A New Genetic Local Search Algorithm for
Graph Coloring

Raphaél Dorne and Jin-Kao Hao

LGI2P/EMA-EERIE
Parc Scientifique Georges Besse
F-30000 Nimes-France
email: {dorne,hao}@eerie.fr

Abstract. This paper presents a new genetic local search algorithm for
the graph coloring problem. The algorithm combines an original crossover
based on the notion of union of independent sets and a powerful local
search operator (tabu search). This new hybrid algorithm allows us to
improve on the best known results of some large instances of the famous
Dimacs benchmarks.

1 Introduction

The graph coloring problem is one of the most studied NP-hard problems and can
be defined informally as follows. Given an undirected graph, one wishes to color
with a minimal number of colors the nodes of the graph in such a way that two
colors assigned to two adjacent nodes must be different. Graph coloring has many
practical applications such as timetabling and resource assignment. Given the
NP-completeness of the coloring problem, it becomes natural to design heuristic
methods. Indeed many heuristic methods have been developed, constructive
methods in the 60’s and 70’s [1, 12], local search meta-heuristics [10, 11, 2]
and hybrid algorithms [6, 14, 3] in the 80’s and 90’s.

In the field of combinatorial optimization, the best solutions are often obtained
by specialized local search algorithms or population-based algorithms without
crossover. However, there are cases where hybrid evolutionary algorithms have
produced very competitive results, for example for the traveling salesman problem
[7], the quadratic assignment problem [13] and the bin-packing problem [5]. In
general, these hybrid algorithms rely on a “meaningful” specialized crossover
which combines high quality solutions produced by an “efficient” local search
method. It should be clear that random crossovers are hardly meaningful for any
combinatorial optimization problem, therefore are little helpful to producing high
quality solutions. The main point here is that the crossover must be specialized
to, and meaningful for the problem.

In this paper, we present an original crossover tailored to the coloring problem.
This crossover, that we call UIS, is based on the notion of Union of Independent
Sets. The UIS crossover, combined with a tabu search method leads to a simple,
yet very powerful algorithm. Indeed, this new algorithm allows us to improve on
the best known results of some large benchmarks.

2 Graph coloring

Definition: Given an undirected graph G=(V, E) with V={vy, ..., v,, } being the
set of nodes and E={e;j| 3 an edge between v; and v;} the set of edges. The
graph coloring problem is the following optimization problem: to determine a
partition of V' in a minimum number (the chromatic number) of color classes
C1,Cy,...,C} such that for each edge e;; € E, v; and v; are not in the same
color class [15]. Such a color class is called an independent set.

Let c¢(v;) be the color (represented by a positive integer) assigned to the node
v;, a proper coloring must verify the following constraint:

Veij € E, c(vi) # c(vj) (1)

Benchmarks: In this paper, we use well known benchmarks (random graphs)
from the 2nd Dimacs Challenge'. A random graph is denoted by G, 4 where n
represents the number of nodes and d € [0, 1] the density of edges defined on
the graph, which means that the number of edges of the graph is about to be
d.(n.(n —1)/2). Random graphs are difficult to color. It is believed that none of
today’s algorithms is able to color optimally such graphs having more than 100
nodes with a 0.5 density [11]. In this study, we are interested in some large and

hard graphs (500 or 1000 nodes).

Johnson et al. : a set of 6 instances of 500 and 1000 nodes with edge densities
of 0.1, 0.5 and 0.9, denoted by DSJC500.1.col, DSJC500.5.col, DSJC500.9.col,
DSJC1000.1.col, DSJC1000.5.col, DSJC1000.9.col.

Hertz & De Werra : a set of 7 instances of 500 and 1000 nodes with edge
density of 0.5, denoted by gggl, ..., gggd, gggel and gggg?.

3 Related work

Hertz and De Werra are the first who have applied tabu search to the coloring
problem [10]. They proposed a simple coding for solutions and a natural 1-
change neighborhood. In addition, to color large graphs (>300 nodes), they
introduced a pre-processing technique which removes some independent sets
from a graph leading to a reduced residual graph. Their algorithm, combined
with this pre-processing, has produced excellent results on random graphs. Simi-
larly, a simulated annealing algorithm is reported in [2].

Johnson et al. gave the first systematic investigation about the performance
of simulated annealing, Dsatur [1] and RLF [12] on random graphs. A new
algorithm called XRLF was also proposed. Extensive tests of these algorithms
on various random graphs have led to mixed results: no clear dominance of a
single algorithm was observed over all the tested instances.

Fleurent and Ferland investigated a tabu algorithm and in particular a hybrid
algorithm combining genetic algorithm and tabu search [6]. They replaced random

! Available via ftp: dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.

mutation by tabu search and developed a specialized crossover operator based on
conflicting nodes (adjacent nodes having the same color). They employed the pre-
processing technique of Hertz and De Werra to remove independent sets. Their
hybrid algorithm has produced excellent results on the 2nd Dimacs challenge
benchmarks. However, the computing times to obtain these results were very
high for some large instances. Costa presented a similar hybrid algorithm called
EDM and obtained comparable results [3].

Morgenstern proposed a distributed, population based and multi-strategy
method [14]. He introduced a special neighborhood which is different from all
the other previous studies. This highly specialized method has produced the best
results for a large number of Dimacs challenge benchmarks.

4 A genetic local search algorithm

4.1 General algorithm

First, recall that the graph coloring problem consists in minimizing the number of
colors k used. Before we present our algorithm, let us explain first the minimization
process used. Following [10], we fix k, the number of available colors, to a given
value and use our hybrid algorithm to search for a proper k-coloring. This is
done by minimizing the number of violated constraints to 0 (f* =0) according
to Eq.(1). If such a coloring is found, we decrease k and repeat the above search
process until no more possible proper k-coloring is found within the allowed
iterations. Therefore, the goal of our hybrid algorithm is to find a proper k-
coloring for a fixed k. The general algorithm is given as follows.

Algorithm 1: Genetic local search algorithm for coloring
Data: G, a graph
Result: the number of conflicts with & fixed colors
% f,f* : fitness function and its best value encountered so far
% s* : best individual encountered so far
% 1, MaxIter : the current and maximum number of iterations allowed
% best(P) : returns the best individual of the population P
begin
1 =0
generate(Pp)
s* = best(P,)
fr=1(s")
while (f* > 0 and i < MaxIter) do

P} = crossing(P;,T,); /*using UIS crossover */

P, 11 = mutation(P/), /*using tabu search */

if (f(best(Pit1)) < f*) then

L s* = best(Piy1)

£ = (s7)

1=1+1
return f*
end

As we can see, the algorithm follows a simple evolution cycle. It crosses
two individuals from time to time and then it mutates the individuals of the
population. More precisely, at each generation, the UIS crossover (Section 4.4)
is applied with probability T, to each possible pair (Ind;, Indy) (determined
randomly) of individuals of the population: p/2 pairs for a population of p
individuals. If a crossover takes place on (Indi, Ind,), the offsprings e; and
ey replace Indy; and Ind, regardless of their fitness. Otherwise, Ind; and Ind,
remain unchanged. Each individual of the population is then improved using a
tabu algorithm (Section 4.3).

Different values of T, lead to different application rates of the crossover
operator. Setting T, to 0 will give n independent executions of the tabu algorithm.
Changing T, allows one to determine the importance of the crossover.

The individuals in the initial population may be generated randomly, or
using an existing coloring algorithms. We use the RLF' - Recursive Largest First
algorithm [12]. The RLF algorithm has poor performance, however, it gives
naturally an initial value for k, the number of colors to be used in a coloring.

4.2 Encoding and fitness function

Given a graph G=(V,E) with n nodes and k the number of available colors
(numbered from 1 to k), an individual (or a configuration in a local search
terminology) s = < ¢(v1),¢(v2), ..., ¢(vy,) > corresponds to a complete assignment
of the k colors to the nodes of the graph. The size of the search space S, is equal
to |S|=k", and becomes very large as soon as the graph has more than 100
nodes.

For each individual s, the fitness f(s) is simply the number of unsatisfied
color constraints (Eq. (1)).

Lif ¢(v;) = ¢(v;)

0 elsewhere

f(s)= > q(vi,vj) where g(vi,v;) = {

(’U,L',’Uj) cFr

The goal of the optimization process here is to minimize f(s) until f(s)=0
for the fixed k, which corresponds to a proper k-coloring.

4.3 Mutation by tabu search

The mutation used in this hybrid algorithm is ensured by a tabu search (TS)
algorithm. For a complete presentation of TS, the reader is invited to consult
the recent book by Glover and Laguna [9].

Tabu search is an advanced local search meta-heuristic. A TS algorithm visits
iteratively a series of locally best configurations according to a neighborhood. In
order to avoid a possible cycling. T'S uses a special short term memory called tabu
list, that maintains last [encountered configurations or more generally pertinent
attributes of these configurations (I is called tabu tenure). At each iteration, TS
chooses one best neighboring configuration among those not forbidden by tabu
list, even if the chosen configuration is no better than the current one.

The TS algorithm used in our hybrid algorithm for the coloring problem is
the one presented in [4] augmented with a random-walk option (see below). The
main characteristics of this TS algorithm is the following.

Neighborhood function N: S — 2% Vsand s’ € S, s’€ N(s) if and only if s
and s’ are different at the value of a single “conflicting” node (i.e. it has the
same color as some adjacent nodes.). Thus, a neighbor of s can be obtained
by changing the color of a conflicting node. A move is then characterized by
a couple < i,¢ >, ¢ and ¢ being respectively a node and a color.

Configuration evaluation: Special data structures and techniques are used
to evaluate rapidly the fitness of each neighboring configuration. This is
done by maintaining incrementally in a matrix § the move value or fitness
variation for each possible move from the current solution s.

Tabu list and tabu tenure: When a node v; in a configuration s is assigned
a new color (i.e. when a move is carried out), the pair < v;,old_color > is
classified tabu for [(tabu tenure) iterations. That is, the old color will not
be allowed to be re-assigned to v; during this period. The tabu tenure [is
dynamically adjusted by a function defined over the number of conflicting
nodes. More precisely, let C'V be the set of conflicting nodes in s, then [=
a * |CV| + random(g) where o and g are empirically determined.

Mixed move strategy: At each iteration, a neighboring configuration s’ must
be chosen to replace the current one s. The choice is realized with the
following strategy: according to a probability p,,, carry out a “random-
walk”, i.e. to pick randomly a neighbor among all the neighbors in N(s);
according to 1 — ppy, carry out a normal tabu iteration, i.e. to pick a best

(non-tabu) neighbor in N(s).

4.4 The UIS crossover

The UIS crossover follows the definition of the coloring problem with independent
sets (cf. Section 2): a proper k-coloring is a collection of k independent sets. With
this point of view, an individual corresponds to k color classes of n nodes: some
classes are conflict-free (independent sets) and the others are not. According to
this interpretation, if we try to maximize the size of each independent set by a
combination mechanism, we will reduce the sizes of non-independent sets, which
in turn helps to push these sets into independent sets. The UIS crossover is based
on this idea.

UIS tries to unify pairs of independent sets (Ip,, Ip,) taken respectively from
two parent-colorings p; and py. Two children-colorings e; and ez are the result
of a set of unions. The pair of independent sets (I, , Ip,) to be unified are those
which have the largest number of nodes in common. Let us see how to generate
e from p; and p,.

Let I, . be the largest conflict-free subset (an independent set) of the class
having the color cin py, we seek, among the k color classes of ps, the independent
set Ip, o~ (a conflict-free subset of a color class) such that I, . has the largest
number of nodes in common with I,,, . (V¢' € [1..k], | I, - NIp, o | is maximal).

If there are more than one possible I, ./, one is taken randomly. This operation
is repeated for each color of p; to obtain the set of unions U,, corresponding to
the pairs of independent sets for ey:

Ue, = {(Iplyleth)""’(IPui’Imy]‘i)""v(IPukaPz,jlc.)}

where (I, ;,Ip, j,) is the union of I, ; and I, ;, with j; representing the color
of the independent set of p» which is unified with the one of p; which has the
color ¢ (See Fig.1).

Once this set is obtained, we generate the child e; by assigning the color of
I, i to the nodes of (I, ;,1Ip, ;). Note that U., does not necessarily contains
all the nodes of the graph. For each node v € V-U,,, it keeps the color of p;. To
generate ey, we carry out the same operation while exchanging py with py (cf.

Fig. 1).

s [0 2] 1[0 2]z 1]2] 0]

enticr. OO
mez[o[]z]2[o]2[2]2[1] a
conflict ‘QMQ‘Q‘O‘Q‘QN unions obtained

le1,0 ='p1,0*'p22 | 'e20 ='p20* p11

child 1 ‘ 1 ‘ 2 ‘ 1‘ o‘ 1 ‘ o ‘ 0 ‘ 2 ‘ o‘ le11 = 'p11*1p20 | 'e21 = 'p21*'p12

origin | p2]p1] | pt]p1[p2[p2]p1]p1] ler2 =!p12* p2a | le22 ='p22* p1o

wiaz [oa]z]z]o]a]z]a]z]

wn (2] |52 52 o[z e]

|:| : value not modified order of unification ={0,1,2}

Fig. 1. UIS crossover

In terms of complexity, for each color of a parent p;, we visit all the nodes
of py to find the best union. When all the unions are identified, we just have to
assign the nodes of the children according to these unions. Thus the complexity
of the UIS is in O(k X n) in the worst case.

Let us mention that using the notion of independent sets, other crossover
operators are equally possible. For example, parallel to the current study, [§]
investigates several such operators as well as other hybrid evolutionary algorithms.

Finally, note that the UIS crossover is completely different from conflict-based
crossovers for the coloring problem [6]. There the coloring problem is considered
as an assignment problem: an individual is an assignment of values to variables.
Using this interpretation, an offspring will try to copy conflict-free colors from
their parents. Previous work showed that combined with a local search algorithm,
this crossover may give interesting results for some graphs. However, the search
power of such a crossover is limited compared with the UIS operator.

5 Experiments and results

Our tests were carried out on an UltraSparcl station with a 143 MHz processor
and a memory of 128 Megabytes. The maximum number of moves (iterations) for
our hybrid algorithm is fixed to be 10 000 000 moves for an attempt of finding a
proper k-coloring. For very hard instances, this number is fixed to be 200 000 000
moves. Let us note that a crossover are also countered as a move.

Experiments are carried out on benchmarks described in Section 2. Results
are compared with the best ones published in the literature:

1. Fleurent and Ferland, a tabu search algorithm (denoted by la in the tables)
and a genetic tabu algorithm (denoted by 1b) [6]. These algorithms use the
pre-processing technique of [10] for graphs larger than 300 nodes.

2. Costa, an evolutionary hybrid algorithm EDM (denoted by 2) with the above
pre-processing technique [3].

3. Morgenstern, two local search algorithms Sy and S; (denoted by 3a and
3b) based on a particular neighborhood. Two distributed algorithms based
on a population of configurations called My and My (denoted by 3¢ and
3d). Finally a hybrid algorithm called M¢\dX RLF (denoted by 3e) using a
population of individuals initialized by a parallelized version of Johnson et

al’s XRLF algorithm [14].
Our genetic local search algorithm is defined by four parameters (Py, Py, P, Py):

P; the number of individuals of the population.

P, the crossover rate T, for UIS.

P; the random-walk rate ppy,.

P, the value of « for the tabu tenure (g being always fixed to 10).

For example, the setting (10,0.2,0.1,2) corresponds to a hybrid algorithm with
10 individuals using the crossover UIS with a rate of 0.2 %, the random walk
mutation with a rate of 0.1 % (a rate of tabu mutation equal to 99.9 %) and a
tabu tenure equal to 2 x |C'V|+random(10).

Tables 1 to 4 compare our results (denoted by CISM - Crossover by Indepen-
dent Sets and Mutation) with those of the best existing algorithms described
above. The best known results are summarized in columns 2-4: the smallest
known number of colors, the algorithms which produced such a coloring and the
best computing time necessary to obtain this result. When an algorithm does
not appear for an instance, it means either the algorithm was not tested on this
instance or it did not find the indicated coloring. For example, the first line of
Table 1 indicates that two algorithms (1b and 2) find a coloring with 49 colors
for the gggl.col-gggd.col graphs and the most effective algorithm (cited first)
needs more than 6 hours to obtain this result.

The last five columns give the results obtained by our algorithm (denoted by
CISM). We give the total number of runs with the number of failures between
brackets (5th column), the smallest number of colors obtained (6th column),
the number of moves and average time on the successful runs (7th and 8th

columns), and the values of parameters used by the algorithm (last column).
Improved results w.r.t the best known ones are highlighted in bold. Note that
computing times are given only for indicative purpose because the best known
results have been obtained on different machines and each algorithm uses very
different data structures. The most important criterion for a comparison is the
quality of colorings found.

problem Best known CISM

k*|method| time [[runs[k™ moves time param.
egglgeggs |[49] 1b,2 |20 376 ||3(0)|48| 10 656 000 | 16 410 [10,0.05,0.5,2
geegl-geeg2||84| 1b 147 600([1(0)[83]143 580 000[304 654|20,0.03,0.3,2

Table 1. Random Graphs from Hertz and De Werra

Table 1 gives a comparison on random instances between our algorithm CISM
and the algorithms (1a), (1b) and (2) on large instances from Hertz and De
Werra (5 graphs of 500 nodes and 2 graphs of 1000 nodes). k* corresponds to
the smallest number of colors obtained for all the instances of a same class.

We notice that our algorithm CISM obtains respectively 48- and 83-colorings
and outperforms thus the best known results for these two classes of graphs. Let
us recall that without a pre-processing (described above), none of la, 1b, 2 and
our tabu algorithm is able to find colorings respectively with a number of colors
smaller than 50 and 88 colors. This implies that the UIS operator contributes
largely to the search power of our hybrid algorithm.

To further confirm this result, Table 2 shows the results on the random
instances of Johnson et al. with 10, 50, and 90 % edge densities.

problem Best known CISM

k [method| time |[[runs| k& moves time param.
DSJC500.1.col || 12 3d 5452 (| 5(0) [12 | 5970 000 | 1 250 10,0.2,1,2
DSJIC500.5.col || 48 e 49 000 (| 5(3) | 48 | 19 693 000 | 12 283 10,0.2,1,2
DSJC500.9.col ||126 3e 158 400((10(8)[126| 3 812 000 | 9 110 10,0.1,1,5
DSJC1000.1.colf| 21 3c 210 5(0) |20 | 16 757 000 | 8 768 10,0.2,1,2
DSJC1000.5.col|| 84 | 3e,1b |118 000(| 2(1) | 83 (120 522 000|270 159(20,0.03,0.3,2
DSJC1000.9.col|[226 3c 65 774 || 1(0) |224| 13 282 000 | 67 907 |10,0.03,0.3,4

Table 2. Random Graphs from Johnson et al.

On these graphs smaller than 500 nodes, there are several local search methods
which can find good colorings. For larger instances, few methods are able to
obtain interesting results even with a powerful pre-processing. The best results
are obtained by Morgenstern using the most complex versions of his population-
based algorithms (3c, 3d and 3e). We notice from Table 2 that for graphs of 500
nodes, our algorithm finds consistently the best known colorings with shorter
solving times on average. For the graphs of 1000 nodes, our results improves
on the best known colorings for each instance whatever the edge density. In
particular, for the largest instance DSJC1000.9.col, the number of colors needed
is reduced from 226 to 224.

Tables 3 and 4 give more detailed comparisons between our algorithm and the
best algorithm My\dXRLF (3e) on the two largest instances: DSJC1000.5.col
and DSJC1000.9.col.

For DSJC1000.5.col, Morgenstern noticed that without the help of XRLF his
algorithms 3¢ and 3d occasionally find 88-colorings. Only an initial generation
with XRLF allows his algorithm My\dXRLF (3e) to find 84-colorings. It is also
important to note that XRLF finds already 86-colorings and consequently its
contribution in the algorithm 3e seems considerable.

Let us note that 84-colorings were also obtained by Fleurent and Ferland with
their hybrid algorithm (1b) and our tabu algorithm. However 84-colorings are
only possible with the help of Hertz and de Werra’s pre-processing technique.
Without this pre-processing, neither Fleurent and Ferland’s nor our tabu algori-
thm is able to find colorings better than 89-colorings.

Best known CISM

k ||method|runs | time runs moves time param.
85 3e 10(0) [~ 40 000([4(0) | 36 750 000 {104 500(10,0.03,0.3,2
84 e 10(0)| 118 000 (|4(0) |54 210 000 {144 650|10,0.03,0.3,2
83 - - - 2(1)|120 522 000|270 159|20,0.03,0.3,2

Table 3. Coloring DSJC1000.5.col

Our hybrid algorithm CISM finds not only consistently best known 84-
colorings and provides also a 83-coloring never found before. Note that initial
configurations generated by RLF require about 105 colors for this graph and that
such colorings can be easily obtained by any good local search algorithm. For
example, our tabu algorithm finds 91-colorings with random initial configurations.
Therefore, it is the UIS crossover that contributes to the above results.

In terms of computing time, our algorithm is slower than My\dXRLF (3e¢)
for finding 84 and 85-colorings. However, a fair comparison remains difficult due
to the mixture of 3e. Let us simply mention that the method 3e without X RLF
(i.e. 3c) needs 91 000 seconds to find 89-colorings.

Best known CISM
k |[method|runs | time [|runs moves time param.
226 3¢ |10(0)[75 800{(10(0)|11 660 000(62 673(10,0.03,0.3,4
225 - - - 3(0) [12 938 000(67 245|10,0.03,0.3,4
224 - - - 4(3) [13 266 000|{67 907(10,0.03,0.3,4

Table 4. Coloring DSJC1000.9.col

For DSJC1000.9.col, our algorithm finds the best known result with 226 colors
and goes on to find colorings with 225 and even a 224 coloring. For this graph,
the previous comparative remarks about DSJC500.9.col remain valid.

6 Conclusion

In this paper, we introduced a new crossover called UIS for the graph coloring
problem. This crossover is based on the notion of unions of independent sets.
The UIS operator, combined with a tabu search algorithm leads to a simple, yet
very powerful hybrid algorithm. Experiments of this algorithm on well-known
benchmarks have produced excellent results. Indeed, it finds the best known

results for random graphs of 500 nodes (densities 10%, 50% and 90%). More
importantly, it improves on the best known results for random graphs of 1000
nodes (densities 10%, 50% and 90%). (Improved results have also been obtained
on other classes of graphs, but not reported here).

The algorithm should be improved both in terms of search power and compu-

ting time. First, variants of UIS and other hybridizing schema are worthy of
investigation. Second, the presented algorithm can be easily parallelized, thus
the computing time can be expected to be largely reduced.

References

1.

11.

12.

13.

14.

15.

D. Brélaz. New methods to color vertices of a graph. Communications of ACM,
22: 251-256, 1979.

M. Chams, A. Hertz, and D. De Werra. Some experiments with simulated
annealing for coloring graphs. European Journal of Operational Research, 32: 260-
266, 1987.

D. Costa, A. Hertz, and O. Dubuis. Embedding of a sequential procedure within
an evolutionary algorithms for coloring problems in graphs. Journal of Heuristics,
1(1): 105-128, 1995.

R. Dorne and J.K. Hao Tabu search for graph coloring, T-coloring and set T-
colorings. Chapter 3 of Metaheuristics: Theory and Applications, I.H. Osman, C.
Roucairol and S. Voss (Eds.), Kluwer Academic Publishers, 1998.

E. Falkenauer A hybrid grouping genetic algorithm for bin-packing. Journal of
Heuristics, 2(1): 5-30, 1996.

C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring,.
Annals of Operations Research, 63: 437-463, 1995.

B. Freisleben and P. Merz. New genetic local search operators for the traveling
salesman problem. Proc. of PPSN-96, Lecture Notes in Computer Science 1141,
pp890-899, Springer-Verlag, 1996.

P. Galinier and J.K. Hao. Hybrid evolutionay algorithms for graph coloring.
Submitted to the Journal of Combinatorial Optimization, 1998.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

. A. Hertz and D. De Werra. Using tabu search techniques for graph coloring.

Computing, 39: 345-351, 1987.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; part ii, graph coloring and
number partitioning. Operations Research, 39(3): 378-406, 1991.

F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal
of Research of the National Bureaw Standard, 84: 79 100, 1979.

P. Merz and B. Freisleben. A genetic local search approach to the quadratic
assignment problem. In Proc. of ICGA-97, pp 465-472, Morgan Kaufmann
Publishers, 1997.

C. Morgenstern. Distributed coloration neighborhood search. Discrete
Mathematics and Theoretical Computer Science, 26: 335-358. American
Mathematical Society, 1996.

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algorithms
and Complexity. Prentice Hall, 1982.

This article was processed using the IATRX macro package with LLNCS style

