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Abstract Metaheuristic algorithms are practically used to produce approx-
imate solutions to large QUBO instances that cannot be solved exactly due
to the high computational complexity. This chapter is dedicated to a re-
view on the general metaheuristic approach for solving the QUBO. First, we
present some basic components of local search that are widely used in the
design of state-of-the-art metaheuristic algorithms for the problem. Then we
overview the metaheuristic algorithms in the literature by groups of fast solv-
ing heuristics, local search based methods and population based search meth-
ods. Finally, we review some of the most popular and effective metaheuristic
algorithms and present experimental results on different sets of instances.

1 Basic ingredients of local search

Most of the heuristic and metaheuristic algorithms proposed for solving the
QUBO employ a local search procedure to improve the solution quality. Given
its importance, we first summarize basic ingredients used in these local search
procedures, including the solution representation of a QUBO instance, the
move operator along with the fast calculation of the move gain, and the
neighbor solution selection strategy.

For a given QUBO instance, its solution x = {x1, x2, . . . , xn} is a boolean
vector of length n. To perform neighborhood search, the most widely used
move operator is 1-flip, which flips a chosen variable xi to be the comple-
mentary value 1 − xi. A total of n neighbor solutions are generated by ap-
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plying the 1-flip move. Some algorithms introduce the k-flip move that flips
k (2 ≤ k ≤ n) variables of a solution simultaneously to the corresponding
complementary values, respectively. Compared to the 1-flip move, applying
the k-flip move yields a much larger number of neighbor solutions up to Ckn.

The efficiency of local search mostly depends on the evaluation of move
gains to determine the next solution on the search trajectory. The move gain
of a neighbor solution is the objective variation between a solution and the
neighbor solution. Let x and x′ represent two binary solutions where x′ is
obtained from x by a 1-flip move applied to a single variable xi. The move
gain ∆i of moving from solution x to the neighbor solution x′, recorded as
∆i = f(x′)− f(x), is calculated as:

∆i = (1− 2xi)(qii + 2

n∑
j=1,j 6=i

qijxj) (1)

∆j =

{
−∆i if i = j

∆j + 2qij(1− 2xi)(1− 2xj) otherwise
(2)

Since the generalized k-flip move can be considered as a sequence of 1-flip
moves, it is straightforward to infer the following equation for the k-flip move.
Formally, let i1, . . . , ik are the k variables to flip, then the move gain ∆i1,...,ik

for simultaneously flipping these k variables can be computed as follows:

∆i1,...,ik = ∆i1

+ ∆i2 + 2qi1i2(1− 2xi1)(1− 2xi2)

+ ∆i3 + 2qi1i3(1− 2xi1)(1− 2xi3) + 2qi2i3(1− 2xi2)(1− 2xi3)

+ ∆i4 + 2qi1i4(1− 2xi1)(1− 2xi4) + 2qi2i4(1− 2xi2)(1− 2xi4)

+ 2qi3i4(1− 2xi3)(1− 2xi4)

...
...

=

k∑
r=1

∆ir + 2

k−1∑
r=1

k∑
s=r+1

qiris(1− 2xir )(1− 2xis) (3)

The neighbor solution selection strategy decides the neighbor solution that
is used to replace the current solution x during the local search. The first move
improvement and the best move improvement are two strategies often used.
The first move improvement strategy scans the neighborhood of x and chooses
the first neighbor solution that is better than x (i.e., with an improving
move gain). The best move improvement strategy exhaustively explores the
neighborhood of x and retains the neighbor solution with the highest move
gain.
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2 Fast solving heuristics

Boros et al. [7] developed a Devour Digest Tidy-up procedure (DDT). On the
basis of the posiform representation Z of QUBO, DDT includes the Devour,
Digest and Tidy-up phases. Devour identifies a term T from L (L denotes
the set of all the elements of Z) with the largest coefficient and places it into
S. Digest draws logical conclusions by assigning the disjunctive equation of
all the elements in S equaling to 0 (in terms of minimization). If no logical
conclusion can be drawn, then T is simply removed from L to S, and return
to Devour. Otherwise, Tidy-up begins to substitute the logical conclusions
previously drawn into Z. The above DDT procedure repeats until L becomes
an empty set. Experiments indicated that DDT is especially effective on
problem instances of low density.

Consider the case that the DDT method simultaneously sets several vari-
ables with value 1 or 0 would result in worse results than to give inferred
assignment to only one variable, Glover et al. [10] proposed several one-pass
heuristics to guarantee that in each pass only one variable gets the implied
assignment. The difference among the proposed one-pass heuristics lies in
the different strategies of evaluating contributions of variables. Experimental
comparisons among the proposed one-pass heuristics showed that some of
them perform quite effectively for certain problem instances, but no single
method dominates on every problem instance.

Hanafi et al. [13] devised five alternative DDT heuristics based on different
representations of the QUBO formulation, where DDT1 to DDT4 methods
respectively have standard, posiform, bi-form and negaform representations
and DDT5 has a posiform representation along with a one-pass mechanism.
An obviously additional difference of their DDT alternatives from [7, 10]
concerns the use of a r-flip local search procedure to improve solutions ob-
tained by DDT constructions. Extensive tests on small, medium and large
benchmark instances showed that (1) DDT3 with the bi-form representation
generally produces the best results for medium and large instances; (2) the
proposed r-flip local search brings significant result improvements with only
a slight increase of time consumption.

Merz and Freisleben [23] proposed a greedy construction heuristic to
quickly obtain an improved solution. It starts from a solution with all vari-
ables assigned to be 0.5 (the so called third state). At each construction step,
it searches a variable and a value either 0 or 1 for the variable such that
assigning the value to the variable makes the gain function, i.e., objective
function increment of the resulting solution compared to the previous solu-
tion, is maximized. This operation repeats until each variable of the solution
vector changes its initial value from 0.5 to 1 or 0. Since this greedy construc-
tion method always obtains the same solution for a given problem instance, a
randomized greedy variant was proposed to overcome the deterministic draw-
back. For one thing, randomly pick a variable and randomly assign a value
0 or 1 to it for the first step of the construction. For another thing, select a
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variable with a probability proportional to the gain value instead of picking
a variable with the maximized gain value.

3 Local search based methods

3.1 Simulated annealing

Alkhamis et al. [1] presented a simulated annealing based heuristic (SA-AHA)
according to the traditional simulated algorithm framework. It begins with
a randomly generated solution and an initial temperature. At each iteration
SA-AHA generates a random 1-flip move. If this is an improving move, it
is performed; Otherwise, it may still be accepted with a probability e−∆/T

where ∆ indicates the objective function difference between the two solutions
and T is the current temperature constant. After the above procedure con-
ducts a certain number of iterations, the temperature is decreased with refer-
ence to a cooling function. The above procedure is repeated until no solution
has been accepted for 10 consecutive temperatures or when the temperature
has fallen below a pre-specified value. Tested on problem instances with up
to 100 variables and comparisons with several bounding techniques based
algorithms indicated that SA-AHA outperforms these compared methods.
Especially, SA-AHA is able to solve hard problem instances very efficiently
while bounding algorithms can not solve them in a reasonable computation
time. Additional experiments indicated that the efficiency of the SA-AHA
algorithm is not affected by matrix density.

Beasley [5] proposed another simulated annealing algorithm (SA-B). The
basic iterative procedure of SA-B is the same as SA-AHA. However, in SA-B
each iteration applies a different temperature value to determine the proba-
bility to accept a worse move. In addition, a local search procedure based on
the first improvement strategy is utilized to perform a post-optimization of
the solution from the annealing process. Experimental results for 45 instances
with up to 500 variables indicated that SA-B converges fast to the best so-
lutions than the reference algorithms but obtains inferior solution quality
for several instances. In addition, the author generated 60 instances with
up to 2500 variables available from OR-Library. Results on this new set of
benchmark instances showed that SA-B is especially effective for 10 largest
instances with 2500 variables.

Katayama and Narihisa [16] designed a similar implementation of the sim-
ulated annealing methodology as SA-AHA, called SA-KN. An obvious char-
acteristic of SA-KN different from SA-AHA and SA-B lies in the fact that
it adopts multiple annealing processes to enhance the search ability. Experi-
mental results for problem instances with variables ranging from 500 to 2500
indicated that SA-KN achieves especially competitive performances for the
largest OR-Library instances.
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3.2 Tabu search

Glover et al. [9] introduced an adaptive memory tabu search (AMTS) al-
gorithm that uses the 1-flip move and two types of memory structures to
record recency and frequency information. Strategic oscillation is employed
to alternate between constructive phases (progressively setting variables to
1) and destructive phases (progressively setting variables to 0), which are
triggered by critical events, i.e., when the next move causes the objective
value to decrease. The amplitude of the oscillation is adaptively controlled
by a span parameter. Computational results for instances with up to 500 vari-
ables showed that AMTS outperforms the best exact and heuristic methods
previously reported in the literature.

Beasley [5] proposed a 1-flip move based tabu search algorithm (TS-B). It
begins from an initial solution with each variable assigned to be 0 and marked
as non-tabu. During each iteration it conducts a best non-tabu move. This
performed move is then marked as tabu for a specified number of following
iterations. If the current iteration finds a better solution than the best solu-
tion found so far, a local search procedure with first-improvement strategy
is launched to further improve this new solution. TS-B repeats the above
procedure until the current iteration reaches the maximum allowed iteration.
Notice that TS-B does not incorporate the fast evaluation technique and also
neglects an aspiration criterion.

Palubeckis [25] examined five multistart tabu search strategies (MSTS)
dedicated to the construction of the initial solution. Each multistart tabu
search algorithm employs a tabu search procedure (TS-P) to enhance so-
lution quality and a multi-start strategy to produce a new initial solution
located in a more promising area. Notice that TS-P is very similar to TS-B
except that TS-P employs a tactic to get 1-flip moves fast evaluated. The
first restart strategy produces a new initial solution in a random way. The
second restart strategy identifies a candidate set of variables that are prone
to change their values when moving from the current solution to an optimal
one. Then it applies a steepest ascent algorithm that only considers variables
in the candidate set and keeps the other variables fixed at specific values. The
third one employs a randomized greedy constructive method. The fourth one
incorporates a set of elite solutions and calculates the probability of each vari-
able with value 1 in this set. If the probability for a given variable is larger
than 0.5, then this variable receives value 1 in the resulting new solution;
otherwise it receives value 0. The last restart strategy uses a perturbation
scheme of changing the problem instance at hand, followed by a short run of
tabu search on the modified instance. Experiments evaluated on 25 largest
instances from OR-Library and a set of randomly generated larger and denser
instances demonstrated that the algorithm with the second restart strategy
(MST2) is the best among the proposed algorithms.

Palubeckis [26] developed an iterated tabu search algorithm (ITS) that
combines a tabu search procedure to improve the solution quality and a
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perturbation mechanism to create a new initial solution. The tabu search
procedure is exactly the one used in [25]. The perturbation mechanism is
operated as follows. First, it constructs a candidate list of a specified size
which consists of variables with the largest 1-flip move gains with regard to
a local optimal solution. Then it randomly selects a variable from this set
and flips this variable to move toward a new solution. Finally, it updates
the corresponding move gains of variables caused by the move. The above
procedure is repeated until the number of perturbed variables reaches the
specified count. Experimental results indicated that despite its simplicity,
ITS is very competitive compared to other state-of-the-art algorithms.

Lü et al. [21] studied neighborhood union and token-ring search methods
to combine 1-flip (N1) and 2-flip (N2) moves within a tabu search algorithm.
The 2-flip move based tabu search considers a constrained set of 2-flip moves
requiring that flipping each involved variable produces the move gain ranked
top 3

√
n among all the 1-flip moves. In this way, the computational efforts

of exploring the neighborhood N2 can be greatly reduced. The neighborhood
union includes the strong neighborhood union (N1

⊔
N2) that picks each

move from both N1 and N2 and the selective neighborhood union (N1
⋃
N2)

that select a move from N1 with probability p and N2 with probability 1−p.
The token ring search (N1 → N2) continuously performs moves within a
single neighborhood until no improvement is possible and then switches to
the other neighborhood to carry out moves in the same fashion. Experimental
results on random large instances indicated that selective union is superior
to the other two neighborhood combinations.

Liu et al. [18] proposed a hybrid r-flip/1-flip tabu search algorithm (HLS)
which switches among a hybrid local search phase, a destruction phase and a
construction phase. First, the hybrid local search phase that hybrids 1-flip and
r-flip local search is launched. This phase behaves like a basic variable neigh-
borhood search procedure [12] but excludes useless r-flip moves by several
orders according to a theorem. When no improved move is found, the hybrid
local search phase terminates. Meantime, the destruction phase is followed
to carry out the 1-flip move with the least damage to the current solution.
The performed move is marked as tabu and the destruction phase continues
until an improving non-tabu move occurs. At this point, a construction phase
is triggered to perform the best non-tabu move. If the obtained solution is
better than the best solution ever found, the algorithm returns to the hybrid
local search phase. If no variable exists that can make further improvement,
the algorithm then returns to the destruction phase. Tested results showed
the superiority of the proposed hybrid r-flip/1-flip tabu search especially for
solving large instances with high density.

Shylo and Shylo [27] developed a global equilibrium search (GES) algo-
rithm that performs multiple temperature cycles. Each temperature cycle
alternates between an initial solution generation phase and a tabu search
phase. The use of information from the whole search history helps to deter-
mine the probability of a variable receiving value 1 in the generated solution.
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The tabu search procedure performs the best 1-flip move with an additional
requirement that this move leads to a solution far enough from a reference
set in terms of hamming distance. Experimental results showed that GES
performs quite well in terms of solution quality and computing time.

Wang et al. [29] devised GRASP-TS and GRASP-TS/PM algorithms that
hybrid GRASP with tabu search. GRASP-TS uses a basic GRASP algorithm
with single solution search while GRASP-TS/PM launches each tabu search
by introducing a population management strategy based on an elite reference
set. Specifically, GRASP-TS uses an adaptive random greedy function to
construct an initial solution from scratch. GRASP-TS/PM makes use of a
restart/recovery strategy to produce a solution, in which partial solution
components inherit corresponding elements of an elite solution fetched from
a population and the remaining solution components are rebuilt as in the
GRASP-TS procedure. Experiments indicated that GRASP-TS and GRASP-
TS/PM are very competitive with state-of-the-art algorithms.

4 Population based search methods

Amini et al. [2] presented a scatter search approach (SS) that is mainly com-
posed of a diversification generation method, a solution improvement method,
a reference set update method, a subset generation method and a solution
combination method. The diversification generation method systematically
generates a collection of diverse trial solutions based on a seed solution in a
way of setting an incremental parameter that determines which bits of the
seed solution should be flipped. The improvement method performs a com-
pound move that sequentially cycles among 1-flip, 2-flip and 3-flip candidate
moves until no attractive move can be identified. The reference set update
method replaces solutions in the reference set with new candidate solutions
according to the quality measurement. In order to build a new solution, a lin-
ear combination of selected solutions from the reference set is applied. Since
some variables would receive fractional values in the combined solution, a
rounding procedure is followed to make this solution feasible. Experiments
showed that the proposed scatter search method is very robust, especially for
large problem instances.

Lodi et al. [19] introduced an evolutionary heuristic (EH) with the fol-
lowing features. First, EH uses a preprocessing phase to fix certain variables
at their optimal values and reduce the problem size. This type of fixation
belongs to permanent fixation since for each successive round of local search,
these variables are excluded from consideration. Second, a local search proce-
dure based on the alternation between construction and destruction phases is
employed to get an improved solution. Finally, EH uses a uniform crossover
operator to generate offspring solutions, where variables with common val-
ues in parental solutions are temporarily fixed in this round of local search.
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Experimental results showed that EH can match the best known results for
problem instances with up to 500 variables in a very short computation time.
A further analysis demonstrated that the preprocessing phase is effective for
small problem instances but is impossible to reduce the problem size for large
ones.

Merz and Freisleben [22] devised a hybrid genetic algorithm (GLS-MF),
in which a simple local search is incorporated into the traditional genetic
algorithm. The local search procedure uses the 1-flip move and best move im-
provement strategy. The crossover operator is a variant of uniform crossover,
requiring the generated offspring solution has the same hamming distance
from the parents. Once the newly generated offspring solution satisfies the
updating criterion, it becomes a member of the population and replaces the
worst solution. A diversification component is launched when the average
hamming distance of the population drops below a threshold d = 10 or the
population is not updated for more than 30 consecutive generations. Experi-
mental results showed that the simple evolutionary algorithm alone is able to
find the best known results for problem instances with less than 200 variables
but for larger instances, it is essential to incorporate local search to attain
high quality solutions.

Lü et al. [20] proposed a hybrid metaheuristic approach (HMA) which in-
tegrates a basic tabu search procedure into a genetic search framework. First,
HMA combines a traditional uniform crossover operator with a diversifica-
tion guided path relinking operator to guarantee the quality and diversity of
an offspring solution. Second, HMA replaces the Hamming distance by a new
distance by reference to variable’s importance and employs a quality-and-
distance criterion to update the population as in GTA. Finally, a tabu search
procedure is responsible for intensified examination around the offspring so-
lutions. Computational results showed HMA is among the best performing
procedures for solving challenging QUBO problem instances.

5 Selected metaheuristic approaches for QUBO

5.1 Diversification-driven tabu search

Glover et al. [11] presented a diversification-driven tabu search (D2TS) algo-
rithm that alternates between a basic tabu search procedure and a memory-
based perturbation procedure guided by a long-term memory. The general
scheme of D2TS works as follows. Starting from a random initial solution,
D2TS uses tabu search to reach local optimum. Then, the perturbation op-
erator is applied to displace the solution to a new region, whereupon a new
round of tabu search is launched. To achieve a more effective diversification,
the perturbation operator is guided by information from a special memory
structure for obtaining improved results in this context.
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The tabu search procedure employs the 1-flip neighborhood. Each time a
move is carried out, the reverse move is forbidden for the next TabuTenure
iterations. The tabu tenure is set to be TabuTenure(i) = tt+rand(10), where
tt is a selected constant and rand(10) takes a random value from 1 to 10. Once
a move is performed, a subset of move values affected by the move is updated
using a fast incremental evaluation technique. Accompanying this rule, a
simple aspiration criterion is applied that permits a move to be selected in
spite of being tabu if it leads to a solution better than the best solution found
so far. The TS procedure stops when the best solution cannot be improved
within a given number of moves.

The perturbation procedure includes assigning a score to each variable,
selecting a certain number of highly-scored variables (critical elements), and
perturbing the solution using the chosen critical elements. The scoring func-
tion depends on the information of several memory structures, including a
flipping frequency vector FlipFreq(i), an elite set of solutions EliteSol and a
consistency vector EliteFreq(i). FlipFreq(i) records the number of times the
a variable xi has been flipped from the beginning until the current iteration,
which is collected in the tabu search phase. EliteSol stores a set of locally
optimal solutions found by tabu search. Each time a new local optimum is
found that has the objective value superior to that of the worst local solu-
tion in EliteSol, the new solution replaces this worst solution. EliteFreq(i)
records the total number of times a variable xi is assigned value 1 in the elite
solutions currently stored in EliteSol. This memory is used to favor retain-
ing the value assignments that occur more often in the best solutions found
to date. The scoring function ranks each variable by taking into account its
flip frequency FlipFreq(i) and its elite value frequency EliteFreq(i), which
takes the following form:

Score(xi) =
EliteFreq(i)(r − EliteFreq(i))

r2
+ β(1− FlipFreq(i)

maxFreq
) (4)

The selection step sorts all the variables in non-increasing order according
to their scores and then adaptively selects a specified number of critical vari-
ables to be randomly assigned a value 0 or 1. The higher the score a variable
has, the greater the probability it will be chosen. The perturbation step flips
the values of the selected critical variables. This perturbed solution is then
used to initiate a new round of tabu search.

5.2 Memetic search

Merz and Katayama [24] conducted a landscape analysis and observed that
(1) local optima of the QUBO instances are contained in a small fraction of
the search space; (2) the fitness of local optima and the distance to the opti-
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mum are correlated. Based on this, they designed a memetic algorithm (MA-
MK) in which an innovative variation as the crossover operator is utilized to
generate good starting solutions. The MA-MK algorithm is composed of pop-
ulation initialization, randomized k-opt local search, crossover and variation,
as well as selection and diversification strategies.

The population initialization procedure repeats generating individuals in
the following way until the population size reaches 40. The method to gen-
erate an individual includes two steps. The first step employs a randomized
greedy heuristic introduced in [23] to produce a seeding solution. The second
step applies a randomized k-opt local search to optimize the solution to local
optimum.

The randomized k-opt local search is based on the ideas of Lin and
Kernighan for solving the traveling salesman problem (TSP) and the graph
partitioning problem that searches a small fraction of the k-opt neighbor-
hood efficiently. The randomized k-opt local search performs the following
iterations until performing a k-flip move can not yield an improving solution.
For each k-opt iteration, all the bits of a solution are sorted in a random
order and only the bits of getting the positive move gains are flipped. The bit
with the maximum move gain is subsequently flipped. The above-mentioned
procedure are repeated until all the bits have been flipped. The best solution
is recorded as the resulting solution in this iteration.

The crossover operator introduced the move gain to determine the varia-
tion of the offspring solution in order to prevent rediscovering local optima
already visited to the most extent. Specifically, the common and the non-
common bits of the parent solutions are identified and the initial offspring
solution is set to be any parent solution. The bits in the non-common and
common sets are operated alternatively. For the non-common set, all the
non-common bits with the positive 1-flip move gains are identified and such
a bit is randomly selected. For the common set, the common bit with the
maximum associated 1-flip move gain is identified even if the move gain is
negative. If a bit is flipped, it is removed from the corresponding set. The
above-mentioned procedure is repeated for a number of times equal to the
size of the non-common set.

In each generation, a new population needs to be formed after offspring
individuals are generated. Among the old individuals in the previous gener-
ation and the newly generated offspring individuals, those with the highest
fitness are selected to maintain the restricted population size. If no new best
individual in the population was found for more than 30 generations, a diver-
sification restart strategy is triggered. All the individuals except for the best
one in the population are mutated by flipping randomly chosen n/3 bits for
each individual of length n. After that, each individual is optimized by the
randomized k-opt local search to obtain a renewal set of local optima and
the search is started again with the newly diversified population.
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5.3 Path relinking

Wang et al. [30] proposed two path relinking algorithms, which is composed
of a reference set initialization method, a solution improvement method, a
reference set update method, a relinking method and a path solution selec-
tion method. The proposed algorithms differ from each other mainly on the
way they generate the path, one employing a greedy strategy and the other
employing a random construction.

The general scheme of the path relinking algorithm works as follows. It
starts with the creation of an initial set of elite solutions RefSet, based on
which an index set of pairwise solutions PairSet is generated. For each index
pair (i, j), a relinking method is applied to generate two paths connecting the
elite solutions xi and xj , one of which is from xi to xj and the other is from
xj to xi. Then, one solution on each path is selected according to a path
solution selection method and refined by a solution improvement method
using the same tabu search procedure as in [20]. The resulting solution is
subject to the RefSet updating procedure. The above-mentioned procedure
is terminated once all the elements in PairSet are examined. If the given
stopping criterion is not satisfied, RefSet and PairSet are rebuilt to continue
the search.

The RefSet initialization method is used to construct an elite set of high-
quality solutions, where each solution is obtained in two steps. The first step
generates a randomized solution, where each variable receives value 0 or 1
with an equal probability of 0.5. The second step employs a tabu search
based solution improvement method to refine the quality of this solution.
Afterwards, the RefSet updating procedure is invoked. The improved solution
is permitted to be added into RefSet if it is distinct from any solution in
RefSet and better than the worst solution. Once this condition is satisfied, the
worst solution is replaced by the improved solution. When PairSet becomes
empty, RefSet is recreated. The best solution previously found becomes a
member of the new RefSet and the remaining solutions are generated in the
same way as in constructing RefSet in the first round.

The path relinking method builds a path connecting an initiating solution
where the path starts with and a guiding solution where the path ends at.
The path consists of a sequence of intermediate solutions, each of which
is generated by exploring the neighborhood of the initiating and guiding
solutions. To be specific, identify the set of non-common variables NC where
the initiating solution xi = x(0) and the guiding solution xg have different
values. Meanwhile, initialize another vector where each entry ∆t denotes the
objective difference resulting after flipping the variable xt ∈ NC from the
previous solution x(k− 1) on the path. The path relinking method performs
a total of |NC| − 1 iterations to construct a path. At each path construction
step k, either use a greedy strategy to select the variable having the maximum
∆t∈NC value in the algorithm PR1 or use a random strategy to randomly
select a non-common variable in the algorithm PR2. The path solution x(k)
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is determined by assigning the same value as the guiding solution xg for the
newly chosen variable and assigning the same values as x(k − 1) for all the
other variables.

Since two consecutive solutions on a relinking path differ only by flip-
ping a single variable, it is not productive to apply an improvement method
to each solution on the path since many of these solutions would lead to
the same local optimum. Hence, the path solution selection method chooses
only a single solution on the path explored via path relinking. Specifically,
it first constructs a candidate solution list that includes the solutions with a
Hamming distance of at least |NC|/3 from both the initiating and guiding
solutions. Then, the candidate solution with the maximum objective value is
picked for further amelioration by the solution improvement method.

5.4 Automatic grammar-based design of heuristic
algorithms

de Souza and Ritt [28] designed an automatic algorithm by combining the
problem-specific components of state-of-the-art algorithms from the litera-
ture. The designed automatic algorithm employs a grammar in Backus-Naur
form to model the space of heuristic strategies and their parameters. The
grammar is composed of a set of rules, through which the heuristic algorithms
can be instantiated. All heuristic strategies are categorized into construc-
tion methods, search methods and recombination methods. The construction
methods start from an empty solution and apply the greedy randomized
heuristics to iteratively set value 0 or 1 to each variable. The search meth-
ods include local search components, tabu search components and iterated
local search components, which start with an initial solution and perform
1-flip moves to explore the search space. The differences among local search
components lie in the move selection strategies that transfer from the cur-
rent solution to its neighbor solution, such as the first improvement strategy,
a round-robin strategy, a best improvement strategy, etc. Two tabu search
components are differentiated, one of which always selects the best move and
the other selects a random move with a small probability. In addition to dif-
ferent local search strategies, the iterated local search components include
perturbation strategies of random perturbation, least-loss perturbation and
frequency based perturbation as well as different strategies to define the per-
turbation strength. The recombination methods employ the path relinking
algorithms that evolve a population of elite solutions.

To perform exploration of the grammar based search space, they used the
irace tool described in [17] to rank different candidates of the algorithms
found in the literature of QUBO and newly generated algorithms. The irace
tool implements an iterated racing procedure that iteratively selects a can-
didate and an instance from a set of elite candidates and calls the resulting
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algorithm. After performing each iteration, the average difference between
the objective value of the found solution and the best known value is used as
a result metric for irace to rank different candidates. The process is repeated
until irace has finished the specified number of algorithm runs. Experimen-
tal results indicate that the automatic approach can find algorithms that
outperform state-of-the-art algorithms.

5.5 A systematic evaluation of heuristics

Dunning et al. [8] implemented a total of 37 Max-Cut and QUBO heuristics
selected from the literature and performed a systematic evaluation on a li-
brary of 3296 instances. Because no single heuristic outperforms all others
across all problem instances, a regression tree model is built for each of the
37 heuristics to determine the rank on a given instance. Based on this, key
insights into when heuristics perform well or poorly according to the prob-
lem instance characteristics are identified. Moreover, a random forest model
is built for each heuristic to predict the probability of a heuristic that will
perform the best for a given instance. By selecting a set of heuristics with the
highest predicted probability, an algorithm portfolio is finally constructed to
produce the best solution. Unlike many hyper-heuristics found in the litera-
ture, the proposed approach does not construct a new heuristic by selecting
from a set of heuristic components. In addition, it does not include and imple-
ment several advanced algorithms and thus lacks of comparisons with these
algorithms. Results indicate that the proposed algorithm portfolio dominates
each of the 37 Max-Cut and QUBO heuristics it combines. The open-source
implementations of the heuristics are publicly available 1.

6 Computational results

6.1 Benchmark instances

Three sets of test problems are often used in the QUBO literature to eval-
uate the performance of algorithms. The first set is composed of 10 large
instances from the OR-Library [4, 5]. 2 They all have a density of 0.1 and
are named by b2500.1,. . .,b2500.10. The second set of benchmarks consists
of 21 randomly generated large problem instances named p3000.1,. . .,p7000.3
with sizes ranging from n=3000 to 7000 and with densities from 0.5 to 1.0

1 https://github.com/MQLib/MQLib
2 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/bqpinfo.html
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[25, 26]. 3 These large instances are particularly challenging QUBO problems,
especially in the case of instances with more than 5000 variables. The third
set of benchmarks includes 54 instances derived from the MaxCut problem,
named G1,. . .,G54, with variable sizes ranging from n=800 to 2000 [6, 14].4

These instances are created by using a machine-independent graph generator,
composed of toroidal, planar and random weighted graphs with weight values
1, 0 or -1. The small test instances from the OR-Library whose sizes range
from n = 500 to 1000 can be solved relatively easily by many algorithms.

It is worth noting that a completely fair comparison of algorithms is im-
possible since the compared algorithms are implemented by different authors
and run under different conditions. The presented comparisons on the QUBO
instances as well as that on the MaxCut problem are thus presented only for
indicative purposes and should be interpreted with caution.

6.2 Computational results on the QUBO instances

The PR1 and PR2 algorithms were tested on a PC with Pentium 2.83GHz
CPU and 8GB RAM. The running CPU time for each run of PR1 and PR2
is set to 60 seconds for solving the 10 OR-Library instances and set to 5, 10,
20, 30 and 50 minutes for solving the instances of second set with 3000, 4000,
5000, 6000 and 7000 variables. The time limits are comparable to that used
by the Diversification-Driven Tabu Search (D2TS) [11], Iterated Tabu Search
(ITS) [26], MultiStart Tabu Search (MST2) [25], Memetic Algorithm (MA)
[24] and Automatic Algorithm (AACR) [28] after considering the computing
performance of different machines.

Table 1 shows the results obtained by the 6 reference algorithms for solving
the 10 bxxx.y instances. Columns 1 and 2 respectively give the instance name
and the best known result BKR reported in the literature. The following
columns list the average solution gap to the best known result BKR− favr.
Given that all the reference algorithms are capable of finding the best known
results, we do not report for each instance the tabulated solution gap 0 be-
tween the best solution value found by each algorithm and the best known
result. The last row “Average” indicates the summary of each algorithm’s
average performance over this set of instances.

As shown in Table 1, D2TS is able to reach the best known results during
each run for all the 10 instances. PR1 and PR2 perform slightly worse by
failing for 1 instance. The average solution gaps to the best known results
obtained by PR1, PR2, ITS and MST2 are 1.3, 5.8, 2 and 1.1, respectively,
which are quite small compared to the solution values. MA performs the

3 http://www.soften.ktu.lt/∼gintaras/ubqop its.html
4 http://www.stanford.edu/∼yyye/yyye/Gset
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worst among all the algorithms by obtaining an average solution gap of 226
to the best known results.

Table 1 Average results comparison on the instances of the first set

Average solution gap (i.e., BKR− favg)
Instance BKR PR1[30] PR2[30] ITS[26] MST2[25] D2TS[11] MA[24]
b2500.1 1515944 0 0 0 0 0 13
b2500.2 1471392 0 58 9 0 0 645
b2500.3 1414192 13 0 11 11 0 173
b2500.4 1507701 0 0 0 0 0 0
b2500.5 1491816 0 0 0 0 0 55
b2500.6 1469162 0 0 0 0 0 190
b2500.7 1479040 0 0 0 0 0 416
b2500.8 1484199 0 0 0 0 0 3
b2500.9 1482413 0 0 0 0 0 321
b2500.10 1483355 0 0 0 0 0 446
Average 1.3 5.8 2 1.1 0 226

Tables 2 and 3 show the best and average solution gaps to the best known
results for solving the 21 pxxx.y instances. We replace the algorithm MA by
AACR since the latter is recently proposed and reports much better results.
Table 2 indicates that PR1 and PR2 achieve the best known results for all the
21 challenging instances. AACR and D2TS perform slightly worse since they
fail to reach the best known results for 1 and 2 instances, respectively. ITS
and MST2 obtain the worst gaps of 306.8 and 308.9 on average with respect
to the best solution found. Table 3 indicates AACR performs the best with an
average solution gap of 211.7. PR1 and PR2 obtain the average solution gaps
of 457.1 and 690.4, respectively, which are slightly worse than AACR. D2TS
obtains the worst average solution gap of 2082.9 among all the algorithms.

6.3 Computational results on the MaxCut instances

The maximum cut problem can be naturally transformed into the QUBO
model. Given an undirected graph G = (V,E) with vertex set V = {1, . . . , n}
and edge set E ⊆ V ×V , each edge e(i, j) is associated with a weight wij , the
maximum cut problem (MaxCut) asks for a partition of V into two disjoint
subsets such that the total weight of the cut (edges crossing the two subsets)
is maximized. Formally, the objective function of MaxCut is:

Maximize: f(x) =

n∑
i=1

n∑
j=1

wijxi(1− xj),

subject to: xi ∈ {0, 1}, i = 1, . . . , n.

(5)
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Table 2 Best results comparison on the instances of the second set

best solution gap (i.e., BKR− fbest)
Instance BKR PR1[30] PR2[30] ITS[26] MST2[25] D2TS[11] AACR[28]
p3000.1 3931583 0 0 0 0 0 0
p3000.2 5193073 0 0 0 0 0 0
p3000.3 5111533 0 0 0 0 0 0
p3000.4 5761822 0 0 0 0 0 0
p3000.5 5675625 0 0 0 0 0 0
p4000.1 6181830 0 0 0 0 0 0
p4000.2 7801355 0 0 0 0 0 0
p4000.3 7741685 0 0 0 0 0 0
p4000.4 8711822 0 0 0 0 0 0
p4000.5 8908979 0 0 0 0 0 0
p5000.1 8559680 0 0 700 325 325 0
p5000.2 10836019 0 0 0 582 0 0
p5000.3 10489137 0 0 0 0 0 0
p5000.4 12252318 0 0 934 1643 0 0
p5000.5 12731803 0 0 0 0 0 0
p6000.1 11384976 0 0 0 0 0 0
p6000.2 14333855 0 0 88 0 0 0
p6000.3 16132915 0 0 2729 0 0 0
p7000.1 14478676 0 0 340 1607 0 0
p7000.2 18249948 0 0 1651 2330 104 8
p7000.3 20446407 0 0 0 0 0 0
Average 0 0 306.8 308.9 20.4 0.4

Table 3 Average results comparison on the instances of the second set

average solution gap (i.e., BKR− favg)
Instance fprev PR1[30] PR2[30] ITS[26] MST2[25] D2TS[11] AACR[28]
p3000.1 3931583 0 80 0 0 0 0
p3000.2 5193073 0 0 97 97 0 0
p3000.3 5111533 36 72 344 287 0 108
p3000.4 5761822 0 0 154 77 0 0
p3000.5 5675625 90 279 501 382 0 49
p4000.1 6181830 0 0 0 0 0 0
p4000.2 7801355 71 314 1285 804 0 323
p4000.3 7741685 0 64 471 1284 0 3
p4000.4 8711822 0 0 438 667 0 0
p4000.5 8908979 491 385 572 717 0 0
p5000.1 8559680 612 918 971 581 656 387
p5000.2 10836019 620 499 1068 978 12533 339
p5000.3 10489137 995 318 1266 1874 12876 77
p5000.4 12252318 1258 1168 1952 2570 1962 554
p5000.5 12731803 51 166 835 1233 239 37
p6000.1 11384976 201 822 57 34 0 18
p6000.2 14333855 221 577 1709 1269 1286 148
p6000.3 16132915 1744 2017 3064 2673 787 672
p7000.1 14478676 935 1523 1139 2515 2138 903
p7000.2 18249948 1942 2986 4301 3814 8712 828
p7000.3 20446407 332 2311 3078 7868 2551 0
Average 457.1 690.4 1109.6 1415.4 2082.9 211.7
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The following corresponding relation is apparent in comparison with the
formulation of QUBO:

qii =

n∑
j=1,j 6=i

wij , qij = −wij , (i 6= j) (6)

According to Eq. (6), a MaxCut problem instance can be reformulated
into a QUBO instance. Thus, the algorithms designed for solving the QUBO
problem are directly applicable to the MaxCut problem.

Table 4 reports the computational results on the 54 MaxCut instances. For
each execution of the compared algorithms, the time limit for solving each
instance is set to be 30 minutes. Columns 1 gives the instance name. Columns
2 to 4 list the best solution values found by PR1, PR2 and D2TS. Columns 5
to 8 list the average solution values found by PR1, PR2, AACM and AACR.
Both AACM and AACR are proposed in [28], where AACR uses the pxxx.y
instances of as training inputs to irace and AACM is trained on the MaxCut
instances. The last row “Matched” indicates the number of instances where
each algorithm obtains the best results among the compared algorithms. In
terms of the best solution values, PR2 matches the best results for 47 out
of 54 instances, performing better than PR1 and D2TS that match 38 and
29 best results, respectively. In terms of the average solution values, AACM
performs the best by matching the best results for 44 instances, much better
than AACR that only matches 2 best results. This indicates that the behavior
of the automatic approach is closely correlated to the problem structure.
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