Iterated Local Search for Biclustering of
Microarray Data

Wassim Ayadil'2, Mourad Elloumi?, and Jin-Kao Hao!

! LERIA, University of Angers, 2 Boulevard Lavoisier, 40045 Angers, France
2 UTIC, Higher School of Sciences and Technologies of Tunis, 1008 Tunis, Tunisia
{ayadi, hao}Qinfo.univ-angers.fr; mourad.elloumi@fsegt.rnu.tn

Abstract. In the context of microarray data analysis, biclustering aims
to identify simultaneously a group of genes that are highly correlated
across a group of experimental conditions. This paper presents a Biclus-
tering Iterative Local Search (BILS) algorithm to the problem of biclus-
tering of microarray data. The proposed algorithm is highlighted by the
use of some original features including a new evaluation function, a ded-
icated neighborhood relation and a tailored perturbation strategy. The
BILS algorithm is assessed on the well-known yeast cell-cycle dataset
and compared with two most popular algorithms.

Key words: Analysis of DNA microarray data, biclustering, evaluation
function, iterative local search.

1 Introduction

With the fast advances of DNA Microarray technologies, more and more gene
expression data are made available for analysis. In this context, biclustering
has been recognized as a remarkably effective method for discovering several
groups of subset of genes associated with a subset of conditions. These groups
are called biclusters. Biclusters can be used for various purposes, for instance,
they are useful to discover genetic knowledge, such as gene annotation or gene
interaction, and to understand various genetic diseases.

Formally, DNA microarray data is usually represented by a data matrix
M(I,J), where the it" row, i € I={1,2,...,n}, represents the i*" gene, the k"
column, k € J={1,2,...,m}, represents the k" condition and the cell M][i, k]
represents the expression level of the i*" gene under the k" condition. A bicluster
of M is a couple (I’,J’) such that I’ C I and J' C J.

The biclustering problem consists in extracting from a data matrix M (I, J) a
group of biclusters that maximize a given evaluation function. The biclustering
problem is known to be NP-hard [10,22]. In the literature there are two main
approaches for biclustering: the systematic search approach and the stochastic
search or metaheuristic approach. Notice that most of these approaches are
approximate methods.

The systematic search approach includes greedy algorithms [6, 9, 10, 29], divide-
and-conquer algorithms [17,26] and enumeration algorithms [4,20]. The meta-
heuristic approach includes neighbourhood-based algorithms [8], GRASP [12, 13]

2 Ayadi, Elloumi, Hao

and evolutionary algorithms [15,16,23]. A recent review of various biclustering
algorithms for biological data analysis is provided in [3].

In this paper, we present a first adaptation of Iterative Local Search (ILS) to
the biclustering problem. The resulting algorithm, called BILS, integrates several
original features. BILS employs a new evaluation function for the assessment of
biclusters. In BILS, we introduce a dedicated neighborhood relation which allows
the search to improve gradually the quality of bicluters. To allow the search to
escape from local optima, BILS uses a randomized, yet guided perturbation
strategy.

To assess the performance of BILS, we applied BILS to the well-known yeast
cell-cycle dataset and validated the extracted biclusters using external biological
information by determining the functionality of the genes of the biclusters from
the Gene Ontology database [2] using GOTermFinder tool3. Genes belonging
to our biclusters were found to be significantly enriched with GO terms with
very small p-values. We also use the web tool FuncAssociate [7] to compute the
adjusted p-values. Our biclusters were found to be statistically significant with
adjusted p-values < 0.001. We also compared our algorithm with two popular
biclustering algorithms of Cheng and Church (CC) [10] and OPSM [6].

The remainder of the paper is organized as follows: In section 2, we describe
our new biclustering algorithm. In section 3, we carry out an experimental study
of BILS and assess its results using the above cited web-tools. Finally, in the last
section, we present our conclusion and perspective.

2 The BILS algorithm

2.1 Iterated local search

Iterated Local Search can be described by a simple computing schema [19]. A
fundamental principle of ILS is to exploit the tradeoff between intensification and
diversification. Intensification focuses on optimizing the objective function as far
as possible within a limited search region while diversification aims to drive the
search to explore new promising regions of the search space. The diversification
mechanism of ILS—perturbation operator—has two aims: one is to jump out of the
local optimum trap; the other is to lead the search procedure to a new promising
region.

From the operational point of view, An ILS algorithm starts with an initial
solution and performs local search until a local optimum is found. Then, the
current local optimum solution is perturbed and another round of local search
is performed with the perturbed solution.

Our BILS algorithm follows this general ILS schema. It uses a Hill-climbing
(HC) algorithm as its local search procedure. In the rest of this section, we
explain the main ingredients of this HC algorithm as well as the perturbation-
based diversification strategy.

3 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

BILS 3

2.2 Preprocessing step: construction of the Behavior Matrix

Prior to the search step using ILS, our method first uses a preprocessing step to
transform the input data matrix M to a Behavior Matriz M’. This preprocessing
step aims to highlight the trajectory patterns of genes. Indeed, according to [21,
24,27], in microarray data analysis, genes are considered to be in the same
cluster if their trajectory patterns of expression levels are similar across a set
of conditions. In our case, each column of M’ represents the trajectory of genes
between a pair of conditions in the data matrix M. The whole M’ matrix provides
useful information for the identification of related biclusters and the definition
of a meaningful neighborhood and perturbation strategy.

Formally, the Behavior Matrix M’ is constructed progressively by merging a
pair of columns (conditions) from the input data matrix M. Since M has n rows
and m columns, there is m(m — 1)/2 distinct combinations between columns,
represented by J”. So, M’ has n rows and m(m — 1)/2 columns. M’ is defined
as follows:

1 if MJi, k] < MJi, ¢
M'[i,l] =< =1 if M[i,k] > MJi,q] (1)
0 if M[i, k] = M[i,q]
with ¢ € [1.n], I €[1..J"], k €[1l.m — 1], g €[1..m] and ¢ > k + 1.
Using M’, we can observe the behavior of each gene through all the combined
conditions. In our case, the combination of all conditions gives useful information
since a bicluster may contains a subset of non contiguous conditions.

2.3 Initial solutions and basic search process

Given the Behavior Matrix M’, our BILS algorithm explores iteratively different
biclusters. To do this, BILS needs an initial bicluster (call it sg) as its starting
point. This initial bicluster can be provided by any means. For instance, this can
be done randomly with a risk of starting with an initial solution of bad quality. A
more interesting strategy is to employ a fast greedy algorithm to obtain rapidly
a bicluster of reasonable quality. We use this strategy in this work and adopt
two well-known algorithms: one is presented by Cheng and Church [10] and the
other is called OPSM which is introduced in [6].

Starting from this initial solution, BILS will try to find iteratively biclusters
of better and better quality. Basically, the improvement is realized by removing
a "bad” genes from the current bicluster and adding one or more other ”better”
genes. Each application of this dual drop/add operation generates a new bicluster
from the current bicluster. The way of identifying the possible genes to drop and
to add defines the so-called neighborhood which is explained in detail in section
2.6.

2.4 Solution representation and search space

A candidate solution is simply a bicluster and represented by s = (I’, J'). As
explained in the next section, our algorithm explores different biclusters with

4 Ayadi, Elloumi, Hao

variable number of genes and a fixed number of conditions. The search space is
thus determined by the number k of genes in the initial bicluster and has size of
29 where g = n — k.

2.5 Evaluation function

For a given solution (bicluster), its quality is assessed by an evaluation func-
tion. One of the most popular evaluation functions in the literature is called
Mean Squared Residue (MSR) [10]. MSR has been used by several biclustering
algorithms [9,13,23]. Yet MSR is known to be deficient to assess correctly the
quality of certain types of biclusters like multiplicative models [1, 25,29, 9]. Re-
cently, Teng and Chan [29] proposed another function for bicluster evaluation
called Average Correlation Value (ACV). However, the performance of ACV is
known to be sensitive to errors [9]. Both MSR and ACV are designed to be
applied to the initial data matrix M. In our case, since M is preprocessed to
obtain M’, the above mentioned evaluation functions cannot be applied. For
these reasons, we propose a new evaluation function S to evaluate a bicluster.

Given a candidate solution (a bicluster) s = (I',J’), the quality of s is as-
sessed via the following score function S(s):

Z Z Fij(9i,95)
el jel j>itl

S = (T2

with F;;(.,.) being defined by:

> T(M'fi, 1] = M'[j,1])

1
1€y

Fij(9i,9;) = (3)

"
| J5,
where

— T(Func) is true, if and only if Func is true, and T (Func) is false otherwise.

—iel',jel'and i # j, when F isused by Sand, i € I, j € I and i # j
otherwise.

— |J&, | is the cardinality of the subset of conditions in M’ obtained from s,

- 0< Fij(gir 95) < 1.

In fact, each F score assesses the quality of a pair of genes (g;, g;) under the
subset of conditions of s. A high (resp. low) Fi;(g:, g;) value, close to 1 (resp.
close to 0), indicates that the genes (g;,g;) (under the given conditions) are
strongly (resp. weakly) correlated.

Given two pairs of genes (g;, g;) and (g;, g}), it is then possible to compare
them: (gi, g;) is better than (g;, g7), when Fi;(g:, 9;) > Fij(9;, 95)-

Furthermore, S(s) is an average of F;;(g;, g;) for each pair of genes in s. So,
0 <S(s) <1. As Fij(9i,9;), a high (resp. low) S(s) value, close to 1 (resp. close
to 0), indicates that the solution s is strongly (resp. weakly) correlated.

Now given two candidate solutions s and s, s is better than s’ if S(s) > S(s').

BILS 5

2.6 Move and neighborhood

One of the most important features of a local search algorithm is its neighbor-
hood. In a local search algorithm, applying a move operator mv to a candidate
solution s leads to a new solution s’, denoted by s’ = s @ mwv. Let I'(s) be the
set of all possible moves which can be applied to s, then the neighborhood N(s)
of s is defined by: N(s) = {s @ mv|mv € I'(s)}.

In our case, the move is based on the drop/add operation which removes a
gene {g;|i € I'} from the solution s and add another gene {g,|v & I'} or several
other genes {gy,...,gulv € 1I',...,w & I'} to s.

The move operator can be defined as follows. Let s = (I’, J') be a solution and
let A € [0..1] be a fixed quality threshold (See Section 2.5 for quality evaluation).
Foreachi e I',j e I',r € I' and i # j # r, we first choose a pair of genes (g;, g;)
such that F;;(gi,9;) < A. Such a pair of genes shows that they contributes
negatively to the quality of the bicluster when they are associated. Now we look
for another pair of genes (g, g-) satisfying F;,(g;,9-) > A. By this choice, we
know that g; contributes positively to the quality of the bicluster when it is
associated with g,.. Notice that for both choices, ties are broken at random in
order to introduce some diversification in the move operator.

Finally, we remove g; which is a bad gene among the genes belonging to I’
and we add all the genes {g,,...,gw|v € I',...,w & I'} such that the values
Fow(Gry o)y -y Frw(gr, guw) are higher than or equal to A. Such an operator
clearly help improve the quality of a bicluster, but also maximize the bicluster
size [14, 23].

Applying the move operator to a solution s leads to a new bicluster s’, called
neighboring solution or simply neighbor. For a given bicluster s, all possible
neighbors define its neighborhood N(s). It is clear that a neighboring solution
s’ has at least as many genes as in the original solution s.

2.7 The general BILS procedure

The general BILS procedure is given in Algorithm 1. Starting from an initial
solution (call it current solution s, see section 2.3), our BILS algorithm uses the
Hill-climbing strategy to explore the above neighborhood. At each iteration, we
move to an improving neighboring solution s’ € N(s) according to the evalua-
tion function S(s). This Hill-climbing based intensification phase stops when no
improving neighbor can be found in the neighborhood. So, the last solution is
the best solution found and corresponds to a local optimum. At this point, BILS
triggers a diversification phase by perturbing the best solution to generate a new
starting point for the next round of the search.

Our perturbation operator changes the best local optimum by deleting ran-
domly 10% of genes of the best solution and adding 10% of genes among the
best genes that are not included in the best solution. This perturbed solution is
used by BILS as its new starting point.

The whole BILS algorithms stops when the best bicluster reaches a fixed
quality or when the best solution found is not updated for a fixed number of
perturbations.

6 Ayadi, Elloumi, Hao

Algorithm 1 General BILS Procedure

1: Input: An initial bicluster so, quality threshold A

2: Output: The best bicluster

3: Create the Behaviour Matrix M’

4: Compute F for all pairs of genes to create I'(so)

5: s = so // current solution

6: repeat

7 repeat

8: Choose a pair of genes (g;, g;) belonging to s such that F;(gi, g;) < A
9: Choose a pair of genes (g;, g-) belonging to s such that Fjr(g;,g9r) > A
10: Identify all genes g,, v € I’ such that Frv(gr, gv) > A
11: Generate neighbor s’ by dropping g; from s and adding all g,
12: if (S(s’) > S(s)) then s = s’
13: endif
14: until (no improving neighbor can be found in N(s))
15: Generate a new solution s by perturbing randomly 10% of the best solution
16: until (stop condition is verified)
17: Return s

3 Experimental Results

3.1 Dataset and experimental protocol

In order to analyze the effectiveness of the proposed algorithm, we used the
well-known yeast cell-cycle microarray dataset. The yeast cell-cycle dataset is de-
scribed in [28]. It is processed in [10] and publicly available from [11]. It contains
the expression profiles of more than 6000 yeast genes measured at 17 conditions
over two complete cell cycles. In our experiments we use 2884 genes selected by
[10].

The obtained results have been compared with two popular biclustering algo-
rithms: the one proposed by Cheng and Church (CC) [10] and OPSM described
in [6]. For these reference algorithms, we have used Biclustering Analysis Toolbox
(BicAT) which is a recent software platform for clustering-based data analysis
that integrates these biclustering algorithms [5].

For this experiment, the A\ threshold of BILS is experimentally set to 0.7. In
fact, for each experiment ten values are tested between 0.1 and 1 with a stepwise
of 0.1. With A = 0.7, we have obtained the lowest p-values. The threshold § of
CC is selected as 300 like used in [10] and the default parameter setting is used
for OPSM. With these algorithms, we have obtained 10 biclusters for CC and 14
biclusters for OPSM. Post-filtering was applied in order to eliminate insignificant
biclusters like Cheng et al. [9]. This led to 8 biclusters CC and for 10 biclusters
for OPSM. These biclusters are used as initial solutions for BILS and we compare
the outputs of BILS with these initial biclusters.

The two web tools Funcassociate [7] and GoTermFinder? are used to evaluate
statistically and biologically the biclusters.

* http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

BILS 7

Our algorithm is run on a PC with 3.00GHz CPU and 3.25Gb RAM. Com-
puting time is not reported, but let us mention that to improve one bicluster it
takes between 3 and 11 minutes.

3.2 Statistical and biological significance evaluation

Statistical significance of the biclusters is obtained by using the Funcassociate
[7] web tool to compute the p-values and the adjusted p-values.

First, we asses the quality of the group of 18 biclusters obtained by BILS
when it is applied to the 8 initial biclusters provided by CC and 10 initial biclus-
ters given by OPSM. Funcassociate is used to compute the adjusted p-values of
each of our 18 biclusters, leading always to an adjusted p-values < 0.001. This
indicates that all these biclusters are statistically significant.

Now we turn our attention to the interpretation of results using the p-values.
In fact, the p-values show how well they match with the known gene annotation.
The closer the p-value is to zero, the more significant is the association of the
particular Gene Ontology (GO) with the group of genes. For this purpose, we
decide to examine for each algorithm only two biclusters: the bicluster having
the maximum p-value and the one having the minimum p-value. Let B_zxp;q.p
(resp. B_zx i p) denote these biclusters for algorithm zz = CC or zz = OPSM.

Table 1 summarizes the largest (column 2) and the smallest (column 3) p-
values of the eight biclusters obtained from CC and the ten biclusters obtained
from OPSM. The obtained biclusters from these algorithms with largest /smallest
p-values are improved with BILS (row 3 for CC and 5 for OPSM). For instance,
the element 0.000010 at row 2 and column 2 is the p-value of the bicluster
B_CChurazp of CC while the element 2.220e-17 at row 3 and column 2 is the
p-value of the improved bicluster B_.CC\yq.p by BILS.

From the table, we see that BILS successfully improves the biclusters of
CC and OPSM. In fact, both the maximum and minimum p-values of BILS are
always better than those of CC and OPSM. This demonstrates that BILS is able
to replace bad genes of the candidate solution by good genes by applying our
move operator. Thus we can say that the biclusters of BILS are more statistically
significant than those of CC and OPSM.

Algorithms|Maximum p-value|Minimum p-value
CcC 0.000010 4.096e-40
BILS 2.220e-17 2.860e-70
OPSM 0.0000012 1.587e-13
BILS 1.156e-10 4.865e-24

Table 1. P-values of the genes of the biclusters for BILS, CC and OPSM.

In addition to the above statistical significance validation, we also apply
the GoTermFinder web tool on the biclusters used at the Table 1 to evaluate

8 Ayadi, Elloumi, Hao

their biological significance, i.e., to show significant enrichment with respect to
a specific GO annotation, in terms of associated biological processes, molecular
functions and cellular components respectively compared to CC and OPSM.
For this, Table 2 and 3 describe the top GO terms of the three categories with
the lowest p-values. The value within parentheses after each GO term, e.g., Table
2 second column third line, such as (4.54e-05) indicates the statistical significance
which is provided by the p-value. We observe that BILS can obtain improved
biclusters not only in terms of p-values, i.e., quality of biclusters, but also in terms
of GO annotation. For example Table 2 (resp. Table 3) shows that CC (resp.
OPSM) can not identify any biological process and molecular functions (resp.
biological process and cellular component) for the bicluster B_.CCjpja.p (resp.
B_OPSMpsinp). However, BILS can produce biclusters with all categories, i.e.,
biological processes, molecular functions and cellular components. This shows

that our algorithm is able to identify biological significant biclusters.

cellular protein
metabolic process

(1.03e-36)
structural molecule

Algorithms |Biological Process Molecular function Cellular component
CC unknown unknown Cytoplasm
(B-CCurazp) (0.00932)
BILScc: Maturation of SSU-TRNA |[structural constituent cytosolic ribosome
improved (4.54e-05) of ribosome (4.14e-17) (2.94e-21)
B_CCuazp |Maturation of SSU-rRNA |Structural molecule activity|ribosomal subunit
by BILS from tricistronic rRNA (1.97e-15) (4.27e-17)
transcript(SSU-TRNA, 5.8S cytosolic part
rRNA, LSU-rRNA) (2.04e-16)
(0.00088)
Cell cycle (0.00107)
CC translation structural constituent cytosolic ribosome
(B-CCuminp) |(8.33e-23) of ribosome (7.83e-42)

ribosome (3.80e-36)
cytosolic part

biosynthetic process

(1.74e-15)

binding (0.00445)

(3.17e-10) activity (3.91e-28) (1.82e-35)

gene expression helicase activity

(6.48e-10) (0.00021)
BILScc: translation structural constituent cytosolic ribosome
improved (2.86e-35) of ribosome (2.50e-70) (1.05e-76)
B_CCurinp |cellular protein Structural molecule activity|ribosomal subunit
by BILS metabolic process (6.06e-54) (1.08e-68)

(2.59e-16) translation factor cytosolic part

cellular macromolecule activity, nucleic acid (1.01e-66)

Table 2. Most significant shared GO terms (biological process, molecular function,
cellular component) of CC and BILS for two biclusters on yeast cell-cycle dataset.

BILS 9

Algorithms Biological Process Molecular function Cellular component

OPSM sister chromatid unknown spindle

(B_OPSMza2p)|segregation (0.00337) (0.00196)
chromosome segregation microtubule cytoskeleton
(0.00478) (0.00295)
microtubule-based process chromosomal part
(0.00588) (0.00991)

BILSopsa: cellular component structural constituent |nucleus

improved organization (1.71e-07) of cytoskeleton (3.83e-12)

B_OPSMpqazp |nucleic acid (0.00099) nuclear part

by BILS metabolic process (1.72e-06) |RNA polymerase 11 (3.91e-09)
cellular nitrogen transcription factor chromosomal
compound metabolic process|(0.00640) (2.26€-08)
(7.88e-06)

OPSM unknown oxidoreductase activity [unknown

(B.OPSMtinp)

(6.78e-06)
oxidoreductase activity,
acting on CH-OH group
of donors (0.00075)
oxidoreductase activity,
acting on peroxidase

as acceptor

(0.00078)

BILSopsm:
improved
B_OPSMhinp
by BILS

response to stimulus
(0.00092)

response to stress
(0.00454)

structural constituent
of ribosome

(9.19e-24)

structural molecule
activity (3.78e-12)
oxidoreductase activity
(2.36e-05)

cytosolic ribosome
(1.09e-23)
ribosomal subunit
(3.28e-23)
cytosolic part
(7.35e-22)

Table 3. Most significant shared GO terms (biological process, molecular function,
cellular component) of OPSM and BILS for two biclusters on yeast cell-cycle dataset.

10 Ayadi, Elloumi, Hao
4 Conclusion and future work

In this paper, we have presented a new biclustering algorithm using Iterative Lo-
cal Search (BILS). BILS combines a dedicated Hill-climbing based local search
procedure and a perturbation strategy. For the intensification purpose, BILS
employs a new evaluation function and a dedicated neighborhood relation. We
have tested and assessed our algorithm on the yeast cell-cycle dataset. The ex-
perimental results show that the BILS algorithm can successfully improve all
biclusters of CC and OPSM according to statistical and biological evaluation
criteria.

The work reported in this paper correspond in fact to an ongoing study.
Several improvements to the proposed work can be envisaged. One immediate
possibility would be to study alternative neighborhoods to introduce more bio-
logical knowledge to provide more effective guidance of the local search process.
Another natural extension would be to reinforce the basic local search procedure
by more powerful metaheuristics such as Tabu Search. Moreover, BILS explores
the space of biclusters by changing only the subset of genes of a bicluster with-
out changing the conditions of the initial bicluster. It is natural to design similar
strategies to optimize the subset of conditions of a bicluster or eventually to
optimize simultaneously both the set of genes and conditions. Finally, another
possible experimentation is to assess the algorithm on a synthetic data.

5 Acknowledgements

We are grateful for comments by the referees that have improved the paper. This
research was partially supported by the region Pays de la Loire (France) with
its ‘Bioinformatics Program’ (2007-2010).

References

1. J. S. Aguilar-Ruiz. Shifting and scaling patterns from gene expression data. Bioin-
formatics, 21:3840-3845, 2005.

2. M. Ashburner, C.A. Ball, J.A. Blake, D. Bolstein, H. Butler, M. Cherry, A.P.
Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubi-
nand, and G. Sherlock. Gene ontology: tool for the unification of biology. the gene
ontology consortium. Nature Genetics, 25, pages 25—29, 2000.

3. W. Ayadi and M. Elloumi. Algorithms in Computational Molecular Biology: Tech-
niques, Approaches and Applications, chapter Biclustering of Microarray Data.
John Wiley & Sons Inc, 2010, to appear.

4. W. Ayadi, M. Elloumi, and J. K. Hao. A biclustering algorithm based on a bicluster
enumeration tree : Application to dna microarray data. BioData Mining, 2:9, 2009.

5. S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann, and E. Zitzler. Bicat: a biclus-
tering analysis toolbox. Bioinformatics, 22(10):1282-1283, 2006.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

BILS 11

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in
gene expression data: the order-preserving submatrix problem. In RECOMB ’02:
Proceedings of the sixth annual international conference on Computational biology,
pages 49-57, New York, NY, USA, 2002. ACM.

G.F. Berriz, J.E. Beaver, C. Cenik, M. Tasan, and F.P. Roth. Next generation
software for functional trend analysis. Bioinformatics, 25(22):3043-3044, 2009.
K. Bryan, P. Cunningham, and N. Bolshakova. Application of simulated annealing
to the biclustering of gene expression data. In IEEE Transactions on Information
Technology on Biomedicine, 10(3), pages 519-525, 2006.

K.O. Cheng, N.F. Law, W.C. Siu, and A.W. Liew. Identification of coherent pat-
terns in gene expression data using an efficient biclustering algorithm and parallel
coordinate visualization. BMC' Bioinformatics, 9(210), 2008.

Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings of
the Eighth International Conference on Intelligent Systems for Molecular Biology,
pages 93-103. AAAI Press, 2000.

Y. Cheng and G.M. Church. Biclustering of expression data. Technical report,
(supplementary information), 2006.

S. Das and S.M. Idicula. Application of reactive grasp to the biclustering of gene
expression data. In ISB ’10: Proceedings of the International Symposium on Bio-
computing, pages 1-8, New York, NY, USA, 2010. ACM.

A. Dharan and A.S. Nair. Biclustering of gene expression data using reactive
greedy randomized adaptive search procedure. BMC Bioinformatics, 10 (Suppl
1):527, 20009.

F. Divina and J.S. Aguilar-Ruiz. Biclustering of expression data with evolutionary
computation. In IEFEE Transactions on Knowledge and Data Engineering, pages
590-602, Vol. 18, No. 5 May 2006.

F. Divina and J.S. Aguilar-Ruiz. A multi-objective approach to discover biclusters
in microarray data. In GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 385-392, New York, NY, USA, 2007.
ACM.

C.A. Gallo, J.A. Carballido, and I. Ponzoni. Microarray biclustering: A novel
memetic approach based on the pisa platform. In EvoBIO ’09: Proceedings of the
7th European Conference on FEwvolutionary Computation, Machine Learning and
Data Mining in Bioinformatics, pages 44-55, Berlin, Heidelberg, 2009. Springer-
Verlag.

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American
Statistical Association, 67(337):123-129, 1972.

H. Hoos and T. Stutzle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 2004.

H.R. Lourenco, O. Martin, T. Stutzle. Iterated local search. In: Glover, F., Kochen-
berger, G. (eds.) Handbook of Meta-heuristics, pp. 321353. Springer, Heidelberg
2003.

J. Liu and W. Wang. Op-cluster: Clustering by tendency in high dimensional
space. IEEE International Conference on Data Mining, pages 187 — 194, 2003.
Y. Luan and H. Li. Clustering of time-course gene expression data using a mixed-
effects model with B-splines. Bioinformatics, 19(4):474-482, 2003.

Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological
data analysis: A survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 1(1):24-45, 2004.

S. Mitra and H. Banka. Multi-objective evolutionary biclustering of gene expression
data. Pattern Recogn., 39(12):2464-2477, 2006.

12

24.

25.

26.

27.

28.

29.

Ayadi, Elloumi, Hao

S.D. Peddada and E.K. Lobenhofer and L. Li and C.A. Afshari and C.R. Wein-
berg and D.M. Umbach. Gene selection and clustering for time-course and dose-
response microarray experiments using order-restricted inference. Bioinformatics,
19(7):834-841, 2003.

B. Pontes, F. Divina, R. Girdldez, and J.S. Aguilar-Ruiz. Virtual error: A new mea-
sure for evolutionary biclustering. In Fvolutionary Computation, Machine Learning
and Data Mining in Bioinformatics, pages 217-226, 2007.

A. Prelic, S. Bleuler, P. Zimmermann, P. Buhlmann, W. Gruissem, L. Hennig,
L. Thiele, and E. Zitzler. A systematic comparison and evaluation of biclustering
methods for gene expression data. Bioinformatics, 22(9):1122-1129, 2006.

A. Schliep and A. Schonhuth and C. Steinhoff. Using hidden Markov models to
analyze gene expression time course data. Bioinformatics, 19 Suppl 1:1255-1263,
2003.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. System-
atic determination of genetic network architecture. Nature Genetics, 22:281-285,
1999.

Li Teng and Laiwan Chan. Discovering biclusters by iteratively sorting with
weighted correlation coefficient in gene expression data. J. Signal Process. Syst.,
50(3):267-280, 2008.

