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Abs t rac t .  In this paper, we present the constraint handling techniques 
developed to tackle a real world optimization application: the frequency 
assignment problem (FAP) in cellular radio networks. The main goal of 
this application consists in finding assignments which minimize electro- 
magnetic interference due to frequency reuse and minimize the number 
of frequencies used. An acceptable assignment of the FAP must satisfy 
a set of multiple constraints such as traffic constraints and interference 
constraints. We present how each type of constraint can play a different 
role in EAs. In particular, we show how co-station constraints can be used 
to reduce the search space efficiently. The effectiveness of the constraint 
handling techniques combined with a regeneration technique is tested on 
big and hard FAP instances. Results show that limiting the degree of 
unfeasible solutions is beneficial for this application. 

1 I n t r o d u c t i o n  

Constraint handling is an important  issue in evolutionary algorithms (EAs) for 
tackling complex applications such as optimization and constraint problems. 
There are essentially three approaches for handling constraints [8]. The first to- 
tally forbids unfeasible solutions (which violate constraints) during the search 
and uses constraints to limit the search space by eliminating unfeasible solutions. 
This is often done via specialized genetic operators tailored to the application 
at hand. The second approach consists in using some repair mechanisms to pro- 
duce feasible solutions from unfeasible solutions [2]. The third approach tolerates 
unfeasible solutions and uses constraint violation as a means of defining penal- 
ty functions [7, 6]. Each approach has relative advantages and disadvantages 
with respect to particular applications although the third is the most general 
approach. Finally, it will also be interesting to relate the above constraint han- 
dling techniques and recent work on the multi-objective approach to constraint 
optimization [8, 4]. 

* Supported by the CNET (French National Research Center for Telecommunications) 
under the grant No.940B006-01. 
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In this paper, we present the constraint handling techniques we developed 
to tackle a real world optimization application: the frequency assignment prob- 
lem (FAP) in cellular radio networks in the field of telecommunications. The 
main goal of this application consists in finding assignments which minimize 
electro-magnetic interference due to frequency reuse and minimize the number 
of frequencies used. The difficulty of this application comes from the fact that  
an acceptable assignment of the FAP must satisfy a set of multiple constraints: 
traffic constraints which specify the minimum number of frequencies required 
by each station and interference constraints which specify the minimal distances 
between frequencies assigned to a station or to adjacent stations. We present 
how these constraints can play different roles in EAs. In particular, we show 
how co-station constraints can be used to reduce the search space efficiently. 
The effectiveness of the constraint handling techniques is tested on large and 
hard instances having up to 350 stations, 60 available frequencies and 35,000 
interference constraints. Results show that  our EAs integrating these constraint 
processing techniques and a population regeneration technique are very efficient 
for this application. 

The paper is organized as follows. In Section 2, we introduce the various 
constraints in the FAP. In Section 3, we present the techniques for efficiently 
handling these constraints. We define also our EAs combined with these handling 
techniques. In Section 4, we give the results of our EAs on a set for real-size 
problems. 

2 F r e q u e n c y  A s s i g n m e n t  P r o b l e m  

2.1 C o n s t r a i n t s  

The general objective of the frequency assignment problem is to provide the 
maximal number of communications over the network with a sufficient quality 
of transmission. More concretely, this involves assigning to each radio station 
one or more frequency values taken from a limited radio spectrum in such a way 
that a set of constraints is satisfied. These constraints can be classified into three 
categories which are defined as follows. 

1. The frequency constraint specifies the number of available frequencies (chan- 
nels) in the radio spectrum. This constraint is imposed by national and 
international regulations. 

2. The traffic constraints specify the minimum number of frequencies required 
by each station to serve the communications within its geographic area. 
These constraints are empirically determined by the telecommunications op- 
erators. 

3. The interference constraints are further classified into two families: 
adjacent-statwn constraints: the frequencies assigned to two adjacent stab 

tions must be sufficiently separated in the frequency domain. Two sta- 
tions are adjacent if they emit within a common area even if they are 
not geographically adjacent. 

co-station constraints: any pair of frequencies assigned to a station must 
have a certain distance between them. 
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Constraints in the frequency assignment problem are therefore multiple and 
some of them are conflicting. The most severe constraint concerns the very lim- 
ited number of available frequencies. This constraint imposes a high degree of 
frequency reuse by the stations and consequently increases the difficulty of sat- 
isfying the interference constraints. 

Different optimization versions of the FAP could be developed such as maxi- 
mizing all the traffic, minimizing the number of frequencies used and minimizing 
the interference over the network. In this paper, we minimize the frequency in- 
terference while using a minimum number of frequencies. 

2.2 M o d e l i n g  

Let NS be the number of stations in the network, NF the number of available fre- 
quencies in the radio-spectrum, NA the number of adjacency constraints, and NC 
the number of co-station constraints. The FAP can be modeled with a quadruple 
<X,D,C,F> representing a constraint optimization problem (COP) with: 

X = {Sil Si is a station in the network, i E [1..NS]}. 
D = {Fi I Fi is an available frequency in the spectrum, i E [1..NF]}. 
C = TC U AC U CC 
TC = {T~ I T~ minimal number of frequencies necessary for Si, i E [1..NS]}. 
AC = {Ai I Ai adjacent-station constraints for any pair of frequencies assigned 

to two adjacent stations, i E [1..NA]}. 
CC = {C~ I Ci co-station constraints for any pair of frequencies assigned to the 

same station, i E [1..NC]}. 
F --- the number of frequencies used to cover all the traffic in the network. 
To solve the FAP problem, assignments satisfying all the constraints in C must 
be found and F must be minimized. 

3 C o n s t r a i n t  H a n d l i n g  

In this section, we show how the different types of constraints can be efficiently 
handled in evolutionary algorithms. Some constraints may be solved easily and 
others may be used to guide the search process. Note that  this study have been 
done with EAs without a crossover operator. A study concerning crossover for 
the FAP has been already carried out in [5] and showed a marginal efficiency of 
this operator for this problem. 

3.1 F r e q u e n c y  C o n s t r a i n t  

This constraint requires the minimization of the frequencies used by all the 
stations. To do this, we proceed as follows: beginning with a certain number K 
of frequencies, we look for an interference-free assignment. If such an assignment 
is found, we start again with K-1 frequencies and so on. Details are given in 
Section 3.4. 

3.2 Traffic C o n s t r a i n t s  

These constraints are static, that is, they will not change during the optimization 
process. Therefore these constraints could be directly included in the chromo- 
some encoding as follows: 



804 

A frequency assignment is associated with a chromosome and one frequency 
value of a station is associated with one gene. The length of a chromosome is 
thus equal to the total traffic of all the stations in the network. Fig.1 gives an 
example where three stations require respectively two, one and four frequencies 
and f i , j  represents the jth frequency value of the i th station Si. 

S1 $2 $3 

Ifl,11fl,21 f2AIf3.1 If3.21 f3.3 If3.4 1 

Fig. 1. Chromosome Encoding 

3 . 3  I n t e r f e r e n c e  C o n s t r a i n t s  

Each interference constraint describes the minimal distance between any pair of 
frequencies assigned to two adjacent stations or to the same station. This set of 
constraints is represented by a symmetrical matrix M of NS*NS : 

- M[ij] with i r j represents the minimal number of channel separations re- 
quired to satisfy the adjacency constraints between the stations Si and Sj. 
Vn E [1..~],Vm E [1..~], [fi,n - fj,m] >_ M[i,j] 

- M[i,i] represents the channel separations necessary to satisfy the co-station 
constraints: 
Vn, m e [1..T/], n # m, Ifi,- - f~,ml _> M[i,i] 

- M[i,j]=0 means there is no interference constraint between the stations Si 
and Sj. 

In general, both co-station and adjacent-station constraints can be used to 
define the fitness function. This is perhaps the easiest technique to deal with 
them. However, as explained below, there are much more efficient techniques for 
co-station constraints. In what follows, we show first how co-station constraints 
can be used by EAs to reduce the search space and then how adjacent-station 
constraints are used to guide the search process. 

C o - s t a t i o n  C o n s t r a i n t s  

With the chromosome encoding presented above, different ways of handling co- 
station constraints will lead to a search space of different sizes. In fact, given Si 
a station requiring Ti frequencies, and N F  the available frequency values, the 
search space SP can be defined by: 

NS 

SP = H gP( i )  
i----1 

with NP(i)  being the number of possible combinations of frequencies for Si. 
Using this definition for the search space, we now investigate three ways of 

dealing with co-station constraints, in increasing order of their capacity to reduce 
the search space. 
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case  1: Co-station constraints are not taken into account at all by the chro- 
mosome. In this case, each gene may independently take any  of the N F  
possible values. Therefore, for each station Si, we have N P ( i )  = N F  T~ pos- 
sible combinations of frequencies. This implies a total  search space of size 

NS  ~--.Ns 
T" = NFZ--,J=I J S P  = H N P ( i )  

i = 1  

case  2: Co-station constraints are taken into account by the chromosome, but 
an order is introduced among the frequencies of the same station. Tha t  is, 
for a station Si having a traffic of Ti, if a list of frequencies (fi,1, fi,2...fi,T,) 
satisfying the co-station constraints is assigned to Si, there are still other 
T/! - 1 valid frequency assignments (lists) for Si using the same frequencies. 
In this case, for each station Si, the possible combinations of frequencies are 
reduced to 

N P ( i )  = nbposs(Ti, NF,  i) * Ti! with 

g i f T k = l  

nbposs(Tk, N, k) = N--(M[k,k]*(Tk--D) 
E nbposs(Tk - 1, N - ( j  + M[k, k] - 1, k) otherwise 
j = l  

case  3: Co-station constraints are taken into account by the chromosome and 
no order is imposed among the frequencies of the same station. Tha t  is, for 
a station Si having a traffic of ~ ,  if a set of frequencies {fi,1, fi,2...fi,T,} 
satisfying the co-station constraints is assigned to Si, other ~ ! -  1 possible 
frequency assignments for Si using the same frequencies will be considered 
to be equivalent to this assignment. In this case, for each stat ion S~, the 
possible combinations of frequencies are reduced to 

N P ( i )  = nbposs(~, NF,  i) 

For example, given a FAP instance of 75 stations with 8 available frequencies 
( N F  = 8), a uniform traffic of 3 (T/ = 3, Vi E [1..75]) and a minimal  separation 
distance of 3 for frequencies assigned to the same station (M[i,/] = 3, V i e  [1..75] 
), we obtain for each case above these results for the search space: 

- case  1: N P ( i )  = 83 = 512 = >  S P  = 51275 
- case  2: g P ( i )  = 4 .  (3!) = >  S P  = 2475 
- c a s e  3 :  N P ( i )  = 4, which are: {1,4,7},{1,4,8},{1,5,8},{2,5,8} = >  S P  = 475 

It  is clear that ,  for this example, the application of co-station handling in 
cases 2 and 3 allows us to greatly reduce the initial search space by a factor of 
about  2175 and 12875 respectively. In general, the larger the initial search space, 
the bigger the reduction which may be obtained. It  is also clear that  the difficulty 
of implementat ion increases when we go from case 1 to case 3. In what  follows, 
we outline how cases 1, 2 and 3 may be implemented in EAs. 
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For case 1, there is no special treatment for co-station constraints, and they 
are used together with adjacent constraints to build the fitness function. Since 
each gene may take any value from [1..NF], there is no need to adapt our genetic 
operators. 

For case 2, the implementation consists in modifying the mutat ion operator 2 
and the way in which the initial population is generated. For the initial pop- 
ulation, we ensure that all of the co-station constraints are satisfied by each 
chromosome, i.e. any two frequencies assigned to the same station have the re- 
quired minimal distance. It should be remembered that the mutat ion operator 
is based on a three-step choice strategy [3]: 

- choice of a slalion Si : randomly take one from among conflicting stations. A 
station is conflicting if some of its frequencies violate interference constraints; 

- choice of one frequency for  Si: randomly take one from 1 to Ti; 
- choice of a frequency value fi,k: take the best one from 1 to N F ,  which is 

different from the current value. 

In order to carry out co-station constraint processing of case 2, we enhance 
the third choice for selecting the frequency value; we now refuse to assign a value 
which violates co-station constraints. More precisely, this choice becomes: 

- choice of a frequency value fi,k: take the best one from 1 to N F  which 
is different from the current value and which does not violate co-station 
constraints. 

For case 3, the implementation consists once again in modifying the mutat ion 
operator and the way in which the initial population is generated. Here, an initial 
chromosome will be the concatenation of a list of N S  sublists (L1, L2, ..., LNS) 
where each Li is one of Si's N P ( i )  valid combinations of frequencies. When 
mutat ion is applied, a sublist Li of the chromosome will be replaced by an- 
other sublist Li' ,  which is always taken from Si's N P ( i )  valid combinations of 
frequencies. For the moment, case 3 is not implemented yet. 

Adjacent-statlon Constraints 
Having presented the techniques for handling the frequency constraint, traffic 
constraints and co-station constraints, we now study how adjacent constraints 
can be used. These constraints can neither be integrated into the chromosome 
encoding like traffic constraints nor be satisfied like the co-station constraints. 
However, they are useful to guide the search process. To do this, we use them 
to define the fitness function Eval which associates with each chromosome, an 
integer value corresponding to the number of interference constraints violated by 
the chromosome. The fitness will thus be a value in the interval [0...NA+NC] if 
the co-station constraint handling is not applied; otherwise, this interval becomes 
[0...NA]. 

Therefore, a chromosome I is a solution (a frequency assignment without 
interference) if and only if Eval ( I )  = O. Evidently, different assignments could 
have this evaluation value and thus be solutions to the problem. 

2 If crossover is used, it should also be adapted. 
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3.4 A l g o r i t h m  

The general algorithm we used to process the tests is described below: 

b e g i n  
N F  ~-- M A X f r e q  ; success ~-- fa l se  ; f a i l ed  ~ 0 ; gen *-- 0 ; 
generate(Po) ;evaluate(P0);Pbos~ ~ P0; 
whi le  ( fa i l ed  < M A X  fa i led)  do 

success *- fa l se  ; gen ~-- 0 ; 
whi le  (gen < M A X g e n  and success = fa l se)  do 

Psez ~-- selection( Pgen ) ; 
Pgen+l *'- mutation(P~ez) ; 
gen ~-- gen + 1 ; 
evaluatePgen ; 
i f  (Bes to f (Pg~n))  is a solution(without i n t e r f e r e n c e ) t h e n  

L Pbest ~-" Pgen ; success ~-- t rue  ; 

i f  (success = true)  t h e n  

~ NF ~ NF-1 ; failed ~ 0; 
Po ~-- regenerate(  P g ~ ,  g F )  ; 

else 
~ fa i l ed  *-- f a i l ed  + 1; 

Po ~-- regenerate(  Pbest , N F )  ; 

r e t u r n  N F + 1 ; 
end;  

Pb~t is the last population containing at least one individual having an eval- 
uation equal to 0, i.e. an interference-free assignment with a certain number K 
of fixed frequencies. P~ represents the population of the i th generation. 

An initial population is randomly generated with the maximum number of 
available frequencies M A X f r e q  (if co-station constraint processing is applied, 
the initial population will be forced to satisfy all the co-station constraints). This 
population evolves until one of its individuals becomes a solution to the problem 
or the maximum number of generation cycles M A X g e n  is reached. 

In the first case, the number of available frequencies N F  is decremented and 
the population is regenerated using the following process: for each gene having 
a frequency value greater than the decremented N F ,  it is given a new value 
which is randomly determined in the interval [1..NF] (if co-station handling is 
applied, this new value will satisfy all the co-station constraints); other genes 
remain unchanged. We call this process the population regeneration technique. 

In the second case, we consider this at tempt as a failure. The population is 
regenerated using the best population Pb~st and then the evolution starts again 
for M A X g e n  generations. If we get the maximal number of failed attempts 
M A X  fa i l ed  for the same number of available frequencies, the current run is 
finished and the last minimal number of frequencies used for an assignment 
which does not contain unsatisfied constraints is returned. 
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4 R e s u l t s  

Different EAs have been developed and tested on 10 FAP instances: four in- 
stances with a uniform traffic of two frequencies per station, and six instances 
with non-uniform traffic from 2 to 4 frequencies per station. 

The name of each instance consists of three numbers ns.nf.nc which are 
respectively the number of stations, the sum of the traffic (frequencies) required 
by all the stations, and the number of interference constraints. For example, 
150.300.12634 defines a problem composed of 150 stations, a total traffic of 300 
frequencies and 12,634 constraints. 

We compare below four algorithms with/without  Co-station Constraint Han- 
dling (CCH) (an implementation of Case 2 described in Section 3.3.) and/or  
Population Regeneration (PR) described in Section 3.4. 

E A :  EA with no special techniques. 
E A - b P R :  EA with only population regeneration. 
E A + C C H :  EA with only co-station constraint handling. 
E A % C C H - i - P R :  EA with co-station constraint handling and population re- 

generation. 

These algorithms have the following common characteristics. We used a pop- 
ulation of 20 individuals with SUS selection [1], no crossover, and the three-steps 
choice mutat ion described in Section 3.3. The maximum number of generation 
was set at 10,000. 

To compare these algorithms, the following criteria are used: 

- NF:  the minimum number of frequencies used to find a frequency assignment 
without any constraint violation (average over 5 runs). 

- Eval:  the number of evaluations (in thousands) necessary to solve the FAP 
instance. 

- T i m e :  the average time per run in seconds excluding failed attempts. Our 
tests have been carried out on a Silicon Graphic Power Station with a R8000 
processor. 

- Fail: the average of failed at tempts  per run (see Section 3.4) over 5 runs to 
find the best solution. 

Table 1 shows the performance of the four algorithms according to the chosen 
criteria. Given that  the computing time for some instances is very high (>10 
hours), the results are the mean of only 5 independent runs for 10 tests. 

In this table, the instances are classified from the easiest to the hardest for the 
two families (uniform and non-uniform traffic). All the algorithms are compared 
in terms of solution quality (NF), efficiency (Time and Eval) and robustness 
(Fail). Several remarks concerning the data in the table may be made. 

First, EA and E A + P R  perform in a similar way except for two relatively 
easy instances (119.140.5918, and 168.372.4099) for which the PR option be- 
comes more efficient (up to ten times faster). In general, at the beginning of an 
evolutionary optimization process, only a small number of generations is needed 
to satisfy most of the constraints, followed by a long series of generations to 
satisfy the remaining constraints. Therefore, starting a search process with the 
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problems 

75.150.2231 
75.150.3247 
75.150.3203 

150.300.12634 
119.140.5918 
168.372.4099 

343.966.35104 
168.538.8197 

119.335.11058 
59.158.6043 

EA 
NF Eval. T[sec] lhLi]. NF 
15 1260 600 6.2 15.40 

14.60 1400 760 6 . 8  13.60 
18.20 2200 1380 6.4 t8.20 
25.60 2000 2400 5.8 23.40 

45 1452 889 0.0 45 
45 [1301 458 0.0 45 
54 11926 10969 0.0 54 

45.40 3539 1530 0.0 45 
46,50 43362 45923 7.0:45.2~ 

56 30868 29267 4.0 56 

E A + P R  
Ev~. T[sec] 
1300 680 
1600 1060 
1840 i1200 
2560 3200 
190 120 
149 53 

1461 1203 
585 292 

38428 43487 
22036 20766 

Fail.: 
5.8 
6.2 
6.6 
9:0 
0.0 
0.0 
0.0 
0.0 
4.4 
3.0 

E A + C C H  E A + C C H + P R  
NF Eval. T[sec] FaiL NF Ev-~. rbec  ] Fail. 

14.20 1200 620 5.0 [13.20 1440 740 7.8 
5.4 113.20 6 0 0  400 4.8 13.20 1280 780 

17.20 2980 1880 5.8 17 1300 820 5.2 
20 [1840 12860 6.0 18 3200 3700 5.6 
45 1300 836 0.0 45 168 106 0.0 
45 1186 918 0.0 45 145 54 0.0 
54 1037515866]0 .0  54 1326 1110 0.0 

] 

45 2749 2436 t, 0.0 45 380 176 0.0 
45 8800 8820 2.0 45 1280 1240 1.6 
56 25451 44348 4.0 55.60 6820 7040 4.6 

Table 1. Comparative results 

PR option is interesting if the instance is easy or if the last solution obtained 
is close to a final solution. Note that the PR option is designed to carry out 
efficient exploitation rather than exploration. Consequently, PR may put the 
search process in a local optimum. Many generations may be required to release 
the search process from this local optimum. 

Second, EA+CCH gives solutions of better quality than EA and EA+PR on 
all the instances especially on the hardest ones. This point confirms the theoret- 
ical expectation about the search space reduction provided by CCH (c.f. Section 
3.3). In terms of efficiency, EA+CCH is faster because co-station constraints are 
no longer a part of the fitness function and solved implicitly. Consequently, for 
the same number of mutation applications, the number of required evaluations 
is reduced. EA+CCH is also more robust than EA and EA+PR because even for 
a solution of better quality this algorithm has comparable failure values. Note, 
however, that EA+PR is more efficient for solving some easy instances of the 
second family. 

Third, EA+CCH+PR gives far better results than other algorithms for all 
the instances. This is certainly due to the CCH and PR options. An important 
example concerns 150.300.12634 which is the hardest instance of the first fam- 
ily. In fact, EA+CCH+PR uses 7.6 fewer frequencies than EA and 2.0 fewer 
frequencies than EA+CCH. For the same instance, this algorithm divides the 
number of evaluations and computing time by four compared with EA+CCH. 
EA+CCtt+PR is also robust since it gives much better results with comparable 
failures. In conclusion, the combination of CCH and PR is definitely very effi- 
cient. This may be explained as follows. When co-station handling is used, the 
co-station constraints which are harder to solve are already satisfied by all the 
individuals of the population. This will facilitate the search since only adjacency 
constraints remain. Applied to such individuals, the PR option becomes more 
efficient for exploitation. Moreover, the fact that CCH is applied means that the 
co-station constraints are removed from the fitness function. Thus, this function 
becomes simpler and more refined, which in turn favors a better exploration of 
the search space. 
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5 Conclusions 
In this paper, we have presented a set of techniques for handling various con- 
straints in the frequency assignment problem. Traffic constraints are solved by 
a direct integration into the chromosome structure. Interference constraints re- 
lated to adjacent stations are used to build the evaluation function and guide 
the search process. Co-station constraints are used to greatly reduce the search 
space. We have also presented a technique for population regeneration. We have 
shown that  this technique is powerful for exploitation. Results of experiments 
show that  all these techniques integrated into the evolutionary framework give 
efficient EAs which allow us to solve hard FAP instances. Our results also show 
that  for this application, it is beneficial to limit unfeasible solutions. 

We are currently working on the last technique described in Section 3.3 in 
order to improve co-station constraint handling. A s  shown in tha t  section, this 
processing will allow us to further reduce the search space. Finally, we are testing 
the techniques and ideas presented in this paper on other optimization and 
constraint problems. We hope to be able to report new results in the near future. 
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