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Abstract. Gene selection aims at identifying a (small) subset of infor-
mative genes from the initial data in order to obtain high predictive
accuracy. This paper introduces a new wrapper approach to this difficult
task where a Genetic Algorithm (GA) is combined with Fisher’s Linear
Discriminant Analysis (LDA). This LDA-based GA algorithm has the
major characteristic that the GA uses not only a LDA classifier in its
fitness function, but also LDA’s discriminant coefficients in its dedicated
crossover and mutation operators. The proposed algorithm is assessed
on a set of seven well-known datasets from the literature and compared
with 16 state-of-art algorithms. The results show that our LDA-based
GA obtains globally high classification accuracies (81%-100%) with a
very small number of genes (2-19).

Keywords : Linear discriminant analysis, genetic algorithm, gene se-
lection, classification, wrapper.

1 Introduction

The DNA Microarray technology permits to monitor and to measure gene ex-
pression levels for tens of thousands of genes simultaneously in a cell mixture.
Several studies have demonstrated that expression profiles provide valuable in-
formation for cancer diagnosis and prognosis [1,2,3,9]. The ability to distinguish
a cancer from morphologically similar tissues using their gene expression profiles
is important to propose appropriate therapies. Classification of different tumor
types is intertwined with the problem of gene selection, which aims to extract
from a great number of genes monitored by a Microarray chip, a small subset of
discriminant genes. Gene selection is thus of practical and fundamental interest.
The identification of relevant biomarkers is necessary for the elaboration of med-
ical diagnostic tests. Knowledge about discriminant gene subsets may confirm
the understanding of cancer mechanisms and suggest new ideas to explore.

Two main approaches have been proposed for gene selection. Filter methods
rely on a criterion that depends only on the data to assess the importance or
relevance of each gene for class discrimination. A relevance scoring provides a
ranking of the genes from which the top-ranking ones are generally selected as the
most relevant genes. Filter methods ignore the correlations among genes and the
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interaction of the selected genes with the classifier. Wrapper approaches embed
gene subset selection and evaluation with the same process and consequently
overcome the above mentioned inconvenient.

In this paper, we propose a new wrapper approach for gene subset selection
and classification of Microarray data. Our approach uses Fisher’s Linear Dis-
criminant Analysis (LDA) to provide useful information to a Genetic Algorithm
(GA) for an efficient exploration of gene subsets space. LDA is a well-known
method of dimension reduction and classification, where the data vectors are
transformed into a low-dimensional subspace such that the class centroids are
spread out as much as possible. It has been used for several classification prob-
lems and recently for Microarray data [8,27,28].

Our approach first extracts a set of interesting genes (about 100 genes) by a
filter method in order to limit the search space. Then we use a dedicated GA
to determine a small subset of genes that allows a high classification accuracy.
Contrary to most previously GAs for gene selection that rely essentially on ran-
dom genetic operators, we devise a problem specific GA that takes into account
useful knowledge of the gene selection and classification problem. Our GA uses
a LDA classifier to assess the fitness of a given candidate gene subset and LDA’s
discriminant coefficients in its crossover and mutation operators.

To evaluate the usefulness of the proposed approach, we carry out extensive
experiments on seven public datasets and compare our results with 16 best
performing algorithms from the literature. We observe that our approach is able
to achieve a high prediction accuracy (from 81% to 100%) with a very small
number of informative genes (from 2 to 19). Moreover, our approach enables to
propose different subsets of discriminant genes, which may be of a great interest
for biological research.

The remainder of this paper is organized as follows. Section 2 recalls the main
characteristics of Fisher’s LDA and discusses the calculus that must be done in
the case of small sample size. Section 3 presents our LDA-based GA for gene
selection. Section 4 shows the experimental results and comparisons. Finally
conclusions are presented in Section 5.

2 LDA and Small Sample Size Problem

2.1 Linear Discriminant Analysis

LDA is a dimension reduction and classification method, where the data are
projected into a low dimension space such that the classes are well separated.
As we use this method for binary classification problems, we shall restrict the
explanations to this case. We consider a set of n samples belonging to two classes
C1 and C2, with n1 samples in C1 and n2 samples in C2. Each sample is described
by q variables. So the data form a matrix X = (xij), i = 1, . . . , n; j = 1, . . . , q.
We denote by μk the mean of class Ck and by μ the mean of all the samples:

μk =
1
nk

∑

xi∈Ck

xi and μ =
1
n

∑

xi

xi =
1
n

∑

k

nkμk
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The data are described by two matrices SB and SW , where SB is the between-
class scatter matrix and SW the within-class scatter matrix defined as follows:

SB =
∑

k

nk(μk − μ)(μk − μ)t (1)

SW =
∑

k

∑

xi∈Ck

(xi − μk)(xi − μk)t (2)

If we denote by SV the covariance matrix for all the data, we have SV = SB+SW .
LDA seeks a linear combination of the initial variables on which the means

of the two classes are well separated, measured relatively to the sum of the
variances of the data assigned to each class. For this purpose, LDA determines a
vector w such that wtSBw is maximized while wtSW w is minimized. This double
objective is realized by the vector wopt that maximizes the criterion:

J(w) =
wtSBw

wtSW w
(3)

One can prove that the solution wopt is the eigen vector associated to the sole
eigen value of S−1

W SB, when S−1
W exists. Once this axis wopt is determined, LDA

provides a classification procedure (classifier), but in our case we are particularly
interested in the discriminant coefficients of this vector: the absolute value of
these coefficients indicates the importance of the q initial variables for the class
discrimination.

2.2 Generalized LDA for Small Sample Size Problems

When the sample size n is smaller than the dimensionality of samples q, SW

is singular. In this case, it is not possible to compute S−1
W . To overcome the

singularity problem, recent works have proposed different methods like the null
space method [28], orthogonal LDA [26], uncorrelated LDA [27,26] (see also [17]
for a comparison of these methods). The two last techniques use the pseudo
inverse method to solve the small sample size problem and this is the approach
we apply in this work. When Sw is singular, the eigen problem is solved for S+

wSb,
where S+

w is the pseudo inverse of Sw. The pseudo-inverse of a matrix can be
computed by Singular Value Decomposition. More specifically, for a matrix A of
size m×p such that rank(A) = r, if we denote by A = UΣV T the singular value
decomposition of A, where U of size m× r and V of size r× p have orthonormal
columns, Σ of size r × r, is diagonal with positive diagonal entries, then the
pseudo-inverse of A is defined as A+ = V Σ−1UT .

2.3 Application to Gene Selection

Microarray data generally contain less than one hundred samples described by
at least several thousands of genes. We limit this high dimensionality by a first
pre-selection step, where a filter criterion (t-statistic) is applied to determine a
subset of relevant genes. In this work, we typically retain 100 genes from which
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an intensive exploration is performed using a genetic algorithm to select smaller
subsets. In this process, LDA is used as a classification method to evaluate the
classification accuracy that can be achieved on a selected gene subset. Moreover
the coefficients of the eigen vector calculated by LDA are used to evaluate the
importance of each gene for class discrimination.

For a selected gene subset of size p, if p ≤ n we rely on the classical LDA
(Section 2.1) to obtain the projection vector wopt, otherwise we apply the gen-
eralized LDA (Section 2.2) to obtain this vector. We explain in Section 3 how
the LDA-based GA reduces progressively the number of selected genes.

3 LDA-based Genetic Algorithm

In this section we describe our LDA-based Genetic Algorithm (LDA-GA) for
gene subset selection. Notice that prior to the LDA-GA search, a filter (t-
statistic) is first applied to retain a group Gp of p top ranking genes (typically
p ≥ 100, in this work, p = 100). Then, the LDA-based GA is used to conduct
a combinatorial search within the space of size 2p. The purpose of this search
is to determine from this large search space small sized gene subsets allowing a
high predictive accuracy. In what follows, we present the general procedure and
then show the components of the LDA-based Genetic Algorithm. In particular,
we explain how LDA is combined with the Genetic Algorithm.

3.1 General GA Procedure

Our LDA-based Genetic Algorithm follows the conventional scheme of a gener-
ational GA and uses also an elitism strategy.

– Initial population: the initial population is generated randomly in such a way
that each chromosome contains a number of genes ranging from p× 60% to
p × 75%. The population size is fixed at 100 in this work.

– Evolution: the chromosomes of the current population P are sorted according
to the fitness function (see Section 3.3). To generate the next population P’,
|P| new chromosomes are first created using crossover and mutation (see
next point). These new chromosomes are then merged with the ”best” 10%
chromosomes of P to form P’ while deleting the worst chromosomes to keep
the population size constant.

– Crossover and mutation: mating chromosomes are determined from P by
considering each pair of adjacent chromosomes (the last one is mated with
the first one). By applying our specialized crossover operator (see Section
3.4), one child is created. This child then undergoes a mutation operation
(see Section 3.5).

– Stop condition: the evolution process ends when a pre-defined number of
generations is reached or when one finds a chromosome in the population
having a very small gene subset (fixed at 2 genes in this work).
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3.2 Chromosome Encoding

Conventionally, a chromosome is used simply to represent a candidate gene sub-
set. Following the idea of [11], a chromosome in our GA encodes more information
and is defined by a couple:

I = (τ ; φ)

where τ and φ have the following meaning. The first part (τ) is a binary vec-
tor and effectively represents a candidate gene subset. Each allele τi indicates
whether the corresponding gene gi is selected (τi=1) or not (τi=0). The second
part of the chromosome (φ) is a real-valued vector where each φi corresponds
to the discriminant coefficient of the eigen vector for gene gi. As explained in
Section 2, the discriminant coefficient defines the contribution of gene gi to the
projection axis wopt. A chromosome can thus be represented as follows:

I = (τ1, τ2, . . . , τp; φ1, φ2, . . . , φp)

The length of τ and φ is defined by p, the number of the pre-selected genes
with a filter (t-statistics) (see beginning of this Section).

Notice that this chromosome encoding is more general and richer than those
used in most genetic algorithms for feature selection in the sense that in addition
to the candidate gene subset, the chromosome includes other information (LDA
discriminant coefficients here) which are useful for designing powerful crossover
and mutation operators (see Section 3.4 and 3.5).

3.3 Fitness Evaluation

The purpose of the genetic search in our LDA-GA approach is to seek ”good”
gene subsets having the minimal size and the highest prediction accuracy. To
achieve this double objective, we devise a fitness function taking into account
these (somewhat conflicting) criteria.

To evaluate a chromosome I=(τ ;φ), the fitness function considers the classifi-
cation accuracy of the chromosome (f1) and the number of selected genes in the
chromosome (f2). More precisely, f1 is obtained by evaluating the classification
accuracy of the gene subset τ using the LDA classifier on the training dataset
and is formally defined as follows1:

f1(I) =
TP + TN

TP + TN + FP + FN
(4)

where TP and TN represent respectively the true positive and true negative
samples, i.e. the correct classifications; FP (FN) is the number of false (true)
samples misclassified into the positive (negative) samples.

The second part of the fitness function f2 is calculated by the formula:

f2(I) =
(

1 − mτ

p

)
(5)

1 For the sake of simplicity, we use I (chromosome) instead of τ (gene subset part of
I) in the fitness function even if it is the gene subset τ that is effectively evaluated.
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where mτ is the number of bits having the value ”1” in the candidate gene
subset τ , i.e. the number of selected genes; p is the length of the chromosome
corresponding to the number of the pre-selected genes from the filter ranking.

Then the fitness function f is defined as the following weighted aggregation:

f(I) = αf1(I) + (1 − α)f2(I) subject to 0 < α < 1

where α is a weighted parameter that allows us to allocate a relative importance
factor to f1 or f2. Assigning to α a value greater than 0.5 will push the genetic
search toward solutions of high classification accuracy (probably at the expense
of having more selected genes). Inversely, using small values of α helps the search
go toward small sized gene subsets. So variations of α will change the search
direction of the genetic algorithm.

3.4 LDA-based Crossover

It is now widely acknowledged that, whenever it is possible, genetic operators
such as crossover and mutation should be tailored to the target problem. In other
words, in order for genetic operators to fully play their role, it is preferable to
integrate problem-specific knowledge into these operators. In our case, we use
the discriminant coefficients from the LDA classifier to design our crossover and
mutation operators. Here, we explain how our LDA-based crossover operates
(denoted by LDA-X hereafter).

LDA-X combines two parent chromosomes I1 and I2 to generate a new chro-
mosome Ic in such a way that 1) top ranking genes in both parents are conserved
in the child and 2) the number of selected genes in the child Ic is not greater
than the number of selected genes in the parents. The first point ensures that
”good” genes are transmitted from one generation to another while the second
property is coherent with the optimization objective of small-sized gene subsets.

More formally, let I1=(τ1; φ1) and I2=(τ2; φ2) be two parent chromosomes,
Ic=(τc; φc) the child which will be generated by crossover, κ ∈ [0, 1) a parameter
indicating the percentage of genes that will not be transmitted from the parents
to the child. Then our LDA-X crossover performs the following steps to generate
Ic, the child chromosome.

1. According to κ determine the number of genes of I1 and I2 (more precisely,
τ1 and τ2) that will be discarded, denote them by n1 and n2;

2. Remove respectively from τ1 and τ2, the n1 and n2 least ranking genes
according to the LDA discriminant coefficients;

3. Merge the modified τ1 and τ2 by the logic AND operator to generate τc;
4. Apply the LDA classifier to τc, fill φc by the resulting LDA discriminant

coefficients;
5. If needed, remove the least discriminative genes from τc until τc contains no

more genes than I1 or I2 does; update φc accordingly;
6. Create the child Ic=(τc; φc).

Before inserting the child into the next population, Ic undergoes a mutation
operation.
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3.5 LDA-based Mutations

In a conventional GA, the purpose of mutation is to introduce new genetic
materials for diversifying the population by making local changes in a given
chromosome. For binary coded GAs, this is typically realized by flipping the
value of some bits (1 → 0 or 0 → 1). In our case, mutation is used for dimension
reduction; each application of mutation eliminates a single gene (1 → 0). To
determine which gene is discarded, two criteria are used, leading to two mutation
operators.

– Mutation using discriminant coefficient (M1): Given a chromosome I=(τ ; φ),
we identify the smallest LDA discriminant coefficient in φ and remove the
corresponding gene (this is the least informative genes among the current
candidate gene subset τ).

– Mutation by discriminant coefficient and frequency (M2): This mutation op-
erator relies on a frequency information of each selected gene. More precisely,
a frequency counter is used to count the number of times a selected gene
is classified (according to the LDA classifier) as the least informative gene
within a gene subset. Based on this information, we remove the gene that has
the highest counter, in other words, the gene that is frequently considered
as a poor predictor by the classifier.

4 Datasets and Experimental Setup

4.1 Microarray Gene Expression Datasets

To assess the performance of our LDA-based genetic algorithm, we performed
our experiments on seven well-known public datasets, namely Leukemia, Colon
cancer, DLBCL, CNS embryonal tumor, Lung, Prostate and Ovarian cancer. A
summary of the datasets is provided in Table 1.

4.2 Experimental settings

For our experimentations, we used the following experimental settings. Each
initial dataset is split into a training set and a test set according to the literature.
LDA-GA is applied on the training set in order to select relevant gene subsets.
Because our fitness function relies on two criteria (3.3), we carry out two types
of experiments. In the first one, named Exp1 hereafter, we select the gene subset
according to the second criterion trying to minimize the number of selected
genes. In the second type of experiments, named Exp2, we focus on the accuracy
achieved by the different solutions obtained by LDA-GA and we retain the gene
subsets that provide the best accuracy. Because of the stochastic nature of our
LDA-GA algorithm, we run 10 executions of the GA and we retain the best
solution found during these 10 executions.

In both experiments, the final predictive accuracy of a selected gene subset is
estimated by the LDA-classifier built on the gene subset obtained by the training
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Table 1. Summary of datasets used for experimentation

Dataset Genes Samples References

Leukemia 7129 72 Golub et al [9]
Colon 2000 62 Alon et al [2]
Lung 12533 181 Gordon et al [10]

Prostate 12600 109 Singh et al [21]
CNS 7129 60 Pomeroy et al [20]

Ovarian 15154 253 Petricoin et al [19]
DLBCL 4026 47 Alizadeh et al [1]

step. As the data contain few samples, we use a 10-fold cross validation on the
whole dataset to obtain a reliable estimation of the classification accuracy.

We have explained in Section 3 that our LDA-GA can apply two kinds of
mutation (M1 and M2). That is why we report in the following subsection four
results for each dataset: GA-M1/Exp1 is our GA with M1 mutation and we select
the gene subset according to the conditions of Exp1 (focusing on the number of
genes); GA-M1/Exp2 is the GA with M1 mutation and we select the gene subset
according to the conditions of Exp2 (the best accuracy). Similarly, two results
are reported with M2 mutation (named GA-M2/Exp1, GA-M2/Exp2).

4.3 Results and Comparisons

In this section, we propose a comparison of our LDA-GA with some state-of-the-
art methods for gene selection and classification. A reliable comparison between
two methods is only possible if they use the same experimental conditions. For
this reason, we select 16 recent methods (since 2004) that seem to fulfill this
condition.

We show in Table 2 the best results (in bold) obtained by these methods and
by our LDA-based GA approach on the seven datasets presented previously. An
entry with the symbol (-) in this table means that the paper does not treat the
corresponding dataset. All the methods reported in this table use a process of
cross validation, notice however that in some cases, the papers do not explain
precisely how the experimentation is conducted.

From the results of Table 2, one observes that the proposed approach (last
four lines) gives very competitive results compared with these reference methods.
Indeed, our LDA-based GA achieves globally very high predictive accuracy (from
81.6% to 100%) with a very small number of selected genes (from 2 to 19).

The most remarkable results for our approach concern the DLBCL dataset. We
obtain a perfect prediction with only 4 genes while the previously methods reach
a prediction rate no greater than 98% with at least 20 genes. For the Ovarian
cancer dataset, the LDA-GA gives a prediction accuracy of 98.4% with a subset
of only 4 genes. The reference algorithms have a slightly better classification rate,
but select much more genes (20, 26, 75). Notice that a perfect rate is reported in
[15] with 50 genes. However the dataset used in [15] (30 cancerous and 24 normal
samples, 1536 genes) is different from the Ovarian cancer dataset described in
Table 1 (91 normal and 162 cancerous samples, 15154 genes).
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Table 2. Results of our LDA-based GA (four last lines) compared to the most rele-
vant works on cancer classification. The figures give the classification accuracy and in
brackets, the number of genes when this is available.

Authors Leukemia Colon Lung Prostate CNS Ovarian DLBCL
Ye et al [27] 97.5 85.0 – 92.5 – – –
Liu et al [14] 100(30) 91.9(30) 100(30) 97.0(30) – 99.2(75) 98(30)

Tan & Gilbert [22] 91.1 95.1 93.2 73.5 88.3 – –
Ding & Peng [7] 100 93.5 97.2 – – – –
Cho & Won [6] 95.9 (25) 87.7(25) – – – – 93.0(25)
Yang et al [25] 73.2 84.8 – 86.88 – – –
Peng et al [18] 98.6 (5) 87.0(4) 100(3) – – – –
Wang et al [24] 95.8 (20) 100(20) – – – – 95.6(20)
Huerta et al [4] 100 91.4 – – – – –
Pang et al [16] 94.1(35) 83.8(23) 91.2(34) – 65.0(46) 98.8(26) –
Li et al [12] 97.1(20) 83.5(20) – 91.7(20) 68.5(20) 99.9(20) 93.0(20)

Zhang et al [29] 100(30) 90.3(30) 100(30) 95.2(30) 80(30) – 92.2(30)
Yue et al [28] 83.8(100) 85.4(100) – – – – –

Hernandez et al [11] 91.5(3) 84.6(7) – – – – –
Li et al [13] 100(4) 93.6(15) – – – – –

Wang et al [23] 100(375) 93.5(35) – – – – –

GA-M1/Exp1 97.2(2) 90.3(2) 97.7(2) 94.1(2) 78.3(4) 96.0(2) 91.4(2)
GA-M2/Exp1 97.2(2) 91.9(3) 98.3(2) 94.1(2) 85.0(4) 96.4(2) 93.6(2)
GA-M1/Exp2 98.6(5) 91.9(3) 97.7(2) 94.8(6) 81.6(8) 98.4(4) 100(8)
GA-M2/Exp2 100(5) 93.5(9) 98.3(2) 95.5(18) 86.6(7) 98.8(19) 100(4)

Finally, notice that the LDA classifier used in this paper is not the most
powerful classifier. Effectively, in another experimentation, we also used a linear
SVM classifier to estimate the predictive accuracy of the gene subsets selected
by the LDA-GA, leading to slightly better results.

4.4 Discussion

We now discuss about two important issues of the LDA-GA approach: possible
influences of the pre-selection on the prediction accuracy and the capacity of the
approach to explore large sets of genes.

The search space of our LDA-GA is delimited by a first step which pre-selects
a limited number (100 in this paper) of genes with the t-statistic filter criterion.
One may wonder whether changing the filtering criterion and the number of
selected genes affects the performance of the approach. In [5], an exhaustive
study is presented concerning the influence of data pre-processing and filtering
criteria on the classification performance. Three filtering criteria, BSS/WSS, t-
statistic and Wilcoxon test were compared, and the results did not show any
clear dominance of one criterion with respect to the others. However, the fuzzy
pre-processing for date normalization and redundancy reduction presented in [5]
does show a positive influence on the classification performance whatever the
filtering criterion that is applied after.
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The main interest of this genetic approach for gene selection is its ability to
propose a combinatorial exploration of gene subsets. Clearly, this is not the case
in classical approaches like backward selection. In recursive feature elimination
for example, once a gene is discarded by the selection process, it is definitively
ignored in the further steps even if its association to other genes can improve
the classification result. Consider the Leukemia dataset, a perfect performance of
100% is reached with 5 genes (Table 2). LDA-GA also finds other gene subsets
(with 5 to 10 genes) achieving a perfect cross-validation classification. More
precisely, one of these subsets contains the genes placed in positions 3, 12, 63,
72, and 81 by the filter ranking criterion. Another gene subset that achieves
a perfect classification contains the genes ranked in positions: 1, 2, 19, 72 and
81. Generally filter methods retain a small number of genes for classification
(typically 30). Our observation shows that it is interesting and useful to explore
a large set of genes because relevant subsets can contain genes that are not in
the 30 top-ranking ones. Moreover, the possibility to examine diverse solutions
constitutes a valuable feature for further biological investigations.

5 Conclusions

In this paper, we have introduced a new wrapper approach for selecting small
gene subsets able to lead to high prediction accuracy. Our approach begins with a
t-statistic filter that pre-selects a first set of genes (100 in this paper). To further
reduce the gene dimension, we use a hybrid Genetic Algorithm to explore the
gene subset space. The hybrid GA includes some original features that make
it highly effective for identifying small sized and informative gene subsets. In
particular, it uses Fisher’s Linear Discriminant Analysis as its fitness function
to assess the quality of each candidate gene subset. Moreover, useful discriminant
information provided by the LDA classifier is directly integrated into its crossover
and mutation operators. Indeed, the discriminant coefficients of LDA’s eigen
vector constitute a valuable indicator for recombining gene subsets (crossover)
and for gene dimension reduction (mutation). The bi-criteria fitness function
provides a very flexible way for the LDA-GA to explore the gene subset space
either for the minimization of the selected genes or for the maximization of the
prediction accuracy.

We have evaluated extensively our LDA-based GA approach on seven public
datasets (Leukemia, Colon, DLBCL, Lung, Prostate, CNS and Ovarian) using
a 10-fold cross validation process. A large comparison was carried out with 16
state-of-art algorithms that are based on a variety of methods. The results show
clearly the interest of the LDA-GA approach for finding small sized informative
gene subsets leading to high prediction accuracy. For all the datasets, our ap-
proach is able to select gene subsets of the smallest size while ensuring the best
or the second best classification rate. For one dataset (DLBCL), we obtain the
best result ever found with a perfect prediction with only 4 informative genes.

Finally, the proposed approach has another practically useful feature for bi-
ological analysis. In fact, instead of producing a single solution (gene subset),
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our approach can easily and naturally provide multiple non-dominated solutions
that constitute valuable candidates for further biological investigations.
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