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Abstract

The multiple traveling repairman problem with profits consists of multiple repair-
men serving a subset of all customers to maximize the revenues collected through
the visited customers. To address this problem, an effective hybrid search algo-
rithm based on the memetic framework is proposed. In the proposed method, three
features are integrated: a dedicated arc-based crossover to generate high-quality off-
spring solutions, a fast evaluation technique to reduce the complexity of navigating
classical neighborhoods as well as a correcting step to ensure accurate evaluation
of neighboring solutions. The performance of the algorithm on 470 benchmark in-
stances were compared with those of the leading reference algorithms. The results
show that the proposed algorithm outperforms the state-of-the-art algorithms by
setting new records for 137 instances and matching the best-known results for 330
instances. The importance of the key search components of the algorithm was in-
vestigated.
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1 Introduction

The traveling repairman problem with profits (TRPP) (Dewilde et al., 2013)
is a general model that can be stated as follows. Let G(V,E) be a complete
weighted graph, where V is the vertex set consisting of the depot 0 and the
customer set Vc = {1, 2, ..., n}, and E = {(i, j) : i, j ∈ V } is the edge set, where
each edge (i, j) is associated with a symmetric weight di,j = dj,i (traveling
time). A repairman begins his trip from the depot to collect a time-dependent
revenue pi− l(i) by visiting each customer and stops his travels when there are
no positive revenues. Here, pi represents the profit, and l(i) is the waiting time
for each customer i (l(0) = 0). Each customer can be visited at most once. The
objective of the TRPP is to determine an open Hamiltonian path such that
the collected revenue

∑m
i=0[pi− l(i)]+ is maximized, where m is the number of

visited customers, and [pi − l(i)]+ is the larger value between pi − l(i) and 0.

The multiple TRPP (MTRPP) generalizes the TRPP by considering multi-
ple repairmen (servers or vehicles) to service customers. In the MTRPP, all
the repairmen start their trips from the depot and collect a time-dependent
revenue independently. Let K ≥ 1 be the number of repairmen, and a for-
mal solution ϕ consists of K Hamiltonian paths (or routes) {X1, X2, ..., XK},
where each path Xk = (xk0, x

k
1, ..., x

k
mk

) contains mk customers (
K⋃
k=1

Xi ⊆ V

and Xi ∩Xj={0}, i 6= j, ∀i, j ∈ {1, 2, ..., K}). The objective function can be
defined as follows:

f(ϕ) =
K∑
k=1

mk∑
i=0

[pxki − l(x
k
i )]+ (1)

The aim of the MTRPP is then to find the solution ϕ∗ with a maximal total
collected revenue f(ϕ∗).

If none of the collected revenue pxki − l(x
k
i ) is negative, then Equation (1) can

be rewritten as follows.

f(ϕ) =
K∑
k=1

mk∑
i=0

pxki −
K∑
k=1

mk∑
i=1

(mk − i+ 1) · dxki−1,x
k
i

(2)

Equation (2) is useful for the fast evaluation of our search algorithm.

The MTRPP is typically applied in humanitarian and emergency relief logis-
tics. For instance, for post-disaster relief operations, K homogeneous rescue
teams start their trips from the base to deliver emergency supplies and save
survivors of damaged villages or cities. Assume that pi persons are to be res-
cued for a village i and one person is lost with each time step. The objective
of the rescue teams is to save as many lives as possible. This application sce-
nario was also mentioned for the TRPP (Dewilde et al., 2013) with a single
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rescue team. The results revealed that the MTRPP is a convenient model for
scenarios that require several rescue teams.

Existing studies on solving the MTRPP as well as some related problems are
briefly reviewed as follows.

Two practical algorithms have been proposed for the MTRPP in the litera-
ture. In 2019, Lu et al. (2019a) proposed the first memetic algorithm (MA-
MTRPP) to solve the MTRPP. This algorithm uses a randomized greedy
construction phase, variable neighborhood search, route-based crossover oper-
ator for solution initialization, local optimization, and solution recombination,
respectively. MA-MTRPP outperformed the general CPLEX solver on the 240
benchmark instances introduced in that study. In the same year, Avci & Avci
(2019) developed a mixed-integer linear programming model and suggested
an adaptive large neighborhood algorithm (ALNS) search approach (ALNS-
MTRPP) for the MTRPP, which incorporates a couple of problem-specific
destroy operators and two new randomized repair operators. The authors pro-
posed another set of 230 benchmark instances and a greedy randomized adap-
tive search procedure with iterated local search (GRASP-ILS), which was used
as a reference heuristic. According to the experimental results, ALNS-MTRPP
outperformed GRASP-ILS for most instances.

The closely related TRPP is a special case of the MTRPP with a single repair-
man (K = 1). Numerous heuristic algorithms were proposed to address the
TRPP. In 2013, Dewilde et al. (2013) first proposed a tabu search algorithm
incorporating multiple neighborhoods and a greedy initialization procedure. In
2017, Avci & Avci (2017) suggested a greedy randomized adaptive search pro-
cedure combined with iterated local search, which outperformed the previous
algorithms by updating 46 best results. In 2019, Lu et al. (2019b) introduced
a population-based hybrid evolutionary search algorithm that outperformed
previous algorithms. In 2020, Pei et al. (2020) developed a general variable
neighborhood search approach integrating auxiliary data structures to im-
prove search efficiency. This algorithm dominated all the previous algorithms
by updating 40 best-known results and matching the best-known results for
the remaining instances. As presented in this study, these auxiliary data struc-
tures can be beneficially extended to the MTRPP to design fast evaluation
techniques for the generalized problem.

The team orienteering problem (TOP) (Chao et al., 1996) is another related
problem, which states that a fixed number of homogeneous vehicles visit a
subset of customers to maximize the collected profits within a traveling dis-
tance constraint. Unlike the MTRPP, the profits of customers in the TOP are
time independent, and distance constraints exist for the vehicles. Various so-
lution methods, including local search algorithms (Vansteenwegen et al., 2009;
Hammami et al., 2020; Tsakirakis et al., 2019), population-based algorithms
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(Bouly et al., 2010; Zettam & Elbenani, 2016; Dang et al., 2013), and exact
methods based on branch-and-price and the cutting plane technique (Boussier
et al., 2007; Bianchessi et al., 2018; El-Hajj et al., 2016; Poggi et al., 2010),
have been developed for the TOP. The cumulative capacitated vehicle rout-
ing problem is related to the MTRPP by considering capacity constraints for
the K repairmen (or vehicles). Popular algorithms for this problem include
evolutionary algorithm (Ngueveu et al., 2010), adaptive large neighborhood
search heuristic (Ribeiro & Laporte, 2012), two-phase metaheuristic (Ke &
Feng, 2013), iterated greedy algorithms (Nucamendi-Guillén et al., 2018), and
brand-and-cut-and-price algorithm (Lysgaard & Wøhlk, 2014).

The MTRPP with multiple repairmen is a realistic model compared with the
TRPP with a single repairman for real-life applications. However, contrary
to the TRPP for which numerous solution methods exist, only two princi-
pal heuristics have been designed for the MTRPP. Thus, tools for addressing
MTRPP should be enhanced. Moreover, the two existing algorithms for the
MTRPP are sophisticated and involve many parameters (13 parameters for
ALNS-MTRPP and 7 for MA-MTRPP). In addition, ALNS-MTRPP cannot
satisfactorily handle large-scale instances (e.g., it requires 3 hours to solve
1000-customer instances).

In this study, we propose an easy-to-use (with only three parameters) and
effective hybrid search algorithm based on the memetic framework to solve
the MTRPP (named EHSA-MTRPP). We summarize the contributions as
follows.

First, we propose an original arc-based crossover (ABX ), which is inspired by
experimental observation and backbone-based heuristics (Zhang, 2004; Wang
et al., 2013). ABX can be used to generate promising offspring solutions from
high-quality parent solutions.

Second, to ensure a high computational effectiveness, we introduce an approx-
imation method to reduce the complexities in examining the neighborhoods
and prove that evaluating one neighboring solution in the underlying neigh-
borhoods for the MTRPP can be performed in constant time. Moreover, in
order to warrant an accurate evaluation, a correcting mechanism is executed
during the search process.

Finally, we provide novel lower bounds for 137 instances out of the 470 bench-
mark instances in the literature. These bounds can be used for future studies
on the MTRPP.

The rest of the paper is organized as follows. The next section is dedicated to
the presentation of the proposed algorithm. In Section 3, we describe the ex-
perimental setup, parameter tuning, and computational results, followed by an
investigation of the key components of the algorithm in Section 4. Conclusions
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and perspectives are provided in the last section.

2 Method

2.1 Main scheme

The proposed hybrid search algorithm for the MTRPP is based on the frame-
work of the memetic algorithm (Moscato, 1999) and relies on five search com-
ponents, namely a population initialization procedure (IniPool), a variable
neighborhood search procedure (VNS ) to perform the local refinement, a per-
turbation procedure (Spert) to help escape from the local optimum, an arc-
based crossover (ABX ) to generate high-quality offspring solutions, and a pool
updating procedure (UpdatingPool) to manage the population with newly ob-
tained solutions.

Algorithm 1 presents the general scheme of the EHSA-MTRPP algorithm.
First, the algorithm calls IniPool (See Section 2.2) to create the population
P , where each solution ϕi is improved by VNS (See Section 2.3) and the best
one is recorded in ϕ∗ (lines 8–12). Next, the algorithm enters the main search
procedure (lines 13–32). For the while loop, we set C to 0 (line 14), randomly
select two solutions ϕa and ϕb from the population P , and generate an offspring
solution ϕ (lines 15–16) with ABX (See Section 2.5). After recording ϕ by
ϕlb, the algorithm enters the inner loop (lines 18–27) to investigate the new
solutions by iterating the VNS procedure and the Spert procedure. For each
inner loop, the current solution ϕ is first improved by VNS (line 19) and then
used to update the local best solution ϕlb. If ϕ is superior to ϕlb, ϕlb is updated,
and the counter C is reset to 0 (lines 20–22). Otherwise, C is incremented
by 1 (lines 23–25). Then, the perturbation procedure Spert is triggered to
displace the search from the local optimum (line 26). The aforementioned
procedures are repeated until C reaches the search limit Limi (line 27), which
indicates that the search is exhausted (and trapped in a deep local optimal
solution). After the inner loop, the local best solution ϕlb is used to upgrade the
population (line 28) and to update the best solution ϕ∗ (lines 29–31). When
the cut-off time Tmax is reached (line 13), the algorithm stops and returns the
best recorded solution ϕ∗ (line 33).

2.2 Initial population

The initial population is filled with two types of solutions: half of them are
created with a randomized construction method, while the remaining solutions
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Algorithm 1 General scheme of the EHSA-MTRPP algorithm

1: Input: Input graph G(V,E), population size Np, search limit Limi, objective func-
tion f and maximum allowed time Tmax

2: Output: Best found solution ϕ∗

3: /* IniPool is used to generate the initial population. */
4: /* VNS is used to perform the local refinement. */
5: /* Spert is used to modify (slightly) the input local optimum. */
6: /* ABX is used to generate promising offspring solutions. */
7: /* UpdatingPool is used to update the population. */
8: P = {ϕ1, ...ϕp} ← IniPool() // See Section 2.2
9: for i← 1 to Np do

10: ϕi ← VNS(ϕi) // See Section 2.3
11: end for
12: ϕ∗ ← arg max{f(ϕi), i = 1, ..., Np}
13: while Tmax is not reached do
14: C ← 0
15: (ϕa, ϕb)← RandomChoose(P )
16: ϕ← ABX(ϕa, ϕb) // See Section 2.5
17: ϕlb ← ϕ
18: repeat
19: ϕ← VNS(ϕ)
20: if f(ϕ) > (ϕlb) then
21: ϕlb ← ϕ
22: C ← 0
23: else
24: C ← C + 1
25: end if
26: ϕ← Spert(ϕ) // See Section 2.4
27: until C ≥ Limi
28: UpdatingPool(ϕlb, P ) // See Section 2.6
29: if f(ϕlb) > (ϕ∗) then
30: ϕ∗ ← ϕlb

31: end if
32: end while
33: return ϕ∗

are generated with a greedy construction method.

For the randomized construction method, we first create a giant tour with
all the customers in a random order. Next, we separate the giant tour into
K routes, where each route has the same number of customers. This method
leads to a complete solution ϕ.

We also use the greedy construction method proposed by Avci & Avci (2019).
Starting from an empty solution ϕ with K routes and a vertex list Vr =
{1, 2, ..., n}, the greedy construction method iteratively adds one vertex to
the solution following a greedy randomized principle. At each step, we eval-
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Algorithm 2 Local optimization with variable neighborhood search

1: Input: Objective function f and current solution ϕ
2: Output: Local best solution ϕ
3: /* N1, N2, N3, N4 represent Swap, Insert, 2-opt and Or-opt neighborhoods, re-

spectively. */
4: /* N5, N6, N7 represent respectively Inter-Swap, Inter-Insert and Inter-2-opt

neighborhoods. */
5: /* NAdd, NDrop denote Add and Drop neighborhoods. */
6: repeat
7: ϕ′ ← ϕ
8: SN ← {N1, N2, N3, N4, N5, N6, N7}
9: ϕ← LocalSearch(ϕ,NAdd)

10: while SN 6= ∅ do
11: Randomly choose a neighborhood N ∈ SN
12: ϕ← LocalSearch(ϕ,N)
13: ϕ← LocalSearch(ϕ,NDrop)
14: SN ← SN \ {N}
15: end while
16: until f(ϕ′) ≥ f(ϕ)
17: return ϕ

uate the objective variation of the solution ϕ for each operation Ope(v, k),
which represents adding v ∈ Vr to the route k. Next, we construct a can-
didate set OPEc consisting of the q operations (q is set to three here) with
the largest contributions to the objective value. Finally, a random operation
Ope(v, k) ∈ OPEc is performed to extend the partial solution, and the vertex
v was removed from Vr. These steps are repeated until all the customers are
added into the solution. For more details, please refer to Avci & Avci (2019).

2.3 Solution improvement by variable neighborhood search

For local optimization, we adopt the general variable neighborhood search
(VNS) method (Mladenović & Hansen, 1997), which has proved to be success-
ful for both the TRPP (Pei et al., 2020; Lu et al., 2019b; Avci & Avci, 2017)
and the MTRPP (Lu et al., 2019a).

The proposed VNS procedure for the MTRPP is presented in Algorithm 2.
In the outer loop (lines 6-16), we first initialize the recorded solution ϕ′ with
the current solution ϕ and the neighborhood set SN with seven neighborhoods
N1-N7 (lines 7-8). After a local search procedure based on NAdd with the cur-
rent solution (line 9), the search enters the inner loop to explore the best local
solutions by alternating between different neighborhoods (lines 10–15). For
each inner loop, we randomly select a neighborhood N ∈ SN and used it to
perform local optimization from the current solution (lines 11-12). Next, an
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additional local optimization based on NDrop is performed, and the neighbor-
hood N is removed from the neighborhood set SN (lines 13–14). When the
neighborhood set SN is explored (SN = ∅), the inner loop ends. These steps are
repeated until there are no improving solutions in the neighborhoods (line 16)
and ϕ is returned (line 17). It is worth emphasizing that the VNS procedure
employs the first-improving strategy (accepting the first improving solution)
and stops when there is no improving solution in the neighborhoods. As it
only takes improving solution at each iteration, it is also called “Variable
Neighborhood Descent (VND)”. The solution obtained from this procedure
corresponds usually to a deep local optimum. To escape from the trap, a per-
turbation phase (See Section 2.4) is triggered to displace the search to a new
search area.

Our VNS procedure exploits three sets of nine neighborhoods where seven of
them were also used in (Lu et al., 2019a; Avci & Avci, 2019). The first set of
four neighborhoods changes the order of customers in one route as follows:

• Swap (N1): The visiting positions of two customers in one route are inter-
changed.
• Insert (N2): One customer is removed from its position and inserted to the

position between two adjacent nodes in the same route.
• 2-opt (N3): Two nonadjacent edges are removed and replaced with two new

edges in the same route.
• Or-opt (N4): A block of h (h = 2, 3) consecutive customers is removed from

one route and inserted into two adjacent nodes in the same route.

The second set of three neighborhoods is designed to change the customers
between different routes as follows:

• Inter-Swap (N5): The positions of two customers are interchanged in two
routes.
• Inter-Insert (N6): One customer is removed from one route and inserted

to the position between two adjacent nodes in another route.
• Inter-2-opt (N7): Two edges are removed from two routes and replaced with

two new edges. A simple illustration is presented in Figure 1.

The third set of two neighborhoods changes the set of visited customers as
follows:

• Add (NAdd): One unselected customer is added to some position in some
route.
• Drop (NDrop): One customer is removed from one route.

Notably, Pei et al. (2020) introduced a series of data structures to realize the
fast evaluation of the neighboring solutions in the neighborhoods N1-N4, NAdd

and NDrop for solving the related TRPP, but they did not study the neigh-
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Fig. 1. Illustration of Inter-2-opt: suppose two routes Xa (marked in blue) and Xb

(marked in orange) operating an Inter-2-opt produce two new routes X ′a and X ′b,
where the blue dotted lines represent the edges to be removed.

borhoods N5-N7. Here, we extend their method to the neighborhoods for the
MTRPP. In practice, each neighboring solution in our algorithm can be eval-
uated in O(1) (proof given in Appendix A), which is more efficient than the
reference algorithms in the literature (Lu et al., 2019a; Avci & Avci, 2019).
The detailed comparisons of the complexities in investigating various neigh-
borhoods between the reference algorithms and the proposed algorithm are
discussed in Section 2.7. The complexities of investigating the aforementioned
neighborhoods are summarized as follows.

Proposition 1 In the MTRPP, for the first set of four neighborhoods (N1-N4)
and the third set of two neighborhoods (NAdd and NDrop), the time complexity
of evaluating each neighboring solution is O(1). Let n be the number of all
customers and m be the number of visited customers in the solution. The time
complexities of investigating these neighborhoods are given as follows.

a) Exploring the complete Swap neighborhood requires O(m2).
b) Exploring the complete Insert neighborhood requires O(m2).
c) Exploring the complete 2-opt neighborhood requires O(m2).
d) Exploring the complete Or-opt neighborhood requires O(m2 · h).
e) Exploring the complete Add neighborhood requires O(m · (n−m)).
f) Exploring the complete Drop neighborhood requires O(m).

Proposition 2 For the second set of three neighborhoods (N5-N7), each neigh-
boring solution can be evaluated in O(1). Let m be the number of visited cus-
tomers in the solution. The time complexities of exploring these neighborhoods
are summarized as follows.

a) Exploring the complete Inter-Swap neighborhood can be finished in O(m2).
b) Exploring the complete Inter-Insert neighborhood can be finished in O(m2).
c) Exploring the complete Inter-2-opt neighborhood can be finished in O(m2).

9



Detailed proofs of Propositions 1 and 2 are presented in Appendix A. With
Equation (2) and a special array in Equation (A.1), we can efficiently inves-
tigate the aforementioned neighborhoods. Notably, the fast evaluation tech-
niques in Propositions 1 and 2 are actually an approximation based on Equa-
tion (2), which is not strictly equivalent to Equation (1) due to the existence
of negative revenue nodes. Therefore, a correcting step is applied to ensure
an accurate evaluation of each neighboring solution by applying the Drop op-
erator within the local optimization procedure (line 13 in Algorithm 2). The
influence of this correcting step is experimentally investigated in Section 4.2.

2.4 Perturbation procedure

To help the search escape from deep local optimum, we apply two operators
Insert and Add to perturb the local optimum. We first perform St times the
Insert operation by randomly selecting a route and inserting some customers
to a random position in the route. For the Add operation, we randomly add an
unvisited customer to the tail of a random route. This procedure is repeated
until all the unvisited customers are added to the solution. The parameter
St is determined by the experiments in Section 3.1. We also tested other
perturbation methods, but the proposed method proved to be better.

2.5 Arc-based crossover

In memetic algorithms, crossovers are used to generate diversified offspring
solutions from parent solutions at each generation. Generally, a meaningful
crossover is expected to inherit useful attributes of the parent solutions and
maintain diversity with respect to the parents (Hao, 2012).

Preliminary experiments revealed that the same arcs frequently appear in
high-quality solutions (See Section 4.5), which naturally encourages us to pre-
serve these shared arcs (meaningful components) in the offspring solution 1 .
Following this observation, we propose a dedicated arc-based crossover for the
MTRPP.

For a given solution ϕ with K paths {X1, ..., XK}, where each path Xk =
(xk0, ..., x

k
mk

) contains mk customers, the corresponding arc set A is defined as
follows:

1 Note that preserving and transferring the shared components from the parents to
the offspring is the basis of backbone-based crossovers (Zhang, 2004; Wang et al.,
2013).
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Algorithm 3 Arc-based crossover (ABX )

1: Input: Input graph G(V,E), parent solutions ϕs and ϕt, the corresponding arc sets
of the parents solutions As and At

2: Output: Offspring solution ϕo

3: /* RandomSel-Half-Arcs randomly selects 50% of arcs from a given set of arcs. */
4: /* Vo is the set of the selected customers for ϕo. */
5: /* Vf is the set of nodes, which will be not removed or inserted to other positions

in future operations. */
6: ϕo ← ϕs

7: Vo ← Vs
8: Vf = ∅
9: Au ← RandomSel-Half-Arcs(At \As)

10: for Each arc (a, b) ∈ As ∩At do
11: Vf ← Vf ∪ {a, b}
12: end for
13: for Each arc (a, b) ∈ Au do
14: if a /∈ Vo and b /∈ Vo then
15: Insert (a, b) to the tail of some route in ϕo

16: else if a ∈ Vo and b /∈ Vo then
17: Insert b to the position after a in ϕo

18: else if a /∈ Vo and b ∈ Vo then
19: Insert a to the position before b in ϕo

20: else if b /∈ Vf then
21: Remove b from ϕo

22: Insert b to the position after a in ϕo

23: else if a /∈ Vf and b ∈ Vf then
24: Remove a from ϕo

25: Insert a to the position before b in ϕo

26: end if
27: Vo ← Vo ∪ {a, b}
28: Vf ← Vf ∪ {a, b}
29: end for
30: return ϕo

A = {(xki , xki+1) : xki , x
k
i+1 ∈ Xk, i ∈ [0,mk − 1], k ∈ [1, K]} (3)

Given two parent solutions ϕs and ϕt, let Vs and Vt represent the set of se-
lected customers, and As and At represent their corresponding arc sets, re-
spectively. The arc-based crossover first copies one parent solution (say ϕs)
to the offspring solution, and then randomly inserts 50% of nonshared arcs
of ϕt (At \ As) into the offspring solution, and finally removes the duplicated
vertices if needed.

The proposed ABX crossover is presented in Algorithm 3. First, ϕs is copied to
ϕo, Vs is copied to Vo, Vf is initialized as empty, and an arc set Au is generated
by randomly selecting 50% arcs from At\As (lines 6–9). To preserve the shared
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arcs (a, b) ∈ As ∩ At in the offspring solution ϕo, we add the vertices of these
arcs into the set Vf (lines 10–12). The vertices in Vf are not considered in
the future operations. Next, we insert each arc (a, b) ∈ Au into the offspring
solution and remove the duplicated vertices (lines 13–29) according to the
following conditions:

1) If both a and b are not included in Vo, the arc (a, b) is added to the tail of
some route (lines 14–15).

2) If only a is contained in Vo, node b is inserted at the position after a in ϕo

(lines 16–17).
3) If only b belongs to Vo, node a is inserted at the position before b in ϕo (lines

18–19).
4) If the two nodes are already in Vo and b is not in Vf , we remove b from ϕo

and insert it at the position after a (lines 20–22).
5) If the two nodes are already in Vo and a is not in Vf , we remove a from ϕo

and insert it at the position before b (lines 23–26).

Both a and b are added into the set Vo and Vf after the aforementioned oper-
ations (lines 27–28), and the whole loop ends when all the arcs (a, b) ∈ Au are
added into the offspring. Finally, the new generated offspring ϕo is returned
(line 30).

Figure 2 displays an illustrative example of the proposed crossover.

Fig. 2. Illustration of ABX on a 18-customer instance with two routes. ϕs and ϕt

are two parent solutions, ϕo is the solution copied from ϕs, and ϕ′o is the generated
offspring solution. Au is the set of arcs, which are randomly selected from the non-
shared arcs of ϕt. Here, V \ Vi represents the set of unselected customers for the
solution ϕi, which can be ϕs, ϕt, ϕo, and ϕ′o. The nodes of the shared arcs between
ϕs and ϕt are marked in blue, while the nodes involved in inserting and removing
are marked in red.
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2.6 Pool updating

After the improvement of the offspring solution by the local refinement pro-
cedure, the population is updated by the improved offspring solution ϕlb (See
line 28 in Algorithm 1). In this study, we use a simple strategy: if ϕlb differs
from all the solutions in the population and is better than the worst solution in
terms of the objective value, ϕlb replaces the worst solution in the population.
Otherwise, ϕlb is abandoned. We tested a diversity-quality updating strategy,
which considers not only the quality of the newly obtained solution but also its
average distance to the other solutions to determine whether to accept ϕlb into
the population. However, the proposed simple updating strategy exhibited a
superior performance.

2.7 Discussion

EHSA-MTRPP differs from the reference algorithms (Lu et al., 2019a; Avci
& Avci, 2019) in two aspects.

EHSA-MTRPP employs fast neighborhood evaluation techniques in its local
optimization procedure for the MTRPP for the first time. These evaluation
techniques ensure a higher computational efficiency of neighborhood exam-
ination than those of the existing algorithms such as ALNS-MTRPP (Avci
& Avci, 2019) and MA-MTRPP (Lu et al., 2019a). To illustrate this point,
Table 1 summarizes the various neighborhoods as well as the complexities in
investigating each neighborhood in ALNS-MTRPP and MA-MTRPP.

From Table 1, we clearly remark that the proposed algorithm investigates
the used neighborhoods efficiently. Notably, evaluating one neighboring solu-
tion in the Inter-Or-opt neighborhood and the Double-bridge neighborhood
(Double-bridge is a popular operator for the traveling salesman problem (Lin
& Kernighan, 1973)) could also be done in O(1) using Equation (2) and the
auxiliary data structures. However, these neighborhoods are not helpful in
improving the performance of our algorithm. Therefore, these two neighbor-
hoods are not used in the proposed algorithm. As these two neighborhoods
are widely used in related routing problems, we give the detailed proof of their
complexities in Appendix A.

Additionally, the proposed algorithm adopts a dedicated arc-based crossover,
which can generate new offspring solutions inheriting meaningful components
(the shared arcs) and diversified from the parent solutions. MA-MTRPP (Lu
et al., 2019a) applies a route-based crossover (RBX) (Potvin & Bengio, 1996),
which simply copies one parent solution to the offspring solution, replaces
some route of the offspring solution with a route from another parent solu-
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Table 1
Summary of the neighborhood structures as well as their complexities in the refer-
ence algorithms and the proposed algorithm, where n depicts the number of cus-
tomers, m is the number of selected customers, and h is the number of consecutive
customers in the block for N4.

Neighborhood
ALNS-MTRPP (Avci & Avci, 2019) MA-MTRPP (Lu et al., 2019a) EHSA-MTRPP

Employment Complexity Employment Complexity Employment Complexity

Swap ! O(m2 lgn) ! O(m3) ! O(m2)

Insert ! O(m2 lgn) ! O(m3) ! O(m2)

2-opt ! O(m2 lgn) ! O(m3) ! O(m2)

Or-opt ! O(m2 lgn) ! O(m3) ! O(m2 · h)

Inter-Swap ! O(m2 lgn) ! O(m3) ! O(m2)

Inter-Insert ! O(m2 lgn) ! O(m3) ! O(m2)

Inter-2-opt ! O(m2 lgn) ! O(m3) ! O(m2)

Inter-Or-opt ! O(m2 lgn) ! O(m3) # -

Add # - # - ! O(m · (n−m))

Drop # - # - ! O(m)

Double-bridge # - ! O(m3) # -

tion, and removes the duplicated vertices if required. Our experiments and
observations revealed that the key components of the solutions are the “arcs”
and not the “routes,” rendering ABX more appropriate than RBX for solving
the MTRPP. Experimental results in Section 4.4 confirm these observations
and demonstrate the effectiveness of the proposed algorithm with ABX com-
pared to its variant with RBX.

3 Computational results and comparative study

This section presents computational experiments over the benchmark instances
in the literature to evaluate the EHSA-MTRPP algorithm.

3.1 Instances, reference algorithms and parameter setting

Our computational experiments are based on two groups of 470 benchmark
instances from Avci & Avci (2019) (230 instances denoted by Ins Avci) and
Lu et al. (2019a) (240 instances denoted by Ins Lu) 2 .

The 230 Ins Avci instances were divided into 14 sets of instances according
to the number of customers and servers (repairmen). The first ten sets of
instances were converted from instances of the TRPP (Dewilde et al., 2013)

2 These instances are available from: https://github.com/REN-Jintong/MTRPP.
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(n=10, 20, 50, 100, 200) by considering two and three servers. As each set of
instances of the TRPP is composed of 20 instances, the authors have created
5 × 2 × 20 = 200 instances. The other four sets of instances are of larger
sizes, including 10 instances with 500 customers and 10 servers, 10 instances
with 500 customers and 20 servers, five instances with 750 customers and 100
servers, and five instances with 1000 customers and 50 servers.

The 240 Ins Lu instances are also based on instances of the TRPP (Dewilde
et al., 2013) and were divided into 12 sets of instances (with n=20, 50, 100,
200 and two, three, and four servers), where each set is composed of 20 in-
stances. Unlike the Ins Avci instances, Lu et al. (2019a) adjusted the profit for
each customer of the instances to ensure a high-quality solution to hold ap-
proximately 75% to 95% of all the customers. Therefore, each customer i was
assigned a non-negative profit pi, which is a random integer between dd0,ie and

dn
k
×

∑
(i,j)∈E di,j

|E| e, where n is the number of all customers and k is the number
of servers.

The proposed EHSA-MTRPP algorithm was programmed in C++ and com-
piled with the g++ 7.5.0 compiler and the -O3 optimization flag 3 . All the
experiments reported in this work were performed on a computer with Intel
Xeon(R) E5-2695 processor (2.1 GHz CPU and 2 GB RAM). The experimental
environments of the reference algorithms are listed as follows.

- The ALNS-MTRPP algorithm (Avci & Avci, 2019) was coded in Matlab
9.1.0, and run on a personal computer equipped with a Intel(R) Core (TM)
i7-5500U processor (2.4 GHz and 8 GB RAM).

- The MA-MTRPP algorithm (Lu et al., 2019a) was programmed in C++
and compiled with g++. The experiments were executed on a computer
with an Intel Xeon(R) CPU E5-2695 processor (2.1 GHz CPU and 2 GB
RAM).

The reference results for the ALNS-MTRPP algorithm are extracted from
Avci & Avci (2019) for the 230 Ins Avci instances, while the results for the
MA-MTRPP algorithm are from Lu et al. (2019a) for the 240 Ins Lu instances.
Unfortunately, the source codes of these reference algorithms are not available.
Therefore, to ensure a fair comparison, we performed two experiments on the
two groups of instances. Following the experimental setup in the literature,
EHSA-MTRPP was run independently five times with different seeds on each
Ins Avci instance while 10 times on the Ins Lu instances. The stopping con-
dition in the literature is a prefixed maximum number of iterations, whereas
in EHSA-MTRPP a maximum cut-off time is used. The average running time
of ALNS-MTRPP (Avci & Avci, 2019) was typically several hours for large
instances, and the average time to get the best solution for MA-MTRPP (Lu

3 The code of our algorithm will be available at the Github page of footnote 2.
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et al., 2019a) was approximately 300 and 500 seconds for the 200 customer
instances. For fair comparisons, we set our cut-off time Tmax to be twice the
number of customers (in seconds). In practice, EHSA-MTRPP can attain su-
perior solutions than the reference algorithms with less time for most of the
benchmark instances.

To determine the parameters listed in Table 2, we used an automatic pa-
rameter tuning tool Irace (López-Ibáñez et al., 2016). In this experiment, we
selected 10 large and difficult instances as the training instances and set the
maximum number of runs (tuning budget) to 2000. According to the tun-

Table 2
Parameters of EHSA-MTRPP tuned with the Irace package.

Parameter Description Type Value range

Limi Search limit Integer [0, 30]

St Strength of the Insert perturbation Integer [0, 100]

Np Number of population Categorical {6, 8, 10, 20, 50, 100}

ing experiment, the parameters determined by Irace are Limi = 2, St = 11,
and Np = 10. We used this parameter setting for EHSA-MTRPP for all our
computational experiments.

3.2 Comparative studies

This section presents the experimental results obtained by EHSA-MTRPP
with respect to the reference algorithms (Lu et al., 2019a; Avci & Avci, 2019)
over the two groups of 470 benchmark instances.

Table 3 lists the overall results of the reference algorithm ALNS-MTRPP and
our EHSA-MTRPP algorithm on the 230 Ins Avci instances (better results
are indicated in bold). Columns “Size” and “K” display the numbers of cus-
tomers and servers. Columns “Best,” “Average,” and “Tavg” (columns 3-5)
denote the best found results, average found results, and average time to obtain
the best found solutions, respectively, for ALNS-MTRPP. The following three
columns depict the same information for EHSA-MTRPP (all the aforemen-
tioned values are averaged over the instances of each set). Column “p-value”
lists the results of the Wilcoxon signed rank tests of the best found results
(column “Best”) between ALNS-MTRPP and EHSA-MTRPP, where “NA”
indicates no difference between the two groups of results. Next, column “δ”
presents an improvement in the percentage of the best objective value found
by EHSA-MTRPP over the best objective value of ALNS-MTRPP. The last
three columns list the number of instances for which the EHSA-MTRPP al-
gorithm improved (“W”), matched (“M”), or failed (“F”) to attain the best
found results reported in Avci & Avci (2019). Finally, row “Avg.” depicts the
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average values of the corresponding indicators.

Table 3
Results of the reference algorithm ALNS-MTRPP(Avci & Avci, 2019) and EHSA-
MTRPP on the 230 Ins Avci instances. Each instance was solved five times ac-
cording to Avci & Avci (2019). The optimal solutions for the instances of “Size
= 10,K = 2, 3” are known, but their timing information is not available.

Size K
ALNS-MTRPP EHSA-MTRPP

p-value δ W M F
Best Average Tavg Best Average Tavg

10 2 2114.85 2114.85 0.00 2114.85 2114.85 0.03 NA 0.000% 0 20 0

10 3 2230.60 2230.60 0.00 2230.60 2230.60 0.03 NA 0.000% 0 20 0

20 2 9074.60 9074.60 3.15 9074.60 9074.60 0.06 NA 0.000% 0 20 0

20 3 9450.45 9450.45 3.10 9450.45 9450.45 0.06 NA 0.000% 0 20 0

50 2 55469.15 55468.55 35.50 55469.15 55469.15 0.82 NA 0.000% 0 20 0

50 3 57184.85 57184.45 30.85 57185.35 57185.35 0.78 3.17×10−1 0.001% 1 19 0

100 2 226899.95 226895.80 346.45 226900.95 226900.47 22.96 1.02×10−1 0.000% 0 20 0

100 3 231954.05 231947.30 551.05 231958.70 231954.23 29.80 1.80×10−1 0.002% 1 19 0

200 2 893183.35 892864.45 3600.00 893513.85 893374.88 263.23 1.20×10−4 0.037% 19 0 1

200 3 907775.35 907611.55 3600.00 907950.35 907841.50 258.94 8.84×10−5 0.019% 20 0 0

500 10 1428716.30 1422361.10 10800.00 1437256.40 1436265.76 898.97 5.06×10−3 0.598% 10 0 0

500 20 692074.30 688804.60 10800.00 694406.60 694114.40 897.70 5.06×10−3 0.337% 10 0 0

750 100 4000199.00 3966184.40 43200.00 4000585.60 4000541.60 1352.60 4.31×10−2 0.010% 5 0 0

1000 50 5186645.80 5066567.40 43200.00 5191726.40 5191527.76 1757.60 4.31×10−2 0.098% 5 0 0

Avg. 500212.50 496401.17 3527.83 500848.55 500765.52 195.88

From row “Avg.” of Table 3, we remark that EHSA-MTRPP outperformed
ALNS-MTRPP in terms of the best found results and the average found re-
sults. The two algorithms exhibited the same performance for the first five sets
of instances (instances of small sizes), whereas for the remaining nine sets of in-
stances, EHSA-MTRPP outperformed the reference algorithm ALNS-MTRPP
both in terms of solution quality (“Best” and “Average”) and running time
(column “Tavg”). In particular, the results of the Wilcoxon signed rank test
(column “p-value”) revealed that a considerable difference exists between the
best found results between ALNS-MTRPP and EHSA-MTRPP over the last
six set of instances (p-value<0.05). Overall, EHSA-MTRPP clearly dominated
ALNS-MTRPP by updating the best records (new lower bounds) for 71 in-
stances, matching the best-known results for 158 instances, and only missing
one best-known result.

Using similar column headings as Table 3, Table 4 summarizes the overall
results of MA-MTRPP and EHSA-MTRPP on the 240 Ins Lu instances.

Row “Avg.” in Table 4 reveals that EHSA-MTRPP achieved a superior perfor-
mance (column “Best” and “Average”) to that of MA-MTRPP with a shorter
average time (66.45 seconds compared to the 102.64 seconds achieved by MA-
MTRPP). For each set of instances, EHSA-MTRPP exhibited a superior or
equal performance in terms of the best found results and average found re-
sults. In particular, the proposed algorithm outperformed MA-MTRPP on
the last three sets of large instances confirmed by the Wilcoxon signed rank
test (p-value < 0.05). In addition, EHSA-MTRPP required less time (column
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Table 4
Results of the reference algorithm MA-MTRPP (Lu et al., 2019a) and EHSA-
MTRPP on the instances of Ins Lu. Each instance was solved 10 times accord-
ing to Lu et al. (2019a). The optimal solutions for small instances (“Size = 20,
K = 2, 3, 4”) are known.

Size K
MA-MTRPP EHSA-MTRPP

p-value δ W M F
Best Average Tavg Best Average Tavg

20 2 3937.60 3937.60 1.31 3937.60 3937.60 0.05 NA 0.000% 0 20 0

20 3 2399.20 2399.20 1.29 2399.20 2399.20 0.05 NA 0.000% 0 20 0

20 4 1733.40 1733.40 1.23 1733.40 1733.40 0.06 NA 0.000% 0 20 0

50 2 27172.15 27172.15 7.38 27173.55 27173.55 1.02 1.09×10−1 0.005% 3 17 0

50 3 17523.55 17523.55 6.26 17523.55 17523.55 0.66 NA 0.000% 0 20 0

50 4 13049.05 13049.05 5.72 13049.25 13049.25 0.75 1.80×10−1 0.002% 2 18 0

100 2 113566.35 113560.76 46.13 113567.10 113566.60 21.44 1.80×10−1 0.001% 2 18 0

100 3 76976.35 76972.48 37.85 76976.65 76976.24 23.31 3.17×10−1 0.000% 1 19 0

100 4 57188.40 57186.69 32.55 57188.55 57188.53 21.07 3.17×10−1 0.000% 1 19 0

200 2 472301.40 472002.08 455.39 472499.25 472354.94 254.16 1.03×10−4 0.042% 19 0 1

200 3 321136.55 320912.21 358.27 321278.75 321175.57 245.66 8.86×10−5 0.044% 20 0 0

200 4 236694.15 236539.09 278.37 236805.20 236720.93 229.22 1.55×10−4 0.047% 18 1 1

Avg. 111973.18 111915.69 102.64 112011.00 111983.28 66.45

“Tavg”) than MA-MTRPP did to attain the best found solutions for each
set of instances. Overall, EHSA-MTRPP updated 66 best records (new lower
bounds), matched the best-known results for 172 instances, and missed only
two best-known results.

In summary, EHSA-MTRPP provided considerably superior results than the
reference algorithms on the 470 benchmark instances by establishing 137 new
record results (29%) and matching best-known results for 330 instances (70%).
The detailed comparisons between the reference algorithms (Lu et al., 2019a;
Avci & Avci, 2019) and EHSA-MTRPP are available at https://github.

com/REN-Jintong/MTRPP.

4 Additional results

This section first presents additional results to demonstrate the critical roles of
the fast evaluation technique, the Drop operator and the arc-based crossover
for the proposed algorithm. Furthermore, we experimentally compared the
proposed algorithm to the variant with RBX and revealed the rationale behind
the proposed crossover.
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4.1 Influence of the fast evaluation technique in the neighborhood structure

To investigate the influence of the fast evaluation technique on our algorithm,
we created a variant of EHSA-MTRPP where the fast evaluation technique
(named EHSA-MTRPP-NoFast) was disabled. We used the parameters in
Section 3.1 and ran both EHSA-MTRPP-NoFast and EHSA-MTRPP inde-
pendently 10 times on each large-size instance (n ≥ 200). The cut-off time
was set to be twice the number of customers. Using similar column headings
as Table 4, Table 5 summarizes the comparative results of EHSA-MTRPP-
NoFast and EHSA-MTRPP over large instances from Ins Avci and Ins Lu
(Better results are marked in bold).

Table 5
Results of EHSA-MTRPP-NoFast and EHSA-MTRPP on large benchmark in-
stances. Each instance was solved 10 times, and the cut-off time was set to be
twice the number of customers.

Size K
EHSA-MTRPP-NoFast EHSA-MTRPP

p-value δ W M F
Best Average Tavg Best Average Tavg

Ins Avci

200 2 893247.90 892891.18 169.58 893513.85 893374.88 263.23 1.03×10−4 0.030% 19 0 1

200 3 907732.95 907532.35 169.48 907950.35 907841.50 258.94 8.86×10−5 0.024% 20 0 0

500 10 1431017.90 1428561.78 500.05 1437256.40 1436265.76 898.97 5.06×10−3 0.436% 10 0 0

500 20 692814.30 691839.16 500.21 694406.60 694114.40 897.70 5.06×10−3 0.230% 10 0 0

750 100 3999139.60 3948547.72 754.74 4000585.60 4000541.60 1352.60 4.31×10−2 0.036% 5 0 0

1000 50 5180266.20 5116501.24 1003.76 5191726.40 5191527.76 1757.60 4.31×10−2 0.221% 5 0 0

Ins Lu

200 2 472354.10 471965.12 325.62 472499.25 472354.94 254.16 7.80×10−4 0.031% 19 0 1

200 3 321165.95 320919.83 327.09 321278.75 321175.57 245.66 1.32×10−4 0.035% 19 1 0

200 4 236709.90 236544.92 330.46 236805.20 236720.93 229.22 1.32×10−4 0.040% 19 1 0

From columns “Best” and “Average” in Table 5, one can conclude that EHSA-
MTRPP outperformed EHSA-MTRPP-NoFast for each set of instances, which
was also confirmed by the Wilcoxon signed rank tests (p-value< 0.05).

To illustrate the effectiveness of the fast evaluation technique, we performed
another experiment by running both algorithms independently 10 times on
nine instances of various sizes and recorded the numbers of the visited neigh-
boring solutions. The cut-off time was also set to be twice the number of
customers. Figure 3 displays the average ratio of the visited solutions of EHSA-
MTRPP over EHSA-MTRPP-NoFast for the instances of different sizes. EHSA-
MTRPP visited more neighboring solutions than EHSA-MTRPP-NoFast did
for all selected instances. The dominance of our algorithm with the fast evalu-
ation technique becomes even more clear as the size of the instance increases.
In summary, the results in Table 5 and in Figure 3 demonstrate that the fast
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Fig. 3. Average ratio of the visited solutions of EHSA-MTRPP over EHSA-MTRP-
P-NoFast for nine instances of different sizes. “Size index K” for each instance indi-
cates the number of customers, the instance index, and the number of routes. Each
instance was solved 10 times independently, and the cut-off time was set to twice
the number of customers.

evaluation technique can help the proposed algorithm to efficiently explore the
search space and contributes to the performance of the proposed algorithm.

4.2 Influence of the Drop operator in the neighborhood structure

As shown in Section 2.3, the Drop operator (line 13 in Algorithm 2) is applied
after the local optimization with a neighborhood to eliminate the negative
revenue nodes and get more accurate fitness function by the fast evaluation
technique. This section investigates the influences of the Drop operator on the
performance of the proposed algorithm, by focusing on the following questions:
what happens if the Drop operator is disabled or if it is applied very frequently
after each solution transition?

To answer these questions, we first studied the impacts of the Drop opera-
tor over the VNS procedure. For this, we extracted the VNS procedure from
EHSA-MTRPP to create two variants: VNS-NoDrop by deleting the Drop
operator (line 13 in Algorithm 2) and VNS-EachDrop by applying the Drop
operator after each move (i.e., after each solution transition) in the local opti-
mization. We ran the two variants VNS-NoDrop and VNS-EachDrop to solve
9 representative instances (100 runs per variant and per instance). The best
found solutions and the running time were recorded.

Figure 4 summarizes the corresponding bar charts that describe the averaged
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Fig. 4. Bar charts of VNS-NoDrop, VNS and VNS-EachDrop for solving 9 repre-
sentative instances. The results were averaged over 100 independent executions of
each compared algorithm.

best objective values (blue bars) and average running time (red bars) of VNS
with respect to its variants VNS-NoDrop and VNS-EachDrop. We observe
that VNS and VNS-EachDrop outperform VNS-NoDrop in terms of the best
found solutions for all the cases. In particular, VNS uses equal or less time to
achieve better results than VNS-NoDrop. Between VNS and VNS-EachDrop,
VNS-EachDrop obtains better results (except for 750 1 100) than VNS but
uses more time. In summary, the Drop operator plays a positive role to the
local optimization procedure. By more frequently applying the Drop operator
(eliminating the influence of the negative revenue nodes), VNS-EachDrop finds
better results than VNS while requiring more computation time.

To assess the impacts of the Drop operator within the EHSA-MTRPP al-
gorithm, we created an algorithmic variant EHSA-MTRPP-EachDrop by re-
placing VNS with VNS-EachDrop in Algorithm 1 (line 19) and tested EHSA-
MTRPP-EachDrop on the large benchmark instances using the same exper-
imental setup in Section 3.1. The comparative results of EHSA-MTRPP-
EachDrop and EHSA-MTRPP are shown in Table 6. For the best found re-
sults, EHSA-MTRPP-EachDrop performed better than EHSA-MTRPP over
3 sets of instances, but the statistically significant differences were not con-
firmed by the Wilcoxon signed rank tests (p-value>0.05). On the other hand,
EHSA-MTRPP had a better performance over the remaining instances, and
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dominated EHSA-MTRPP-EachDrop on three sets of them (confirmed by
p-value<0.05). For the average results, EHSA-MTRPP dominated the EHSA-
MTRPP-EachDrop almost over all sets of instances.

Table 6
Results of EHSA-MTRPP-EachDrop and EHSA-MTRPP on large benchmark in-
stances. Each instance was solved 10 times, and the cut-off time was set to be twice
the number of customers.

Size K
EHSA-MTRPP-EachDrop EHSA-MTRPP

p-value δ W M F
Best Average Tavg Best Average Tavg

Ins Avci

200 2 893515.30 893323.11 130.83 893513.85 893374.88 263.23 7.06×10−1 -0.000% 7 6 7

200 3 907921.85 907815.46 118.07 907950.35 907841.50 258.94 2.31×10−2 0.003% 11 7 2

500 10 1436975.30 1435948.48 464.07 1437256.40 1436265.76 898.97 3.86×10−1 0.020% 6 0 4

500 20 694387.30 694093.98 453.27 694406.60 694114.40 897.70 9.59×10−1 0.003% 4 0 6

750 100 4000562.40 4000520.92 708.07 4000585.60 4000541.60 1352.60 4.31×10−2 0.001% 5 0 0

1000 50 5191788.20 5191568.52 822.56 5191726.40 5191527.76 1757.60 3.45×10−1 -0.001% 2 0 3

Ins Lu

200 2 472508.80 472309.32 220.51 472499.25 472354.94 254.16 9.53×10−1 -0.002% 5 11 4

200 3 321278.25 321140.49 213.01 321278.75 321175.57 245.66 8.59×10−1 0.000% 6 11 3

200 4 236794.90 236682.46 206.16 236805.20 236720.93 229.22 4.69×10−2 0.004% 7 10 3

Finally, we investigated the impacts of the Drop operator over the EHSA-
MTRPP algorithm in terms of time-consumption. We observe that the Drop
operator generally consumed more time with EHSA-MTRPP-EachDrop than
with EHSA-MTRPP. As an example, the Drop operator consumed 3.45%
of the total time for EHSA-MTRPP-EachDrop against 0.20% for EHSA-
MTRPP, when they were used to solve the large instance 1000 1 50. Neverthe-
less, calling the Drop operator after each move (in EHSA-MTRPP-EachDrop)
doesn’t excessively increase the time given that Drop has a linear time com-
plexity. Instead, the most time-consuming component in both algorithms is
the local search with the other neighborhoods (line 12, Algorithm 2).

To sum, EHSA-MTRPP has a slightly better performance than EHSA-MTRPP-
EachDrop on the benchmark instances. However, EHSA-MTRPP-EachDrop
also provides a number of results better than EHSA-MTRPP. We conclude
that EHSA-MTRPP-EachDrop is a viable alternative for solving the MTRPP.

4.3 Influence of the crossover operator

This section explores the contributions of the arc-based crossover to our al-
gorithm. We created an EHSA-MTRPP variant (ILS-MTRPP) by disabling
ABX (lines 15–16) in Algorithm 1. Using the same experimental setup in Sec-
tion 3.1, another experiment was performed on the benchmark instances of
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large size, and the results are presented in Table 7 with the same column
headings as Table 5 (better results are marked in bold).

Table 7
Results of ILS-MTRPP and EHSA-MTRPP on large instances from the benchmark.
Each instance was solved 10 times, and the cut-off time was set to be twice the
number of customers.

Size K
ILS-MTRPP EHSA-MTRPP

p-value δ W M F
Best Average Tavg Best Average Tavg

Ins Avci

200 2 893225.25 892997.62 106.16 893513.85 893374.88 263.23 8.86×10−5 0.032% 20 0 0

200 3 907796.10 907666.30 97.70 907950.35 907841.50 258.94 8.84×10−5 0.017% 20 0 0

500 10 1435567.80 1434542.62 213.20 1437256.40 1436265.76 898.97 5.06×10−3 0.118% 10 0 0

500 20 693796.30 693456.04 215.12 694406.60 694114.40 897.70 5.06×10−3 0.088% 10 0 0

750 100 4000456.40 4000414.68 320.81 4000585.60 4000541.60 1352.60 4.31×10−2 0.003% 5 0 0

1000 50 5191550.60 5191326.92 520.71 5191726.40 5191527.76 1757.60 4.31×10−2 0.003% 5 0 0

Ins Lu

200 2 472282.15 472016.28 198.16 472499.25 472354.94 254.16 2.93×10−4 0.046% 19 0 1

200 3 321140.15 320982.75 201.67 321278.75 321175.57 245.66 8.84×10−5 0.043% 20 0 0

200 4 236703.05 236592.84 199.80 236805.20 236720.93 229.22 8.84×10−5 0.043% 20 0 0

Columns “Best” and “Average” in Table 7 indicate that EHSA-MTRPP clearly
dominated ILS-MTRPP for each set of instances (only missing one instance
in “Size=200, K=2” in Ins Lu). The dominance is confirmed by the results
of the Wilcoxon signed rank tests (p-value< 0.05). This experiment revealed
that ABX contributed positively to the performance of our EHSA-MTRPP
algorithm.

4.4 Compared to the route-based crossover (RBX) in the literature

This section compares the arc-based crossover and the route-based crossover,
which is used in the reference algorithm MA-MTRPP (Lu et al., 2019a). We
created an EHSA-MTRPP variant (EHSA-MTRPP-RBX) by replacing ABX
with RBX (line 16 in Algorithm 1). On each large-size instance, both algo-
rithms were independently run 10 times using the parameters in Section 3.1.
The cut-off time was always set to be twice the number of customers. The
results are summarized in Table 8, which uses the same column headings as
Table 5 (Better results are indicated in bold).

The results revealed that with the exception of a few cases, EHSA-MTRPP
outperformed EHSA-MTRPP-RBX on all sets of instances in terms of the
best found results (column “Best”) and the average found results (column
“Average”), and the Wilcoxon signed rank tests (p-value< 0.05) indicate that
significant differences exist for eight sets of results (except for the instances of
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Table 8
Results of EHSA-MTRPP-RBX and EHSA-MTRPP on large instances from the
benchmark. Each instance was solved 10 times, and the cut-off time was set to be
twice the number of customers.

Size K
EHSA-MTRPP-RBX EHSA-MTRPP

p-value δ W M F
Best Average Tavg Best Average Tavg

Ins Avci

200 2 893420.60 893254.29 156.76 893513.85 893374.88 263.23 2.35×10−4 0.010% 19 0 1

200 3 907886.65 907784.43 154.88 907950.35 907841.50 258.94 1.28×10−3 0.007% 18 1 1

500 10 1436503.90 1435606.38 379.31 1437256.40 1436265.76 898.97 5.06×10−3 0.052% 10 0 0

500 20 694289.30 693986.20 406.29 694406.60 694114.40 897.70 5.06×10−3 0.017% 10 0 0

750 100 4000559.80 4000520.52 641.77 4000585.60 4000541.60 1352.60 2.25×10−1 0.001% 4 0 1

1000 50 5191587.40 5191416.32 751.44 5191726.40 5191527.76 1757.60 4.31×10−2 0.003% 5 0 0

Ins Lu

200 2 472466.60 472286.13 300.66 472499.25 472354.94 254.16 3.76×10−3 0.007% 17 1 2

200 3 321230.30 321127.52 297.78 321278.75 321175.57 245.66 3.40×10−4 0.015% 18 1 1

200 4 236781.60 236703.33 302.65 236805.20 236720.93 229.22 7.37×10−4 0.010% 16 2 2

“Size=750, K=100”). This experiment confirmed that the ABX crossover is
more appropriate than RBX for the MTRPP.

4.5 Rationale behind the arc-based crossover

We experimentally investigated the rationale behind ABX by analyzing the
structural similarities between high-quality solutions. For two given solutions
ϕ1 and ϕ2 with their corresponding arc sets A1 and A2, their similarity is
defined by Sim(ϕ1, ϕ2) = |A1∩A2|

|A1∪A2| . Generally, the larger the similarity between
two solutions is, the more arcs they share.

We ran the EHSA-MTRPP algorithm 100 times on each of the selected 16 in-
stances (in different sizes) while recording the best found solution in each run,
and the cut-off time per run was always set to twice the number of customers.
For each instance, we calculated the maximum similarity (denoted sim max)
between any two solutions by sim max = max1≤i<j≤100 Sim(ϕi, ϕj), the min-
imum similarity (denoted sim min) between any two solutions by sim min =
min1≤i<j≤100 Sim(ϕi, ϕj), and the average similarity (denoted sim avg) be-
tween any two solutions by sim avg = 1

4950
·∑1≤i<j≤100 Sim(ϕi, ϕj). Figure 5

displays the results of the solution similarities for various instances.

From Figure 5, one concludes that a high similarity exists between high-quality
solutions. In particular, the maximum similarity of the 100 high-quality so-
lutions was more than 0.6, and the average similarity was over 0.4 for each
instance. Thus, numerous arcs frequently appeared in high-quality solutions,
which provides a solid foundation for the design of the arc-based crossover in
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Fig. 5. Similarity between high-quality solutions for 16 instances of different sizes.
Each instance was solved 100 times independently with a cut-off time per run set
to twice the number of customers.

this work. The maximum similarities for the last six largest instances (n ≥ 500)
were not as high as the other instances (n ≤ 200). This phenomenon could be
attributed to the unsatisfactory results for these difficult instances (n ≥ 500).

5 Conclusions

An effective hybrid search algorithm for the MTRP with profit was proposed
under the framework of the memetic algorithm. The proposed algorithm is
unique from the existing algorithms in terms of three key features, namely
its fast neighborhood evaluation techniques designed to quickly and approxi-
mately examine the neighborhoods, a correcting procedure to ensure an accu-
rate evaluation of the neighboring solutions by using the Drop operator and
the dedicated arc-based crossover that generates diversified and meaningful
offspring solutions.

The assessment on the 470 benchmark instances in the literature revealed
that the performance of the proposed algorithm competed favorably with the
existing algorithms by updating the best records (new lower bounds) for 137
instances (29%) and matching the best-known results for 330 instances (70%)
within a reasonable time. Additional experiments revealed that the fast eval-
uation technique, the Drop operator and the arc-based crossover play positive
roles in terms of influencing the performance of the algorithm. We analyzed
both formally and experimentally the reduced complexities of neighborhood
examinations and explored the influence of the correcting step (the frequency
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of calling Drop operator) on the algorithm performance. Besides that, we also
provided experimental evidences (high similarity between high-quality solu-
tions) to support the design of the arc-based crossover. The source code of our
algorithm will be made available upon the publication of this paper. It can be
used to solve practical applications and adapted to related problems. In the
future, we will develop efficient algorithms based on the arc-based crossover
for some other related problems such as the TOP.
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A Proof of the complexity of neighborhood exploration

Proof of Proposition 1 (Section 2.3). Pei et al. (2020) has proved that
for the related TRPP, evaluating one neighboring solution of Insert, 2-opt,
Or-opt, Add and Drop can be finished in O(1) by using some specific data
structures. It is easy to find that these conclusions are equally applicable in
the MTRPP because the operations involved in N1-N4 as well as NAdd and
NDrop are confined inside one route, which is the same situation as in the
TRPP.

For the Swap operator, the proof is given as follows. Let ϕ be a solution com-
posed of K routes {X1, X2, ..., XK}, where Xk = (xk0, ..., x

k
i−1, x

k
i , x

k
i+1, ..., x

k
j−1,

xkj , x
k
j+1, ..., x

k
mk

) is one route with mk selected customers. Swapping xki and
xkj (0 < i < j ≤ mk) leads to a neighboring solution ϕ′ whose k-th route is
X ′k = (xk0, ..., x

k
i−1, x

k
j , x

k
i+1, ..., x

k
j−1, x

k
i , x

k
j+1, ..., x

k
mk

). Using Equation (2), the
move gain ∆f = f(ϕ′)− f(ϕ) can be reached by

1) If xki and xkj are not adjacent, then

∆f = (mk − i+ 1) · (dxki−1,x
k
i
− dxki−1,x

k
j
) + (mk − i) · (dxki ,xki+1

− dxkj ,xki+1
)

+ (mk − j + 1) · (dxkj−1,x
k
j
− dxkj−1,x

k
i
) + (mk − j) · (dxkj ,xkj+1

− dxki ,xkj+1
)

2) If xki and xkj are adjacent, then

∆f = (mk − i+ 1) · (dxki−1,x
k
i
− dxki−1,x

k
j
) + (mk − j) · (dxkj ,xkj+1

− dxki ,xkj+1
)
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Thus, any neighboring solution in N1 can be evaluated in O(1) and the com-
plexity of examining the N1 neighborhood is bounded by O(m2).

Proof of Proposition 2 (Section 2.3). Let ϕ be a solution composed of K
routes {X1, X2, ..., XK}, where Xk = (xk0, x

k
1, ..., x

k
mk

) is one route with mk

selected customers (k = 1, 2, ..., K). As the set of selected customers does not
change, we only consider the change of the accumulated distance according to
Equation (2).

a) For the Inter-Swap neighborhood, we suppose two routes in the solution ϕ

Xa = (xa0, x
a
1, ..., x

a
i−1, x

a
i , x

a
i+1, ..., x

a
ma

)

Xb = (xb0, x
b
1, ..., x

b
j−1, x

b
j, x

b
j+1, ..., x

b
mb

)

Exchanging xai (0 < i ≤ ma) and xbj (0 < j ≤ mb) leads to a new solution
ϕ′ whose a-th and b-th routes are:

X ′a = (xa0, x
a
1, ..., x

a
i−1, x

b
j, x

a
i+1, ..., x

a
ma

)

X ′b = (xb0, x
b
1, ..., x

b
j−1, x

a
i , x

b
j+1, ..., x

b
mb

)

By Equation (2), the move gain ∆f = f(ϕ′)− f(ϕ) can be achieved by

∆f = (ma − i+ 1) · (dxai−1,x
a
i
− dxai−1,x

b
j
) + (ma − i) · (dxai ,xai+1

− dxbj ,xai+1
)

+ (mb − j + 1) · (dxbj−1,x
b
j
− dxbj−1,x

a
i
) + (mb − j) · (dxbj ,xbj+1

− dxai ,xbj+1
)

Therefore, each neighboring solution in N4 can be evaluated in O(1), leading
to the complexity of O(m2) for exploring the Inter-Swap neighborhood.

b) For the Inter-Insert neighborhood, we are given two routes for the solution
ϕ.

Xa = (xa0, x
a
1, ..., x

a
i−1, x

a
i , x

a
i+1, ..., x

a
ma

)

Xb = (xb0, x
b
1, ..., x

b
j, x

b
j+1, ..., x

b
mb

)

Inserting xai (0 < i ≤ ma) into the position between xbj and xbj+1 (0 ≤ b ≤
mb) produces a neighboring solution ϕ′, whose two corresponding routes
are:

X ′a = (xa0, x
a
1, ..., x

a
i−1, x

a
i+1, ..., x

a
ma

)

X ′b = (xb0, x
b
1, ..., x

b
j, x

a
i , x

b
j+1, ..., x

b
mb

)

The move gain ∆f can be obtained by

∆f = V sda(i− 1) + (ma + 1− i) · dxai−1,x
a
i

+ (ma − i) · (dxai ,xai+1
− dxai−1,x

a
i+1

)

− V sdb(j)− (mb + 1− j) · dxbj ,xai − (mb − j) · (dxai ,xaj+1
− dxbj ,xbj+1

)

where V sda(i) and V sdb(i) are two auxiliary arrays used to accelerate the
evaluation procedure. For the k-th route in the solution, the auxiliary array

29



is defined as follows.

V sdk(i) =
i∑

t=1

dxkt−1,x
k
t
. (A.1)

The auxiliary arrays in Equation (A.1) are pre-calculated and updated for
each iteration (the complexity of updating these auxiliary arrays is O(n)).
Therefore, each neighboring solution can be assessed in O(1) while the com-
plete Inter-Insert neighborhood can be examined in O(m2).

c) For the Inter-2-opt neighborhood, we suppose two routes Xa and Xb.

Xa = (xa0, x
a
1, ..., x

a
i , x

a
i+1, ..., x

a
ma

)

Xb = (xb0, x
b
1, ..., x

b
j, x

b
j+1, ..., x

b
mb

)

Removing two edges (xai , x
a
i+1) and (xbj, x

b
j+1) and replacing them with two

other edges lead to a new solution ϕ′, which has two corresponding routes
X ′a and X ′b.

X ′a = (xa0, x
a
1, ..., x

a
i , x

b
j+1, ..., x

b
mb

)

X ′b = (xb0, x
b
1, ..., x

b
j, x

a
i+1, ..., x

a
ma

)

The move gain ∆f can be obtained as follows.

∆f = (ma − i) · dxai ,xai+1
− (mb − j) · dxai ,xbj+1

+ (ma −mb − i+ j) · V sda(i)
+ (mb − j) · dxbj ,xbj+1

− (ma − i) · dxbj ,xai+1
+ (−ma +mb + i− j) · V sdb(j)

The complexity of evaluating one neighboring solution is thus O(1) and
exploring the complete Inter-2-opt neighborhood requires O(m2).

Additional results (Section 2.7). This section gives the descriptions of the
Double-bridge neighborhood and Inter-Or-opt neighborhood, which were em-
ployed in the reference algorithm (Lu et al., 2019a) but not applied in the
proposed algorithm. As these two neighborhoods are widely applied in the al-
gorithms for the related problems, here we provide the detailed proof of their
complexities of exploring the complete neighborhoods using the fast evaluation
techniques.

• Double-bridge (Lin & Kernighan, 1973): Four edges in the same route are
deleted and four new sub-tours are reconnected without changing the orien-
tation of the four sub-tours. A simple illustration is presented in Figure A.1.
• Inter-Or-opt: A block of h (h = 2, 3) consecutive customers is removed

from one route and inserted into two adjacent nodes in another route.

Similar to other neighborhoods, the complexities of exploring their complete
neighborhoods are summarized as follows.

• Exploring the complete Double-bridge neighborhood can be finished in
O(m4).
• Exploring the complete Inter-Or-opt neighborhood can be finished inO(m2).
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(a) (b)

Fig. A.1. Simple illustration of the Double-bridge operation: a) one route before
the operation; b) the route after the operation and the lines in red are the new
reconnecting edges.

1) For the Double-bridge neighborhood, we suppose a solution ϕ with K routes
{X1, X2, ..., XK}, where Xk = (xk0, ..., x

k
i , x

k
i+1, ..., x

k
j , x

k
j+1, ..., x

k
p, x

k
p+1, ..., x

k
q ,

xkq+1, ..., x
k
mk

) is one route with mk selected customers.

For giving a general case, we random select four positions i, j, p, q (0 ≤ i,
i + 1 < j, j + 1 < p, p + 1 < q and q + 1 ≤ mk) to perform a double-bridge
operation. This results in a neighboring solution ϕ′ whose k-th route is Xk =
(xk0, ..., x

k
i , x

k
p+1, ..., x

k
q , x

k
j+1, ..., x

k
p, x

k
i+1, ..., x

k
j , x

k
q+1, ..., x

k
mk

) (See Figure A.1).
Using Equation (2) and Equation (A.1), the move gain ∆f = f(ϕ′) − f(ϕ)
could be obtained as follows.

∆f = (q − j) · (V sdk(j)− V sdk(i+ 1)) + (i− p) · (V sdk(q)− V sdk(p+ 1))

+ (i+ q − j − p) · (V sdk(p)− V sdk(j + 1))

+ (mk − i) · dxki ,xki+1
+ (mk − j) · dxkj ,xkj+1

+ (mk − p) · dxkp ,xkp+1
+ (mk − q) · dxkq ,xkq+1

− (mk − i) · dxki ,xkp+1
− (mk − i− q + p) · dxkq ,xkj+1

− (mk − i− q + j) · dxkp ,xki+1
− (mk − q) · dxkj ,xkq+1

Thus, any neighboring solution in the Double-bridge neighborhood can be
evaluated in O(1) and the complexity of examining the complete neighborhood
is bounded by O(m4).

2) For the Inter-Or-opt neighborhood, only the change of the accumulated
distance is taken into consideration to obtain the move gain of the new neigh-
boring solution. We suppose two routes in the solution ϕ.

Xa = (xa0, x
a
1, ..., x

a
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a
i , x

a
i+1, ..., x

a
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a
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)

Xb = (xb0, x
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b
j+1, ..., x

b
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)
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Inserting the block (xai , x
a
i+1, ..., x

a
i+h−1) (0 < i, 0 < i + h ≤ ma, h = 2, 3) to

the position between xbj and xbj+1 (0 < j ≤ mb) leads to a new solution ϕ′

whose a-th and b-th routes are:

X ′a = (xa0, x
a
1, ..., x

a
i−1, x

a
i+h..., x

a
ma

)

X ′b = (xb0, x
b
1, ..., x

b
j, x

a
i , x

a
i+1, ..., x

a
i+h−1, x

b
j+1, ..., x

b
mb

)

By Equation (2) and Equation (A.1), the move gain ∆f = f(ϕ′) − f(ϕ) can
be achieved by

∆f = h · V sda(i− 1)− (ma − h− i+ 1) · dxai−1,x
a
i+h

+ (ma − i− h+ 1) · dxa
i+h−1

,xa
i+h

+ (ma − i+ 1) · dxai−1,x
a
i

+ (mb − j) · dxbj ,xbj+1
− h · V sdb(j)

− (mb + h− j) · dxbj ,xai − (mb − j) · dxa
i+h−1

,xbj+1

+ (ma −mb − h− i+ j + 1) · (V sda(i+ h− 1)− V sda(i))

Therefore, each neighboring solution in the Inter-Or-opt neighborhood can
be evaluated in O(1), leading to the complexity of O(m2) for exploring the
complete neighborhood.
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