
A Memetic Algorithm for Deinterleaving Pulse
Trains

Jean Pinsolle1,2, Olivier Goudet[0000−0001−7040−5052]2, Cyrille Enderli1, and
Jin-Kao Hao[0000−0001−8813−4377]2

1 Thales DMS France SAS, 2 Av. Jean d’Alembert, 78190 Trappes
jean.pinsolle@fr.thalesgroup.com

2 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
{olivier.goudet, jin-kao.hao}@univ-angers.fr

Abstract. This paper deals with the problem of deinterleaving a se-
quence of signals received from different emitters at different time steps.
It is assumed that this pulse sequence can be modeled by a collection of
processes over disjoint finite sub-alphabets, which have been randomly
interleaved by a switch process. A known method to solve this problem
is to maximize the likelihood of the model which involves a partition-
ing problem of the whole alphabet. This work presents a new memetic
algorithm using a dedicated likelihood-based crossover to efficiently ex-
plore the space of possible partitions. The algorithm is first evaluated on
synthetic data generated with Markov processes, then its performance is
assessed on electronic warfare datasets.

Keywords: Memetic algorithm, Markov process, partitioning problem,
deinterleaving pulse trains, electronic warfare

1 Introduction

This paper presents an optimization algorithm for deinterleaving data streams
that can be described by interleaved Markov processes. Even though such a
method can be applied to many fields, the original motivation of this paper is
related to radar warning receivers, which are passive sensors performing among
other tasks the deinterleaving of pulse trains received from multiple emitters
over a common channel.

In this context, pulses are emitted by different radars present in the environ-
ment and are intercepted by a single receiver. Each pulse is described by several
characteristics called Pulse Description Words (PDW). Some of these features
are called primary because they are measured in the early stages of the radio
frequency signal reception chain, such as time of arrival (ToA), carrier frequency
(CF), pulse duration (PD), signal amplitude or angle of arrival (AoA), while
others are called secondary, such as the time interval between two consecutive
pulses (Pulse Repetition Interval, PRI) because they characterize a pulse train.
In the case of conventional radars with simple interpulse modulation, basic PRI
clustering methods may be sufficient to solve the problem [10,11,13]. For more

2 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

complex data, multivariate methods such as [3], leveraging on different pulse
features (CF, AoA, and PD), have been proposed.

However, modern radars can create much more complex patterns, which may
result in a loss of performance of basic clustering methods, and produce errors
in the deinterleaving process such as transmitter track proliferation or radar
misses. To overcome these limitations, new methods based on inferring mixtures
of Markov chains [1] have been proposed in the radar pulse train deinterleaving
literature [5]. These methods aim to address complex scenarios by reducing the
surplus of clusters found by classical methods. In these interleaved Markov pro-
cess (IMP) methods, a clustering algorithm is first applied to group the different
pulses into different clusters (or letters). Then, in a second step, a partition of
these letters into different groups is performed in order to identify the different
emitters which could have generated the observed sequence of symbols. This
partition of the different symbols is typically done by maximizing a penalized
likelihood score, which has been proven consistent under mild conditions on the
switch and component processes [14].

In general, such methods for deinterleaving finite memory processes via pe-
nalized maximum likelihood raise a challenging combinatorial problem, because
finding the optimal partition may require evaluating all the possible partitions
of the observed symbols into different groups. Since this search space of all parti-
tions grows exponentially with the number of symbols, an exhaustive search is in
general not feasible in a reasonable amount of time. Therefore, heuristics based
on greedy criteria have been proposed in [5,14] to provide an approximate solu-
tion to this problem in a limited amount of time. However, such greedy searches
are prone to easily get stuck in local optima, especially when the search space
becomes huge.

In this paper, we propose a new heuristic to solve this deinterleaving partition
problem (DPP), by noticing that this problem can be seen as a particular group-
ing problem. The main contribution of this work is a new memetic algorithm for
alphabet partitioning called MAAP, inspired by the memetic framework HEAD
[12], which obtains state-of-the-art results for another grouping problem namely
the graph coloring problem. The MAAP algorithm takes into account specific
features related to penalized entropy estimates in order to speed up the search
in the space of all partitions. In addition, it introduces a new likelihood-based
crossover capable of sharing low entropy sub-alphabets that will be transmitted
to the next generations.

The rest of the paper is organized as follows: Section 2 presents the formal
background for the deinterleaving of Markov processes. Section 3 presents the
settings of the optimization problem. Section 4 describes the proposed memetic
algorithm. Section 5 reports the results on synthetic datasets generated with
Markov processes, while Section 6 provides illustrative examples of radar inter-
ceptions in a realistic context. Section 7 discusses the contribution and presents
some perspectives for future work.

A Memetic Algorithm for Deinterleaving Pulse Trains 3

2 Deinterleaving Markov Processes : Formal Background

In this section, we summarize the formal background of deinterleaving a set of fi-
nite memory processes on disjoint subsets and the penalized maximum likelihood
method introduced in [14] to solve this problem.

2.1 Interleaved Markov Generative Process

Let zn = z1, . . . , zn be an observed sequence of n symbols ordered by their time
of arrival. Each symbol is drawn from a finite set A (alphabet).

The underlying generative model of this sequence is assumed to be an in-
terleaved Markov process P = IΠ(P1, . . . , Pm;Pw), where m > 0 is the number
of different emitters, Pi is an independent component random process for emit-
ter i, generating symbols in the sub-alphabet Ai ⊂ A, Pw is a random switch
process over the emitters, and Π = {A1, . . . , Am} is the partition of A into the
sub-alphabets Ai, for i = 1, . . . ,m, which are assumed to be non-empty and
disjoint.

It is further assumed that all Markov processes are time-homogeneous, in-
dependent, ergodic, and with finite memory. Let ki be the order of Pi, and
k = (k1, . . . , km; kw) denote the vector containing the orders of the corresponding
processes (P1, ..., Pm;Pw). All states are assumed to be reachable and recurrent,
and it is assumed that all symbols a ∈ A occur infinitely and their stationary
marginal probabilities are positive. There is no assumption on the initial state
of the processes.

According to this IMP P , at each time step, t = 1, . . . , n and given the prefix
zt−1 = z1, . . . , zt−1 of the sequence already generated at time t − 1, a process
Pi is selected by the switch process Pw, then Pi selects a letter zt from Ai and
adds it to the prefix sequence zt−1 to form the sequence zt.

Formally, this generative process can be written as

P (zt|zt−1) = Pw(i|σΠ(zt−1))Pi(zt|zt−1[Ai]), (1)

where σΠ(zt−1) is the sequence of integers i ∈ {1, ...,m} derived from the switch
selection of the processes Pi to generate the sequence zt−1 and zt−1[Ai] is the
sub-string of the sequence zt−1 obtained by deleting all symbols not in Ai, note
that we do not write a sum on i since Pi(zt|zt−1[Ai]) is null for another alphabet
than Ai.

By recursive application of Equation (1), the probability of occurrence of a
sequence zt is then (with a slight abuse of notation)

P (zt) = Pw(σΠ(zt))

m∏
i=1

Pi(z
t[Ai]). (2)

4 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

2.2 Penalized Maximum Likelihood Score

For a Markov process P of order k which generates a sequence ut of letters drawn
from A, the maximum likelihood (ML) of ut is given by

PML
k (ut) =

∏
ak+1∈ut

P (ak+1|ak) =
∏

ak+1∈ut

(
Nut(ak+1)

Nut−1(ak)
)Nut (a

k+1), (3)

with ak a pattern of k letters in ut of length k, P (ak+1|ak) the transition prob-
ability from ak to ak+1 and Nut(ak+1) the number of patterns ak+1 in ut. We
denote Ĥk(u

t) = − logPML
k (ut) the corresponding ML entropy.

Knowing that the processes are independent and according to Equation (2),
the global ML entropy ĤΠ,k(z

n) of a sequence zn under an IMP model induced
by the partition Π and the vector order k is given by the addition of the ML
entropy of each process:

ĤΠ,k(z
n) =

m∑
i=1

Ĥki
(zn[Ai]) + Ĥkw

(σΠ(zn)). (4)

A global penalized entropy is further defined by adding a penalty term:

C(Π,k)(z
n) = ĤΠ,k(z

n) + βκ log n, (5)

with β a constant and κ the number of free parameters in the model, which
corresponds to the number of free parameters in the different processes:

κ =

m∑
i=1

|Ai|ki(|Ai| − 1) +mkw(m− 1). (6)

Finally, the IMP estimate, i.e., the deinterleaving scheme, is given by mini-
mizing the previous cost function:

(Π̂, k̂) = argmin
(Π,k)

C(Π,k)(z
n). (7)

It is known that the scheme almost surely converges to an equivalent IMP
representation as the sequence n approaches infinity [14].

3 Problem Settings and Motivation for this Work

Given an observed sequence zn of length n, assumed to have been generated from
an IMP P defined in the previous section, with unknown number of emitters m
and unknown processes Pw and Pi for i = 1, . . . ,m, the problem that we address
in this paper is to retrieve the partition Π = {A1, ..., Am}. This deinterleaving
process problem is denoted as DPP in the following. Note that we do not address
the problem of retrieving exactly the processes Pw and Pi, which is a more
difficult estimation problem.

A Memetic Algorithm for Deinterleaving Pulse Trains 5

We assume in this work that each process has a maximum order kmax. There-
fore, we search for the couple of order vector k̂ ∈ Ωkmax

and partition Π̂ ∈ ΩΠ

minimizing the global ML entropy CΠ̂,k̂ given by Equation (5) with Ωkmax the
set of possible order vectors given by

Ωkmax
= {(k1, . . . , km; kw), 1 ≤ ki ≤ kmax, i = 1, . . . ,m,w}, (8)

and ΩΠ the search space of the alphabet partitions given by

ΩΠ = {{A1, . . . , Am},A =

m⋃
i=1

Ai, Ai ∩Aj = ∅, 1 ≤ i, j ≤ m, 1 ≤ m ≤ |A|}. (9)

Therefore, solving the DPP is a double problem combining an estimation
problem consisting in finding the optimal order vector k for each evaluated par-
tition Π and a combinatorial optimization problem on the space of all partitions
Π of the symbol alphabet A.

3.1 Decomposable Score for Estimating Processes Optimal Order

Given a candidate partition Π̂ = ∪m
i=1Âi and order vector k̂ = (k̂1, . . . , k̂m; k̂w),

we first observe that Equation (5) can be rewritten as

CΠ̂,k̂(z
n) =

m∑
i=1

Ĥk̂i
(zn[Âi]) + Ĥk̂w

(σΠ̂(zn)) (10)

+ β log n

m∑
i=1

|Âi|k̂i(|Âi| − 1) + β log n mk̂w(m− 1) (11)

=

m∑
i=1

CÂi,k̂i
(zn) + CσΠ̂ ,k̂w

(zn), (12)

with CÂi,k̂i
(zn) = Ĥk̂i

(zn[Âi])+β log n |Âi|k̂i(|Âi|−1), the penalized entropy of

the estimated process P̂i of order k̂i generating sub-alphabet Âi, and CσΠ̂ ,k̂w
(zn) =

Ĥk̂w
(σΠ̂(zn)) + β log n mk̂w(m− 1), the penalized entropy of the switch process

related to partition Π̂.

With this decomposition, we observe that given an estimated sub-alphabet
Âi, finding the optimal order ki of the process of each penalized entropy term
CÂi,k̂i

(zn) can be done independently of the global partition Π̂ being evalu-

ated. We denote as CÂi,k∗
i
(zn), the optimal penalized entropy obtained for the

observed sequence zn and the optimal order 1 ≤ k∗i ≤ kmax.

6 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

3.2 A Combinatorial Problem in the Space of Partitions

Since the space search grows exponentially with the number of letters, an ex-
haustive search is in general not feasible in a reasonable amount of time for the
DPP. Greedy searches have recently been proposed by [5,14] to solve this com-
binatorial problem. However, such greedy local searches are prone to get stuck
in local optima.

In this paper, we propose an improved heuristic to find the best partition Π̂
in the huge search space ΩΠ , by noticing that the studied problem is a particular
grouping problem [15]. Given a set S of elements, a grouping problem involves
partitioning set S into a number of disjoint groups Si optimizing a given objective
function and possibly satisfying some given constraints.

In the DPP, the alphabet A corresponds to the set of elements S, and each
sub-alphabet Ai corresponds to a group Si. The task is to find a partition Π̂ ∈
ΩΠ such that the global score f(Π̂) = CΠ̂,k∗(zn) is minimized (with CΠ̂,k∗(zn)

the penalized entropy evaluated for the observed sequence zn, the partition Π̂
and the optimal order vector k∗ ∈ Ωkmax

associated).

4 A Memetic Algorithm for Alphabet Partitioning

In this section, we present a new memetic algorithm for alphabet partitioning
called MAAP to solve the DPP seen as a grouping problem. Following the main
ideas of the HEAD algorithm [12], the proposed algorithm relies on a reduced
population of only two individuals and uses a dedicated crossover operator. For
local optimization, it employs a tabu search procedure.

4.1 General Framework

The general algorithm architecture of the proposed MAAP algorithm is described
in Algorithm 1.

The population is initialized with two random partitions in ΩΠ (see Section
4.2). Then at each generation, the algorithm alternates two steps:

1. an intensification phase, where the two individuals of the population Π1,
Π2 are improved by a tabu search procedure (called TabuAP) during nbiter
iterations (see Section 4.3). This step produces two individuals Π ′

1, Π
′
2.

2. a diversification procedure, where two different childrenΠ1,Π2 are generated
from the two best partitions Π ′

1, Π
′
2 obtained from the tabuAP local search

procedure. The crossover used to generate the two offspring partitions is
a dedicated likelihood score-based crossover for the DPP (called GLPX)
inspired by the well-known GPX crossover [6] for the graph coloring problem,
it is explained in detail in section 4.4.

The following subsections describe each step of the MAAP algorithm.

A Memetic Algorithm for Deinterleaving Pulse Trains 7

Algorithm 1 MAAP - Memetic algorithm for alphabet partitioning

1: Input: Observed sequence zn of n letters drawn from the alphabet A.
2: Output: The best partition Πbest found so far
3: Π1, Π2, Πbest ←− random initialization ▷ Section 4.2
4: while stop condition is not met do
5: Π ′

1 ← TabuAP (Π1, z
n) ▷ Local tabu searches (see Section 4.3)

6: Π ′
2 ← TabuAP (Π2, z

n)
7: if f(Π ′

1) < f(Πbest) then
8: Πbest ← Π ′

1

9: end if
10: if f(Π ′

2) < f(Πbest) then
11: Πbest ← Π ′

2

12: end if
13: Π1 ← GLPX(Π ′

1, Π
′
2, z

n) ▷ Crossover operators (see Section 4.4)
14: Π2 ← GLPX(Π ′

2, Π
′
1, z

n)
15: end while
16: return Πbest

4.2 Initialisation

During the initialization procedure, the partitions Π1, Π2, Πbest ∈ ΩΠ are ran-
domly built. In order to build a random partition, the letters in A are considered
in alphabetical order. Then at each step, if the partition being constructed has
already m groups, the incoming letter a has a probability equal to 1

m+1 to be
placed in each existing group of letters Ai with i = 1, . . . ,m, and a probability

1
m+1 to be placed in a new group Am+1. This process is repeated until all let-
ters are assigned to a sub-alphabet Ai. This procedure allows the creation of a
partition randomly and uniformly in the search space ΩΠ .

In order to ensure that the two individuals Π1 and Π2 are different in the
population at the beginning, this initialization procedure is repeated until the
set-theoretic partition distance between Π1 and Π2 is greater than 0. The set-
theoretic partition distance between two partitions Π1 = ∪m

i=1Ai and Π2 =
∪l
j=1Bj is defined as the minimum number of one-move steps needed to transform

Π1 into Π2 (up to a group permutation). This distance can be computed by
solving a maximum weight bipartite matching problem if we consider each sub-
alphabet Ai of Π1 and Bj of Π2 as nodes of a bipartite graph connected by edges
eij = {Ai, Bj}. Each edge eij has a weight wij corresponding to the number of
letters shared by the two corresponding sub-alphabets Ai and Bj . This matching
problem can be solved by the Hungarian algorithm [8] with a time complexity
of O(p3) with p = max(m, l). It produces a matching of maximum cardinality
0 ≤ q ≤ |A| and the set-theoretic partition distance D(Π1, Π2) is then defined
as |A| − q. Note that this distance will also be useful for the experiments. It
is indeed a relevant scoring metric that can be used to evaluate the quality of
an alphabet partition with respect to a known ground truth when working with
simulated data (see Sections 5.2 and 5.3).

8 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

4.3 Tabu Search Procedure

The tabu search procedure for alphabet partitioning (called TabuAP) used dur-
ing the intensification phase is inspired from the popular TabuCol algorithm for
the graph coloring problem [7]. Some adjustments are made to adapt this tabu
search to our partitioning problem.

Neighborhood of a Partition TabuAP explores the search space ΩΠ of all
possible partitions that can be formed with the alphabet A, by making transi-
tions from the current solution to one neighboring solution.

A neighboring solution is generated by using the one-move operator. For a
partition Π = ∪m

i=1Ai ∈ ΩΠ , the one-move operator displaces a letter a ∈ Ai

to a different sub-alphabet Aj , j ̸= i. Let Π ⊕ < a,Ai, Aj > be the resulting
neighboring partition. We then define the one-move neighborhood by

N(Π) = {Π ⊕ < a,Ai, Aj >: a ∈ Ai, 1 ≤ i ≤ m, 1 ≤ j ≤ m+ 1,m+ 1 ≤ |A|}.
(13)

Notice that with this neighborhood, a letter a ∈ Ai, i ̸= m is allowed to be
transferred to an existing group Aj for j = 1, . . . ,m, with j ̸= i, or to be placed
in a new group Am+1, which increases the total number of groups by one.

Tabu search The tabu search procedure iteratively replaces the current so-
lution Π by a neighboring solution Π ′ taken from the one-move neighborhood
N(Π) until it reaches a maximum of nbiter iterations of tabu search or the cutoff
time for the MAAP algorithm is reached.

At each iteration, TabuAP examines the neighborhood and selects the best
admissible neighboring solution Π ′ to replace Π. A neighboring solution Π ⊕ <
a,Ai, Aj > built from Π is said to be admissible if the associated one-move
< a,Ai, Aj > was not registered in a tabu list. Each time such one-move is
performed, it is added to the tabu list and forbidden during the t = r(3) + α|A|
next iterations (tabu tenure) where r is a random number uniformly drawn in
1, ..., 3 and α is a hyperparameter of the algorithm set to the value of 0.6.

In order to compute the best admissible partition in the neighborhood, all
the differences of global penalized entropy scores ∆a,j , associated with each
admissible one-move < a,Ai, Aj > are computed and the move corresponding
to the lowest value of ∆a,j is applied (because it is a minimization problem).

For a move < a,Ai, Aj > applied to the current partition Π and resulting
in a new partition Π ′ = Π ⊕ < a,Ai, Aj >, only the penalized entropy of the
changing groups and the switch process need to be reevaluated. Indeed, according
to Equation 10,

∆a,j = CΠ′,k’∗ − CΠ,k∗ (14)

= CA′
i,k̂

′∗
i
− CAi,k̂∗

i
+ CA′

j ,k̂
′∗
j
− CAj ,k̂∗

j
+ CσΠ′ ,k̂′∗

w
− CσΠ ,k̂∗

w
, (15)

A Memetic Algorithm for Deinterleaving Pulse Trains 9

where CA′
i,k̂

′∗
i
and CA′

j ,k̂
′∗
j
are respectively the optimal penalized entropy of the

new sub-alphabet A′
i = Ai\a and A′

j = Aj ∪ a (after moving the letter a from

Ai to Aj) with optimal order k̂′
∗
i and k̂′

∗
j ; CσΠ ,k̂∗

w
and CσΠ′ ,k̂′∗

w
are respectively

the optimal entropy of the switch process of the partitions Π and Π ′.
Since |A| letters can be displaced to at most |A| − 1 sub-alphabets, the size

of this neighborhood is bounded by O(|A|2). Evaluating a transition toward a
neighbor with the one-move operator required to evaluate new penalized en-
tropy, whose time complexity is in O(n × kmax × |A|kmax+1) (n the length of
the sequence). Therefore, the overall complexity of this tabu search procedure is
O(nbiter × n× kmax × |A|kmax+3).

4.4 Greedy Likelihood-based Crossover Operator

The popular greedy partition crossover (GPX) [6] has proven to be very effective
for graph coloring [9,12]. The two main principles of GPX are: 1) a solution
is a partition of vertices (letters) into color classes (sub-alphabet) and not an
assignment of colors to vertices, and 2) large color classes are transmitted to the
offspring.

For the DDP, we introduce a new greedy likelihood-based partition crossover
called GLPX. GLPX relies on the main principles of the GPX crossover with
specific adaptations to our problem. Instead of only prioritizing large groups of
letters, which does not make much sense for our problem, we prioritize groups
as large as possible, but with as low entropy as possible, because our problem
is to minimize the global entropy of the partition over the whole alphabet. A
GLPX score for a group Ai is introduced as{

ĈAi
(zn) =

CAi,k
∗
i
(zn)

|Ai|−1 if |Ai| > 1,

ĈAi
(zn) = +∞ if |Ai| = 1.

(16)

Given two parent partitions Π1 and Π2, the GLPX procedure alternates two
steps. First, it transmits to the child the sub-alphabet Ā with the lowest score
ĈĀ. After having withdrawn the letters of this sub-alphabet in both parents and
having recomputed all scores, it transmits to the child the sub-alphabet B̄ with
the lowest score ĈB̄ of the second parent. This procedure is repeated until all
the letters of the alphabet A are assigned to the child. For a given parent, if two
or more processes have the same lowest score, one of them is selected at random.
Note that singletons have infinite scores, and then are randomly selected at the
end of the process, when no more groups of at least two letters remain. The
GLPX procedure is described in Algorithm 2.

This crossover is asymmetrical like the GPX crossover. As noticed in [12],
starting the crossover with parent 1 or parent 2 can produce different offspring
solutions. Therefore when used in the MAAP algorithm to generate two new
offspring solutions Π1 = GLPX(Π ′

1, Π
′
2, z

n) and Π2 = GLPX(Π ′
2, Π

′
1, z

n), the
two children Π1 and Π2 can be very different (in the sense of the set-theoretic
partition distance defined in Section 4.2).

10 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

Algorithm 2 GLPX crossover procedure

1: Input: parents partitions Π1 = ∪m
i=0Ai, Π2 = ∪q

i=0Bi and observed se-
quence zn.

2: Output: Child partition Πc

3: Πc ← ∅
4: while Π1 or Π2 are not empty do
5: for i = 1, 2 do
6: Ā← argmin

A∈Πi

ĈA(z
n)

7: Πc ← Πc ∪ Ā
8: for a ∈ Ā do
9: Π1 ← Π1\a
10: Π2 ← Π2\a
11: end for
12: end for
13: end while
14: return Πc

5 Experiments and Computational Results

This section is dedicated to the computational assessment of the proposed al-
gorithm on both synthetic datasets and realistic datasets. Before showing the
computational results, we first present the experimental condition.

5.1 Experimental Condition and Reference Algorithm

Parameter Settings For the TabuAP procedure, the tabu tenure parameter
α is set to the value of 0.6 according to [6,12]. The maximal number of iterations
for each TabuAP run is set to 50. The penalization parameter β in Equation
(5) is set to 1

2 , which is a common value used in the literature [2], allowing to
retrieve the Bayesian Information Criterion (BIC). The maximum order kmax

for entropy estimation is set to the value of kmax = 1. Table 1 summarizes the
parameter setting for the MAAP algorithm which can be considered the default
and was used for all our experiments.

Table 1: Parameter setting in MAAP
Parameter Description Value

nbiter Number of iterations of the TabuAP local search 50
α Tabu tenure parameter 0.6
β Penalization parameter entering in Equation 5 1

2

kmax Maximum order for entropy estimation 1

A Memetic Algorithm for Deinterleaving Pulse Trains 11

Reference Algorithm Our MAAP algorithm is compared to the iterated
greedy algorithm (iteratedGreedy) for alphabet deinterleaving pulse trains (see
Algorithm 1 in [5]). For this iteratedGreedy algorithm, the radius of jump r is
set to the value of 2 and the neighborhood radius is set to 1 like in [5]. The
maximum number of jumps N is not limited. For this iteratedGreedy algorithm,
the entropy evaluation is done with the same function used in the MAAP algo-
rithm, and with the same parameters (β = 1

2 and kmax = 1). The only difference
between MAAP and iteratedGreedy is thus the search heuristic in the space of
partition ΩΠ . Both MAAP and iteratedGreedy are coded in Python with the
Numpy library and are launched on a computer equipped with Intel Xeon ES
2630, 2.66 GHz CPU.

Evaluation Metric and Stopping condition To assess the quality of the best
partition Πbest found by an algorithm, we compute the set-theoretic partition
distance between Πbest and the ground truth partition Πtruth. The stopping
condition for each experiment (on synthetic data and electronic warfare data) is
indicated in the corresponding section.

5.2 Experiments on Synthetic Datasets

This section is dedicated to a first computational assessment of the proposed
memetic algorithm for the DPP. The data are simulated with an interleaved
Markov process P = IΠ(P1, ..., Pm;Pw) over disjoint sub-alphabets, in the ideal
framework presented in Section 2: independent time-homogeneous, ergodic and
finite memory component processes Pw and Pi for i = 1, . . . ,m.

Synthetic Dataset generation The datasets are based on synthetic sequences
of size n with different numbers of letters |A| and maximal order equal to 1 to
limit the computation time required for entropy estimation.

The following parameters are randomly set up to generate a sequence zn with
an IMP P = IΠ(P1, ..., Pm;Pw) according to Equation (1):

– from an alphabet A of size |A|, a ground truth partition Πtruth = ∪m
i=1Ai is

generated with the random initialization procedure as described in Section
4.2. m is the number of emitters (groups) associated with this partition;

– for each emitter i (i = 1, . . . ,m), a probabilistic transition matrix Qi asso-
ciated with the stochastic process Pi of size |Ai| × |Ai| is randomly drawn;

– for the switch process, a probabilistic transition matrix Qw of size m×m is
drawn;

– initial state (letter) of each process Pi is randomly drawn in its correspondent
sub alphabet Ai;

– the first emitter is randomly drawn in the set of m emitters;

We consider 4 different configurations (|A|, n) with |A| = {20, 50} and n =
{10000, 50000}. For each configuration, 10 different datasets (zn, Πtruth) are
generated. So a total of 40 datasets are obtained. These datasets will be made
publicly available.

12 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

#
Config iteratedGreedy MAAP Config iteratedGreedy MAAP
|A| n D̄ C̄ time D̄ C̄ time |A| n D̄ C̄ time D̄ C̄ time (s)

1 20 10000 0 24612 110 0 24612 101 50 10000 2.4 34606 2253 1.4 34593 1771
2 20 10000 0 26155 208 0.06 26161 358 50 10000 7.8 34063 1631 6.57 34051 2240
3 20 10000 0 24381 92 0 24381 121 50 10000 2.1 34968 2909 1.26 34958 2173
4 20 10000 0 26240 96 0 26240 99 50 10000 4.23 33398 1132 3.57 33391 2055
5 20 10000 0 24386 77 0 24386 80 50 10000 0.43 34626 1834 0 34621 1901
6 20 10000 0 26843 66 0 26843 58 50 10000 11.46 33881 5339 10 33859 4426
7 20 10000 0 24100 449 0 24100 103 50 10000 1.56 37051 3041 0.13 37027 3119
8 20 10000 0 26763 70 0 26763 69 50 10000 5.56 34698 1691 6.1 34682 3544
9 20 10000 0 24821 82 0 24821 98 50 10000 2.33 33758 3218 1.63 33741 3605
10 20 10000 0 26588 82 0 26588 75 50 10000 5.87 36155 909 0 4 36134 3250

1 20 50000 0 128191 324 0 128191 324 50 50000 0 175904 5216 0 175904 4690
2 20 50000 0.73 119944 298 0 119533 383 50 50000 0 163835 8388 0 163835 8350
3 20 50000 1.3 124721 630 0 124461 682 50 50000 0 166655 7287 0 166655 7184
4 20 50000 0.87 127508 507 0 127165 413 50 50000 0 177233 5979 0 177233 5669
5 20 50000 1.86 132787 388 0 132272 449 50 50000 0 167299 7288 0 167299 6534
6 20 50000 0.5 124718 425 0 124559 382 50 50000 0 180056 4943 0 180056 5006
7 20 50000 0.37 128701 360 0 128701 366 50 50000 0 166328 7619 0 166328 7238
8 20 50000 0.4 120087 583 0.4 128516 493 50 50000 0 166755 7514 0 166755 7450
9 20 50000 0.87 127186 379 0 126900 417 50 50000 0 173295 5828 0 173295 6045
10 20 50000 0 127150 552 0 127150 396 50 50000 0 173497 5980 0 173497 5952

Table 2: Comparison of MAAP and iteratedGreedy on synthetic datasets gen-
erated with interleaved Markov processes. Dominating results (lower scores) are
indicated in boldface. Significantly better values are underlined (t-test with p-
value of 0.05).

Results on Synthetic Data For each dataset, given the stochastic nature of
both algorithms, 30 independent runs are launched. The time limit in seconds
for each run is Tlimit = 200 ∗ |A| when n = 10000 and Tlimit = 500 ∗ |A|
when n = 50000. Once the algorithm reaches this time limit, it returns the best
partition Πbest found so far with its associated minimum penalized entropy score
CΠbest

(zn).

Table 2 displays the results obtained by the algorithms MAAP and iterat-
edGreedy on the 40 different datasets generated with 4 different configurations.
Columns D̄ indicate the average distance relative to the ground truth partition.
Columns C̄ show the average lowest penalized global entropy obtained by an
algorithm and columns time correspond to the average time in seconds required
by the algorithm to reach its best result. Values in bold mean the algorithm has
a better score than the other one. Underlined values mean that the average score
obtained for a given algorithm is significantly better than the average score of
the other algorithm according to a t-test with p-value of 0.05.

Table 2 shows that both algorithms work efficiently since the distance to
the truth partition is often close to zero which validates the relevance of the
likelihood-based method used in this context. The comparison between the two
algorithms reveals that MAAP obtains significantly better results for several
configurations, due to more effective exploration of the search space of all possible
partitions.

A Memetic Algorithm for Deinterleaving Pulse Trains 13

5.3 Experiments on Electronic Warfare Datasets

In this section we present results on datasets coming from an Electronic Warfare
data generator which simulates realistic situations with mobile radar warning
receivers. One configuration corresponds to a random draw in a list of known
radars and a draw in their relative phasing. We cannot share the content of the
generator. For each simulation, a dataset D consisting in a sequence of pulses
with their corresponding frequency (CF) and time of arrival (ToA) is generated.
The ground truth Πtruth (i.e the association of each pulse to each emitter) is
known. The objective is then to retrieve Πtruth from the data.

Preprocessing of the data A preprocessing step is first performed to obtain
the alphabet A from the dataset D. It consists of clustering pulses with the
DBSCAN algorithm [4] based on their frequency. Then, each obtained cluster
is associated with a letter in A. The sequence zn is then obtained by ordering
these letters by increasing order of time of arrival (ToA). Since we only use
the frequency, the ϵ-neighborhood parameter of DBSCAN corresponds to our
precision parameter and is a fixed number of the order of the MHz not specified
here.

Illustrated Example Figure 1a shows an example of a pulse train measured
with the frequency and the time of arrival of the different signals. The scales
are hidden on purpose. Pulses regrouped in the same cluster after the first pre-
processing phase have the same color and are associated with the same letter
(from a to l). Figure 1b corresponds to the known ground truth for this scenario
(4 emitters):
{{a,b,c},{h},{d,e,f,g},{i,j,k,l}}. Pulses generated by the same emitter have the
same color.

We ran the MAAP algorithm on this dataset with default parameters (see
Table 1) and Figure 2 shows the evolution over time of the distance to the
ground truth (blue) and the best penalized entropy (red) reached during the
search (average, minimum and maximum over 10 runs). The two curves, distance
and entropy, have similar variations, meaning that in this case, minimizing the
penalized global entropy allows to get closer to the target partition. We observe
that in some experiments, MAAP reaches the best target partition (distance of
0) within a few seconds, while in others, it never reaches it in the allotted time
with a distance of 4. This highlights that finding a good partition in a limited
amount of time is not always easy for these realistic datasets and may depend a
lot on the random initiating solution from which the search starts.

Results on Electronic Warfare Data 10 different scenarios with 5 emitters
are generated by the Eletronic Warfare data simulator. The number of observed
pulses varies from 10000 to 100000 for these scenarios (the scenarios were cut
if the number of points exceeded 100000 and couldn’t contain less than 10000
points). We launched the MAAP and iteratedGreedy algorithm [5] with the

14 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

(a) Alphabet, 12 letters (b) Ground truth, 4 different emitters

Fig. 1: Illustrated example of radar pulses deinterleaving

same configuration and parameters as presented in Section 5.2. Each algorithm
is launched 30 times (independent runs) on each dataset with a time limit of
three hours.

Table 3 reports the result of these experiments, with the measures of the
best distance (D∗) and the average distance (D̄) to the known ground truth, the
average best penalized global score (C̄) obtained over the different runs and the
time in seconds required to obtain the best scores.

We first observe in this table that for some scenarios, both algorithms are
able to recover or come close to the target partition, but for others, such as
scenario 9, they remain far from it. This is because the IMP representation used
in this work is not always completely valid for some of these scenarios, as some
assumptions are violated. In particular for some scenarios, a certain number of
emitters are only active for a short period of time over the whole time frame,
which violates the time-homogeneous assumption (see Section 1). Therefore, for
these datasets, minimizing the global penalized entropy score does not always
allow to identify the target partition.

We observe that for three scenarios (2, 7 and 10), MAAP is significantly
better than iteratedGreedy [5], but less good on scenario 8; this still highlights
the value of improving the search heuristic for solving the DPP in this realistic
setting.

6 Conclusions

A memetic algorithm for alphabet partitioning was presented in this work. It is
used for the problem of deinterleaving pulse trains generated by multiple emitters
and described by interleaved Markov processes.

The results show that the proposed heuristic almost always finds the best
partitions for synthetic datasets generated with Markov processes and obtains

A Memetic Algorithm for Deinterleaving Pulse Trains 15

Fig. 2: Evolution over time (seconds) of the distance between the ground truth
partition and the current best solution (in blue and left scale), and the corre-
sponding penalized global entropy (in red and right scale), during the search
process of the MAAP algorithm.

good results for electronic warfare datasets generated under realistic conditions.
For some datasets, it can obtain significantly better results than the recent iter-
ated greedy algorithm [5].

A future work could be to take into account the time delay between dif-
ferent signals to improve the estimation of the different component and switch
processes.

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions
which helped us to improve the paper.

References

1. Batu, T., Guha, S., Kannan, S.: Inferring mixtures of Markov chains. In: Hutchi-
son, D., et al. (eds.) Learning Theory, vol. 3120, pp. 186–199. Springer, Berlin,
Heidelberg (2004)

2. Csiszar, I., Shields, P.: The consistency of the BIC Markov order estimator. In: 2000
IEEE International Symposium on Information Theory (Cat. No.00CH37060).
p. 26. IEEE, Sorrento, Italy (2000)

3. Davies, C.L., Hollands, P.: Automatic processing for ESM (1982)
4. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad,
U.M. (eds.) Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), Portland, Oregon, USA. pp. 226–231. AAAI
Press (1996)

16 Jean Pinsolle , Olivier Goudet , Cyrille Enderli, and Jin-Kao Hao

sc
Config iteratedGreedy MAAP
|A| n D∗ D̄ C̄ time D∗ D̄ C̄ time

1 13 13302 2 2.0 3354 34 2 2.0 3354 45
2 28 10000 0 7.5 31445 8122 0 5.5 31237 6047
3 11 69342 3 3.0 18895 78 3 3.0 18895 114
4 11 68571 3 3.0 18872 106 3 3.0 18872 123
5 19 78783 4 7.9 26443 265 6 7.6 26548 733
6 24 90891 2 4.9 19550 4711 2 4.2 19271 3086
7 23 100000 1 7.7 25575 3253 1 5.6 25195 4470
8 13 100000 5 5.0 88414 683 4 6.0 88725 871
9 21 100000 8 8.0 107021 2573 8 8.0 107021 3151
10 27 100000 1 6.2 56363 2431 1 3 54717 4263

Table 3: Comparison of MAAP and iteratedGreedy on 10 electronic warfare
datasets generated with 5 emitters. Dominating results (lower scores) are indi-
cated in boldface. Significant better values are underlined (t-test with p-value
0.05).

5. Ford, G., Foster, B.J., Braun, S.A.: Deinterleaving pulse trains via interleaved
markov process estimation. In: 2020 IEEE Radar Conference (RadarConf20).
pp. 1–6. IEEE (2020)

6. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3(4), 379–397 (1999)

7. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

8. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2(1-2), 83–97 (1955)

9. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of
Operational Research 203(1), 241–250 (2010)

10. Mardia, H.: New techniques for the deinterleaving of repetitive sequences. IEE
Proceedings F (Radar and Signal Processing) 136(4), 149–154 (1989)

11. Milojević, D., Popović, B.: Improved algorithm for the deinterleaving of radar
pulses. IEE Proceedings F (Radar and Signal Processing) 139(1), 98–104 (1992)

12. Moalic, L., Gondran, A.: Variations on memetic algorithms for graph coloring
problems. Journal of Heuristics 24(1), 1–24 (2018)

13. Moore, J., Krishnamurthy, V.: Deinterleaving pulse trains using discrete-time
stochastic dynamic-linear models. IEEE Transactions on Signal Processing 42(11),
3092–3103 (1994)

14. Seroussi, G., Szpankowski, W., Weinberger, M.J.: Deinterleaving finite memory
processes via penalized maximum likelihood. IEEE Transactions on Information
Theory 58(12), 7094–7109 (2012)

15. Zhou, Y., Hao, J., Duval, B.: Reinforcement learning based local search for grouping
problems: A case study on graph coloring. Expert Systems with Application 64,
412–422 (2016)

	A Memetic Algorithm for Deinterleaving Pulse Trains

