Multi-Period Channel Assignment

Hakim Mabed', Alexandre Caminada' and Jin-Kao Hao®

! France Télécom R&D, 6 Avenue des Usines, BP 382, 90007 Belfort, France
{hakim.mabed, alexandre.caminada}@francetelecm.com.
Tel: (+33)03.84544309, Fax (+33)0384544396.
2 University of Angers, 2 Bd Lavoisier, 49045 Angers Cedex, France
jin-kao.hao@univ-angers.fr

Abstract. The well-known fixed channel assignment scheme for cellular
networks is not flexible enough to follow the evolution of traffic. This paper
introduces a multi-period channel assignment model. In addition to the usual
objective of minimizing the interference, the model integrates another
requirement to minimize the transition cost from a frequency plan to another
one. Several heuristic solution approaches are also proposed. Experimental
results on real data are presented to compare the multi-period model and the
fixed model, and to assess the effectiveness of the proposed solution
algorithms.
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1 Introduction

In a GSM network [9], the geographical area is partitioned into cells, each one
served by a single base station. To ensure communications occurring on their cells,
stations require a certain number of frequencies depending on the expected traffic
load. In other words, lightly loaded cells are assigned fewer channels than heavily
loaded ones. The mobile network operators dispose of a very limited number of
frequencies to cover all the network area. For this reason, frequencies reusing is
indispensable to increase the network capacity. Channel assignment consists in
assigning the available frequency spectrum to the stations of the network in order to
satisfy their demands and to minimize the interference. Interference is caused by the
presence of overlapping areas between cells where several signals of good quality are
received.

The quality of communications in cellular networks depends closely on how the
available frequency spectrum is managed. Because of its implementation simplicity,
fixed channel assignment (FCA) is largely used in today's GSM mobile networks. In
this case, a subset of nominal frequencies is definitively allocated to each base station.
However, the main inconvenient of F'C4 is that it is not adaptive to traffic variation.
In fact, usually frequency plan dimensioning is based on an over-sizing of traffic data
[1][6][17] and unused channels in lightly loaded cell are not reassigned to heavily
loaded ones. To overcome this handicap, many alternative strategies have been



adopted as dynamic channel assignment [1][3], hybrid channel assignment [15] and
channel borrowing [16]. Usually those techniques perform badly in heavy traffic or
require additional signaling loads to ensure channel readjustment [8].

This paper presents a channel assignment model noted MCA for Multi-period
Channel Assignment [12], which associates simplicity and adaptability. In this case,
the frequency-planning problem consists in finding a sequence of frequency plans
following the traffic evolution for a number of time periods. Each frequency plan is
conceived to fit the traffic situation at the period in which it is operational. Two
reasons make the problem more complicated. First, in addition to the classical criteria
dealing with interference, the transition cost caused by frequency plan change must be
minimized. Second, the multi-period character of the problem increases its
combinatorial complexity. To cope with this complexity, we propose several
optimization techniques based on a genetic tabu search algorithm and we compare
their performances against the FCA scheme in terms of lost traffic.

The paper is organized as follows. In next section we formally describe the MCA
model and we give a set of definitions used in the remainder of the paper. Section 3
describes in details the basic genetic tabu search algorithm used to solve the FCA
problem. Section 4 presents how genetic tabu search algorithm is readapted to MCA
model. Section 5 is dedicated to the experimental tests carried out in order to assess
the MCA model.

2 Multi-period Channel Assignment Problem

In fixed channel assignment, a single frequency plan is built in order to be
permanently operational even if the traffic evolves in time. The key word is then the
robustness of the frequency plan over time. To that end, modelers use an aggregation
of traffic data, for example traffic at second busy hour to evaluate the quality of
frequency plans [10].

In the case of multi-period channel assignment, we assume that traffic evolution
follows a cyclical scheme. According to the desired scale level, one cycle is divided
into periods of equal duration (hours, days...). We assume also that the traffic load is
known on every cell for each period. The objective is then to find a sequence of
frequency plans. Each frequency plan is built with the objective to minimize the
interference recorded at the associated period. In addition, the frequency plan must
meet another requirement to minimize transition costs between frequency plans.
Transition cost measures the required effort or damage caused by the frequency plan
changes. Several aspects can be taken into account to measure the transition cost
between two frequency plans: (a) Minimizing the number of changed frequencies
between two frequency plans; (b) minimizing the number of stations affected by the
changes or (c) minimizing the traffic load affected by the changes. In this work, the
number of changed frequency is taken as the transition criterion.



2.1 Basic Notations

We introduce here the basic notations and definitions, which will be used in the
continuation of the paper:

N: The number of stations.

{S}, ..., Sy}: The set of stations composing the network.

m; / ie[1..N]: The number of frequencies required by the station S..

F: The number of available frequencies.

np: The number of studied time periods.

2B;: The period on which the traffic load on the station S; reaches its second
greatest value.

Interference damage between stations depends on several factors such as inter-
channel separation between used frequencies, signal powers... It is also largely
depending on traffic intensity on these stations. The impact of traffic on interference
is twofold. As interferer station, traffic load describes the utilization rate of
frequencies and hence impacts on the quantity of generated interference. As interfered
station, traffic intensity reflects the importance of the area covered by the station and
consequently the interest of interference reduction on this area.

Let us note by:

1;;4: The interference damage between S; and S; caused by a pair of frequencies
distanced by d channels.

I ,zf .- The interference damage between S; and S; measured according to
traffic load on station S; at the period 2B; and on station S; at the period 2B;.

17, ,: The interference damage between S; and §; measured according to
traffic situation at the period p.

Assignment f; € [1..F] corresponds to the £ "permanent" frequency assigned
to the station S;.

Assignment f,” €[1..F] corresponds to the K™ frequency assigned to the station

S; at the period p.
A frequency plan is either a vector of '"permanent" assignments
< 1’1,...,f1’m1 ,...,fl’m“\, ""’fN,m,\v > (for FCA) or a vector of "temporary"

,...,f\f’l ,...,ff > (for MCA).

A sequence is a vector of temporary frequency plans
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2.2 Problem Formulation

In the fixed channel scheme, a single frequency plan is constructed on the basis of

i

I’ ﬁ . Vvalues. The objective of the optimization is to find the vector <f,,

coos Jim sees Jrmy > > fv my > Which minimizes the total interference depicted by the

function F»p.
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Where the double sum in the formula 1 measures the total of interference over the
network, caused by used frequencies. The frequency plan thus worked out will be
permanently operational.

By opposition, in multi-period channel assignment, the objective is to find a

sequence of frequency plans corresponding to f,’; values, which minimizes the two

functions:
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1 if condition is true

IND(condition) =
0 otherwise

The function Fy represents the sum of interference recorded over all the time
periods whereas the function Cs depicts the transition cost between frequency plans
composing the sequence.

3 Genetic Tabu Search for Fixed Channel Assignment

The multi-period frequency assignment problem can be seen as an extension of the
fixed channel assignment, requiring the generation of a sequence of frequency plans
instead of a single frequency plan. For this reason, we describe first the algorithm
serving to generate a single frequency plan. This algorithm is also used in Section 5 to
compare the fixed channel assignment model and the multi-period frequency
assignment model.

Many algorithms based on metaheuristics have been proposed for the fixed channel
assignment problem [4][7][11][5]. We present here a hybrid genetic tabu search
algorithm that is described in details in [10]. This article doesn't aim to study the
performance of such algorithm but tries to show the relevance of MCA scheme and
how the FCA algorithms can be readapted to this model.

The FCA algorithm starts from a population of individuals corresponding to
frequency plans. The algorithm makes evolve the frequency plans iteratively. At each
generation, the algorithm selects two frequency plans from the population and applies
a crossover operator to them. The two new generated frequency plans are then
improved using a Tabu Search based mutation.



3.1 Crossover Operator

As crossover operator, we adopt the geographical crossover described in [10][13].
The principle is this one: we randomly choose a reference station Sy and we build the

set of its neighbors V(Sg) composed of interfering stations S; (i.e. 3d/1,,, >0). The

parts of the frequency plans corresponding to V(Sgp)U{Sk} are then exchanged
between the two parents.

Geographic crossover allows the conservation of the building blocs present in the
parent chromosomes. This is made by swapping information related to the local
resolution of interference between stations. This operator is generalized later to multi-
period assignment (see §4.1.3).

3.2 Tabu Search Based Mutation

After crossover, the two new frequency plans are improved by a tabu search based
mutation. The idea is to apply a cycle of local search to the new frequency plans.
More concretely, we associate to each assignment f; of the individual, a value called
violation score measuring the contribution of that assignment to the recorded
interference. Equation 4 gives the function serving to calculate the violation score of
the assignment fiy. At each cycle of the local search operator, one assignment is
chosen on the basis of the violation scores and its value is changed. The new
frequency value corresponds to the best one which is not tabu. After the change, the
new and the old value are considered tabu for this assignment.

N M 4
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Notice that such a tabu management contributes to two different roles. The element
(i, k, foi) avoids the recurrence of visited solutions, whereas the element (i, &, fe.,)
prevents the remainder individuals from re-exploring the same search area since the
tabu list is shared by all population individuals.

After mutation the new frequency plan are inserted in the population in
replacement of another one. The replaced frequency plan is chosen on the basis of its
fitness. More precisely, individuals of bad fitness have more chance to be replaced.

The algorithms below describe the main procedure of the genetic tabu search
algorithm as well as the tabu based mutation procedure.
TabuSearchOperator(Frequency plan fp)

Begin

Best_fp:=fp;

CalculateScores(fp);

for iter:=1 to TSML {Tabu Search based mutation length}
(i,k):=SelectAssignment(fp);{on the basis of violation scores}
f_old:= fp[i,k];
f_new := SelectBestFrequency(fp, i, k); {which is not tabu}
AddToTabulist(i,k,f_old); AddToTabulList(i,k,f_new);
fpli,k]:= f_new;




UpdateScores(fp);
If BetterThan(fp,Best_fp) then Best_fp=fp; End if
End for
End.

Genetic Tabu Search
Begin
P:=RandomlInitPopulation(Pop_size);
For g:=1 to NbGenerations
(p1,p2):=SelectParents(P)
with a Pc probability do (f1,f2):=Crossover(p1,p2)
otherwise f1:=p1; f2:=p2;
f1:=TabuSearchOperator(f1); f2:=TabuSearchOperator(f2);
(v1,v2):=SelectVictims(P);
ReplaceBy(v1,f1); ReplaceBy(v2,f2);
End for
End.

4 Genetic Tabu Search for Multi-period Channel Assignment

For the purpose of finding multi-period channel assignment, we have designed and
experimented different optimization techniques. Each technique presents a particular
manner to readapt FCA algorithms (in our case the Genetic Tabu Search) for the
resolution of the MCA problem. These techniques can be roughly classified into two
classes: direct optimization and decomposed optimization.

4.1 Direct Optimization

The multi-period character of the problem increases its combinatorial complexity.
In direct optimization, the problem is considered in its totality without restriction on
search space. In other words, search space will correspond to all the sequences of the
form:

fl fl fl fnp fnp fnp
o Sim oo Ny [ 0000 oSS Ny

The optimization algorithm generates the different frequency plans composing the
optimal sequence in a competing way. It is then necessary to readapt search operators
of the basic algorithm.

4.1.1 Objective Function
To assess the fitness of a sequence, two criteria are considered: the total of
interference recorded over time periods F, and the total of transition cost C,. The

quality of each frequency plan in the sequence is calculated regarding to the other



plans. Therefore, choices made on a part of the sequence may lead to other changes in
the entire sequence.

The interference and transition criteria (§2.2) are aggregated into a single objective
function. A threshold value Sy is defined as the maximal tolerated number of changes
in the sequence. Exceeding this threshold the sequence quality is penalized with a
very high value M. The objective function takes then the following form:

F=F +MXIND(C, >S,) where M is a very high value ®)

4.1.2 Initial Population

Generation of the initial population passes through a pre-optimization phase. For
each sequence of the initial population, we choose iteratively one period p. An
optimization phase is launched to generate a frequency plan, fp, well adapted to that
period with the objective function given in equation 6. Then the frequency plan fp is
fixed during all periods forming a sequence <fp,..,fp> which is inserted in the initial
population. This process is reiterated for the other individuals of the initial population.

;o (6)

F,= Z Z Ii[j/'v\h,k*f’/,/\ /pe [1--11]9]

i=1,j=1 k=1,I=1

4.1.3 Crossover Operator

Considering the effectiveness of the geographical crossover, a multi-period version
of this operator should be interesting. The objective is to allow both spatial and
temporal configuration exchange between sequences. In other words, the frequency
plan evolution in a part of the network is grafted into another sequence. To that end, a
reference station is randomly selected and the set of its neighbors is built. Then the
corresponding parts in the two parent sequences are exchanged. The crossover
working is schematized in the following figure.

Interfering Reference
station Sequence Frequency plan
P P Interfering
stations

Network Parent 1 Parent 2 Offspring 1 Offspring 2

Fig. 1. Crossover operator for multi-period channel assignment



4.1.4 Mutation Operator
Two variants of the previous tabu search based mutation operator are implemented.

The first variant (M1) changes the value of a single assignment fi . First, a period p

is randomly chosen and the violation score of each assignment of the considered

P

period is calculated using the formula 7. Then an assignment f,; is selected with a

probability proportional to its violation score and the best not tabu value is attributed
to it.

)
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p=l j=1 I=1

P

The second variant (M2) resets to the same value all the assignments f/

(pe[1..np]). The working scheme is the same as in mutation (M1) except that the new
value is attributed to all assignments of the same position as f”. These two variants

are used in a competing way with probabilities Pm;, 1-Pm;. The algorithm below
depicts the Tabu Search based mutation of direct optimization. The main procedure is
the same as in fixed assignment except that manipulated individuals are sequences.

TabuSearchOperator(Sequence seq)
Begin
Best_seq:=seq;
p=Random(np);
CalculateScores(Seq[period)); {seq(period) corresponds to the frequency
plan of the period p}
for iter:=1 to TSML {Tabu Search based mutation length}
(i,k):=SelectAssignment(fp);{on the basis of violation scores}
f_old:= seq[p,i,K];
f_new := SelectBestFrequency(seq,p, i, k); {which is not tabu}
with a Pm1 probability, do
AddToTabulList(p,i,k,f_old); AddToTabuList(p,i,k,f_new);
seq[p,i,k]:=f_new;
else do
AddToTabulList(p,i,k,f_old); AddToTabuList(TOUT,i,k,f_new);
for each per=1..np do seq[per,i,k]:= f_new;
end with
UpdateScores(seq);
If BetterThan(seq,Best_fp) then Best_seq=seq; End if
End for
End.

4.2 Decomposed Optimization

In decomposed methods, the initial problem is decomposed into several sub-
problems of lower complexity, leading to reduced search space. On each sub-
problem, an optimization phase is launched to generate a part of the final sequence of
frequency plans. Each optimization phase handles individuals of frequency plan type.
Three decomposed algorithms are implemented. Details of their implementation are
given here below.



4.2.1 Step by step Optimization

The optimal sequence of frequency plans is built in an iterative manner. At each
iteration, one period is considered according to its chronological order. A frequency
plan is then generated (by optimization) to fit the traffic situation at this period and to
minimize transition cost from previous frequency plan. The final solution corresponds
then to the set of those frequency plans. Note that the part of the optimal sequence
already built can't be readjusted in further iterations. We give hereafter the different
steps followed by the method. The value S designates the maximal tolerated change
threshold between two consecutive frequency plans in the sequence. This threshold
serves to aggregate the two partial functions F), (equation 6) and C, (described in the
algorithm).

Find the values f;,, which minimize: F

For each period pe[2..np]
Find the values f*, which minimize:

ik?

m;

F,+ M xIND(C,>S), where C, = > > IND(f # f")

The final solution will correspond to the sequence

fl fl fl fn/) fnp fn/)
Ly Sm oy S Nmy fooo N\ oS w2 S Nomy .

4.2.2 Sequential Optimization

The idea is to use the robust frequency plan generated by fixed channel assignment
method as a starting point for search. More precisely, an initial optimization phase
using the function F,p is performed producing a robust frequency plan. The different
frequency plans composing the sequence are constructed iteratively in chronological
order of periods exactly as in step-by-step optimization. The first frequency plan
corresponding to the initial period is generated starting from the robust frequency plan
(with respect to the transition cost criterion). We give hereafter the details of
sequential optimization algorithm.

Find the value f;}, which minimize F,p

For each period pe[1..np]
Find the values f}, which minimize: F, + M XIND(C >S)

4.2.3 Parallel (or Simultaneous) Optimization

The iterative aspect of sequential optimization makes it slow. To overcome this
inconvenient, a parallel variant of this technique is proposed. In this case, the
frequency plans associated with the different periods are constructed starting from the
robust plan in parallel. To explain this difference we give the working scheme of this
parallel optimization, the parallel algorithm being implemented under PVM (Parallel
Virtual Machine) system.




Find the value f, [Z , which minimize F>g

For each period pe[1..np] do simultaneously
Find the values f%, which minimize:

F,+MxIND(C, > S), where C. = > > IND(f? # f°)

5 Experimental Tests

The objective of this section is twofold. On the one hand, we compare the
performance of the implemented multi-period optimization techniques. On the other
hand, we compare the quality of solutions generated by the multi-period model with
those produced by the FCA model. Results of multi-period and fixed channel
assignment are compared from two points of view. The first is based on objective
functions (Formulas 1 to 3). The second adopts operator's point of view and compares
the solutions according to the lost traffic.

5.1 Benchmark Problems

Tests are carried out on both fictitious! and real data. The first problem, B-63,
represents a fictitious problem instance with 63 stations, 30 available frequencies and
6 periods. The second instance, D-639, corresponds to a real world problem. The
network is composed of 639 stations with 62 frequencies and traffic data during 13
hours (periods). The third instance, BM-120, is another real world problem with 120
stations and 62 available frequencies. BM-120 is dedicated to study the performance
of MCA for large-scale traffic data. Traffic evolution is thus studied over one week,
day by day.

5.2 Comparison between Multi-period Channel Assignment Techniques

Four multi-period optimization algorithms, described before, are compared. Those
algorithms correspond to direct optimization, step by step optimization, sequential
optimization and parallel optimization. Table 1 gives the results obtained by each
technique for the two problems B-63 and D-639. We run each algorithm 5 times on
every problem. Only the best solution is reported for each algorithm.

Two implementations of the direct optimization technique are presented. The first
uses only the mutation operator M/. The second uses in a simultaneous way the two
mutation operators M1 and M2. For each technique we give the name, the objective
and eventually the mutation operator used. Obtained solutions are compared
according to interference (F,) and transition (C,) cost at each period as well as their
sum over time.

! By fictitious data, we mean a real network whose traffic data are artificially modified.




From columns (2) and (3) we remark the effectiveness of using the two mutation
operators in cooperative way. By using only the M operator, the transition cost
reaches quickly the threshold Sy and hence slows down the algorithm evolution.

Step-by-step technique gives bad results. This can be explained by the absence of a
global vision. In fact, at each phase, step-by-step algorithm optimizes the frequency
plan according to the traffic situation at the associated period without taking into
account the future evolution of traffic.

However, the main observation is that decomposed approaches, represented in
table 1 by columns (4) and (5), give the best results. We notice also that results of
sequential and parallel-decomposed optimization are very close.

@ (€] 3 () (©)
Name Step by step Direct Direct Sequential Parallel
decomposed decomposed decomposed
Objective || Fy+IND(C>S), | Fs+IND(Cs>Sy), | Fs+HIND(Cs>Sy), || EytIND(Cy>S), || F+IND(C'>S),
S=30, 50 S=130, 600 S=130, 600 S=30, 50 S=30, 50
Mutation M1 MI1+M2
Cost F, C, F, C, F, C, F, C, Fp C,
PO 62340 0 68828 0 57110 0 51569 0 51322 0

P1 59740 | 29 66587 27 57431 38 49123 25 49012 27
P2 53525 | 30 58725 23 47318 37 41837 20 41750 23

@l P3| 52350 |30 55135 34 | 43402 15 | 40922 | 27 | 41033 | 19
& | P4 | 62282 | 30| 61645 15 52139 21 | 48144 | 25 | 48281 | 28
P5 | 63484 |30 | 65181 21 56880 15 | 51650 | 6 | 51584 | 10
Total| 353721 | 149| 376104 | 120 | 314280 | 126 | 283245 | 103 | 282982 | 107
7:00 | 17289 | 0 18014 0 16026 0 16663 | 0 | 16458 | 0
8:00 | 47376 | 50 | 48363 50 | 45832 50 | 43268 | 50 | 42875 | 50
9:00 | 80311 | 50 | 83892 50 75913 50 | 73962 | 50 | 73784 | 50
10:00[ 99960 | 50 | 103470 | 50 89749 50 | 85750 | 50 | 85912 | 48
11:00| 106898 | 50 | 109018 | 50 98944 50 | 94713 | 50 | 94799 | 50
12:00 103367 | 50 | 105913 | 50 95013 49 | 92103 | 38 | 92355 | 46
2 [13:00] 87468 | 50 | 89354 50 82832 | 49 | 77725 | 50 | 77623 | 50
£ | 1400] 88088 | 50 | 91325 50 83549 | 48 | 77904 | 50 | 77789 | 50

15:00 92669 | 50 95102 50 90114 50 82921 44 82805 46
16:00 | 104715 | 49 106822 50 99322 50 92023 49 91987 47
17:00 | 124727 | 48 128341 50 119444 48 110814 | 45 110612 | 50
18:00 | 138748 | 50 143755 50 136617 44 128595 | 33 128904 | 30
19:00 | 124642 | 50 126015 50 125029 41 119212 | 45 119447 | 42

Total | 1216258 | 597 | 1249384 | 600 1158387 | 579 || 1095653 | 554 | 1095350 | 559

Table 1. Comparison between the different multi-period channel assignment techniques

5.3 Comparison between Fixed and Multi-period Solutions for D-639 Problem

To compare fixed and multi-period channel assignment, we have run the fixed
channel assignment algorithm (Section 3) five times on the D-639 problem. In the
tables 2 and 3, we compare the best solution found by the FCA4 with the multi-period
solution found by the parallel decomposed optimization (column 5 in table 1). This
comparison is made on the basis of objective function (table 2) and lost traffic (table




3). In table 3, we give the lost traffic (in Erlang) at each period as well as the total of
lost traffic for the two compared solutions. We use for that, the quality evaluator of

PARCELL®©?2. Results show a reduction of lost traffic reaching sometime 8% by
using the MCA model. Notice that in table 2, transition cost for fixed solution is
usually zero since there is a single frequency plan.

Name Fixed Parallel Periods | Traffic| Fixed [Multi-period| Gain
decomposed 7h-8h | 504 | 1.60 1.47 8.12%
Objective | Fop F,+IND(C',>50) 8h-9h | 1161 | 4.90 4.77 2.6%
Cost F, C, |Fp C, 9h-10h | 1746 | 9.58 9.57 0.1%
7:00 17944 0 16458 0 10h-11h| 2015 || 10.65 11.27
8:00 [47065 0 (42875 50 11h-12h| 2168 | 12.30 12.19 0.9%
9:00 78944 |0 |73784 50 12h-13h| 2092 | 11.42 11.45
10:00 92338 |0 (85912 |48 13h-14h| 1861 | 9.84 9.39 4.5%
11:00 [102398 |0 [94799 |50 14h-15h| 1944 [10.30 9.75 5.3%
2 12:00 196356 |0 {92355 |46 15h-16h| 1972 | 11.15 10.30 7.6%
©[13:00 (84723 [0 [|77623 |50 16h-17h| 2160 | 12.77 12.25 4%
Al14:00 86766 [0 77789 |50 17h-18h| 2486 | 15.75 14.40 8.5%
15:00 94820 |0 82805 |46 18h-19h[ 2745 | 19.01 17.83 6.2%
16:00 104131 10 |91987 |47 19h-20h| 2696 | 16.71 1582 [5.3%
17:00 1121026 10 | 110612 |50 Total | 25550 [145.98]  140.46
18:00 (138218 |0 128904 |30
"ll“?).toa(: ﬁ;;g; g iég:g;o 229 Taple 3. Comparisop betweer} fixed and multi-
period channel assignment in terms of lost

traffic for the D-639 problem
Table 2. Comparison between fixed and

multi-period channel assignment in terms of
objective function

5.4 Comparison between Fixed and Multi-period Solutions for Large-scale
Traffic Data (BM-120 Problem)

In tables 4 and 5, we compare two solutions generated for the BM-120 instance.
The first solution is generated using the FCA model, and the second using the parallel
decomposed algorithm for the multi-period model. As for D-639 problem, we
compare these two solutions in terms of objective function (table 4) and lost traffic
quantity (table 5). The first observation is that, during the weekend, frequency plan
adaptation requires more changes. For both Saturday and Sunday, the change
threshold is reached. This can be explained by the great difference between the traffic
situation during the weekend and the remainder days. This observation results in table
4, where we note a great quality improvement during the weekend (the gain is of 8%
and 11.4%) in the MCA model.

2 Engineering tool for design of mobile radio network, ORANGE society all rights reserved.



Fixed solution Multi-period solution

Days F F,+IND(C',>50)

F, C, F, C,
June, Monday 24 39219 0 38708 31
June, Tuesday 25 40171 0 39647 21
June, Wednesday 26 40140 0 39866 15
June, Thursday 27 44537 0 44226 19
June, Friday 28 42958 0 42504 24
June, Saturday 29 30543 0 28890 50
June, Sunday 30 23221 0 21306 50

Table 4. Comparison between fixed and multi-period channel assignment for BM-120 instance

Days Traffic | Fixed | Multi-period | Gain
June, Monday 24 183 3.62 3.60 0.55%
June, Tuesday 25 246 3.65 3.35 8%
June, Wednesday 26 340 3.76 3.71 1%
June, Thursday 27 364 4.28 3.97 7%
June, Friday 28 340 4.07 3.98 2%
June, Saturday 29 338 2.66 2.44 8%
June, Sunday 30 322 1.76 1.59 11.4%
Total 2133 23.8 22.64

Table 5. Lost traffic recorded for fixed and multi-period solution for the BM-120 instance

6 Conclusion

In this paper we have proposed a multi-period channel assignment (MCA) model
for GSM mobile networks. In addition to the classical minimization interference
criterion, we introduced another optimization criterion based on the transition cost
from the frequency plan of a period to the plan of another one. Compared with the
fixed channel assignment model, the proposed model has the advantage of being
flexible and adaptive to traffic evolution.

Based on the MCA model, we have developed several optimization techniques to
find a sequence of frequency plans for a given time periods. These solution
techniques are adapted from a hybrid Genetic Tabu Search algorithm for fixed
channel assignment. We proposed two ways of generating a solution for the MCA
model: direct optimization in which the best sequence of frequency plans is sought
directly; and decomposed optimization in which the whole solution is built by finding
frequency plans for each individual periods.

Several experiments on three realistic data sets have been carried out. These data
sets include both fine grained (hour by hour) and large scale (day by day) time steps.
Experimental results have led to the following observations. First, comparing the



different optimization techniques for the MCA model on these data sets shows that the
sequential and parallel implementation of the decomposed optimization give
frequency plans of better quality in terms of the two optimization criteria (global
interference and transition cost between frequency plans). Second, when comparing
solutions obtained using the MCA model and the FCA model, one observes that the
multi-period model leads to frequency plans of lower interference. Third and most
importantly, thanks to the multi-period model, the lost traffic is always reduced,
reaching sometimes a gain of communications up to 11.4%. This last point is
especially beneficial from an operator’s operational point of view.

Finally, let us mention two possible improvements for multi-period frequency
assignment. As to the model itself, other optimization objectives may be taken into
consideration (as mentioned in Section 2). As to solution techniques, an interesting
alternative to the penalty-based aggregation approach used in this study is a true
multi-criteria optimization approach that would be certainly worth of investigation.
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