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Abstract. This paper introduces a new evaluation function, called δ,
for the Bandwidth Minimization Problem for Graphs (BMPG). Com-
pared with the classical β evaluation function used, our δ function is
much more discriminating and leads to smoother landscapes. The main
characteristics of δ are analyzed and its practical usefulness is assessed
within a Simulated Annealing algorithm. Experiments show that thanks
to the use of the δ function, we are able to improve on some previous
best results of a set of well-known benchmarks.

Key words: Bandwidth Evaluation Function, Bandwidth Minimization
Problem, Heuristics, Simulated Annealing.

1 Introduction

The Matrix Bandwidth Minimization Problem (MBMP) seems to be originated
in the 1950’s when structural engineers first analyzed steel frameworks by com-
puter manipulation of their structural matrices [1]. In order that operations
like inversion and finding determinants take the least time as possible, many
efforts were made to discover an equivalent matrix in which all the nonzero en-
tries would lay within a narrow band near the main diagonal (hence the term
“bandwidth”) [2]. On the other hand the Bandwidth Minimization Problem for
Graphs (BMPG) was proposed independently by Harper [3] and Harary [4]. The
MBMP is equivalent to the BMPG, given that a graph can be transformed into
an incidence matrix. The BMPG has a large number of applications including
for instance circuit design and information retrieval in hypertext.
The BMPG can be defined formally as follows. Let G = (V,E) be a finite

undirected graph, where V = {1, 2, .., n} defines the set of vertices and E ⊆
V × V = {{i, j} | i, j ∈ V } is the set of edges. Let τ = {τ1, τ2, ..., τn} be a
permutation of V . The bandwidth β of G for τ is defined by:

βτ (G) =Max{|τi − τj | : (i, j) ∈ E} (1)
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Then the BMPG consists in finding a permutation τ for which βτ (G) is
minimum.

Since there are n! possible permutations for a graph with n vertices, the
BMPG is a highly combinatorial problem. Papadimitriou has shown that finding
the bandwidth of a graph is NP-Complete [5]. Later, it was demonstrated that
the BMPG is NP-Complete even for trees with a maximum degree of three [6].

Several algorithms for the BMPG have been reported. They can be divided
into two classes: exact and heuristic algorithms. Exact algorithms guarantee al-
ways to discover the optimal bandwidth. Two examples are proposed in [7]. Both
methods solve problems up to 100 vertices, for some classes of matrices. On the
other hand, heuristic algorithms try to find good solutions as fast as possible,
but they do not guarantee the optimality of the solution found. Some examples
are: the Cuthill—McKee algorithm [8] and the Gibbs Poole and Stockmeyer algo-
rithm (GPS) [9]. More recently, metaheuristics have been applied to the BMPG:
Simulated Annealing (SA) [10], Tabu Search [11] and Genetic Algorithms [12].

The most common practice in all these algorithms is to evaluate the quality
of a configuration as the change in the objective function βτ (G). This provides
little or no information during the search process because βτ (G) only takes
into consideration the maximum absolute difference between labels of adjacent
vertices in the graph (see Equation 1).

Three exceptions are reported in the literature. In [10], the authors take into
account the five maximum absolute differences to evaluate a configuration. In
[13], an evaluation function, called γ, is presented. It takes into consideration
all the edges of the graph, unfortunately due to its nature it can only be used
in graphs with less than 150 vertices. In [11], the value of a move between two
vertices u and v is defined as the number of vertices adjacent to v or u whose
bandwidth increases due to the move.

Following these ideas, and given that one of the most important elements in
heuristic search is how the quality of a configuration is evaluated, a new evalua-
tion function (namely δ) is proposed in this paper. This new evaluation function
is able to capture even the smallest improvement that orients the searching of
better solutions and permits to find configurations in which all the absolute
differences are minimized.

The rest of this paper is organized as follows: Section 2 concentrates on an
analysis of the β evaluation function, the cardinality of its equivalence classes
and some possible drawbacks of it. In Section 3 a new evaluation function called
δ is proposed. It takes into account all the edges of the graph. Section 4 makes a
comparison between β and δ. Section 5 shows the implementation details of the
SA algorithm used to study the performance obtained when it uses either δ or
β. Section 6 explains the computational results obtained with the SA algorithm
for both evaluation functions and a comparison with the best heuristics reported
in the literature. Finally, in Section 7 some conclusions are presented.



2 The β Evaluation Function

Given that an undirected graph G could potentially have n reflexive edges and
n(n−1)

2 non-reflexive edges, then the total number of possible edges is given by:

n+(n(n−1)2 ) = n(n+1)
2 , and given that a particular edge can be present or absent

(please note that we are counting even the graph with no edges), the number of
possible graphs is: 2

n(n+1)
2 .

β is the most used evaluation function in the BMP algorithms [9, 14, 8, 12].
Next, some features of β are analyzed.

β can only take n different values (0 ≤ β ≤ n − 1), β = 0 implies that the
graph G has either no edges or only reflexive edges. Consequently the search
space of n! possible configurations (permutations of {1, 2, ..., n}) can be parti-
tioned into n different equivalence classes1 under β. Additionally, let ωi be the
cardinality of the equivalence class under β = i. Then, it is easy to show that
ω0 = 2

n, and ω1 = 2
n
¡
2(n−1) − 1

¢
then:

ωi = (2
(n−i) − 1)

i−1Y
j=1

2(n−j) (2)

Now, in order to verify that all the possible graphs are taken into account,
the summation of all cardinalities of the equivalence classes is given in Equation
3, as can be verified the summation equals the total number of graphs.

ω0 +
n−1X
i=1

ωi = 2
n +

n−1X
i=1

(2(n−i) − 1)
i−1Y
j=1

2(n−j) = 2
n(n+1)

2 (3)

It is very important to remark that the β evaluation function does not take
into account all the absolute differences between labels of adjacent vertices, but
the maximum absolute difference. In this sense there is no way to make dis-
tinctions between elements that belong to the same β equivalence class. For
example, the two permutations for the graph showed in Fig. 1 belong to the
same β equivalence class (β = 3), which can be a potential drawback when
searching a solution, since the permutation in Fig. 1(b) is better than the one
in Fig. 1(a) (it is better because it has only one absolute difference with value
two).
The β evaluation function is very gross with very few equivalence classes, in

consequence, each equivalence class has high cardinality.

3 The δ Evaluation Function

Given the negative features of β it has been developed a new evaluation function,
called δ, which takes into account all the edges of the graph. The proposed
1 Let S be a set with an equivalence relation R. An equivalence class of S under R is
a subset T ⊂ S such that: If x ∈ T and y ∈ S, then x R y if and only if y ∈ T . And
if S 6= ∅, then T 6= ∅.



(a) (b)

Fig. 1. (a) Permutation τ with β=3. (b) Permutation τ 0 with β=3.

evaluation function for a permutation τ is defined by Equation 4 where dx refers
to the number of absolute differences with value x between adjacent vertices,
and βτ the bandwidth for the permutation τ .

δ(τ) = βτ +

βτX
x=0

(
dx

βτY
y=x

(n+ (βτ − y) + 1)

) (4)

To illustrate the computation of this new evaluation function, let us consider
the graph in Fig. 1(a). For this particular graph: d0 = 2, d1 = 1, d2 = 2, d3 = 2,
d4 = 0; additionally it is easy to observe that β = 3 and n = 5.
Then, by making the substitution of these values in the Formula 4 and sim-

plifying we obtain: δ(τ) = 3 + 2
3024 +

1
336 +

2
42 +

2
6 = 3.3846.

In contrast if δ is computed for the permutation τ 0 showed in Fig. 1(b) a
different and smaller value is obtained δ(τ 0) = 3. 363 8.
Next the analysis of the equivalence classes of δ is presented. Two permu-

tations belong to the same equivalence class if they have the same set of coun-
ters dx, for instance the set of counters for the permutation in Fig. 2(a) is:
{d0 = 2, d1 = 1, d2 = 2} and for the permutation in Fig. 2(b) is: {d0 =
2, d1 = 1, d2 = 2}. In this sense both permutations, in Fig. 2, belong to the
same equivalence class. Now, given that dx takes values between 0 and n − x,
the cardinality of possible values for dx is (n− x+ 1), and the total number of
equivalence classes is described by the equation:

n−1Y
x=0

(n− x+ 1) = (n+ 1)!

The number of graphs that belong to the same equivalence class is:µ
1

dn−1

¶µ
2

dn−2

¶
...

µ
n− 1
d1

¶µ
n

d0

¶
=

nY
x=1

µ
x

dn−x

¶
(5)

To demonstrate that the summation of the cardinalities of all equivalency
classes equals the number of possible graphs, it is necessary to use the Formula



5 instantiated with all possible values for the dn−x counters and compute the
sum. This can be expressed as:

nY
x=1

⎛⎝ xX
dn−x

µ
x

dn−x

¶⎞⎠ =
nY

x=1

2x = 2

nX
x=1

x

= 2
n(n+1)

2 (6)

Then given that the Equation 6 gives the same value as the total number
of graphs, we conclude that all the (n + 1)! equivalence classes capture all the
possible graphs.

(a) (b)

Fig. 2. Two permutations of a graph which belong to the same equivalence class.

4 Comparing β and δ

In this section the differences between the evaluation functions β and δ are
contrasted. First we compare the total number of equivalence classes (ωβ and
ωδ) for each evaluation function and then the average values of the cardinalities
for these equivalence classes. This is presented in the Table 1 for some graphs
with different number of vertices n. The second and third columns show the
number of equivalence classes for β and δ respectively, while the fourth and fifth
columns show the average of their cardinalities.
It is important to emphasize that ωβ has a linear increment while ωδ has

an exponential one. Thanks to the data presented in Table 1 it is possible to
conclude that δ is finer than β since it has the ability to create more equivalence
classes with a lower cardinality. This is an important characteristic which allows
to capture even the smallest improvement that orients the searching process of
solutions and permits to find configurations where all the absolute differences
between labels of adjacent vertices are minimized; and not only the maximum
one as it happens with β.

5 A Simulated Annealing Approach to Solve the BMPG

To evaluate the practical usefulness of the δ evaluation function, a Simulated An-
nealing (SA) algorithm was developed. Next some details of the implementation
proposed are presented:



Table 1. Comparison between the total number of equivalence classes and the average
of their cardinalities.

n ωβ ωδ 2
n(n+1)

2 /ωβ 2
n(n+1)

2 /ωδ
5 5 7.20E + 2 6.55E + 3 4.55E + 1
10 10 3.99E + 7 3.60E + 15 9.03E + 8
70 70 8.50E + 101 1.64E + 746 1.35E + 646
150 150 8.63E + 264 9.73E + 3406 1.70E + 3144
300 300 9.21E + 616 1.06E + 13589 3.47E + 12974

Internal Representation. Let τ be a potential solution of the problem,
that is a permutation of V . Then τ is represented as an array of integers of
length n, in which the i-th element denotes the label assigned to the vertex i
of the graph. The solution space is obviously the set of all the permutations of
order n, where n is the number of vertices in the graph.
Evaluation Function. The choice of the evaluation function is an important

aspect of any search procedure. Firstly, in order to efficiently test each potential
solution, the evaluation function must be as simple as possible. Secondly, it must
be sensitive enough to locate promising search regions on the space of solutions.
Finally, the evaluation function must be consistent: a solution that is better than
others must return a better value. All these characteristics are present in the new
δ evaluation function whose formal definition is presented in Formula 4.
Neighborhood Function. The neighborhood of a solution N(τ) in our im-

plementation contains all the permutations τ 0 obtained by swapping two adjacent
vertices of the current permutation τ .
Initial Solution. The initial solution is the starting configuration used for

the algorithm to begin searching better configurations using the neighborhood
function. In this implementation the initial permutation is generated randomly.
Cooling Schedule. In a SA algorithm the way in which the temperature is

decreased is known as the cooling schedule, in our implementation the propor-
tional cooling schedule is used (Tn = Tn−1∗ 0.92). The initial temperature was
fixed at 1.0E-03 and the final temperature (Tf ) at 1.0E-09.
Termination Condition. The algorithm stops either if the current temper-

ature reaches Tf , or the number of accepted configurations at each temperature
falls below the limit of 25. The maximum number of accepted configurations
at each temperature (maxConfigurations), depends directly on the number of
edges (|E |) of the graph, because more moves are required for denser graphs
(maxConfigurations = 15∗ |E |).
All the parameters of the SA algorithm were chosen experimentally, and

taking into account some related work reported in [15, 13, 10].

6 Computational Experiments

In this section, we present the experiments accomplished to evaluate the per-
formance of δ over a set of 125 benchmark instances. For these experiments the



above SA algorithm is used. The code, programmed in C, was compiled with gcc
using the optimization flag -O2 and ran into a Pentium 4@2.8 GHz. with 1 GB
of RAM. Due to the incomplete and non-deterministic nature of the method 20
independent runs were executed for each of the selected benchmark instances.
All the results reported here are data averaged over the 20 corresponding runs.

6.1 Benchmark Instances and Comparison Criteria

Two sets of problem instances were used. The first set has 12 structured in-
stances, randomly generated according to the model proposed by [10]. It consists
of six different classes of graphs of increasing sizes including: grids, paths, cycles,
binary trees, ternary trees and quaternary trees.
The second set of instances is the same test data used by Martí et al. [11]

and Piñana et al. [16]. It has 113 problem instances from the Harwell-Boeing
Sparse Matrix Collection2, divided into two subsets. The first is composed of
33 instances with 30 to 199 vertices. The second consists of 80 large instances
whose sizes vary from 200 to 1000.
The criteria used for evaluating the performance of δ are the same as those

used in the literature: the average bandwidth over each instance set and the
average CPU time in seconds.

6.2 Comparison Between β and δ

The purpose of the first experiment is to compare the new δ evaluation function
and the classical β evaluation function. To do this, we use δ and β within the SA
algorithm presented in Section 5 (call these SA algorithms SA-δ and SA-β) and
test them on the first set of 12 random instances. Both SA-δ and SA-β were run
20 times on each instance and the results are presented in Table 2. In this table
columns 1 to 3 show the name of the graph, the number of vertices and edges.
Columns SA-β and SA-δ represent the average bandwidth for the 20 runs of the
SA algorithm that uses the metric β and δ respectively. The sixth and seventh
columns show the best bandwidth obtained for each of the SA variants. Finally
the last column presents the improvement obtained when the δ metric was used.
The results presented in Table 2 show clearly that the SA that uses δ consis-

tently has much better results for many classes of graphs than the one that uses
β. We can observe an average improvement of 42% (see column Improvement).
So we could conclude that δ is a better evaluation function than β.
In order to illustrate the behavior of SA-δ and SA-β in Fig. 3 the bandwidth

reduction versus the annealing temperature is shown. In this figure it can be seen
that the SA-δ reduces the bandwidth almost continuously while the SA-β gets
stuck longer time, and the final bandwidth reached by SA-δ is significantly lower
than the bandwidth reached by SA-β.

2 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing



Table 2. Results obtained with two SA for the BMPG using δ and β.

Graph n Edges SA-β SA-δ Best SA-β Best SA-δ Improvement
Path100 100 99 10.0 1.2 10 1 90%
Path150 150 149 15.6 1.4 15 1 93%
Cycle100 100 99 10.6 2.2 10 2 80%
Cycle150 150 149 15.8 2.6 15 2 87%
TreeB63 63 62 8.0 7.0 8 7 13%
TreeB127 127 126 15.6 11.0 15 11 27%
TreeT40 40 39 7.0 7.0 7 7 0%
TreeT121 121 120 17.8 15.0 17 15 12%
TreeQ85 85 84 15.0 14.0 15 14 7%
TreeQ205 205 204 30.6 26.0 30 26 13%
Grid100 100 180 15.8 10.0 15 10 33%
Grid225 225 420 31.2 15.0 30 15 50%

Average 15.6 9.3 42%
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Fig. 3. SA-β and SA-δ behavior comparison on the instance dwt_361.mtx.rnd from
the Harwell-Boeing Sparse Matrix Collection.

6.3 Comparison Between SA-δ and the Best Known Results

In this experiment a performance comparison of our SA-δ procedure with the fol-
lowing heuristics was carried out: GPS [9], Dueck and Jeffs’ Simulated Annealing
(SA-DJ) [10], Tabu Search (TS) [11], GRASP with Path Relinking (GRASP-PR)
[16] and Genetic Algorithm with Hill Climbing (GA-HC) [12].
Table 3 shows for each algorithm the average bandwidth over each instance

set along with the average CPU time in seconds and the average deviation from
the best solutions found by applying all the heuristics to the same instance. It is
important to remark that the CPU times for the algorithms GPS, TS, GRASP-
PR and GA-HC are taken from [12] where a Pentium 4@1.6 GHz. was used for
the experiments. Note that SA-DJ has a cooling schedule that is very slow. Our



SA-δ uses a set of parameters, presented in Section 5, that speeds up the cooling
and allows to reach better configurations.
We can observe from Table 3 that the performance of the classic GPS al-

gorithm, though very fast, gives inferior results in comparison with the other
heuristics. In particular, it has an average deviation several orders of magnitude
larger than those obtained with SA-δ. For the subset of small instances the aver-
age deviation from the best known values for SA-δ is 0.45%, while GRASP-PR
(the second best heuristic) obtains a 2.47%. For the large instances it is impor-
tant to note the remarkable improvement in the average bandwidth obtained
with our algorithm (i.e., 94.80 for SA-δ versus 97.05 for GA-HC). In summary,
the best solution quality, for the both experiments, is obtained by SA-δ. It was
able to match 101 out of the 113 best known solutions, which outperforms the
GA-HC (the best heuristic here) that was only able to find 48 of the best solu-
tions.

Table 3. Performance comparison according to problem size.

33 instances with n = 30, ..., 199
GPS SA-DJ TS GRASP-PR GA-HC SA-δ

Average β 31.42 29.36 23.33 22.52 22.67 22.03
Deviation 35.49% 56.50% 9.63% 2.47% 5.66% 0.45%
CPU sec. 0.003 1434.97 2.36 4.21 2.54 11.18

80 instances with n = 200, ..., 1000
GPS SA-DJ TS GRASP-PR GA-HC SA-δ

Average β 156.38 164.59 100.78 99.43 97.05 94.80
Deviation 46.96% 222.32% 11.77% 6.59% 6.22% 1.14%
CPU sec. 0.11 1800.00 121.66 323.19 85.22 199.25

7 Conclusions

In this paper, we have introduced the δ evaluation function for the BMPG. It has
two important features: a) It considers all the edges of the graph and b) It pro-
duces more equivalence classes with lower cardinality. δ orients better the search
process with a smoother landscape and permits to find configurations where all
the absolute differences between labels of adjacent vertices are minimized.
To validate the practical usefulness of δ, two versions of a basic SA (SA-

δ and SA-β) was implemented. They were compared using a set of randomly
generated structured graphs and the results showed that for many classes of
graphs an average improvement of 42% can be achieved when δ is used.
On the other hand, the goodness of the SA-δ algorithm was also validated

using a set of benchmarks from the Harwell-Boeing Sparse Matrix Collection.
Our approach was able to match 101 out of the 113 best known solutions, and
outperforms thus other state-of-the-art heuristics.



Finally, let us notice that the δ evaluation function proposed in this paper can
be used by other metaheuristic algorithms (Genetic Algorithms, Tabu Search,
Scatter Search) to boost their performance.
More generally, we think that the research of new evaluation functions for

combinatorial problems is a very important topic, because it permits to improve
the search power of metaheuristics.
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