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Summary. A driver-vehicle scheduling problem in a limousines rental company is
studied. Given a set of trip demands to be covered, the goal is to find a driver-vehicle
schedule that covers as many as possible of the required demands while satisfying a
set of imperative constraints and optimizing several cost objectives. A formulation
of the problem is given and a solution approach using local search is developed.

1 Introduction

This paper deals with a driver and vehicle scheduling problem in a limousines
rental company. This application context induces specific operational con-
straints making the problem fairly distinct from other known crew and vehi-
cle scheduling problems. However, some neighboring problems can be found
in the literature dealing mainly with transport by bus. The most recent ap-
proaches related to this issue are based on a complete integration of drivers
and vehicles during the scheduling process (e.g., see [2], [4] and [1]).

In our case, we are given daily sets of trips, drivers and vehicles, with the
goal of scheduling resources in order to cover the maximum possible workload.
The quality of service being a crucial issue, a schedule must comply with a
set of imperative constraints, while optimizing some economic objectives.

2 Problem description

Only a subset of the constraints and objectives are presented here. We state:

• A set T of trips, each being defined by a time and a place for the departure
and the destination, a number of passengers, required driver skills, etc.

• A set D of drivers, each being characterized by a daily allowed time spread,
a set of skills, etc.

• A set V of vehicles, each being characterized among others by its capacity.
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The problem is to find a daily assignment of driver-vehicle couples to the trips
that satisfies a set C of constraints while optimizing a set O of objectives.

2.1 Constraints

We consider any trip t ∈ T , a vehicle v ∈ V and a driver d ∈ D assigned to t.
For quality requirements, a solution must satisfy the following constraints:

• v must be compatible with t, i.e. there must be enough seats in v to
accommodate all the passengers.

• d must have all the skills required by t.
• The duration between the pick-up time of the first trip and the end of the

last trip cannot be greater than the maximum spread allowed for d.
• There must be enough time between successive trips for d to move from

one trip to the next one.

2.2 Objectives

Main objective: It is primordial to meet customers’ trip demands. However,
the available resources may not be sufficient to satisfy all of them. Therefore,
the first goal is to cover as many as possible of the trip demands. From the
point of view of the rental company, it is preferable to maximize the sum of
the durations of the assigned trips since long trips are more profitable than
short ones. Notice that this objective is equivalent to minimizing the sum of
the durations of the trips to which no couple of resources is assigned. In ad-
dition, the trips starting in an imminent way must be favored.

Secondary objectives: For evident economic reasons, it is desirable to re-
duce the running costs, i.e. the number of working drivers and used vehicles.
Furthermore, it is useful to minimize the drivers’ waiting times between trips.

3 Problem formulation

3.1 Notations

Let T, D and V be the number of trips, drivers and vehicles respectively.
Given t ∈ T , d ∈ D, v ∈ V , we state:

• capa(v), the capacity of v,
• pas(t), the number of passengers for t,
• st(t), et(t), sp(t) and ep(t) are respectively the start time, the end time,

the start place and the end place of trip t,
• sd(d) and ed(d) are respectively the start time and the end time for d,
• Smax(d) is the maximum spread time allowed for d.
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We also define a set of binary relations:

• sk(d, s) ⇔ driver d owns skill s ∈ S, the set of skills,
• Sk(t, s) ⇔ trip t requires skill s,
• compat(ti, tj) ⇔ trips ti and tj can be done by the same resources,
• dh(t1, t2) is the deadhead between trips t1 and t2,
• wt(t1, t2) is the waiting time between trips t1 and t2.

We define a total order ≺ on the set of trips T by:

∀(ti, tj) ∈ T 2, ti ≺ tj ⇔

⎧⎪⎨
⎪⎩

st(ti) < st(tj)
∨
st(ti) = st(tj) ∧ i < j

The following notations are used to handle ”driver-vehicle to trip” assign-
ments:

• wd(d), (resp. vu(v)) ⇔ d (resp. v) is assigned to at least one trip,
• Seq(d) is the set of couples (t1, t2) that d ∈ D handles consecutively.

Eventually, we define compat′(ti, tj), dh′(ti, tj), wt′(ti, tj) and Seq′(d) that are
similar to compat(ti, tj), dh(ti, tj), wt(ti, tj) and Seq(d) respectively except
that they take into account a stop at the depot between trips.

3.2 Constraints

Capacity constraints The first type of constraints imposes that the vehicle
is big enough to carry all the passengers. For each t ∈ T and each v ∈ V :

CAPA(t, v) ⇔ pas(t) ≤ capa(v)

Skills constraints Some trips require special skills from the driver, for in-
stance spoken languages. For each t ∈ T , each d ∈ D and each s ∈ S:

SKILLS(t, d, s) ⇔ ¬Sk(t, s) ∨ sk(d, s)

A similar type of constraints exists with vehicles features.

Maximum spread time constraints The third type of constraints imposes
the maximum spread time for each driver. For each d ∈ D and each (ti, tj) ∈
T 2, ti = (d, .), tj = (d, .):

MAX SPREAD(ti, tj , d) ⇔ (et(tj) − st(ti)) ≤ Smax(d)

Feasible sequences constraints This type of constraints imposes that the
sequence of trips assigned to a driver is feasible, i.e. the driver has enough
time to move from the end of a trip to the start of the following one. A
possible change of vehicle, if needed, must take place at the depot. For each
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d ∈ D and each (ti, tj) ∈ T 2, ti = (d, vk), tj = (d, vl), ti ≺ tj :

FEASIBLE D(ti, tj , d) ⇔

⎧⎪⎨
⎪⎩

((vk = vl) ∧ compat(ti, tj))
∨
((vk �= vl) ∧ compat′(ti, tj))

3.3 Objectives

Main objective Minimizing the total duration of the unassigned trips:

Min
∑

t∈T ,t=(ε,.)∨t=(.,ε)

(et(t) − st(t))

where t = (ε, .) ∨ t = (., ε) means the trip t is not covered.

Secondary objectives Minimizing the number of working drivers and vehi-
cles in use:

Min
∑
d∈D

wd(d) +
∑
v∈V

vu(v)

Minimizing deadheads:

Min
∑
d∈D

⎛
⎝ ∑

(t1,t2)∈Seq(d)

dh(t1, t2) +
∑

(t1,t2)∈Seq′(d)

dh′(t1, t2)

⎞
⎠

Minimizing the total waiting time:

Min
∑
d∈D

⎛
⎝ ∑

(t1,t2)∈Seq(d)

wt(t1, t2) +
∑

(t1,t2)∈Seq′(d)

wt′(t1, t2)

⎞
⎠

3.4 Configuration and evaluation function

A configuration σ is a consistent assignment of ”driver-vehicle” couples in
I = (D ∪ {ε}) × (V ∪ {ε}) to trips in T . The search space Ω is the set of all
such assignments. A configuration is evaluated by a weighted aggregation of
the objectives, augmented by a penalty function for broken constraints [3].

∀σ ∈ Ω, eval(σ) = wbc ×
∑
c∈C

fc(σ) +
∑

i∈{1,...,O}
wi × fi(σ)

with:

• wbc > 0 the weight associated to broken constraints,
• fc the penalty for c. fc = 1 if c is broken by σ, fc = 0 otherwise,
• O the number of objectives,
• wi the associated weight for ith objective function,
• fi the value of ith objective function.
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3.5 Greedy algorithm for initial configuration

The first step is a pre-processing of the data. By examining the incompati-
bilities between drivers and vehicles, drivers and trips, and trips and drivers,
we reduce the domains of the variables. A constructive greedy heuristic com-
bined with constraint propagation techniques is then used to create an initial
configuration σ. The stop criterion is that no additional assignment can be
made without violating constraints.

3.6 Hill climbing and simulated annealing

In order to improve the initial configuration σ, both hill climbing and simu-
lated annealing are experimented, based on a 1 change neighborhood. From
the current configuration, we obtain a neighboring configuration by changing
the driver and/or the vehicle assigned to one trip.

∀σ ∈ Ω, 1 change(σ) = {(t, (d, v)) ∈ T ×I|∃ a unique t such that σ(t) �= (d, v)}

4 Experimentations and results

Computational experiments were carried out on five real instances, represent-
ing different workloads. Table 1 shows the main characteristics of the instances
and the results manually obtained in the limousines rental company for com-
parison purpose.

Our algorithms were programmed in C++, compiled with gcc 3.4.2, on a
PC running Windows XP (256Mo RAM, 2.4Ghz). The program was run 10
times on each instance with different random seeds. The stop condition used
is a maximum duration fixed to 10 minutes.

Table 1. Characteristics of the five instances and results of manual scheduling

Manual scheduling
Date trips total duration broken drivers vehicles deadheads waiting time

(hhh:mm) constraints (hh:mm) (hhh:mm)

08 05 91 133:46 27 44 52 27:01 119:04
10 05 126 238:58 48 65 70 39:32 200:32
18 05 153 453:06 47 74 74 56:30 196:20
19 05 163 504:47 48 79 77 55:26 165:35
23 05 202 457:59 79 84 81 63:53 248:07

Table 2 shows the results obtained with hill climbing and simulated anneal-
ing algorithms. The rules are slightly different between manual and computed
scheduling: in the second case, broken constraints are strictly forbidden but
unassigned trips are allowed. These are manually handled afterwards. There-
fore, a column was added in Table 2 giving the percentage of unassigned work.
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Table 2. Results using hill climbing and simulated annealing

hill climbing simulated annealing
Date Unassigned drivers vehicles deadheads waiting time Unassigned drivers vehicles deadheads waiting time

trips (%) (hh:mm) (hh:mm) work (%) (hh:mm) (hh:mm)

08 05 1.9 35 37 29:28 57:51 0.93 36 37 28:39 70:34
10 05 9.2 44 46 39:12 74:57 9.2 44 46 35:15 66:44
18 05 5.7 67 69 49:49 87:34 5.3 65 68 56:46 88:22
19 05 15 63 69 50:04 77:27 15 63 67 49:30 88:09
23 05 12 68 67 63:16 81:01 9.9 74 70 62:49 94:31

These results show a significant improvement regarding the actual prac-
tice. Without breaking any constraint, both algorithms assign most of the
work. Furthermore, the number of required resources is substantially reduced.
The total waiting time is divided by a factor of 2.36 in average. Actually, the
workload for human schedulers is so high that costs reduction is only a sec-
ondary concern. This leads to the other major contribution of this work: the
time needed to elaborate a planning is drastically decreased. Whereas people
spend nearly 4 hours on this task, our program only takes a few minutes to
get a much better quality schedule.

5 Conclusion

We tackled a practical driver and vehicle scheduling problem in an original
context. The solution approach combines a pre-processing phase using con-
straint programming techniques and an optimization phase using local search.
Results obtained on real data showed significant improvements compared with
the actual practice in terms of solution quality and computing time.
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