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Abstract. This paper presents an analysis of the configuration space
of a well-known combinatorial search problem called MAX-CSP. The
analysis is based on a measure called ” density of states (d.o.s)”. We show
experimentally that the configurations of a random MAX-CSP instance
follow a normal distribution. This distribution allows us to get some
insights about the behavior of a random walk search.

1 Introduction

The notion of landscape has been widely used to study the behavior of heuristic
search algorithms such as genetic algorithms and local search. Landscape mea-
sures like autocorrelation indicate when a landscape is easy or difficult to search.
Similarly, studies of local optima contribute to explaining why a landscape is dif-
ficult.

Recently, a new measure has been proposed aiming to study the configura-
tion space of search problems [1,10]. This measure, called the density of states
(d.o.s.), gives complementary and valuable information to predict or explain the
dynamics of heuristic search methods. The d.o.s. simply counts the number of
configurations per cost value in the configuration space. The counting may be
carried out in different ways - analytically on some problems [7, 8], by enumera-
tion on small instances [4] or by approximation on large instances [1, 3].

This paper undertakes the study of the configuration space of the Maxi-
mal Constraint Satisfaction Problem (MAX-CSP), a well-known combinatorial
search problem widely studied by people working in artificial intelligence. The
MAX-CSP is a general model allowing the formulation of numerous problems
such as the MAX-SAT and the k-Coloring problem as well as many real-world
applications such as scheduling and planning.

Using the d.o.s., we show that the density of states of random MAX-CSP
instances follows a normal distribution characterized by a mean and a variance.
This result allows us to obtain some intriguing insights into Random Walk (RW)
dynamic. Indeed, previous experiments with RW have shown that the search
invariably stagnates within zones having cost values which differ little, indepen-
dent of the start point of the search. The normal distribution of the configuration
space allows us to explain this RW phenomenon.



This article is organized as follows: After a brief recall of the Maximal Con-
straint Satisfaction Problem in Section 2, Section 3 presents some experiments
with the Random Walk method. Section 4 deals with the principles of the mea-
sure of density of states. Section 5 establishes the relation between Random Walk
and density of states with the help of intensive experiments. Section 6 concludes
and suggests some perspectives.

2 Maximal Constraint Satisfaction Problem (MAX-CSP)

2.1 Definition

The MAX-CSP can be defined by means of the notion of constraint networks.
A constraint network is a triplet < V, D, C > where:

— V ={V1...V,,} is a finite set of variables;

— D ={D;...D,,} is a finite set of value domains associated with the variables;

— C = {C;...C,} is a finite set of constraints, each constraint being a subset
of the Cartesian product of the domains of several variables, specifying the
forbidden value tuples.

Given a constraint network < V, D,C >, the problem of maximal constraint
satisfaction consists in finding a value in D; for each variable V; such that the
number of satisfied constraints is maximal [11]. In practice, instead of maximiz-
ing the number of satisfied constraints, one minimizes the number of unsatisfied
constraints - which is rigorously equivalent. Subsequently, we adopt this mini-
mization version of the problem. The objective function is noted f.

2.2 Instance generation

The test instances that are used in this work correspond to random, binary
constraint networks (each constraint concerns only two variables) generated ac-
cording to a standard model. A network class is defined by < n,d, p1,ps > which
has n variables, d values per variable, p;.n.(n — 1)/2 constraints taken randomly
from n.(n — 1)/2 possible ones (p; is called the density), and ps.d? forbidden
pairs of values taken randomly from d? possible ones for each constraint (ps is
called the tightness). For each given class < n,d, p1, p2 >, different instances can
be generated using different random seeds s. A constraint network can be under-
constrained or over-constrained [6]. These different regions are characterized by
a factor called constrainedness: & = "31p; logy(1=;-) k = 1 separates under- (x
< 1) from over- (k > 1) constrained networks. Networks with x &~ 1 correspond
to critically-constrained ones.

3 Experiments with the Random Walk

In this section, we carry out some experiments with Random Walk. We are
especially interested in simple questions such as: Does RW follow any direction
during its search? Where does a RW search go when it begins with very different
starting points? Where does the search stop?



3.1 Random Walk

The Random Walk (RW) is a simple yet important search process for studying
search spaces. RW is particularly relevant for an important class of optimization
methods based on local search. RW is defined by a an iterative process. It begins
with an initial point s in the configuration space S and then moves repeatedly
from the current s to a randomly chosen neighboring one s’ € S according to
a neighborhood relation N. The experiments described below are based on this
simple RW.

3.2 Experiments

The experiments aim to demonstrate the relevance of density of states to the
dynamic of local search heuristics. Density of states carries new information
which is not covered by measures based on correlation measure or local optima
density. The experiments are carried out as follows. We take a random MAX-
CSP instance I=(5, f). We run a Random Walk search on the instance I search
space from three different kind of configurations:

— RW-I: from a random configuration,
— RW-II: from a random optimal or near-optimal configuration,
— RW-III: from a random very bad configuration.
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Fig. 1. Cost evolution for RW-I (RW from a random starting configuration)

The instance used here has a known optimal cost of f* = 0. Fig. 1 and Fig. 2
summarize the evolution of cost values obtained with RW-I, RW-II and RW-III.
RW-I starts its evolution most probably around f = 190. All generated cost
values oscillate around the cost area [150,210]. RW-II leaves the optimal cost
area around f = 0 and goes toward the cost area [150,210]. RW-III leaves the
bad cost values f & 438 and moves toward the cost area [150,210].

These experiments are intriguing because they demonstrate RW follows a
particular direction independently of its starting configuration. Indeed all these
search processes stagnate around the same cost area. It seems that RW is strongly
attracted by the configurations of this cost area. It is therefore interesting to
consider the configurations according to their cost values.



Fig. 2. Cost evolution for RW-II (left, from

(right, from a very bad configuration)

3.3 Cost Density of Random Walk
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Now we re-run the above RW search and count the number of times a cost is
encountered. This leads to a distribution that can be called cost density (Fig-
ure 3). Figure 3 displays clearly a normal distribution. Consequently it appears
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Fig. 3. Cost density of Random Walk

that RW-II and RW-III leave their initial cost areas (low and high) to coincide
with this distribution. The remark holds also true for RW-1. Two factors may be
responsible for this distribution: 1) the neighborhood relation and 2) the number
of configurations per cost (density of states). In what follows, we present a gen-
eral approximation method for finding density of states and show tight relations
between density of states and the dynamic of Random Walk.

4 Density of Cost States

For a given configuration space (5, f) associated with a combinatorial problem,
the density of states (d.o.s) gives the number of configurations per cost value.



Asselmeyer et al. [1,10] have proposed a statistical method to approximate d.o.s
that emits no hypothesis on the configuration space studied. The main purpose
of the d.o.s. is to establish a classification of problem difficulty based on the
mean and the variance of the density of states.

4.1 Method for Approximating Density of States

The approximation technique for d.o.s draws an analogy between energy particles
F in thermodynamics and configurations s of cost f(s) of the space S. The
method bases itself on the following law:

Poy(F) ~ N(F)e™ /T (1)

- which links the number N(F) of particles of energy F to the frequency of
their appearance P, in a sampling process using the Metropolis method at tem-
perature T' (Metropolis method was introduced in 1953 by N. Metropolis et al.
[9]. This process moves from configuration s to configuration s’ with probabil-
ity p= e~ 2f/T if Af = f(s') — f(s) > 0 and probability p=1 otherwise. The
approximation proceeds via the following stages:

1. Run the Metropolis sampling process at temperature 7. On the sample of
size N and for each energy state F', count the number N (F') of configurations
having value F, approximate the density P, (F') by the frequency distribution
N(F)

N

2. Adjust the density P.,(F) to the scale by applying a multiplier coefficient
of e¥/T as follows:

w(F) = Peg(F)e"/T (2)

3. Normalize to obtain an approximation of the state density

w(F)
F=c
> w(F)
F=0

where N is the total number of configurations, and ¢ the number of values
that F' can take.

4. Execute the above simulation at different temperatures in order to scan the
whole range of possible states.

W(F)=N 3)

5 Experiments

We carry out our experimental tests on random, binary MAX-CSP landscapes.
The first goal is to confirm the behavior (see section 3) of Random Walk for
different initializations. The second goal is to explain this behavior using d.o.s.



5.1 Random Walk Behavior and Cost Density

Table 1 presents 7 classes of instances used in our experiments. Each class in-
cludes ten different instances. The constrainedness is given by &, f* is the best
known or optimal cost. On each class, we run Random Walk with three different
starting configurations: (I) a random configuration, (IT) an optimal configuration,
(TIIT) a very bad configuration (see section 3.2). fyegin (repect. fenq) indicates the
initial (respect. final) cost value. The neighborhood relation involved is Ny; two
configurations are neighbors if they differ by only one variable value.

Now if we consider the case of < 100.10.15%.25% >, all initializations con-
verge to the cost area [130,240]. The same phenomenon occurs for the other
classes of instances with different final cost intervals fe,q4. Fig. 4 shows the RW
cost density of instance classes (a) to (g). It appears that the final cost intervals
for each class of instances correspond to the most probable costs. This explains
why RW is attracted by these cost values. It remains to explain why this den-

Classes k |f I I 111

fbegin fend fbegin fend fbegin fend
@)100.10.15%.25%0.93| 0 |~ 204([130, 240]| = 2 |[130, 240]| =~ 438 ([130, 240
0)100.15.20%.30% |1.22|18|~ 293|[240, 360]| ~ 25 |[240, 360]| ~ 621 |[240, 360
¢)100.10.20%.25% |1.24|19|~ 259([180, 320]| ~ 21 |[180, 320]| ~ 540 |[180, 320
d)100.15.10%.45% |1.64|11|~ 234|[170, 270]| ~ 16 |[170, 270]| =~ 448 |[170, 270
(¢)200.20.25%.04% |0.34] 0 |~ 194[[140, 260]| ~ 0 |[140, 260]| ~ 778 |[140, 260
(£)200.20.05%.20%|0.37| 0 |~ 218|[150, 260]| ~ 0 |[150, 260]| ~ 669 |[150, 260
(g)200.20.18%.14%|0.9 0 |~ 518([420, 580]| ~ 2 ([420, 580]|~ 1261|[420, 580

]~~~

Table 1. Classes of different size for confirming the behavior of Random Walk

sity occurs for costs generated by Random Walk and why the random initial cost
values are never very far from each other. The reason for these two phenomena,
lies, in large part, in the density of states (d.o.s.).

Fig. 4. Cost density of Random Walk for classes (a) to (g)



5.2 Approximation of Density of States

In what follows, we propose to approximate the d.o.s of the class of instances
< 100.10.15%.25% > using the method described in section 4.1. The density
of states will help us to understand the cost density of Random Walk and the
random initial cost values.

Tuning of parameters Applying the Metropolis algorithm to approximate a
frequency distribution requires fixing the following parameters: the size of the
sample, the neighborhood and the temperature. For a given instance, the best
values of these parameters are usually determined empirically.

1. size of sample: This parameter is very important for the validity of an ap-
proximation. In the absence of analytical formulae giving a minimum value,
trials are conducted on successively larger sizes with a view to stabilizing
the approximation. It can happen though that this doesn’t bring a solution
- notably when the minimum size is too large. For our experiments, we start
typically with a size of 1,000 and end at 500,000. Beyond 500,000, the curves
of frequency distribution are no longer sensitive to increase in sample size.

2. neighborhood: Two configurations are neighboring if they differ by the value
of a single variable.

3. temperature: Compared with the sample size, temperature plays an even
more critical role. It is this parameter that allows the search to reach zones
of low cost!. In our experiments, we conduct trials at successively lower
temperatures with a view to the greatest coverage of low cost zones. We
typically use temperatures between T' = 35 and T' = 0.5. For values below
0.5 or above 35, the frequency distributions furnish no further information to
the d.o.s.. For T' > 35 the distributions differ little from that of 7' = 35 while
below T' = 0.5, multiplication by the scale factor obliterates the results.

Results We show now detailed results obtained on the class < 100.10.15%.25% >
(This class has a known optimum (f* = 0) [5]). Fig. 5 presents the configuration
distribution for this class: on the x-axis, the set of costs - going from 70 to 240
with a step of 20; on the y-axis, the estimated number of configurations for each
cost. In Fig. 5, one notices that the configuration distribution approaches a nor-
mal law. Of the 10190 configurations in the space, the majority, or = 3,5 x 10%,
seems to concentrate around the average of 185. The number of configurations
diminishes when one departs from this average. The significant information lies
in the area between 140 and 220. The extensions of the curve from 140 to 80 and
from 220 to 240 correspond to regions where approximation has yielded figures
which are almost null in relation to the other values.

At this point, one can explain why the random initial cost value for RW-I was
f = 190. In fact, the selected random cost responds to the cost distribution in the
configuration space. More precisely, it belongs to the most probable cost values of
the corresponding instance, here [130, 240]. This conclusion is confirmed by the

! Recall that we are minimizing the number of violated constraints.



Fig. 5. Density of states of the instance < 100.10.15%.25% >: on the x-axis, costs of
the objective function and on the y-axis, estimated number of configurations

class of instances (a) to (g). Indeed, all the initializations of Table 1 agree with
the d.o.s. of these instances (204 € [130,240]; 293 € [240,360]; 259 €[180,320];
234 € [170,270]; 194 € [140,260]; 218 € [150,260]; 518 € [420,580)).

5.3 Does d.o.s Explain the Cost Density of Random Walk?

After explaining the effect of d.o.s on the random initial cost, we try to establish
its relation with the cost density of Random Walk.

Similarity - Shape Observing the d.o.s (Fig. 5) and the cost density of RW
(Fig 3.), one can notice a common point: the normal shape. To show that this re-
mark is not limited to the class of instances < 100.10.15%.25% >, we undertake
one more experiment on the 7 classes of instances of Table 1. Notice that Fig. 4
shows already normal shapes for Random Walk cost density. To confirm the nor-
mality of the d.o.s. for these instances, we re-run the above described sampling
procedure and then carry out a normality test using Matlab’s ‘normplot’. This
test gives perfect linear curves for these instances, confirming thus the normal-
ity nature of the d.o.s. Let us mention that we carried out experiments on other
MAX-CSP instances and used a ”Random Selection” sampling technique which
simply takes a set of configurations in S in a random and independent manner.
All these experiments have led to the same conclusion.

At this point, we wish to mention the study presented in [12]. It shows,
using an analytical approach, the following result: taking the independence of
constraint satisfaction, the random variable nuc “number of unsatisfied con-
straints” follows a binomial law nuc ~ B(nec,p2); where nc = plw is the
number of constraints, n the number of variables, p; the density and p, the hard-
ness. We notice that this analytical result agrees perfectly with our experimental
results since it is possible to approximate a binomial by a normal under certain

conditions (conditions satisfied in this case).

Differences - Mean and Variance Now we turn to consider the differences
between density of states and RW cost density using the average and the vari-



ance. In table 2 one can find the mean and the standard deviation of the
binomial B(ne¢,p2) and the Random Selection—(data based on 10000 random
configurations). Both are considered to be approximations of the exact mean
and standard deviation of the classes (a) to (g).

We compare these approximated mean and deviation with the RW’s mean
and standard deviation (data based on 1000000 configurations generated by Ran-
dom Walk). The first neighborhood relation involved is Ny (two configurations
are neighbors if they differ by one variable value), the second is N» (two config-
urations are neighbors if they differ at a single conflicting variable). The results

Classes B(nc,pg) RandomSelection RandomWalk(N;) RandomWalk(Ny)

M G #05%Conf. 505%Conf. #05%Conf. 505%Conf. 1#05%Cont. 505%Conf.
(a)100.10.15%.25%||185.62|11.78|[185.41, 185.56]|[11.76, 11.86]|||[185.54, 185.58]|[11.76, 11.79]|[180.89, 180.93] [[12.07, 12.11
(5)100.15.20%.30% ||297.00|14.42|[204.76, 204.04]|[14.38, 14.51]|||[295.00, 295.14]|[14.02, 14.24]|[204.21, 204.26] | [14.53, 14.57
(c)100.10.20%.25% ||247.50| 15.73 | [247.42, 247.50]|[13.86, 13.74] ||| [247-62, 247.68]|[13.57, 13.61]|[246.06, 246.11]|[[13.72, 13.76
(d)100.15.10%.45% ||222.50]11.06|[222.13, 222.27]|[11.04, 11.14]|[[[222.11, 222.15]|[11.11, 11.14][[220.18, 220.22]|[11.17, 11.20
(€)200.20.25%.04% |[199.00|13.82|[198.85, 199.03]|[13.77, 13.89]||[[198.80, 198.86]|[13.86, 13.89]|[145.12, 145.18]|[14.81, 14.85
(7)200.20.05%.20%||199.00]12.62|[198.87, 199.02]|[12.57, 12.68]|||[198.98, 109.03]|[12.65, 12.69]|[156.28, 156.33]|[13.73, 13.77
(9)200.20.18%.14% ||501.48]20.77|[601.32, 501.58]|[20.61, 20.79]||[[501.39, 501.47]|[20.76, 20.82]| [498.17, 498.26] |[20.77, 20.83

Table 2. Approximation of mean and standard deviation for different neighborhood relations.

show that the mean and the standard deviation of Random Walk depend on
the mean and standard deviation of the density of states (represented by the
Binomial and Random Selection mean and standard deviation). They are also
sensitive to the neighborhood relation. Thus, the samplings involving N1 and
N> are biased and present different results comparing with the Random Selec-
tion and the Binomial law. This phenomenon has an explanation: the use of a
neighborhood relation favors the neighboring configurations and so introduces a
correlation between the generated configurations while a pure random sampling
(here Random Selection) using no neighborhood is a process without memory.
One can also notice that the bias introduced by N, is larger than the one in-
troduced by N;. Indeed we obtained smaller means values with Ny. Moreover,
the bias of Ny is not regular: it is much more significant in instances (e) (whose
mean is about 144 instead of 198 for N;) and (f) (where the mean is around
156 instead of 198 for N;) than in others.

We conclude from this experiment that the mean and the standard deviation
of the cost density of RW result from the mean and the standard deviation of the
density of states plus a bias introduced by the neighborhood relation. This bias
depends on the instance. Before presenting our future work, it is worth pointing
out that the mean and standard deviation of Random Walk can be considered
as measures for neighborhood efficiency. These measures have the particularity
(or quality) of being instance dependent.

6 Conclusions and Perspectives

In this paper, we have analyzed the MAX-CSP configuration space. We have
shown that the density of states (d.o.s) of random instances approaches a normal
law. This distribution sheds light on some interesting questions related to the
dynamic of random walks: (1) we understand now why RW is attracted by some




cost areas. In fact, these cost areas correspond to space areas that contain large
concentrations of configurations. However the mean cost of random walks and
d.o.s. are not (generally) equal. This is due to the bias that the neighborhood
relation introduces. (2) We learn that a random initial configuration will have
a cost around the mean of the d.o.s. Density of states appears thus to be the
first ingredient for understanding the behavior of search methods, the second
and third ingredients being the neighborhood relation and the stochastic local
search strategy chosen.

In our future work we want to approximate the cost densities of advanced
local search methods such as Tabu Search and Simulated Annealing and analyze
their relation with d.o.s. Also, we start to examine other problems like Graph
Coloring and SAT. Finally, let’s note that configuration analysis, like cost anal-
ysis, can contribute to understanding stochastic local search [2].
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