
by IDLS-TRPP over the best objective value of GVNS-TRPP. Note that it is
not meaningful to compare the computation time of two algorithms if they do
not report the same results (this is the case for several sets of instances in our
case). So timing information is provided for indicative purposes only.

Table 3
Overall results of IDLS-TRPP and the main reference algorithm GVNS-TRPP (Pei
et al., 2020) on the seven sets of benchmark instances obtained under the same
execution time. The timing information of GVNS-TRPP for the three sets of small
instances (n = 10, 20, 50) is unavailable.

Size
GVNS-TRPP IDLS-TRPP

imp
Best Average Tavg Best Average Tavg

10 1785.70 1785.70 * 1785.70 1785.70 0.01 0

20 7965.80 7965.80 * 7965.80 7965.80 0.02 0

50 50382.90 50382.90 * 50382.90 50382.90 1.23 0

100 211879.40 211871.53 8.82 211879.70 211858.82 13.87 0.0001%

200 851445.80 851282.73 57.36 851452.20 851265.30 71.45 0.0008%

500 6637633.35 6622638.41 404.72 6639248.90 6627811.94 413.91 0.0243%

1000+ 13202607.26 13160262.98 931.58 13217678.58 13180951.73 957.84 0.1142%

Win/Match/Fail 36/95/9

+ The result of instance 1000.13 reported by GVNS-TRPP (Pei et al., 2020) is abnormal. For fair
comparison, the averaged values here are the results excluding this instance. More detailed information
is presented in Table 8.

From Table 3, one observes that IDLS-TRPP is able to attain the best results
reported in the literature for the instances of small sizes (n = 10, 20, 50). For
the remaining four sets of instances, IDLS-TRPP achieves better results in
terms of the average value of the best solutions (column ‘Best’). Concerning
the average results (column ‘Average’), IDLS-TRPP performs better than
GVNS-TRPP for the instances of large sizes (n = 500, 1000), while the reverse
is true for the instances with n = 100, 200. Overall, IDLS-TRPP performs very
well by updating 36 best-known solutions (only missing 9 best-known results)
and matching the best-known results for 95 other instances.

Table 4 gives the detailed results for the instances of small sizes (n=10, 20
and 50). The first column ‘Instance’ indicates the name of each instance.
For each instance, we list the optimal value in column ‘Opt’, the best found
results of GVNS-TRPP in column ‘GVNS-TRPP’, and the best found results
of IDLS-TRPP in column ‘IDLS-TRPP’. From these results, we find that both
IDLS-TRPP and GVNS-TRPP are able to attain the best-known solution for
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Table 4
Computional results of the instances with n = 10, 20, 50. The optimal values of
10-customer and 20-customer instances were reported in Dewilde et al. (2013). We
use ‘Unk’ to indicate ‘Unknown optimal results’ for the 50-customer instances.

Instance
n=10 n=20 n=50

Opt GVNS-TRPP IDLS-TRPP Opt GVNS-TRPP IDLS-TRPP Opt GVNS-TRPP IDLS-TRPP

1 2520 2520 2520 8772 8772 8772 Unk 50921 50921

2 1770 1770 1770 10174 10174 10174 Unk 52594 52594

3 1737 1737 1737 7917 7917 7917 Unk 52144 52144

4 2247 2247 2247 7967 7967 7967 Unk 45465 45465

5 2396 2396 2396 7985 7985 7985 Unk 45489 45489

6 1872 1872 1872 7500 7500 7500 Unk 55630 55630

7 1360 1360 1360 9439 9439 9439 Unk 44302 44302

8 1696 1696 1696 7999 7999 7999 Unk 55801 55801

9 1465 1465 1465 6952 6952 6952 Unk 44964 44964

10 1014 1014 1014 8582 8582 8582 Unk 47071 47071

11 1355 1355 1355 7257 7257 7257 Unk 51912 51912

12 1817 1817 1817 6857 6857 6857 Unk 53567 53567

13 1585 1585 1585 7043 7043 7043 Unk 46830 46830

14 2122 2122 2122 6964 6964 6964 Unk 52665 52665

15 1747 1747 1747 6270 6270 6270 Unk 58856 58856

16 1635 1635 1635 8143 8143 8143 Unk 49754 49754

17 2025 2025 2025 10226 10226 10226 Unk 42525 42525

18 1783 1783 1783 7625 7625 7625 Unk 40536 40536

19 1797 1797 1797 7982 7982 7982 Unk 55346 55346

20 1771 1771 1771 7662 7662 7662 Unk 61286 61286

each instance very easily. These instances are thus easy for both algorithms.

Tables 5 and 6 show the computational results of the compared algorithms over
the 100-customer and 200-customer instances. The first two columns ‘Instance’
and ‘BestEver’ list the names of instances and the best found values in the
literature respectively. The next four columns indicate respectively the best
value (column ‘Best’), average value of 20 runs (column ‘Average’), worst value
(column ‘Worst’) and average time to attain the best objective value of 20
runs (column ‘Time’) for the reference algorithm GVNS-TRPP. The following
four columns show the same information for IDLS-TRPP. The last column ‘δ’
gives the improvement of our algorithm compared to GVNS-TRPP, in terms
of the best found value. The row ‘Avg.’ lists the average value of each column.
Dominating best values are highlighted in bold, which indicate improved best-
known results (with the improvement indicated by ‘δ’). From these tables,
one observes that IDLS-TRPP and GVNS-TRPP perform similarly in terms
of each performance indicator (Best, Average, Worst). This is confirmed by
the Wilcoxon signed rank test applied to each pair comparison, leading to p-
values superior to 0.05. However, it is worth noting that our algorithm achieves
five record-breaking results (new lower bounds) including one 100-customer
instance and four 200-customer instances (indicated by a positive ‘δ’ value).

Tables 7 and 8 show the comparative results of IDLS-TRPP and GVNS-TRPP
for the sets of 500-customer and 1000-customer instances, respectively. In ad-
dition to the same quality information as before (Best, Average, Worst), the
last row ‘p-value’ reports the results of the Wilcoxon signed rank test applied
to the pair of values of each quality indicator. The dominating values for each
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Table 5
Experimental results of the proposed algorithm IDLS-TRPP and the main refer-
ence algorithm GVNS-TRPP over the set of 100-customer instances. The results of
column ‘BestEver’ are collected from the literature (Pei et al., 2020; Dewilde et al.,
2013; Lu et al., 2019; Avci & Avci, 2017, 2019).

Instance BestEver
GVNS-TRPP IDLS-TRPP

δ
Best Average Worst Time Best Average Worst Time

100.1 209952 209952 209952.00 209952 1.89 209952 209952.00 209952 2.32 0

100.2 196318 196318 196313.00 196268 22.92 196318 196296.10 196268 24.62 0

100.3 211937 211937 211937.00 211937 5.15 211937 211937.00 211937 6.56 0

100.4 217685 217685 217685.00 217685 2.14 217685 217685.00 217685 6.85 0

100.5 215119 215119 215119.00 215119 5.52 215119 215035.00 214879 6.93 0

100.6 228687 228687 228687.00 228687 2.23 228687 228687.00 228687 6.51 0

100.7 200064 200064 200064.00 200064 6.36 200064 200063.20 200056 25.33 0

100.8 205760 205760 205760.00 205760 8.93 205760 205715.75 205583 14.62 0

100.9 226240 226240 226240.00 226240 0.79 226240 226240.00 226240 6.26 0

100.10 218202 218202 218202.00 218202 1.19 218202 218202.00 218202 7.24 0

100.11 212503 212503 212442.00 212381 5.17 212503 212480.80 212392 30.45 0

100.12 222249 222249 222249.00 222249 2.25 222249 222249.00 222249 8.27 0

100.13 206957 206957 206957.00 206957 0.99 206957 206957.00 206957 10.73 0

100.14 215690 215690 215690.00 215690 2.41 215690 215690.00 215690 5.32 0

100.15 214041 214041 214041.00 214041 16.40 214041 213990.10 213531 30.28 0

100.16 214036 214036 213976.80 213740 13.89 214036 213929.05 213673 24.16 0

100.17 223636 223636 223635.85 223633 25.70 223642 223641.50 223640 10.44 6

100.18 192849 192849 192849.00 192849 4.47 192849 192849.00 192849 6.98 0

100.19 206755 206755 206723.00 206627 20.62 206755 206741.20 206607 24.65 0

100.20 198908 198908 198908.00 198908 27.42 198908 198835.75 198693 18.86 0

Avg. 211879.40 211879.40 211871.53 211849.45 8.82 211879.70 211858.82 211788.50 13.87

p-value 3.17×10−1 9.26×10−2 2.84×10−2

Table 6
Experimental results of the proposed algorithm IDLS-TRPP and the main refer-
ence algorithm GVNS-TRPP over the set of 200-customer instances. The results of
column ‘BestEver’ are collected from the literature (Pei et al., 2020; Dewilde et al.,
2013; Lu et al., 2019; Avci & Avci, 2017, 2019).

Instance BestEver
GVNS-TRPP IDLS-TRPP

δ
Best Average Worst Time Best Average Worst Time

200.1 877610 877610 877410.10 876549 62.46 877610 877400.65 876550 66.78 0

200.2 901898 901898 901495.70 901184 45.68 901927 901472.25 900516 71.02 29

200.3 888393 888393 888393.00 888393 22.06 888393 888393.00 888393 42.37 0

200.4 873910 873910 873812.60 873467 64.70 873910 873706.50 873424 79.28 0

200.5 849358 849358 849186.65 848111 37.10 849358 849000.80 847939 54.74 0

200.6 816928 816928 816916.65 816910 67.05 816928 816914.50 816909 99.39 0

200.7 784120 784120 784109.20 784059 65.02 784120 784109.35 784012 91.62 0

200.8 838026 838026 837888.05 837075 71.34 838100 837919.35 837208 75.62 74

200.9 891203 891203 891030.65 890637 42.33 891203 891072.10 890637 55.51 0

200.10 847303 847303 847019.15 845931 56.12 847308 846958.80 845899 83.91 5

200.11 804851 804851 804543.60 804087 43.27 804851 804651.85 804372 74.06 0

200.12 808966 808966 808905.20 808293 34.86 808966 808820.30 808071 33.92 0

200.13 861749 861749 861674.70 861006 64.87 861749 861642.00 861006 86.19 0

200.14 850601 850601 850588.70 850509 77.25 850621 850551.45 850397 77.73 20

200.15 848006 848006 847832.10 846711 76.62 848006 847643.35 846662 77.14 0

200.16 854075 854075 853813.70 852452 49.50 854075 853880.10 853099 82.44 0

200.17 861747 861747 861491.05 860397 58.80 861747 861471.35 861117 65.03 0

200.18 842953 842953 842720.30 841618 86.46 842953 842653.20 841742 87.83 0

200.19 822881 822881 822708.75 821919 60.00 822881 822735.90 821664 71.40 0

200.20 904338 904338 904114.75 903132 61.66 904338 904309.20 904295 53.08 0

Avg. 851445.80 851445.80 851282.73 850622.00 57.36 851452.20 851265.30 850695.60 71.45

p-value 6.79×10−2 3.34×10−1 9.25×10−1
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quality indicator are indicated in bold.

From Tables 7 and 8, one observes that our algorithm globally dominates
GVNS-TRPP for these large instances. For the 20 instances with 500-customers,
IDLS-TRPP finds 15 new best solutions, even if it performs worse than GVNS-
TRPP for the five remaining instances. The Wilcoxon signed rank test (p-value
< 0.05) confirms that IDLS-TRPP performs significantly better than GVNS-
TRPP in terms of the best objective value for this set of instances. As to
the average and worst results, the global Avg. values indicate a better perfor-
mance of IDLS-TRPP compared to GVNS-TRPP with statistically significant
differences (p-values < 0.05).

Very similar observations can be made for the set of 20 largest instances with
1000-customers for which 16 new record-breaking results are reached. From
row ‘Avg.’, one observes that IDLS-TRPP dominates GVNS-TRPP in terms of
the best, average and worst results, which are confirmed by the corresponding
Wilcoxon signed rank test (p-value < 0.05).

The dominance of IDLS-TRPP over GVNS-TRPP for these two sets of large
instances in terms of each quality indicator is confirmed by the small p-values
(< 0.05) from the Wilcoxon signed rank tests. Finally, it is interesting to
observe that these improved results can be obtained by IDLS-TRPP with
only a small increase of the computation time compared to the time required
by GVNS-TRPP.

This experiment demonstrates the particular usefulness of the proposed algo-
rithm for solving large and challenging TRPP instances, even if it performs
very well on instances of smaller sizes as well.
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4 Analysis of the key components

This section experimentally investigates the influences of two key components
of the proposed algorithm: the intensification strategy introduced (Section 2.1)
and the KES heuristic (Section 2.3.3). For these experiments, we focus on the
more challenging instances with 200 and more customers. All the algorithmic
variants tested in this section were run with the setup in Section 3.1 and their
results are compared with the results of IDLS-TRPP reported in Table 3.

4.1 Influence of the intensification-driven mechanism

As explained in Section 2.1, the IDLS-TRPP algorithm uses an intensification
mechanism inspired by the DGLS method introduced in Porumbel & Hao
(2020) to intensively explore surrounding areas of each elite solution. This
section experimentally investigates the influence of this mechanism over the
performance of IDLS-TRPP. For this purpose, we create an algorithmic variant
ILS-TRPP by setting the search depth limit R to a very high value and keeping
the other IDLS-TRPP components unchanged (i.e., lines 16-18 of Algorithm
1 will not be executed). Doing this disables the intensification mechanism
because only one (long) iterated local search run instead of multiple bounded
local search runs will be launched from the elite solution.

Table 9 summarizes the comparative results between ILS-TRPP and IDLS-
TRPP with the same information as in Table 3 along with the last column
‘p-values’ from the Wilcoxon signed rank test applied to the best results of the
compared algorithms for each set of instances. One observes that IDLS-TRPP
outperforms ILS-TRPP in terms of the best and average results. The statistical
significant difference in terms of the best results of the compared algorithms
for the three sets of instances is confirmed by the small p-values < 0.05. This
experiment demonstrates the relevance of the intensification mechanism used
by the IDLS-TRPP algorithm.

Table 9
Overall results obtained by ILS-TRPP and IDLS-TRPP.

Size
ILS-TRPP IDLS-TRPP

imp p-value
Best Average Tavg Best Average Tavg

200 851273.95 850882.72 100.29 851452.20 851265.30 71.45 0.0209% 8.84×10−5

500 6615207.85 6602084.57 231.79 6639248.90 6627811.94 413.91 0.3634% 8.86×10−5

1000+ 12987142.35 12944792.46 298.98 13077926.80 13041532.62 958.28 0.6990% 8.86×10−5

+ The results here consider the experimental results obtained by the instance 1000.13, while Table 3 excludes
the results of 1000.13 because of the fair comparison with GVNS-TRPP.

Furthermore, to study the behaviors of the two compared algorithms through-
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out the execution, we performed an additional experiment to obtain the con-
vergence charts (running profiles) of the algorithms on four representative
and difficult instances: two 500-customer instances (500.1 and 500.2 ) and
two 1000-customer instances (1000.1 and 1000.2 ). For this experiment, we
ran each algorithm 20 times to solve each instance with the time limit of 500
seconds (for 500-customer instances) and 1000 seconds (for 1000-customer in-
stances). The best objective values are recorded during the executions.
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Fig. 3. Convergence charts (running profiles) of ILS-TRPP and IDLS-TRPP for
solving four representative difficult instances (500.1, 500.2, 1000.1 and 1000.2 ). The
results were obtained from 20 independent executions of each compared algorithm.

Figure 3 shows the convergence charts that indicate how the average best ob-
jective value found of 20 runs by each algorithm (y-axis) evolves as a function
of the running time of the algorithm (x-axis). We observe that both algo-
rithms are able to attain good-quality solutions quickly (within 50 seconds)
but IDLS-TRPP has a better long-term performance. Indeed, ILS-TRPP gen-
erally begins to stagnate at its local optimum solution after some 200 seconds,
while IDLS-TRPP continues to improve its solutions till the end of the time
limit, showing a very favorable search behavior. This experiment shows that
the intensification mechanism contributes favorably to the performance of the
IDLS-TRPP algorithm.
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4.2 Influence of the KES heuristic

To study the impacts of the KES heuristic on the performance of the algo-
rithm, we created a variant IDLS-TRPP-noKES by disabling the KES heuris-
tic (i.e., removing line 15 in Algorithm 3). We ran IDLS-TRPP-noKES with
the same experimental setting as in Section 3.1. Both of them were performed
using the same cutoff-time for each tested instance. Using the same column
headings as Table 9, Table 10 shows that IDLS-TRPP significantly dominates
IDLS-TRPP-noKES, especially on the large size instances (n=500 and 1000),
according to the Wilcoxon signed rank tests. One can conclude that, the KES
heuristic plays positive role to the proposed algorithm especially on the in-
stances of large size (n > 200).

Table 10
Overall results obtained by IDLS-TRPP-noKES and IDLS-TRPP over 60 bench-
mark instances within same execution time.

Size
IDLS-TRPP-noKES IDLS-TRPP

imp p-value
Best Average Tavg Best Average Tavg

200 851452.15 851201.23 78.88 851452.20 851265.30 71.45 0.0001% 6.55×10−1

500 6636032.05 6622711.91 373.34 6639248.90 6627811.94 413.91 0.0485% 4.85×10−3

1000+ 13030820.05 12985507.28 491.17 13077926.80 13041532.62 958.28 0.3615% 8.86×10−5

+ The results here consider the experimental results obtained by the instance 1000.13, while Table 3 excludes
the results of 1000.13 because of the fair comparison with GVNS-TRPP.

To further study the influence of the Nkes neighborhood on the local optimiza-
tion procedure, we extract EVNS from IDLS-TRPP by deleting the pertur-
bation phase as well as the intensification mechanism, and create a variant:
EVNS-noKES (disabling Nkes).

A supplementary experiment was conducted using these variants on 4 diffi-
cult and representative instances (500.1, 500.2, 1000.1 and 1000.2 ). For this
experiment, each instance was solved 100 times by each algorithm until no
improving solution exists in the neighborhoods. The best found solutions and
the running time are recorded.

Figure 4 summarizes the corresponding bar charts that describe how the av-
erage objective values (y-axis in the left, blue bars) and average running time
(y-axis in the right, red bars) differ between the two variants. One can observe
that EVNS which combines the KES heuristic with other neighborhoods out-
performs EVNS-NoKES in terms of the best found solutions (blue bars) for
all the cases. Although EVNS spends more time than EVNS-NoKES (e.g.,
0.746 seconds vs 0.051 seconds for the instance 500.1), EVNS is able to obtain
good-quality solutions which are never achieved by EVNS-NoKES.

To summarize, EVNS combining the KES heuristic (which is powerful but
time-consuming) and other neighborhoods makes a good trade-off between

26



EVNS EVNS-NoKES
Different variants

6.530e+06

6.540e+06

6.550e+06

6.560e+06

6.570e+06

Av
er
ag

e 
va
lu
e

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e 
tim

e 
(s
ec
on

ds
)

Average value
Average time

(a) 500.1

EVNS EVNS-NoKES
Different variants

6.320e+06

6.330e+06

6.340e+06

6.350e+06

Av
er

ag
e 

va
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

tim
e 

(s
ec

on
ds

)

Average value
Average time

(b) 500.2

EVNS EVNS-NoKES
Different variants

1.558e+07

1.560e+07

1.562e+07

1.564e+07

1.566e+07

1.568e+07

1.570e+07

1.572e+07

Av
er
ag

e 
va
lu
e

0

1

2

3

4

5

6

Av
er
ag

e 
tim

e 
(s
ec
on

ds
)

Average value
Average time

(c) 1000.1

EVNS EVNS-NoKES
Different variants

1.402e+07

1.404e+07

1.406e+07

1.408e+07

1.410e+07

1.412e+07

1.414e+07

1.416e+07

Av
er
ag

e 
va
lu
e

0

1

2

3

4

5

Av
er
ag

e 
tim

e 
(s
ec
on

ds
)

Average value
Average time

(d) 1000.2

Fig. 4. Bar charts of EVNS and EVNS-noKES for solving four representative difficult
instances (500.1, 500.2, 1000.1 and 1000.2 ). The results were averaged over 100
independent executions of each compared algorithm.

the computation time and solution quality. The experiments presented in this
section confirm the positive role of the KES heuristic on the algorithm per-
formance.

5 Conclusions

In this work, we presented an intensification-driven local search for solving
the traveling repairman problem with profits. This algorithm integrates sev-
eral innovative ingredients including the tree-like intensification mechanism
inspired by the general DGLS framework (Porumbel & Hao, 2020), the K-
exchange sampling neighborhood together with the associated KES heuristic
inspired by the Lin-Kernighan heuristic, neighborhood reduction based on the
candidate set strategy and fast evaluation techniques.

The experimental results over 140 benchmark instances showed that the pro-
posed algorithm performs remarkably well and in particularly updates the
best-known results for 36 difficult instances. These new results will be use-
ful to assess other TRPP algorithms. Additional experiments demonstrated
the positive roles of the intensification mechanism and the K-exchange based
heuristic to the algorithm performance.

Even if important progresses have been made in recent year for solving the
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TRPP, this work shows that improvements are still possible with simple and
effective ideas. This work also demonstrates the potential interest of the DGLS
framework (Porumbel & Hao, 2020), which can boost an underlying local
search algorithm with the help of a tree-like intensification mechanism.

Given that the TRPP has a number of practical applications, the code of
our algorithm that we will make publicly available can be used to solve some
of these applications. The proposed algorithm or its components can also be
integrated into more sophisticated methods such as hybrid evolutionary algo-
rithms to build more powerful solution methods for this challenging problem.
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