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Abstract. We are interested in improving the quality of frequency assignment 
via a more accurate modeling of the traffic over the network. For this purpose, 
we propose here an original model for FAP, which takes into account both 
spatial and temporal variation of the traffic. The proposed model is assessed 
with a hybrid genetic algorithm and compared against a classical model. 
Experimental results on both artificial and real data show significant 
improvements of the quality of frequency plan in terms of traffic capacity and 
robustness of the network. 

1 Introduction 

In radio mobile networks, the communication is ensured by a radio link. The mobile 
network operators dispose of a very limited number of frequencies to cover all the 
network area (limited to 62 frequencies in France). For this reason, the frequency 
reuse [12] is indispensable to increase the capacity of a network. 

A GSM network is composed of a set of sites, each supporting one to three stations 
[11]. Each station covers an area called cell representing all the points served by this 
station. According to the quantity of the communications, i.e. the traffic, which may 
occur in the cell, each station requires a fixed number of frequencies. The frequency 
assignment problem (FAP) consists in finding an assignment of the available 
frequency spectrum to the stations of the network, which maximizes the traffic 
capacity and minimizes interference. Interference is caused by the presence of 
overlapping areas between cells where several signals of good quality are received. In 
these areas, traffic satisfaction is highly conditioned by used frequencies. Therefore, 
traffic modeling constitutes one key aspect of the FAP.  

The first works on the FAP are based on a reusing matrix [5, 6, 8, 10] indicating 
channel separation required between frequencies to completely eliminate the 
interference. In such a model, interference surface and concerned traffic are ignored. 
More realistic models were recently proposed, which are based on the quantification 
of interference risks [3, 4, 9]. This quantification is made on the basis of traffic 
statistics. More precisely, on each station, traffic intensity recorded at the second busy 
hour of day (2BH) is considered as traffic reference in interference modeling. We will 
call this modeling "classical modeling" or "2BH modeling".  

In this paper, we discuss about disadvantages of 2BH dimensioning and we 
propose a dynamic traffic modeling for FAP, which takes into account spatial and 
temporal variation of traffic, in order to improve the traffic capacity modeling and 
robustness of the network. The dynamic traffic model is tested on both artificial and 



realistic data, and compared with the classical modeling. To perform those tests a new 
heuristic based on a hybridization of genetic algorithms and tabu search is elaborated. 
Experimental results show significant improvements of frequency plan quality both in 
terms of robustness and traffic capacity. 

2 Traffic modeling in frequency assignment problem 

2.1 Traffic engineering 

Traffic evolution can be observed in both spatial and temporal scale [1, 2]. Spatial 
variation of traffic refers to client mobility and concentration. Time variation of traffic 
is due to behavioral aspects of clients. Hence, traffic evolution analysis can be carried 
out either by observing time variation of the traffic over each cell, or by observing the 
traffic distribution over the network at each time point. Fig 1 shows time variation of 
traffic over two cells where the traffic (expressed in Erlang) is indicated for each 
hour. Note that the second busy hour is not the same for the two cells. 

 
Fig. 1. Time variation of traffic over two cells 

2.2 Classical traffic modeling for frequency assignment 

A GSM network is composed of a set of sites, each supporting one to three stations 
[11, 12]. Each station delimits an area called cell representing all the points served by 
this station. For each station Si ∈ {S1, …, SN}, we know the number of frequencies 
required, MAi. Frequency assignment to stations is submitted to constraints of 
different nature and priority. Those constraints are divided into three classes: 
- Co-station constraint (call it C1 hereafter): frequencies assigned to the same 

station must be spaced by at least 3 channels. 
- Co-site constraint (call it C2 hereafter): frequencies assigned to stations located on 

the same site must be spaced by at least 2 channels. 
- Inter-site constraint: frequencies assigned to stations belonging to different sites 

are spaced according to their mutual interference. 
The satisfaction of co-station and co-site constraints is indispensable for a 

frequency plan to be applicable, while satisfying inter-site constraints is generally 

Second busy hour Second busy hour 



impossible. The objective of FAP is then to minimize the potential interference 
generated by the violation of inter-site constraints. 

Inter-site constraints may be modeled by an undirected graph (call it interference 
graph hereafter) whose nodes correspond to stations and edges represent interference 
risks. Each edge, connecting two stations Si and Sj, is weighted by a pair of values 
(βi,j,0, βi,j,1). Where βi,j,d measures the importance of interference between Si and Sj, 
generated by a pair of frequencies spaced by d channels (interference is considered 
negligible if d>1). 

The impact of traffic on interference is twofold. As jamming station, traffic 
intensity describes the rate of use of frequencies assigned to the station and hence 
impacts on the quantity of the generated interference. As interfered station, traffic 
intensity reflects the importance of the area covered by the station and consequently 
the interest of interference reduction on this area. Therefore, we can roughly consider 
βi,j,d as a returned value of a function, I, having as arguments the traffic intensity on 
the two stations and considered inter-channel distance as described by equation (1) 

, , ( , , , , )i j d i jI i j t t dβ =  (1) 

where ti and tj correspond to traffic intensity on stations Si and Sj.  
In classical traffic modeling, βi,j,d values are calculated on the basis of traffic data 

recorded at the second busy hour (2BH) of the day over each cell. Let  2BH
it  be the 

traffic intensity at the second busy hour over the station Si. The weights of the 
interference graph are then calculated using the following expression. 
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i j d i jI i j t t dβ =  (2) 

2BH dimensioning suffers from two disadvantages. Firstly, traffic repartition 
2 2
1( ,..., )BH BH

Nt t corresponds neither to real traffic cartography nor to a good 
aggregation of traffic evolution. In others words, 2BH dimensioning causes an 
alteration in preferential order between interference weights (βi,j,d) and hence an 
inaccuracy in traffic capacity measurement. Secondly, 2BH dimensioning ignores 
time variation of traffic, which is indispensable for elaborating robustness criteria. 

3 Dynamic traffic modeling for frequency assignment problem 

In order to overcome the difficulties encountered with the classical 2BH modeling, we 
introduce here the notion of dynamic traffic modeling for FAP. To that end, we 
dispose of data on traffic evolution during np periods. Let h

it be the traffic intensity 

on station Si at period h and let , ,
h
i j dβ be the weights of the interference graph 

calculated from traffic data at period h. FAP is then defined by np constraint graphs, 
one per period, such as: 

, , ( , , , , )h h h
i j d i jI i j t t dβ =  (3) 



According to those graphs, the quality of a frequency plan will be measured at both 
a global and local level. The global quality of the frequency plan refers to the sum 
over times of interference recorded on the network. The local quality measures the 
performance stability of the frequency plan over the time period where the quality is 
the lowest. Two criteria are to be retained then: Total interference, and frequency plan 
robustness. These criteria can be stated more formally as follows. 

• Total interference, or global quality of the frequency plan. 
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where fi,k represents the kth frequency assigned to station Si. 
• Temporal interference distribution or robustness of the frequency plan through a 

time period. It aims to minimize the worst performance of the frequency plan 
over the time.  
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According to this dynamic model, the objective of the frequency assignment 
problem is to find fi,k values which satisfy co-station and co-site constraints and 
minimize F1 and F2.  

We turn now to the presentation of a hybrid algorithm for finding frequency plans. 
This hybrid algorithm combines genetic search and a tabu algorithm and uses the 
above quality functions (F1 and F2) as part of its evaluation function. 

4 A genetic tabu search algorithm for FAP 

The following notations will be used in the presentation: nf the number of available 
frequencies, C1 and C2 two binary functions representing the co-station and co-site 
constraints: 
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4.1 Individual representation and fitness evaluation 

A frequency plan is coded by a vector <
1,1f ,…, 

11,MAf ,
2,1f , …,

22,MAf , … ,
,1Nf , 

…, , NN MAf >, representing frequencies assigned to each station. The search space of a 

problem corresponds therefore to all such configurations where fi,k ∈[1..nf]. 
Constraints C1 and C2 are handled using a penalty-based approach. They, together 

with the criteria F1 and F2, are linearly combined in a single evaluation (fitness) 
function. To stress their importance relative to the quality criteria, co-station and co-
site constraints are weighted by a large value ω. 
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4.2 Selection and replacement operators 

At each iteration, two frequency plans are selected from current population. To favor 
the selection of good solutions, the population individuals are ordered according to 
their fitness so that the best solution has the rank 0. Let ri be the rank of the individual 
i, the selection probability of i is then calculated following the expression 9. 
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After reproduction, new individuals are directly inserted in the population in place 
of other solutions. Replacement operator favors the elimination of bad frequency 
plans. Equation 10 represents the replacement probability of the individual i.  
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Let us notice that the best frequency plan is never replaced.  

4.3 Crossover and mutation 

The so-called geographic crossover described in [13] is used to generate new 
frequency plans. This specific crossover operator for the frequency assignment 
problem works as follow. Given two frequency plans, the first step of the crossover 
consists in taking randomly a reference station Si. Let V(Si) be the set of co-site 
stations and interfering stations of Si (Sj interferes with Si if βi,j,d ≠ 0). Then the 
frequencies corresponding to stations Si∪V(Si) are exchanged between the two parents 
generating two new frequency plans (fig 2). 



 

Fig. 2. Crossover operator 

For mutation, we use a local search operator based on Tabu search (TS). This 
operator is basically inspired by the Tabu algorithm described in [7]. The main 
difference remains at the level of assessing the fitness of frequency assignments.  

For a given assignment, a violation score is defined for each frequency of the plan. 
This score measures the contribution of this frequency to the recorded interference. At 
each iteration of the TS algorithm, one gene is selected according to its violation score 
and a new frequency value is affected to it. The pair (gene, old-frequency-value) is 
then added to the tabu list. Equation 11 and 12 describe respectively the way of 
calculating the violation scores and gene selection probability of the kth frequency 
assigned to station Si. 
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5. Experimentation and results 

This section is dedicated to the presentation of experimental results of the proposed 
dynamic model using the hybrid genetic tabu algorithm. Tests are carried out on both 
fictive and real problems. The results of dynamic traffic model are compared with the 
classical model based on 2BH dimensioning. The hybrid algorithm uses respectively 
Equation 8 (dynamic modeling) and Equation 13 (2BH modeling) as its fitness 
function.  
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5.1 Fictive FAP instances 

The two fictive FAP instances used in our experimentation represent 63 stations 
extracted from a real network B. The word "fictive" refers only to the data of traffic 
evolution. The two instances have the following characteristics: 225 frequencies to 
assign, traffic data over 6 periods and around 1100 inter-site constraints.  

Each instance presents a different class of traffic evolution that allows us to study 
the performance of dynamic traffic modeling on different traffic evolution scenarios. 
The first network, B_63_1, presents synchronous and proportional rises and falls of 
traffic on the entire network. The second instance, B_63_2, stresses the mobility 
aspect of clients and presents two distinct areas. The rise of traffic on one area is 
accompanied by a fall of traffic intensity on the other. Table 1 and 2 summarize the 
traffic evolution for the two instances. 

Table 1. Traffic evolution for B_63_1 instance 

Periods Traffic situation 

Period 0 Traffic load on each station Si corresponds to 20% of 
2BH
it  

Period 1 Traffic load on each station Si corresponds to 50% of 
2BH
it  

Period 2 Traffic load on each station Si corresponds to 
2BH
it  

Period 3 Traffic load on each station Si corresponds to 110% of 
2BH
it  

Period 4 Traffic load on each station Si corresponds to 60% of 
2BH
it  

Period 5 Traffic load on each station Si corresponds to 20% of 
2BH
it  

Table 2. Traffic evolution for B_63_2 instance 

Periods Traffic situation 

Period 0 In 1st part, traffic load on Si corresponds to 110% of 
2BH
it  and to 20% on the 2nd part 

Period 1 In 1st part, traffic load on Si corresponds to 100% of 
2BH
it  and to 30% on the 2nd part 

Period 2 In 1st part, traffic load on Si corresponds to 70% of 
2BH
it  and to 50% on the 2nd part 



Period 3 In 1st part, traffic load on Si corresponds to 50% of 
2BH
it  and to 70% on the 2nd part 

Period 4 In 1st part, traffic load on Si corresponds to 30% of 
2BH
it  and to 100% on the 2nd part 

Period 5 In 1st part, traffic load on Si corresponds to 20% of 
2BH
it  and to 110% on the 2nd part 

5.2 Real FAP instance 

The proposed traffic model is also tested on a real traffic evolution data (Network D). 
This network is characterized by: 639 stations, 1411 frequencies to assign, around 
30000 inter-site constraints and traffic data over 13 hours (7:00-20:00).   

5.3 Performance criteria 

Comparison between dynamic traffic modeling and classical modeling for FAP is 
made on the basis of lost traffic, measured in Erlang. One Erlang corresponds to one 
hour of communication. We use quality evaluator of PARCELL�1 to measure the lost 
traffic produced by a given frequency plan. More precisely, given the stations 
parameters, geographical database, traffic data and a frequency plan, the quality 
evaluator calculates the lost traffic quantity on each station. Loss in traffic is 
measured in term of FER (Frame Erasure Rate). The communication is considered 
bad if this rate exceeds a given threshold. According to required radio quality, we 
distinguish 3 kinds of thresholds: 2%, 4% and 7%.   

5.4 Experimental results 

Tables 3-6 below show experimental results of classical and dynamic traffic modeling 
on the three FAP instances described above. For each instance, we generate two 
frequency plans. The first is built on the basis of classical traffic modeling (Equation 
13). The second is built on the basis of our dynamic traffic modeling (Equation 8). 
The performance of each frequency plan, in term of lost traffic, is estimated for each 
period. We present also at the lower part of the tables, the total lost traffic (global 
quality criteria), maximal lost traffic on the given time period (robustness criteria) and 
the gain in Erlang between the two models. Information is given for each of the three 
quality thresholds (2%, 4% and 7%). 

Tests were made using the same parameters of the hybrid algorithm: 100000 
iterations for a population of 10 solutions.  

From those three tables, we notice that the dynamic model gives better frequency 
plans both in terms of global traffic capacity and robustness. Important gains are 
observed for different traffic evolution scenarios.  
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Table 3. Results of classical and dynamic traffic modeling for B_63_1 

 Lost traffic at 2% 
FER (Erl) 

Lost traffic at 4% 
FER (Erl)  

Lost traffic at 7% 
FER (Erl) 

Periods Traffic Classical Dynamic Classical Dynamic Classical Dynamic 
Period 0 116.85 1,43 1,36 0,71 0,67 0,39 0,35 
Period 1 292.13 5,14 4,46 2,57 2,32 1,36 1,25 
Period 2 584.27 17,63 15,36 9,02 8,27 4,87 4,37 
Period 3 642.70 20,87 18,43 11,29 9,98 5,84 5,24 
Period 4 350.56 6,96 6,16 3,54 3,11 1,81 1,87 
Period 5 116.85 1,43 1,36 0,71 0,67 0,39 0,35 

Total 53,46 47,13 27,84 25,02 14,66 13,43 
Communication gain 6.33 2.82 1.23 

Maximum 20,87 18,43 11,29 9,98 5,84 5,24 

Table 4. Results of classical and dynamic traffic modeling for B_63_2 

 Lost traffic at 2% 
FER (Erl) 

Lost traffic at 4% 
FER (Erl)  

Lost traffic at 7% 
FER (Erl) 

Periods Traffic Classical Dynamic Classical Dynamic Classical  Dynamic 
Period 0 329.29 7,69 7,56 4,16 4,4 2,33 2,32 
Period 1 340.51 7,63 7,36 4,04 4,25 2,21 2,26 
Period 2 339.27 7,03 6,35 3,47 3,45 1,86 1,84 
Period 3 361.64 7,50 6,13 3,50 3,24 1,82 1,80 
Period 4 418.86 9,39 7,76 4,65 4,13 2,43 2,35 
Period 5 430.06 9,99 8,4 5,34 4,21 2,80 2,40 

Total 49,23 43,56 25,16 23,68 13,45 12,97 
Communication gain 5.67 1.48 0.48 

Maximum 9,99 7,76 5,34 4,25 2,80 2,54 

Table 5. Results of classical and dynamic traffic modeling for D_639_1 

 Lost traffic at 2% 
FER (Erl) 

Lost traffic at 4% 
FER (Erl)  

Lost traffic at 7% 
FER (Erl) 

Period Traffic Classical  Dynamic Classical Dynamic Classical  Dynamic 
7:00–8:00 504.11 7.41 6.38 4.42 3.92 2.46 2.21 
8:00-9:00 1170.02 21.50 19.62 12.98 11.53 7.26 6.43 

9:00-10:00 1747.71 37.90 34.79 22.98 20.63 13.22 11.72 
10:00-11:00 2017.26 45.09 41.61 26.94 24.12 15.40 13.29 
11:00-12:00 2177.03 50.58 45.82 29.96 26.23 17.08 14.48 
12:00-13:00 2104.73 46.58 43.50 27.95 25.17 16.54 13.49 
13:00-14:00 1863.42 38.66 37.06 23.60 21.14 13.92 11.57 
14:00-15:00 1953.59 43.01 38.42 25.82 22.02 15.25 12.10 
15:00-16:00 1984.12 45.44 40.66 27.48 23.37 16.03 12.70 
16:00-17:00 2174.47 51.24 47.03 30.90 27.25 18.31 14.99 
17:00-18:00 2521.20 60.53 57.10 36.20 33.19 20.97 18.08 
18:00-19:00 2792.91 69.73 67.55 42.00 39.17 24.24 21.12 
19:00-20:00 2743.83 61.65 61.00 36.88 34.77 21.35 18.88 

Total  579.32 540.54 348.10 312.51 202.03 171.06 
Communication gain 38.78 35.59 30.97 

Maximum 69.73 67.55 42.00 39.17 24.24 21.12 
 
Table 6 shows the fitness of the two frequency plans analyzed in table 5. We notice 

that even if classical modeling solution is better according to F2BH it stills worst than 
dynamic modeling solution according to F1 and F2. This result confirms that classical 



traffic modeling doesn't allow the production of well-adapted frequency plan for 
traffic in evolution. 

Table 6. Fitness of the two frequency plans generated for D_639_1 

Classical solution Dynamic solution 
F1: 970932,916 
F2: 115887,751 
FH2C: 128749,617 

F1: 936139,360 
F2: 115588,483 
FH2C: 130377,944 

6. Conclusion and future works 

We have proposed in this paper a finer and more accurate traffic model for the 
frequency assignment problem of mobile radio networks. Both spatial and temporal 
aspects of traffic are taken into account, leading to improvements of the traffic 
capacity and robustness of the frequency plan. We have also presented a hybrid 
genetic tabu search algorithm for finding frequency plans. Comparisons between the 
proposed dynamic traffic model and classical 2BH-based traffic model showed 
significant improvements of the quality of frequency plans both in terms of global 
traffic capacity and network robustness.  

New criteria of robustness are to be studied in the future especially with regard to 
spatial distribution of interference. The model might also be enriched to give more 
importance to certain periods (e.g. to favor professional communications).  
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