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Abstract This paper presents a multi-objective local

search, where the selection is realized according to the

hypervolume contribution of solutions. The HBMOLS

algorithm proposed is inspired from the IBEA algorithm,

an indicator-based multi-objective evolutionary algorithm

proposed by Zitzler and Künzli in 2004, where the opti-

mization goal is defined in terms of a binary indicator

defining the selection operator. In this paper, we use the

indicator optimization principle, and we apply it to an

iterated local search algorithm, using hypervolume contri-

bution indicator as selection mechanism. The methodology

proposed here has been defined in order to be easily

adaptable and to be as parameter-independent as possible.

We carry out a range of experiments on the multi-objective

flow shop problem and the multi-objective quadratic

assignment problem, using the hypervolume contribution

selection as well as two different binary indicators which

were initially proposed in the IBEA algorithm. Experi-

mental results indicate that the HBMOLS algorithm is

highly effective in comparison with the algorithms based

on binary indicators.

Keywords Hypervolume contribution � Multi-objective �
Local search � Flow shop problem �
Quadratic assignment problem

1 Introduction

Problems with multiple objectives arise in a natural fashion

in many areas, such as computer science, engineering,

economics, physics, chemistry, and ecology. Since most of

these problems are known to be NP-complete [10], heuristic

approaches are often proposed in order to find good com-

promise solutions. These methods are usually derived from

metaheuristics proposed in single-objective optimization,

such as Genetic Algorithms, Evolution Strategies, Simu-

lated Annealing, and Tabu Search. In order to adapt a

metaheuristic to multi-objective optimization, a major step

to consider is how we can assign a fitness value to a solution.

In single-objective optimization, a total order of the relation

can be easily used to rank the solutions. In Multi-Objective

Optimization (MOO), such a natural total order relation

does not exist. The dominance relation allows us to define a

partial order to rank the solutions in some special cases.

In multi-objective optimization, we are interested in

finding the set of Pareto solutions, which keeps the best

compromise solutions among all the objectives. Since in

most cases, it is not possible to compute the Pareto optimal

set in a reasonable time, we are interested in computing a

set of non-dominated solutions which is as close as pos-

sible to the Pareto optimal set, a non-dominated solution

being an explored solution which has never been domi-

nated by another explored solution.

Most of the solution methods for MOO can be classified

into two categories: (1) scalar approaches, i.e. the fitness

value of a solution is defined as a weighted sum of each

objective function, (2) Pareto approaches, i.e., the fitness

value of a solution is defined according to its dominance

relation with the other solutions of the population. In [26],

the authors extend the idea of flexible integration of pref-

erence information by Fonseca and Fleming, and propose a
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general Indicator-Based Evolutionary Algorithm (IBEA)

that can be combined with arbitrary indicators. In their

initial study, they show that IBEA can significantly

improve the quality of the generated Pareto set approxi-

mation with respect to the considered optimization goal.

Since this study, we can distinguish a third class of MOO

solution approaches: The indicator-based optimization.

The actual studies about indicator-based optimization

algorithms are mainly evolutionary algorithms. In this

paper, we propose a population based multi-objective local

search using the indicator-based optimization principle.

The main principle of indicator-based search consists in

using a comparison metric to assign the fitness values to the

solutions. The metrics are used to compare the outputs at

the end of the optimization process, possibly including the

decision-maker preferences. A popular metric used to

compare these fronts is the hypervolume measure (also

known as S-metric or the Lebesgue measure).

Based on the indicator proposed in [3], we define a hy-

pervolume contribution indicator to assign to each solution

a fitness value that can be used in the selection process of

multi-objective evolution algorithms. We aim to show the

interest of the use of a hypervolume indicator for the fitness

assignment in a local search context. In order to evaluate the

quality of the hypervolume-based approach, we compare

hypervolume contribution indicator with those binary

indicators. Our aim is to show the effectiveness of the hy-

pervolume search concept, and to demonstrate by experi-

ments that our proposed algorithm obtains good results and

outperforms Indicator-Based Multi-Objective Local Search

(IBMOLS) using binary indicators proposed in [26].

The paper is organized as follows. In Sect. 2, we briefly

present the indicator-based optimization principle and the

IBMOLS algorithm associated to this principle, which is

presented in a previous study [3]. In Sect. 3, we present the

hypervolume-based optimization principle, and compare hy-

pervolume contribution indicator with binary indicators. In

this section, the algorithm computing the hypervolume con-

tribution is also presented, then IBMOLS algorithm is modi-

fied into the Hypervolume-Based Multi-Objective Local

Search algorithm (HBMOLS). In Sect. 4, we present the

experimental results, which are obtained by the application of

HBMOLS to a multi-objective permutation flow shop problem

and a multi-objective quadratic assignment problem. Then, the

conclusions and perspectives are discussed in Sect. 5.

2 Multi-objective selection using hypervolume

Our research is strongly inspired from the work of Zitzler

and Künzli [26]. In this section, we first give some basic

notations and definitions related to multi-objective opti-

mization. Then, we briefly discuss about two binary

indicators which are strongly related to our study. Finally,

we present the indicator-based multi-objective local search

algorithm proposed in [3].

2.1 Multi-objective optimization

First, we recall some useful notations and definitions of multi-

objective optimization problems (MOPs), which are taken

from [26]. Let X denote the search space of the optimization

problem under consideration and Z the corresponding

objective space. Without loss of generality, we assume that

Z = <n and that all n objectives are to be minimized or

maximized. Each x 2 X is assigned exactly one objective

vector z 2 Z on the basis of a vector function f : X ! Z with

z = f(x). The mapping f defines the evaluation of a solution

x 2 X, and often one is interested in those solutions that are

Pareto optimal with respect to f. The relation x1 � x2 means

that the solution x1 is preferable to x2. Let f1; . . .; fn be the n

objective function to minimize. The dominance relation

between two solutions x1 and x2 is usually defined as follows:

Definition 1 A decision vector x1 is said to dominate

another decision vector x2 (written as x1 � x2), if

fi(x1) B fi(x2) for all i 2 f1; . . .; ng and fj(x1) \ fj(x2) for at

least one j 2 f1; . . .; ng.

Definition 2 x 2 X is said to be Pareto optimal if and only

if a solution xi 2 X which dominates x does not exist.

As we know, identifying a good approximation of the

Pareto optimal set usually depends on the decision maker

and the optimization scenario. In [26], the authors first

define the optimization goal in terms of a binary quality

indicator and then to directly use this measure in the

selection process. In fact, a binary quality indicator can be

regarded as a continuous extension of the concept of Pareto

dominance on sets of objective vectors [28].

2.2 Binary indicator

A binary indicator can be used to compare two single

solutions, or a single solution against an entire population.

With such a comparison, every solution will be given a

fitness value. In their study, Zitzler and Künzli proposed

the Indicator-Based Evolutionary Algorithm (IBEA),

which used this principle to evolve a population of solu-

tions during the search. During the selection process, the

solution with the smallest fitness value, in terms of the

quality indicator used, is deleted from the population. In

IBEA, two indicators are tested: The epsilon I� and the

hypervolume indicator IHyp, defined as follow1:

1 We assume throughout the paper that all the objective functions are

normalized.
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I�ðx1; x2Þ ¼ max
i2f1;...;ng

ðfiðx1Þ � fiðx2ÞÞ ð1Þ

I�ðx1; x2Þ (where x1 2 X and x2 2 X) represents the

minimal translation (in the objective space) on which to

execute x1 so that it dominates x2. Let us note that the

translation could take negative values.

IHypðx1; x2Þ ¼
Hðx2Þ � Hðx1Þ if x2 � x1

Hðfx1; x2gÞ � Hðx1Þ otherwise

�
ð2Þ

H(x) represents the volume of space dominated by

x, IHyp(x1, x2) represents the volume of the space that is

dominated by x2, but not by x1.

In order to compute the fitness values of solutions, dif-

ferent methods are proposed in [26]. We will use an intu-

itive and simple method to evaluate a solution x against the

whole population: The indicator values of x with respect to

the rest of the population is computed, and (P/{ x}, x)

corresponds to the minimal indicator value computed

(Eq. 3). In our experiments, we will use this formulation

for the I� and IHyp indicators.

IðP=fxg; xÞ ¼ min
z2P=fxg

Iðz; xÞ ð3Þ

2.3 Indicator-based multi-objective local search

Generally, local search methods are known to be very

efficient in many real-world applications, and especially on

large scale problems. However, define local search for

MOO is not an easy task. Yet, the use of such an algorithm

is often necessary since evolutionary algorithm conver-

gence is usually very slow. Since several years, some

researchers have proposed local search for MOO.

In [15], a multi-objective local search is based on the

dominance relation between the considered solution and an

archive of compromise solutions and is incorporated into

an evolution strategy method; this algorithm is known as

the Pareto Archived Evolution Strategy. In [1, 19], multi-

objective local searches are proposed to solve MOO flow

shop problem.

In [3], the authors propose a simple and generic indi-

cator-based multi-objective local search (IBMOLS), where

selection is realized according to binary indicators. The

outlines of the IBMOLS algorithm are described in algo-

rithm 1. The HBMOLS algorithm proposed in this paper is

greatly inspired from this study.

In order to run experiments in a fixed amount of time,

IBMOLS was iterated until the running time is reached (see

algorithm 2). According to the results obtained in [3], we

choose to initialize populations by applying noise on ran-

domly chosen PO solutions.

In [3], experimental results show that IBMOLS algo-

rithm was highly efficient in comparison with similar

approaches using classical ranking methods. However, the

best results were achieved by I� indicator which outper-

forms IHyp indicator. The main reason is that IHyp(x, P)

does not compute the hypervolume contribution of a

solution x regarding to a population P, but something

slightly different. In the next section, we will discuss this

issue, then we propose the HBMOLS algorithm, which is

similar to IBMOLS, but in HBMOLS, selection is realized

according to the hypervolume contribution of solutions.

3 Hypervolume-based multi-objective local search

This section presents the main contribution of the paper,

which is the application of hypervolume contribution as the

selection mechanism in HBMOLS. Hypervolume is the

Algorithm 1 Indicator-Based Multi-Objective Local Search (IBM-

OLS / HBMOLS)

Input: N (population size)

I (binary indicator)

Output: A: (Pareto approximation set)

Step 1 - initialization: Generate an initial population P of size N

Step 2: A Non-dominated solutions of P

Step 3 - fitness assignment: Calculate fitness values of individual x
in P

Step 4 - local search step: For all x 2 P do:

update P upper and lower bounds

repeat

1) x�  one neighbors of x

2) compute x� fitness: IðP; x�Þ / HCðP;Pnfx�gÞ
3) update z 2 P fitness value, which is the neighbor of x�

4) x worst individual in P

5) remove x from P

6) update z 2 P fitness value, which is the neighbor of x

until all neighbors are explored or x 6¼ x�

Step 5 - termination: A Non-dominated solutions of A
S

P. If A
does not change, then

return A; else perform another local search step.

Algorithm 2 Iterated IBMOLS / HBMOLS Algorithm

Input: N (population size)

I (binary indicator)

Output: PO: (Pareto approximation set)

Step 1: PO U

Step 2:

while Running time is not reached do

P Generate a new population (random noise on PO solutions)

A IBMOLS (initialized with P)

PO Non-dominated solutions of PO
S

A

end while

Step 3: Return PO
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n-dimensional space that is dominated by the points

(solutions) in a front. A front with a larger hypervolume is

likely to present a set of better trade-off to a user than a

front with a smaller hypervolume.

A few papers relating to hypervolume indicator opti-

mization are already published in the literature. In [2], the

authors propose HypE, a hypervolume estimation algo-

rithm for multi-objective optimization. A fast incremental

hypervolume algorithm IHSO is presented by Bradstreet,

While and Barone [7], which is used as part of the selection

in a multi-objective evolutionary algorithm. Besides, in [6],

the authors devise S metric selection EMOA (SMS-

EMOA), which is a multi-objective selection based on

dominated hypervolume. The experimental results indicate

that HypE, IHSO, and SMS-EMOA are highly effective for

multi-objective problems in comparison with the state-of-

the-art multi-objective evolutionary algorithms.

3.1 Hypervolume computation

Let us consider the following definition of the hypervolume

Hyp enclosed by a population P according to a reference

point Zref [9] (see Fig. 1):

HypðPÞ ¼ VOLð½Zref ; x1�
[
� � �
[
½Zref ; xn�Þ ð4Þ

with VOL(.) being the usual Lebesgue measure. The

contribution can be seen as the measure of the space that is

dominated by x, but no other point in P. With the definition

4, let us now define the hypervolume contribution HypC of

a solution x to a population P:

HypCðx;PÞ ¼ HypðPÞ � HypðPnfxgÞ:
As introduced in the previous section, IHyp used in IBEA

and IBMOLS algorithms does not compute the hypervo-

lume contribution, but something quite different, since

solutions are compared by pairs. According to the defini-

tion of hypervolume contribution, we need to evaluate the

considered solution with the whole population. The main

difference between IHyp and HypC is illustrated in Figs. 2

and 3.

The main drawback of the above definition is the fact

that if P contains some dominated solutions, their corre-

sponding hypervolume contribution will be 0 for all of

them. In order to refine this measure, we will define HC

measure, where we distinguish two cases:

HCðx;PÞ ¼ HypCðx;PÞ if x is non-dominated

�maxy2P;y�xðVOLð½y; x�ÞÞ otherwise

�

HC measure includes a new case applied when x is

dominated by at least one solution of P. In this special case,

the main difference between IHyp and HypC is illustrated in

Figs. 4 and 5.

f

x

1

f2

Z
ref

3

x 1

x 2

x 4

x 5

Hyp (P)

[Z
ref

x 1
],Vol

Fig. 1 The hypervolume Hyp(P) is the area which is enclosed by a

population P (Including the solutions xi; i 2 f1; . . .; 5g), according to

a reference point Zref; The hypervolume of the solution x1 is denoted

as [Zref, x1], which is colored in gray

f

Z

x

ref

2

f1

y

Fig. 2 IHypðP n fXg;PÞ: minimal hypervolume difference IHyp(x, y)

between x and y; y 2 P

f

x

1

f 2

Z ref

y

Fig. 3 HypC(x, P): hypervolume contribution of a solution x to a

population P
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It is well known that the computation of hypervolume

contribution, as well as the general hypervolume compu-

tation, is NP-hard, which cannot be solved exactly in time

polynomial in the number of dimensions unless P = NP

[8]. Then HC computation is also NP-hard.

3.2 Bi-objective hypervolume computation algorithm

In this section, we will focus on the hypervolume compu-

tation in the bi-objective case. The extension of HBMOLS

to multi-objective case will be discussed in the next

section.

Here, we consider the local search as described in

algorithm 1, where selection is based on HC values. The

HC selection computation in the bi-objective case consists

in (1) evaluating a fitness value (HC) of a new solution x,

and updates the fitness values of the whole population P

according to x, (2) determining and deleting the worst

solution w, (3) updating the fitness value of each solution in

P according to w. These steps are detailed bellow2:

(1) If x is dominated then

HCðx;PÞ  � max
y2P;y�x

ðVOLð½y; x�ÞÞ

Other fitness values in P do not need to be updated. If

x is non-dominated, then first update the set of

dominated solutions (solutions z0 and z1 in Fig. 6),

and compute their new negative fitness values

according to x. Then compute the fitness value for x,

using its non-dominated neighbors (solutions y0 and y1

in Fig. 6):

HCðx;PÞ  ðf1ðy1Þ � f1ðxÞÞ � ðf2ðy0Þ � f2ðxÞÞ

Finally, compute new fitness values for the neighbors

of x (y0 and y1). As illustrated in Fig. 6:

HCðy0;PÞ  HCðy0;PnfxgÞ �
f1ðxÞ � f1ðy0Þ
f1ðz0Þ � f1ðy0Þ

z0 being the non-dominated or newly dominated

solution with the smallest f1 value greater than

f1(x) (this solution can be y1). A similar equation can

be defined to compute HC(y1, P).

(2) w is selected from P with respect to:

HCðwÞ ¼ miny2PðHCðy;PÞÞ. Delete w from the

population.

(3) If w is dominated, the fitness values of the remaining

solutions do not need to be updated. If w is non-

dominated, then the fitness values of the neighbors of

w need to be updated (see Fig. 7):

f

x

1

f2

Z
ref

y

Fig. 4 IHyp(x, P) of a dominated solution x to a population P: the

dominance area IHyp(x, y) (gray box) between x and yðy � x; y 2 PÞ

f

x

1

f 2

Z
ref

y

Fig. 5 HC(x, P) of a dominated solution x to a population P:

maximum dominance area (gray box) computed between x and

yðy � x; y 2 PÞ

x

y
0

y
1

z
1

z
0

f 2

Z
ref

f 1

Fig. 6 HC fitness update: new non-dominated solution found (gray
boxes: new dominance areas to compute)

2 If a neighbor does not exist, its objective value is replaced by the

objective value of the reference point Zref.
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HCðy0;PÞ  HCðy0;PnfxgÞ �
f1ðy1Þ � f1ðy0Þ
f1ðy2Þ � f1ðy0Þ

HCðy1;PÞ  HCðy1;PnfxgÞ �
f2ðy0Þ � f2ðy1Þ
f2ðy2Þ � f2ðy1Þ

One interest of the HBMOLS algorithm is that its

complexity is linear with respect to the population size.

However, let us note that the updating process in HC

computation is described only for the bi-objective case, and

it can not easily be extended to the multi-objective case in

its present form.

3.3 Three-objective hypervolume computation

algorithm

In the three-objective case, it is more complex to compute

the hypervolume contribution directly for each solution in

the non-dominated set. As is shown in Fig. 8, areas 2 and 4

are the only two different non-dominated areas of solution

x in the bi-objective case.

However, in Fig. 9, we can see that there are six

different non-dominated areas of solution x in the three-

objective case. Therefore, HC computation in the three-

objective algorithm is a little different from that in the

bi-objective algorithm.

The HC selection computation in the three-objective

case consists in (1) evaluating the fitness value (HC) of a

new solution x which is dominated, (2) if the new solution

x is non-dominated, computing the hypervolume contri-

bution for the solution x and each solution in the non-

dominated set, (3) determining and deleting the worst

solution w. These steps are described as follows:

(1) If x is dominated then

HCðx;PÞ  �maxy2P;y�xðVOLð½y; x�ÞÞ
¼ �maxy2P;y�x j ðf1ðyÞ � f1ðxÞÞ
� ðf2ðyÞ � f2ðxÞÞ � ðf3ðyÞ � f3ðxÞÞ j

Other fitness values in P only need to be kept.

(2) If x is non-dominated, then first update the set of the

dominated solutions, and compute their new negative

fitness values according to x. Then compute the

fitness values for x and each solution in the non-

dominated set, using their non-dominated neighbors.

For example, all the neighbors of solution x are

illustrated in Fig. 10, which are denoted as

y1, y2, y3, y4, y5, y6, and y7. The point x0 in Fig. 10

is the projection of solution x on the plane C. The

relation between solution x and its neighbors is

summarized in Table 1.

f

y
0

y
1

w

1

f 2

Z
ref

Fig. 7 HC fitness update: deletion of a non-dominated solution: the

fitness values of solution y0 and y1 are computed by adding

corresponding grey area, respectively

f1

f2

x

Z ref

I

43

2

Fig. 8 The non-dominated areas in bi-objective case (areas 2 and 4)

f 1

f 3

x

Z ref

I

f 2

5

2

6

3

7

4

8

Fig. 9 The non-dominated areas in three-objective case (areas 2, 3, 4,

5, 6, and 8)
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The hypervolume contribution of solution x is com-

puted as follows:

HCðx;PÞ  ðf1ðy3Þ � f1ðxÞÞ � ðf2ðy2Þ � f2ðxÞÞ
� ðf3ðy1Þ � f3ðy2ÞÞ � � � � � � � � � ðaÞ
þ ðf1ðy4Þ � f1ðxÞÞ � ðf2ðy6Þ � f2ðxÞÞ
� ðf3ðy2Þ � f3ðxÞÞ � � � � � � � � � � � � � � � ðbÞ
þ ðf1ðy5Þ � f1ðy4ÞÞ � ðf2ðy4Þ � f2ðxÞÞ
� ðf3ðy2Þ � f3ðxÞÞ � � � � � � � � � � � � � � � ðcÞ
þ ðf1ðy7Þ � f1ðy5ÞÞ � ðf2ðy5Þ � f2ðxÞÞ
� ðf3ðy2Þ � f3ðxÞÞ � � � � � � � � � � � � � � � ðdÞ

(3) w is selected from P with respect to: HCðwÞ ¼
miny2PðHCðy;PÞÞ. Delete w from the population.

Other fitness values in P do not need to be updated

(Figs. 11 and 12).

Computing the hypervolume contribution of each solu-

tion in the non-dominated set plays an important role in the

HBMOLS algorithm. Nevertheless, it is not easy to extend

HC computation to more than three objectives.

We take the case of four objectives as example. Let

f1, f2, f3, and f4 be the four objectives to minimize, the

hypervolume contribution of each solution in the popula-

tion can be computed as follows: (1) If the solution x is

dominated, a negative value is assigned to this solution.

The value corresponds to the greatest area between a non-

dominated solution and the solution x; (2) If the solution

x is non-dominated, firstly we compute the hypervolume

contribution HC3 in the space composed by the three

objectives f2, f3, and f4. Then, we multiply the corre-

sponding value of the solution x in the objective f1 with

HC3, that is, the hypervolume contribution of the solution

x in the four objectives.

Generally, we can iteratively compute the hypervolume

contribution for each solution in N (N C 4) objectives.

However, the number of the non-dominated areas, where

the neighbor solutions could be located in, equals to 2N - 2

(N is the number of objectives). Bringmann and Friedrich

[8] have proven that the problem of computing the

f1

f 3

Z ref

f 2

x

y
1

y
4

y
5

y
3

y
2

y
6

y
7

A

B
x

0

C

Fig. 10 HC fitness computation in the three-objective case, the two

parts A and B are described in Figs. 9 and 10, respectively

f1

f3 Z ref

f 2

X

y
2

y
3

0

y
1

a

C

Fig. 11 HC fitness computation in the three-objective case: part A,

the hypervolume contribution of solution x in this part is computed by

equation a

f1

f3 Z ref

f 2

X

y
5

y
4

y
6

y
7

X
0

b

d

c

C

Fig. 12 HC fitness computation in the three-objective case: part B,

the hypervolume contribution of solution x in this part has three

components, which are computed by equation b, equation c, and

equation d, respectively

Table 1 The neighbors of solution x in Fig. 10 (solutions y4 and y5

are non-dominated)

Area and

Objective

The non-dominated neighbors of solution x

y1 y2 y3 y4 y5 y6 y7

Area 3 2 4 5 5 6 8

f1(x) [f1(y1) [f1(y2) \f1(y3) \f1(y4) \f1(y5) [f1(y6) \f1(y7)

f2(x) [f2(y1) \f2(y2) [f2(y3) \f2(y4) \f2(y5) \f2(y6) [f2(y7)

f3(x) \f3(y1) \f3(y2) \f3(y3) [f3(y4) [f3(y5) [f3(y6) [f3(y7)
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hypervolume is NP-hard. Therefore, with the number of

objectives increasing, it will usually take too much time

to compute HC and the effectiveness of the HBMOLS

algorithm will be affected.

4 Experiments

In this section, experiments with the HBMOLS and IBM-

OLS algorithms are reported. Comparison and statistical

testing are realized in order to compare the different out-

puts obtained. First, we present the problem tested: multi-

objective flow shop problem and multi-objective quadratic

assignment problem. Then, we discuss about the parameter

setting and performance analysis protocol before detailing

results.

4.1 Flow shop problem

4.1.1 A bi-objective flow shop problem

The flow shop problem (FSP) represents one category of

the numerous scheduling problems. Overviews of multi-

objective methods applied to scheduling problems are

given in [17] and [20]. The flow shop problem can be

presented as a set of N jobs J1; J2; . . .; JN to be scheduled

on M machines. Machines are critical resources, i.e., one

machine cannot be assigned to two jobs simultaneously.

Each job Ji is composed of M consecutive tasks

ti1; ti2; . . .; tiM , where tij represents the jth task of the job Ji

requiring the machine mj. To each task tij is associated a

processing time pij. Each job Ji must be achieved before the

due date dj. Then, we have to minimize two objectives [4]:

Cmax : Makespan (Total completion time),

T : Total tardiness:

The task tij is scheduled at the time sij. The two

objectives can be computed as follows [4]:

f1 ¼ Cmax ¼ MaxfsiM þ piM ji 2 ½1. . .N�g ð5Þ

f2 ¼ T ¼
XN

i¼1

½maxð0; siM þ piM � diÞ� ð6Þ

Cmax minimization has been proved to be NP-hard for

more than two machines [18] and total tardiness

minimization T has been proved to be NP-hard even with

one machine [13].

4.1.2 Multi-objective flow shop problem instances

There are no established benchmarks for the flow shop

problem with more than two objectives. For our purpose,

we use two bi-objective instances with the same dimension

to generate one three-objective or four-objective instance

each time. For example, Cmax and T of the first instance are

the first two objectives, Cmax and T of the second instance

are the third objective and the fourth objective,

respectively.

The instances used were proposed by Liefooghe et al.

[14]. Some instances are bi-objective extensions of the

famous Taillard benchmarks [24]; these examples are

suffixed by _ta in their name (see Table 2).

4.1.3 Parameters setting

One interest of indicator-based algorithms is that it requires

to set only a few parameters. In this section, we will discuss

about the running time, the population size, the initializa-

tion function and the reference point used for HC

computation.

– Running time: The running time T is a key parameter

in the experiment. We compute the time T for each

instance by Eq. 7, in which NJob, NMac, and NObj

represent, respectively, the number of jobs, the number

of machines, and the number of objectives in an

instance (see Table 2).

T ¼ NJob
2 � NMac � NObj

100
ð7Þ

– Population size: Experiments realized on IBMOLS

show that best results are achieved with a small

Table 2 The instances of multi-objective flow shop problem

(i_j_k represents the kth multi-objective instance with i jobs and

j machines. Parameters: population size N, running time for two

objectives T2, running time for three objectives T3)

Instance 1 Instance 2 Dim N T2 T3

20_05_01_ta001 20_05_02_ta002 20 9 5 10 4000 10

20_10_01_ta011 20_10_02_ta012 20 9 10 10 102000 20

20_15_01 20_15_02 20 9 15 10 20 30

20_20_01_ta021 20_20_02_ta022 20 9 20 10 204000 40

30_05_01 30_05_02 30 9 5 10 103000 201500

30_10_01 30_10_02 30 9 10 10 30 403000

30_15_01 30_15_02 30 9 15 10 403000 604500

30_20_01 30_20_02 30 9 20 20 60 90

50_05_01_ta031 50_05_02_ta032 50 9 5 10 401000 601500

50_10_01_ta041 50_10_02_ta042 50 9 10 20 802000 1203000

50_15_01 50_15_02 50 9 15 20 1203000 1804500

50_20_01_ta051 50_20_02_ta052 50 9 20 30 1604000 250

70_05_01 70_05_02 70 9 5 10 801000 1201500

70_10_01 70_10_02 70 9 10 20 1602000 2403000

70_15_01 70_15_02 70 9 15 30 2403000 3604500

70_20_01 70_20_02 70 9 20 30 3204000 490

100_05_01_ta061 100_05_02_ta062 100 9 5 20 1604000 250
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population size. Here, we set this size from 10 to 40

individuals according to Eq. 8, relatively to the size of

the instance tested (see Table 2).

jNj ¼

10 : 0\jNJob � NMacj\500

20 : 500� jNJob � NMacj\1000

30 : 1000� jNJob � NMacj\2000

40 : 2000� jNJob � NMacj\3000

8>><
>>:

ð8Þ

– Initialization function: Random mutations are applied

on the archived solutions, completed with random

solutions if the archive size is smaller than the

population size. The number of mutations applied to

the original solutions is 0.3 t, where t is the permutation

(decision vector) size.

– Reference point: Hypervolume and HC indicators

need a reference point Zref which has to be set. We

define its coordinates to ½þ1;þ1�, since it allows us

to be sure to keep the extreme non-dominated solutions

during the search—it has no influence on other non-

dominated solutions.

Of course, there are also some other parameters directly

related to the problem treated: individual coding (permu-

tation of jobs on the first machine) and the neighborhood

operator (insertion operator) [3].

4.1.4 Performance assessment protocol

With this set of experiments, we are aiming to show the

efficiency of HBMOLS in comparison with IBMOLS,

which was known to be highly efficient on different

problems [3].

The quality assessment protocol works as follows: We

first create a set of 20 runs with different initial populations

for each algorithm and each benchmark instance.

To evaluate the quality of k different sets A0. . .Ak�1 of

non-dominated solutions obtained on a problem instance,

we first compute the set PO�, which corresponds to the set

of non-dominated solutions extracted from the union of all

solutions obtained with the different executions. Moreover,

we define a reference point z ¼ ½w1; . . .;wi; . . .;wn�, where

wi corresponds to the worst value for each objective

function in A0 [ � � � [ Ak�1. Then, to evaluate a set Ai of

solutions, we compute the difference between Ai and PO�

in terms of hypervolume [27]. This hypervolume difference

has to be as close as possible to zero.

For each algorithm, we compute the 20 hypervolume

differences corresponding to the 20 runs. In Tables 3, 4, 5,

7, 8 and 9, the average hypervolume differences are given.

As suggested in [16], we also perform statistical tests on

the sets of hypervolume differences computed. Values

which are given in bold style means that the corresponding

algorithm is not statistically outperformed by the algorithm

which obtains the best average result (with a confidence

level greater than 95%).

4.1.5 Bi-objective results

The results of bi-objective are summarized in Table 3.

HBMOLS statistically outperforms IBMOLS on all

instances with a confidence level greater than 95%. The

best result is achieved on 20_20_01_ta021 instance, where

the average hypervolume difference is around 10 times

smaller for HBMOLS in comparison with IBMOLS using

I� or IHyp indicator. On many other instances, the average

hypervolume difference obtained by HBMOLS is half of

those obtained by the two IBMOLS approaches, except on

instances 50_20_01_ta051 and 70_15_01, where the dif-

ference is smaller. For these two instances, it is not easy to

improve the quality of the entire population by hypervo-

lume contribution indicator. The test procedure has been

undertaken with the performance assessment package

provided by Zitzler et al.3

4.1.6 Multi-objective results

We use the same test procedure as in bi-objective case to

assess the performance of multi-objective case. The results

of three-objective are summarized in Table 4. HBMOLS

statistically outperforms IBMOLS on all instances with a

Table 3 Hypervolume differences of FSP (two objectives): average

values and statistical best values (in bold)

Instance Indicator

Ie IHyp IHC

20_05_01_ta001 0.001887 0.001850 0.000582

20_10_01_ta011 0.002400 0.001419 0.000507

20_15_01 0.008451 0.009373 0.002340

20_20_01_ta021 0.001032 0.001101 0.000123

30_05_01 0.055391 0.053436 0.016533

30_10_01 0.064436 0.072351 0.035049

30_15_01 0.039613 0.039592 0.020245

30_20_01 0.035141 0.038451 0.018831

50_05_01_ta031 0.055578 0.060626 0.036728

50_10_01_ta041 0.094280 0.090979 0.056749

50_15_01 0.094024 0.098653 0.069960

50_20_01_ta051 0.108520 0.110138 0.091586

70_05_01 0.157068 0.161081 0.075577

70_10_01 0.088532 0.121396 0.060121

70_15_01 0.102436 0.157277 0.080052

70_20_01 0.104864 0.151036 0.073617

100_05_01_ta061 0.168508 0.181243 0.082768

3 http://www.tik.ee.ethz.ch/pisa/assessment.html.
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confidence level greater than 95% except on one group of

instances 50_10_01_ta041 and 50_10_02_ta042. For this

group, the difference of average hypervolume values

obtained by indicator I� and IHC is small. Considering

another two groups of instances 50_20_01_ta051 and

50_20_02_ta052, 70_15_01 and 70_15_02, their values are

almost the biggest among all the instances, which implies

that the quality of the entire population is difficult to

improve. The average hypervolume difference for the other

groups is around 40% smaller for HBMOLS in comparison

with IBMOLS using I� or IHyp indicator.

We carry out experiments on nine groups of instances in

four-objective case. The running time of these groups of

instances are computed by Eq. 7. The results of four-

objective are summarized in Table 5. IBMOLS statistically

outperforms HBMOLS on the first 7 groups of instances

with a confidence level greater than 95% except on two

groups of instances 20_15_01, 20_15_02 20_20_01_ta021,

and 20_20_02_ta022. The average hypervolume differ-

ences of these two groups obtained by HBMOLS are very

close to those obtained by indicator I�. Indeed, the solution

evaluation of HBMOLS is very expensive in time because

of HC computation. Besides, the results achieved on last

two groups by indicator IHC, are the best, since the running

time of these big instances is sufficient for HC computation

(See Table 5).

4.2 Quadratic assignment problem

4.2.1 Single-objective quadratic assignment problem

The quadratic assignment problem (QAP) is an important

problem in theory and practice, which can be described as

the problem of assigning a set of facilities to a set of

Table 4 Hypervolume

differences of FSP (three

objectives): average values and

statistical best values (in bold)

Instance Indicator

Ie IHyp IHC

20_05_01_ta001 and 20_05_02_ta002 0.008820 0.017081 0.006391

20_10_01_ta011 and 20_10_02_ta012 0.044904 0.072363 0.013242

20_15_01 and 20_15_02 0.046100 0.052205 0.017604

20_20_01_ta021 and 20_20_01_ta022 0.045666 0.046985 0.014360

30_05_01 and 30_05_02 0.049223 0.060183 0.040111

30_10_01 and 30_10_02 0.119965 0.133386 0.073294

30_15_01 and 30_15_02 0.109033 0.114696 0.048600

30_20_01 and 30_20_02 0.113254 0.139326 0.076801

50_05_01_ta031 and 50_05_02_ta032 0.133615 0.123253 0.040184

50_10_01_ta041 and 50_10_02_ta042 0.119970 0.142391 0.114228

50_15_01 and 50_15_02 0.124154 0.147594 0.092283

50_20_01_ta051 and 50_20_02_ta052 0.144222 0.139727 0.121222

70_5_01 and 70_5_02 0.082378 0.061161 0.017095

70_10_01 and 70_10_02 0.116721 0.146748 0.080265

70_15_01 and 70_15_02 0.149541 0.175881 0.140359

70_20_01 and 70_20_02 0.132750 0.156302 0.112108

100_05_01_ta061 and 100_05_02_ta062 0.108150 0.116861 0.051062

Table 5 Hypervolume

differences of FSP (four

objectives): average values and

statistical best values (in bold)

Instance Indicator

Ie IHyp IHC

20_05_01_ta001 and 20_05_02_ta002 0.031935 0.044096 0.043522

20_10_01_ta011 and 20_10_02_ta012 0.072619 0.118593 0.088238

20_15_01 and 20_15_02 0.070087 0.091664 0.072850

20_20_01_ta021 and 20_20_01_ta022 0.085270 0.104347 0.086623

30_05_01 and 30_05_02 0.089932 0.106148 0.135253

30_10_01 and 30_10_02 0.117082 0.158320 0.146288

30_15_01 and 30_15_02 0.121316 0.135059 0.132427

50_05_01_ta031 and 50_05_02_ta032 0.143373 0.119908 0.115970

70_05_01 and 70_05_02 0.194644 0.150409 0.127535
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locations with given distances between the locations and

given flows between the facilities [22]. The goal is to

minimize the sum of the product between flows and dis-

tances. In fact, the QAP is an NP-hard optimization prob-

lem [23].

Given n facilities and n locations, two n 9 n matrices D

and F, where dij is the distance between location i and j,

and frs is the flow between facilities r and s, the objective in

the QAP is to find an assignment of facilities to locations

such that every facility is assigned to exactly one location

and no location is assigned more than one facility. Since in

the QAP, the number of facilities is the same as the number

of locations, such an assignment corresponds to a permu-

tation of the integers in f1; . . .; ng. The objective for the

QAP can then be formulated as

min
/2U

Xn

i¼1

Xn

j¼1

dijf/i/j
ð9Þ

where U is the set of all permutations of f1; . . .; ng, and /i

gives the location of item i in a solution / 2 U.

4.2.2 Multi-objective quadratic assignment problem

In [11, 21], the authors consider the multi-objective QAP

introduced by Knowles and Corne, which has different

flow matrices but always keeps the distance matrix. For-

mally, the goal is to minimize the

min
/2U

Xn

i¼1

Xn

j¼1

dijf
k
/i/j

; k 2 f1; . . .;mg ð10Þ

where min refers to obtain the Pareto front, and f k
ij is the kth

flow between facilities i and j. Besides, all the instances of

the QAP tested in this paper are provided by R.E. Burkard

et al.4 Exactly, a multi-objective QAP instance is generated

by keeping the distance matrix of the first instance and

using different flow matrices (see Table 6).

4.2.3 Parameters setting

As is for the FSP, there are also four parameters required to

set for the QAP. The parameters ‘‘initialization function’’

and ‘‘reference point’’ are set like for the FSP, we only

consider how to set the other two parameters ‘‘running

time’’ and ‘‘population size’’.

– Running time: We compute the time T for each

instance by Eq. 11, in which NDis, NFlow, and NObj,

represent, respectively, the size of distance matrix, the

size of flow matrix and the number of objectives in an

instance (see Table 6).

T ¼ NDis � NFlow � NObj ð11Þ

– Population size: Here, we set this size from 10 to 30

individuals according to Eq. 12, relatively to the size of

the tested instance (see Table 6).

jNj ¼
10 : 0\jNDis � NFlowj\500

20 : 500� jNDis � NFlowj\1000

30 : 1000� jNDis � NFlowj\2000

8<
: ð12Þ

In order to evaluate the performance of HBMOLS

applied to the QAP, we use the same quality assessment

protocol, which is given in detail in Sect. 4.1.

Table 6 The instances of multi-objective quadratic assignment

problem (the symbol 0 - 0 in columns 3 and 4 refers to no

corresponding instance, the symbol 0 - 0 in the last two columns

means no corresponding running time; parameters: population size N,

running time for two objectives T2, running time for three objectives

T3, running time for four objectives T4)

Instance 1 Instance 2 Instance 3 Instance 4 Dim N T2 T3 T4

chr_12_a chr_12_b chr_12_c – 12 9 12 10 404800 701200 –

chr_15_a chr_15_b chr_15_c – 15 9 15 10 703000 1101500 –

chr_20_a chr_20_b chr_20_c – 20 9 20 10 1302000 200 –

esc_16_a esc_16_b esc_16_c esc_16_d 16 9 16 10 803200 1204800 170400

esc_32_a esc_32_b esc_32_c esc_32_d 32 9 32 30 1602000 2403000 3204000

Lipa_30_a Lipa_30_b – – 30 9 30 20 150 – –

Ste_36_a Ste_36_b Ste_36_c – 36 9 36 30 2103600 3302400 –

Table 7 Hypervolume differences of QAP (two objectives): average

values and statistical best values (in bold)

Instance Indicator

Ie IHyp IHC

chr_12_a and chr_12_b 0.002851 0.002981 0.002185

chr_15_a and chr_15_b 0.014420 0.012719 0.010036

chr_20_a and chr_20_b 0.069174 0.064390 0.050232

esc_16_a and esc_16_b 0.000000 0.000000 0.000000

esc_32_a and esc_32_b 0.119026 0.119634 0.087324

Lipa_30_a and Lipa_30_b 0.220230 0.246207 0.167518

Ste_36_a and Ste_36_b 0.816516 0.725983 0.323517

4 http://www.seas.upenn.edu/qaplib/inst.html.
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4.2.4 Bi-objective results

The results of bi-objective QAP are summarized in

Table 7. HBMOLS statistically outperforms IBMOLS on

all the groups of instances except two groups (chr_15_a

and chr_15_b, esc_16_a and esc_16_b) with a confidence

level greater than 95%. The best result is achieved on one

group of instances esc_16_a and esc_16_b, where the

average hypervolume difference equals to 0 by all the

indicators. That is because this group of instances is rela-

tively easy in comparison with other groups, we can get the

optimal solution in reasonable time. On the other hand,

the average hypervolume difference on all the groups of

instances obtained by the indicator IHC is always the

smallest among the three indicators. As the size of the

instance is becoming bigger, the advantage of the indicator

IHC is becoming more obvious.

4.2.5 Multi-objective results

In three-objective case, we test six groups of instances in

total. The results of three-objective QAP are summarized in

Table 8. HBMOLS statistically outperforms IBMOLS only

on two groups of instances (chr_20_a, chr_20_b and

chr_20_c; Ste_36_a, Ste_36_b and Ste_36_c) with a con-

fidence level greater than 95%. The average hypervolume

difference on another two groups of instances (chr_15_a,

chr_15_b and chr_15_c; esc_16_a, esc_16_b and

esc_16_c), which is obtained by the indicator IHC, is also

the smallest. On the left two groups of instances, the

indicator IHC is outperformed by the other two indicators I�
and IHyp.

Especially, we carry out experiments on two groups of

instances in four-objective case. The results are given in

Table 9. IBMOLS statistically outperforms HBMOLS with

a confidence level greater than 95%. As a matter of fact, it

usually takes too much time to compute hypervolume

contribution for each solution in four-objective QAP,

which leads to poor performance of HBMOLS.

5 Conclusions and perspectives

In this paper, we have introduced a hypervolume contri-

bution indicator (HC) in order to compare and select the

solutions for multi-objective optimization algorithms.

Since HC is based on the whole population, we have more

information to make a good choice. We have applied it in a

local search-based algorithm to build the HBMOLS algo-

rithm. We have performed experiments on a multi-objec-

tive flow shop problem and a multi-objective quadratic

assignment problem.

Experimental results showed most of the time, the

superiority of HC indicator for these problems. We have

obtained good results in two and three objectives cases,

where HC has been proved to be highly effective. How-

ever, the computation cost is too high if the number of

objectives is larger than 3. On the other hand, we consider

that the results presented here are very interesting, since

most real-world multi-objective problems are studied in

bi-objective or three-objective case.

Besides, the present work opens some perspectives.

First, we can try to improve HBMOLS in different ways,

such as by tuning the population size automatically

according to the problem size and the number of objec-

tives. We can also improve the way that HC indicator

evaluates the dominated solutions.

The main perspective is certainly the improvement of

HBMOLS to optimize problems with more than three-

objective functions. It would be interesting to study the

Table 8 Hypervolume

differences of QAP (three

objectives): average values and

statistical best values (in bold)

Instance Indicator

Ie IHyp IHC

chr_12_a and chr_12_b and chr_12_c 0.000932 0.001520 0.001573

chr_15_a and chr_15_b and chr_15_c 0.036520 0.042716 0.036127

chr_20_a and chr_20_b and chr_20_c 0.114485 0.117231 0.103788

esc_16_a and esc_16_b and esc_16_c 0.000083 0.000293 0.000051

esc_32_a and esc_32_b and esc_32_c 0.148244 0.135921 0.160581

Ste_36_a and Ste_36_b and Ste_36_c 0.930265 1.168162 0.618190

Table 9 Hypervolume

differences of QAP (four

objectives): average values and

statistical best values (in bold)

Instance Indicator

Ie IHyp IHC

esc_16_a and esc_16_b and esc_16_c and esc_16_d 0.004785 0.007641 0.009373

esc_32_a and esc_32_b and esc_32_c and esc_32_d 0.159861 0.200011 0.324591
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limitation of the proposed HC indicator in terms of com-

plexity and the possible use of approximation algorithms

[2]. Besides, we can also consider using the exact method

proposed in [5, 12] or the multi-objective evolutionary

algorithm based on decomposition proposed in [25].
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