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Abstract This chapter is dedicated to memetic algorithms for diversity and dispersion
problems. It is organized in two parts. The first part discusses general design issues
of memetic algorithms concerning crossover, local search, population management,
evaluation function and constraint handling. The second part presents a survey of
memetic algorithms applied to three diversity and dispersion problems: maximum
diversity, the max-mean dispersion, and generalized max-mean dispersion.

1 Introduction

Diversity and dispersion problems are typical combinatorial optimization problems
whose search spaces increase exponentially with the size of the input. Seeking the
best or a good-enough solution in such a combinatorial space requires a suitable
balance between “exploitation” and “exploration” of the search process. Indeed, the
dual concept of exploitation and exploration covers two fundamental and comple-
mentary aspects of an effective search procedure. This concept is also known under
the term “intensification” and “diversification” introduced within the Tabu Search
methodology (Glover and Laguna, 1997).

Exploitation emphasizes the ability of the search procedure to examine intensively
and in depth specific search areas while exploration is the capacity to lead the search to
new promising areas. As such, a search procedure focusing only on exploitation will
confine itself in a limited area and may be trapped in poor optima (i.e., missing good
solutions that are not in the area under examination). On the other hand, a method
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focusing heavily on exploration and overlooking exploitation will lack capacity to
examine in depth a given area and pass by solutions of good quality. An effective
search method needs thus to appropriately balance exploitation and exploration.
Memetic Algorithms (MAs) (Moscato, 1999) constitute a very interesting framework
offering a variety of strategies and mechanisms to achieve this general objective.

MAs are hybrid search methods that combine the population-based search frame-
work (Bäck et al., 1989; Eiben and Smith, 2003) and neighborhood-based local
search framework (LS) (Hoos and Stützle, 2004). The basic rationale behind MAs
is to take advantage of the complementary search strategies offered by these two
different methods. Indeed, thanks to the use of a pool of multiple solutions, the
population-based framework naturally offers more facilities for exploration while
the neighborhood search framework provides more possibilities for exploitation.
A suitable hybridization of these two methods can help to ensure a good balance
between exploitation and exploration, assuring a high search performance.

MAs are a general optimization framework that can potentially be applied to
various combinatorial search problems (Neri et al., 2012). However, a successful MA
requires a careful adaptation of its components to the problem under consideration
by integrating problem-specific knowledge into the search operators and strategies
(Hao, 2012).

The remaining parts of this chapter is organized as follows. In Section 2, we give
the general presentation of the memetic algorithms. In Section 3, we show the main
considerations needed when designing an efficient memetic algorithm for the com-
binatorial optimization problems. In Section 4, we review representative memetic
algorithms for three diversity and dispersion problems, including the maximum di-
versity problem, the max-mean dispersion problem, and the generalized max-mean
dispersion problem. In the last section, we summarize this chapter.

2 General presentation of memetic algorithms

Memetic Algorithms (Moscato, 1999) are a population-based computational frame-
work and share a number of features with methods like Evolutionary Algorithms
and Scatter Search (Glover et al., 2000). MAs maintain a pool of high-quality candi-
date solutions and use these solutions to create new solutions by applying variation
operators such as combinations and local improvements.

A typical MA is composed of the following basic components: a population
of individuals to sample the search space, a combination operator (crossover) to
create new candidate solutions (offspring) by blending two or more solutions of
the population, a local improvement procedure to ameliorate offspring solutions,
and a population management strategy to update the population with the offspring.
Additionally, the MA uses an evaluation or fitness function to assess the quality
of each candidate solution and a selection mechanism to determine the candidate
solutions that will survive and undergo variations.
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Starting from an initial population (see §3.4), the MA repeats cycles of genera-
tions, each generation being composed of four sequential steps.

1. Selection of parents: Selection aims to determine the candidate solutions that will
be used to create offspring solutions. Selection for reproduction often operates in
relation with the fitness (quality) of the candidate solutions; high-quality solutions
have thus more chances to be chosen. Well-known examples of selection strate-
gies include roulette-wheel and tournament. Selection can also be done according
to other criteria such as diversity. In such a case, only “distanced” individuals are
allowed to reproduce. If the solutions of the population are sufficiently diversified,
selection can also be carried out randomly. The selection strategy influences the
diversity of the population (see also §3.3).

2. Combination of parents for offspring generation: Combination (also called
crossover) aims to create new promising solutions by blending (suitably) ex-
isting the chosen parents. An offspring solution is considered to be promising if it
can potentially lead the search process to new search areas where better solutions
may be found. To achieve this, the combination operator is often designed such
that it captures the semantics of the targeted problem to ensure the heritage of
good properties from parents to offspring. Additionally, the design of the com-
bination operator should ideally take care of creating diversified offspring. From
a perspective of exploration and exploitation, such a combination is intended to
play a role of strategic diversification with a long-term goal of reinforcing the
intensification. A carefully designed combination operator constitutes a driving
force of a successful MA.

3. Local improvement of offspring: The goal of local improvement is to improve the
quality of an offspring solution. Typically, starting from the offspring solution,
local improvement iteratively seeks new high-quality candidate solutions within a
given neighborhood. This process stops and returns the best solution found when
a user-defined stop condition is met. Compared with the combination operator,
local improvement plays essentially the role of intensifying the search by exploit-
ing search paths delimited by the underlying neighborhood. Like combination,
local improvement is another key component and driving force of a successful
MA.

4. Population updating: This step decides whether and how the improved offspring
solution from local improvement joins the population. Often, these decisions are
made according to criteria related to both quality and diversity. Such a strategy
is commonly employed in methods like Scatter Search and many Evolutionary
Algorithms. For instance, a basic quality-based updating rule replaces the worst
solution of the population while a diversity-based rule would substitute for a
similar solution according to a distance metric. Other criteria like recency (age)
can also be considered. The policy employed for managing the population should
maintain an appropriate diversity of the population. This allows the search process
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Input: 𝑝; // Size of population 𝑃𝑂𝑃

Output: 𝑠∗; // Best solution found
𝑃𝑂𝑃 ← PopGeneration(𝑝); //
PopEvaluation(𝑃𝑂𝑃); // Fitness evaluation of each individual
𝑠∗ ← 𝑏𝑒𝑠𝑡 (𝑃𝑂𝑃); // Record the best solution found so far
𝑓 ∗ ← 𝑓 (𝑠∗ ); // Record the fitness of the best solution
while Stop Condition is not verified do

(𝑠1,...,𝑠𝑘 ) ← ParentsSelection(𝑃𝑂𝑃); // 𝑘 ≥ 2 parents are selected

𝑠′ ← Recombination(𝑠1,...,𝑠𝑘); // Offspring generation
𝑠 ← OffspringImprovement(𝑠′); // Improvement of offspring

solution by local search
𝑃𝑂𝑃 ← PopulationUpdate(𝑠,𝑃𝑂𝑃); // Population update

according to a quality-diversity rule
(𝑠∗, 𝑓 ∗ ) ← BestSolutionUpdate(𝑠∗, 𝑓 ∗,𝑃𝑂𝑃); // Best solution and its

fitness are always recorded
end
return 𝑠∗

Algorithm 1: Memetic Algorithm Template

to avoid premature convergence and helps the algorithm to continually discover
new promising search areas.

The general MA template is described in Algorithm 1 where special attention
must be paid to the design of particular components. The stopping condition can be
a cut-off time, a maximum number of generations, a maximum number of fitness
evaluations, a maximum number of generations without improving the best-recorded
solution, a solution quality to be reached or a minimum threshold for the population
diversity. We deliberately leave out the mutation operator within this MA template.
In some sense, local search can be viewed as a guided macro-mutation operator.
However, mutation can also be applied to reinforce population diversity (Porumbel
et al., 2010). As a lean design principle, only necessary components are included in
a MA, while excluding any unjustified and superficial elements.

3 Special design considerations

3.1 Design of local search

Local improvement is one of the most important components of a MA and ensures
essentially the role of intensive exploitation of the search space. This is typically
achieved either by dedicated local search heuristics (see examples in (Lin, 1965;
Kernighan and Lin, 1970; Lin and Kernighan, 1973)) or by tailored general neigh-
borhood search methods. In this part, we focus our discussion on adaptation of local
search metaheuristics (Hoos and Stützle, 2004), but a large part of the discussion
applies to the design of local improvement procedures based on specific heuristics.



Memetic Algorithms 5

3.1.1 Local search template

Let (𝑆, 𝑓 ) be our search problem where 𝑆 and 𝑓 are respectively the search space
and optimization objective. A neighborhood 𝑁 over 𝑆 is any function that associates
to each solution 𝑠 ∈ 𝑆 some other solutions 𝑁 (𝑠) ⊂ 𝑆. Any solution 𝑠′ ∈ 𝑁 (𝑠) is
called a neighboring solution or simply a neighbor of 𝑠. For a given neighborhood
𝑁 , a solution 𝑠 is a local optimum with respect to 𝑁 if 𝑠 is the best in terms of 𝑓
among the solutions in 𝑁 (𝑠).

The notion of neighborhood can be explained in terms of the move operator.
Typically applying a move 𝑚𝑣 to a solution 𝑠 changes slightly 𝑠 and leads to a
neighboring solution 𝑠′. This transition from a solution to a neighbor is denoted by
𝑠′ = 𝑠 ⊕ 𝑚𝑣. Let Γ(𝑠) be the set of all possible moves which can be applied to 𝑠,
then the neighborhood 𝑁 (𝑠) of 𝑠 can be defined by: 𝑁 (𝑠) = {𝑠 ⊕ 𝑚𝑣 |𝑚𝑣 ∈ Γ(𝑠)}.

A typical local search algorithm begins with an initial configuration 𝑠 in 𝑆 and
proceeds iteratively to visit a series of configurations following the neighborhood.
At each iteration, a particular neighbor 𝑠′ ∈ 𝑁 (𝑠) is sought to replace the current
configuration and the choice of 𝑠′ is determined by the underlying metaheuristic and
by referring to the quality of the neighboring solution. For instance, a strict Descent
algorithm always replaces the current solution 𝑠 by a better neighbor 𝑠′ while tabu
search replaces the current solution by a best neighbor 𝑠′ even if the latter is of
inferior quality. Still with simulated annealing, the transition from 𝑠 to a randomly
selected neighbor 𝑠′ is conditioned by a changing probability.

3.1.2 Neighborhood design

The success of an LS algorithm depends strongly on its neighborhood. The neigh-
borhood defines the subspace of the search problem to be explored by the method.
For a given problem, the definition of the neighborhood should structure the search
space such that it helps the search process to find its ways to good solutions.

The choice of neighborhood is conditioned by the representation (genotype) used
to encode the candidate solutions of the search space (phenotype). It may further
depend on the structure and constraints of the problem on hand. Here we briefly
review some neighborhoods associated to three conventional representations, which
have a variety of applications. For diversity and dispersion problems, the binary
representation is most natural encoding technique. With the binary representation,
each solution of the search space is coded by a binary string such that each variable
represents a candidate item and takes the value of 1 if it is selected or 0 otherwise.

Based on this representation, two common neighborhoods are defined by the 𝑘-
𝑓 𝑙𝑖𝑝 and 𝑆𝑤𝑎𝑝 move operators. The 𝑘- 𝑓 𝑙𝑖𝑝 move changes the values of 𝑘 (𝑘 ≥1)
variables. So any neighbor 𝑠′ ∈ 𝑁 (𝑠) has a Hamming distance of 𝑘 to solution 𝑠. A
larger 𝑘 induces a larger neighborhood. Nevertheless, whether a larger neighborhood
should be preferred in practice depends on the computational cost to evaluate the
neighborhood. 𝑆𝑤𝑎𝑝 exchanges the values of two variables that have different values.
Note that 𝑆𝑤𝑎𝑝 can be simulated by two successive 1- 𝑓 𝑙𝑖𝑝 moves.
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These neighborhoods can be applied alone or jointly. Moreover, for a given
problem, it is often useful to seek meaningful ways to reduce these neighborhoods
by considering problem-specific knowledge of the problem.

3.1.3 Neighborhood evaluation

Another design issue that arises is the evaluation of a given neighborhood. Indeed, a
local search procedure moves iteratively from the current solution to a new solution
chosen within the neighborhood. To make this choice, local search needs to know the
cost variation (also called the move gain or move value) between the current solution
𝑠 and a candidate neighbor 𝑠′ ∈ 𝑁 (𝑠). The move gain indicates whether the neighbor
𝑠′ is of better, worse or equal quality relative to 𝑠. Let Δ 𝑓 = 𝑓 (𝑠′) - 𝑓 (𝑠) denote this
move gain.

• Incremental evaluation: Basically, there are two ways to obtain Δ 𝑓 for a neighbor.
The trivial way is to calculate 𝑓 (𝑠′) from “scratch” using the objective function1

𝑓 . Doing this way may be expensive if 𝑓 needs to be evaluated very often or if the
evaluation of 𝑓 itself involves complex calculations. A more efficient alternative
aims to derive the value of 𝑓 (𝑠′) from the value 𝑓 (𝑠) by updating only what is
strictly necessary. Indeed, if a neighbor 𝑠′ is close to its initial solution 𝑠, which
is true for many neighborhoods, then the evaluation of 𝑓 (𝑠′) can be carried out in
this incremental manner. For a number of basic neighborhoods, like those shown
previously, such an incremental evaluation is often possible.

• Full search of neighborhood: The incremental evaluation can be applied to all the
neighbors of a given neighborhood relation. In this case, it is generally useful to
investigate dedicated data structures (call it Δ-table) to store the move gains for all
the neighbors of the current solution. Δ-table provides a convenient way to know
the quality of each neighbor and enables an efficient search of the full neighbor-
hood. With such a Δ-table, the local search algorithm can decide easily at each
iteration which neighbor to take according to its search strategy. For instance, a
best-improvement descent algorithm will take the move that is identified by the
most negative value in the Δ-table to minimize the objective function. After each
move, the Δ-table (often only a portion of it) is updated accordingly using the
incremental evaluation technique to propagate the effect of the move. Δ-table is
a very useful technique for local search algorithms. This is particularly the case
for descent-based methods like Tabu Search where a best neighbor needs to be
identified (see examples in (Hoos and Stützle, 2004)).

• Approximative evaluation: The practical usefulness of Δ-table depends on both
the complexity and the number of updates needed after each move transition. It
may happen that, the move gain can not be incrementally calculated or the Δ

1 For the reason of simplicity, the term “objective function” is used here. A more precise term is
“evaluation function”, see §3.4.
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updates need to change a large portion of Δ-table. In this case, it would be use-
ful to replace the initial evaluation function by a (fast) approximative evaluation
function (Jin, 2005; Ren et al., 2021). More generally, approximate evaluation is
useful if the evaluation function is computationally expensive to calculate or if
the function is ill-defined.

• Order of evaluation: If the neighborhood is not completely searched, one must
decide the order in which the neighborhood is explored. For instance, the first-
improvement descent technique moves to any improving neighbor. If there are
several improving neighbors, the descent search picks the “first” one encountered
in the order the neighbors are examined. To allow such a method to increase its
search diversity, a random order may be preferred (Papadimitriou and Steiglitz,
1982).

3.1.4 Combination of neighborhoods

When different neighborhoods are available, it is interesting to consider combined
use of multiple neighborhoods. As an example, consider two neighborhoods 𝑁1 and
𝑁2. Then one can envisage at least three ways to use them jointly.

First, neighborhood union 𝑁1 ∪ 𝑁2 includes all the neighboring solutions of the
two underlying neighborhoods. A local search algorithm using the union neighbor-
hood selects the next neighboring solution among the solutions in 𝑁1 ∪ 𝑁2. This
combination has no sense if one neighborhood is fully included in the other one.

With Probabilistic neighborhood union 𝑁1 � 𝑁2, a neighboring solution in 𝑁1
(resp. 𝑁2) belongs to 𝑁1 � 𝑁2 with probability 𝑝 (resp. probability 1-𝑝). A local
search algorithm using this combined neighborhood selects at each iteration the next
neighbor from 𝑁1 with probability 𝑝 and from 𝑁2 with probability 1-𝑝.

Token-ring combination 𝑁1 → 𝑁2 is time-dependent and defined alternatively ei-
ther by 𝑁1 or 𝑁2 according to some pre-defined conditions (Di Gaspero and Schaerf,
2006). A local search algorithm using the token-ring neighborhood alternates be-
tween 𝑁1 and 𝑁2. It typically starts with one neighborhood until the search stagnates,
then changes to the other neighborhood until the search stagnates again to switch
back to the first neighborhood and so on.

The advantage of combined neighborhood was already demonstrated long time
ago for solving the Traveling Salesman Problem (Lin and Kernighan, 1973). More
generally, the issue of transitioning among alternative neighborhoods was discussed
with the Tabu Search framework and strategic oscillation design in (Glover, 1997a).
More recent examples of local search methods focusing on multiple neighborhoods
include Variable Neighborhood Search (Hansen and Mladenovic, 1999), Neighbor-
hood Portfolio Search (Di Gaspero and Schaerf, 2006) and Progressive Neighbor-
hood Search (Goëffon et al., 2008). Examples of studies on neighborhood combina-
tions can be found in (Hamiez et al., 2009; Jin and Hao, 2015; Li and Hao, 2022; Li
et al., 2020).



8 Jin-Kao Hao and Xiangjing Lai

3.2 Design of combination operator

3.2.1 Solution combination

Combination is another key component of a MA and constitutes one leading force
to explore the search space. The basic idea of combination is very appealing since it
provides a very general way of generating new solutions by mixing existing solutions.
Contrary to local changes of local improvement, combination can bring into new
solutions more useful information, that may be beneficial for a healthy evolution of
the search process.

As a first step, it would be tempting to consider a blind (random) crossover for
solution combination. Doing this has the advantage of ease of application. However,
one question should be asked: Is the blind crossover meaningful with respect to the
optimization objective? If the answer is negative, the blind crossover is probably not
appropriate and plays a simple role of random diversification.

Thus, it is often useful to consider dedicated combination operators that have
strong “semantics” with respect to the optimization objective. A semantic crossover
aims to pass intrinsic building blocks (interesting patterns or characteristics) from
parents to offspring (Holland, 1975; Radcliffe, 1991). The design of such a crossover
is far from trivial and represents a challenging issue. Although there is theoretical
guidance, the discovery of a semantic crossover in practice relies basically on a deep
analysis and understanding of the given problem. Compared to the design of local
search procedures, the design of a meaningful crossover constitutes probably one of
the most creative parts of an effective MA.

To design a meaningful crossover, it is necessary to identify what are the building
blocks of solutions that can be assembled and inherited through the recombination
process. Unfortunately, there is no short-cut to this quest and a fine analysis and deep
understanding of the given problem are indispensable to find useful clues.

First, one can analyze the samples of optimal or high-quality solutions to possibly
identify regular patterns shared by these solutions. Indeed, if such a pattern exists,
then the combination operator can conserve the pattern from the parents. Alterna-
tively, the combination operator can also be encouraged to promote the emergence
of favorable building blocks. For instance, such an analysis applied to the Traveling
Salesman Problem shows that high-quality local optima share sub-tours (Lin, 1965;
Lin and Kernighan, 1973). This property has been used by several highly successful
crossover operators which conserve common edges or sub-tours in offspring solu-
tions (Whitley et al., 1989; Nagata and Kobayashi, 1997). Similarly, for the graph
coloring problem, an analysis of coloring solutions discloses that some nodes are
always grouped to the same color class (i.e. colored with the same color). This char-
acteristic has helped to devise powerful combination operators, as shown in (Dorne
and Hao, 1998; Galinier and Hao, 1999) and in (Galinier et al., 2008; Malaguti et al.,
2008; Lü and Hao, 2010; Porumbel et al., 2010) with multi-parents.
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3.2.2 Multi-parent combination

Combination may operate with more than two parents. Multiple parent combination
is even a general rule for the Scatter Search metaheuristic which uses, in its origi-
nal form, linear combinations of several solutions to create new solutions (Glover,
1977). Although there are no theoretical justifications, the practical advantage of
multiple parent recombinations was demonstrated in several occasions for discrete
optimization. For instance, for the graph 𝑘-coloring problem, several recent and top-
performing algorithms integrate multiple parent combination (Galinier et al., 2008;
Malaguti et al., 2008; Lü and Hao, 2010; Porumbel et al., 2010), where color classes
from different solutions are assembled to build offspring colorings. More generally,
when multiple solutions are used for creating a new solution, one can define special
rules to score the solution components of each parent solution and use strategic
voting rules to combine components from different parents solutions.

A question that arises for multi-parent combination is how to determine the
number of the parents. By using two parents, the offspring is expected to inherit
50% material from each parent. The contribution of each parent to the new solution
decreases with an increasing number of parents. If the building blocks from different
parents are independent from one another, taking more parents into account would
be interesting to build good and diversified offspring. Otherwise, if a building block
from a parent is epistatic with respect to the building blocks of other parents, blending
more parents means more disruption, and thus should be avoided.

3.3 Population diversity management

Population diversity is another important issue that should be considered in an ef-
fective MA (Galinier and Hao, 1999; Sörensen and Sevaux, 2006; Porumbel et al.,
2010). If the population diversity is not properly managed, the algorithm will con-
verge prematurely to poor optima. This is particularly true when a small population
is used. The goal of population diversity is to help the search process not only to
avoid premature convergence, but also to continually discover new promising areas.

Population diversity can be measured by a similarity (or distance) metric applied
to the members of the population. The metric can be defined either on the solution
representation level (genotype metric) or solution level (phenotype metric) (Gold-
berg, 1989). For instance, pair-wise Hamming distance can be used as a genotype
metric to measure population diversity. Diversity can also be measured in terms of
entropy (Fleurent and Ferland, 1996) or by the so-called moment of inertia (Morri-
son and Jong, 2002). Genotype metric is usually problem independent, and thus may
or may not reflect the intrinsic diversity of a population with respect to the given
optimization objective.

Population diversity can be promoted and managed at several levels of a MA.
One evident possibility is to define specific selection rules to favor the selection of
distanced parents for mating. Another possibility concerns the variation operators
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which can be designed in such a way that they favors the generation of divers and
varied offspring. More generally, the path-relinking type of combinations typically
construct offspring solutions by considering both the solution quality and its distance
to its parent solutions (Glover et al., 2000) (see also (Lü et al., 2010) for an example).

Population diversity can also be controlled by the offspring acceptation and re-
placement strategies. Specifically, this can be done according to both solution diver-
sity and quality. For instance, in Porumbel et al. (2010) a minimum diversity-quality
threshold is imposed between the solutions of the population. The acceptation of
a new offspring is conditioned not only by its quality, but also by its distance to
existing solutions. Similarly, diversity and quality are considered to select the victim
solution to be replaced by the offspring.

Other useful ideas for diversity preservation can be found in the areas of Genetic
Algorithms. Well-known examples include sharing (Goldberg and Richardson, 1987)
and crowding (DeJong, 1975; Mahfoud, 1992).

3.4 Other issues

In addition to the components mentioned until now, the design of an effective
Memetic Algorithm should take into account a number of other considerations
which are briefly discussed in this Section.

• Initial population: There are basically two ways to obtain an initial population:
Random generation and constructive elaboration. While random generation is
easy to apply, it can hardly generate initial solutions of good quality. An alter-
native is to use a fast greedy procedure to create the initial population. In this
case, the greedy procedure must be randomized such that each application leads
to a different solution. Another issue for the initialization stage is to take care of
building a diversified population. This can be achieved by controlling the distance
between each new solution and the existing solutions of the population.

• Constraints: The constraints in the considered problem may influence the de-
sign of some MA components. For instance, suppose that the MA algorithm is
expected to explore only feasible solutions. Then the local search and combina-
tion operators must generate only feasible solutions. If the algorithm explores
both feasible and infeasible solutions, it is necessary to define an extended (e.g.,
pelnalty-based) evaluation function to assess the fitness of an infeasible solution.

• Connections with Scatter Search and Path Relinking: The MA framework shares
ideas with Scatter Search and Path Relinking (Glover, 1997b; Glover et al., 2000).
These latter methods provide unifying principles for joining solutions based on
generalized path constructions. In Scatter Search, dispersed new solutions are
created from a set of reference solutions by weighted combinations of subsets of
the reference solutions that are selected as elite solutions. With Path Relinking,
offspring solutions are generated by exploring, within a neighborhood space,
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trajectories that connect two or more reference solutions. One notices that the
reference solutions or subsets of them can be considered as parent solutions for
combination while combination resorts to diverse strategies such as attribute
voting and weighting.

4 Memetic algorithms for diversity and dispersion problems

In this section, we review representative memetic algorithms for three diversity and
dispersion problems: the maximum diversity problem, the max-mean dispersion
problem, and the generalized max-mean dispersion problem.

4.1 Memetic algorithms for the maximum diversity problem

Given a set 𝑉 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} of 𝑛 elements, a distance matrix [𝑑𝑖 𝑗 ]𝑛×𝑛 between
the 𝑛 elements, and a positive integer 𝑚 (𝑚 < 𝑛), the maximum diversity problem
(MDP) consists of selecting a subset 𝑀 of cardinality 𝑚 from 𝑉 , such that the
sum of distances between elements in 𝑀 is maximized. Formally, the MDP can be
formulated as a quadratic 0-1 integer program (Kuby, 1987):

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 (𝑥) =
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑑𝑖 𝑗𝑥𝑖𝑥 𝑗 (1)

𝑠.𝑡.

𝑛∑︁
𝑖=1

𝑥𝑖 = 𝑚 (2)

where 𝑥𝑖 is a binary variable which takes 1 if 𝑒𝑖 is selected to be a member of 𝑀 and
0 otherwise.

The MDP is shown to be an NP-hard problem with a number of practical ap-
plications (Ghosh, 1996), such as location, ecological systems, medical treatment,
genetics, product design, immigration and admission policies, committee formation,
curriculum design (Katayama and Narihisa, 2005; Martı́ et al., 2013). Due to its prac-
tical importance and the NP-hard feature, the MDP has received a lot of attention,
and a number of heuristic algorithms have been proposed in the literature, including
trajectory-based local search algorithms and population-based memetic algorithms.
We focus on the best-performing memetic algorithms.

4.1.1 Memetic algorithms for the maximum diversity problem

Wu and Hao (2013) proposed the first memetic algorithm (denoted by MAMDP)
for the maximum diversity problem, whose general procedure is given in Algorithm
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Input: The set 𝑉 of 𝑛 elements, and distance matrix [𝑑𝑖 𝑗 ]𝑛×𝑛, cardinality of subset 𝑚, the
population size 𝑝;

Output: The best solution 𝑠∗ found;
Initialize population 𝑃𝑂𝑃 = {𝑠1, . . . , 𝑠𝑝 };
𝑠∗ ← 𝐵𝑒𝑠𝑡 (𝑃𝑂𝑃);// 𝑠∗ records the best solution found so far
while The stopping condition is not met do

Randomly select two parent solutions 𝑠1 and 𝑠2 from 𝑃𝑂𝑃;
𝑠𝑜 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑠1, 𝑠2 ) ;
𝑠𝑜 ← 𝑇𝑎𝑏𝑢𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑜 )// Local optimization
if 𝑓 (𝑠𝑜 ) > 𝑓 (𝑠∗ ) then

𝑠∗ ← 𝑠𝑜; // Update best solution 𝑆∗

end
𝑃𝑂𝑃 ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑈𝑝𝑑𝑎𝑡𝑒 (𝑠𝑜 , 𝑃𝑂𝑃); // Update population

end
return 𝑠∗

Algorithm 2: Memetic Algorithm for the maximum diversity problem

2. The algorithm is composed of a tabu search procedure for local optimization,
a crossover for new offspring generation, and a quality-and-distance population
updating strategy. Starting from an initial population, the algorithm performs a
number of generations until a stopping condition is met. At each generation, two
parent solutions 𝑠1 and 𝑠2 are selected from the population and recombined to
generate an offspring solution 𝑠𝑜, which is improved by the tabu search procedure
and then used to update the population.

The crossover generates, from two parent solutions 𝑠1 and 𝑠2 which have respec-
tively 𝑀1 and 𝑀2 as the sets of selected elements, its offspring solution 𝑠𝑜 with 𝑀𝑜

as the set of selected elements in two steps. It first retains all common elements of
𝑀1 and 𝑀2 as the elements of offspring solution 𝑀0, i.e., 𝑀0 ← 𝑀1 ∩ 𝑀2. Then,
the remaining elements of the offspring are alternately selected from 𝑀1 \ 𝑀0 and
𝑀2 \ 𝑀0 until the size of 𝑀0 reaches 𝑚. This is a cardinality-constrained uniform
crossover.

The tabu search based local optimization is the key component of the MAMDP
algorithm. It features a constrained swap neighborhood as well as a fast neighborhood
evaluation technique. For the MDP, the swap neighborhood 𝑁𝑠𝑤𝑎𝑝 defined by the
swap move (𝑢, 𝑣) is very popular in the literature, which has the advantage of
maintaining the feasibility of neighboring solutions. Given a candidate solution 𝑀
(i.e., the set of selected elements), the swap operation (𝑢, 𝑣) exchanges a selected
element 𝑒𝑢 ∈ 𝑀 against a non-selected element 𝑒𝑣 ∈ 𝑉 \ 𝑀 . Let 𝑆 ⊕ (𝑢, 𝑣) denote
the neighboring solution after applying the swap move (𝑢, 𝑣) to solution 𝑀 . Then
the neighborhood 𝑁𝑠𝑤𝑎𝑝 (𝑀) is given by 𝑁𝑠𝑤𝑎𝑝 (𝑀) = {𝑀 ⊕ (𝑢, 𝑣) : 𝑒𝑢 ∈ 𝑀, 𝑒𝑣 ∈
𝑉 \ 𝑀}, whose size is 𝑚 × (𝑛 − 𝑚).

To reduce this neighborhood, a constrained swap neighborhood𝐶𝑁 is introduced,
which is a much smaller subset of 𝑁𝑠𝑤𝑎𝑝 . The idea of the constrained neighborhood
𝐶𝑁 is to limit the swap moves to two specific subsets 𝑋 ⊂ 𝑀 and𝑌 ⊂ 𝑉\𝑀 , while the
resulting constrained neighborhood contains the best solution in the neighborhood
𝑁𝑠𝑤𝑎𝑝 . To construct 𝑋 and 𝑌 , a “potential” vector 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) (i.e., Δ-
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table) is defined for the current solution 𝑀 , where 𝑝𝑖 is the potential of element
𝑒𝑖 (1 ≤ 𝑖 ≤ 𝑛) in the current solution and is calculated as 𝑝𝑖 =

∑
𝑒 𝑗 ∈𝑀 𝑑𝑖 𝑗 . Let

𝑑
′
𝑚𝑖𝑛

= 𝑚𝑖𝑛{𝑝𝑖 : 𝑒𝑖 ∈ 𝑀} and 𝑑′𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑝𝑖 : 𝑒𝑖 ∈ 𝑉 \ 𝑀}, 𝑋 is defined as
𝑋 = {𝑒𝑖 ∈ 𝑀 : 𝑝𝑖 ≤ 𝑑

′
𝑚𝑖𝑛
+ 𝐷𝑚𝑎𝑥} and 𝑌 is defined as 𝑌 = {𝑒𝑖 ∈ 𝑉 \ 𝑀 :

𝑝𝑖 ≥ 𝑑
′
𝑚𝑎𝑥 − 𝐷𝑚𝑎𝑥}, where 𝐷𝑚𝑎𝑥 is the maximum distance in the distance matrix

[𝑑𝑖 𝑗 ]𝑛×𝑛. Then, the constrained neighborhood 𝐶𝑁 (𝑀) is defined as:

𝐶𝑁 (𝑀) = {𝑀 ′
: 𝑀

′
= 𝑀 \ {𝑢} ∪ {𝑣}, 𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 } (3)

The constrained neighborhood 𝐶𝑁 is in general much smaller than 𝑁𝑠𝑤𝑎𝑝 .
To efficiently evaluate the neighboring solutions, the tabu search method employs

a fast neighborhood evaluation technique. Given the current solution 𝑀 and its
potential vector 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛), the move gain Δ𝑢𝑣 of a swap (𝑢, 𝑣) (i.e.,
variation in the objective value) can be calculated by Δ𝑢𝑣 = 𝑝𝑣 − 𝑝𝑢 − 𝑑𝑢𝑣 in 𝑂 (1),
and the vector 𝑃 (i.e., Δ-table) is updated in 𝑂 (𝑛) after the swap (𝑢, 𝑣) as follows:

𝑝𝑖 =


𝑝𝑖 + 𝑑𝑖𝑣 , for 𝑒𝑖 = 𝑒𝑣; (4)
𝑝𝑖 − 𝑑𝑖𝑢, for 𝑒𝑖 = 𝑒𝑢; (5)
𝑝𝑖 + 𝑑𝑖𝑣 − 𝑑𝑖𝑢, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; (6)

To avoid premature convergence, the MAMDP algorithm tries to maintain a
healthy population during the search. This is achieved by adopting a quality-and-
distance updating strategy, which simultaneously considers the quality and the diver-
sity of population, to update the population. Concretely, given an offspring solution
𝑀𝑜 and the current population 𝑃𝑂𝑃, the offspring is first inserted into the population
(i.e., 𝑃𝑂𝑃← 𝑃𝑂𝑃∪{𝑀}), and then a quality-and-distance scoring function is used
to identify the worst solution 𝑀𝑤 . Subsequently, the worst solution 𝑀𝑤 is deleted
from the population (𝑃𝑂𝑃← 𝑃𝑂𝑃 \ {𝑀𝑤}).

Computational experiments on benchmark instances commonly used in the lit-
erature show that the MAMDP algorithm is very competitive compared with the
previous algorithms.

In addition to the MAMDP algorithm, other memetic algorithms were proposed
by further improving the tabu search method and devising other crossover operators
and population management strategies. Wang et al. (2014) presented a memetic
algorithm (TS/MA) for the MDP, which differs from the MAMDP algorithm mainly
by its population updating strategy and the local search method. First, Wang et al.
devised a new tabu search method in which the size of neighborhood is controlled
by a parameter 𝑐𝑙𝑠 called the candidate list size. By controlling the value of 𝑐𝑙𝑠,
the neighborhood is limited to a high-quality subset of 𝑁𝑠𝑤𝑎𝑝 . Moreover, a swap
operation (𝑢, 𝑣) is performed in a two-phase way. That is, the swap move (𝑢, 𝑣) is
subdivided into two successive component operations: (1) move 𝑒𝑢 from 𝑀 to𝑉 \𝑀 ,
(2) move 𝑒𝑣 from 𝑉 \ 𝑀 to 𝑀 . Second, the algorithm employs a greedy population
updating strategy, i.e., the offspring 𝑀𝑜 is used to replace the worst solution 𝑀𝑤 if
𝑀𝑜 differs from any solution in the population and is superior to 𝑀𝑤 in the objective
value. On the other hand, to enhance its diversification ability, the TS/MA algorithm
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rebuilds the population by perturbing randomly the population individuals when
the search stagnates, while keeping the best solution found so far 𝑀∗ in the new
population.

Zhou et al. (2017) proposed an opposition-based memetic algorithm (OBMA) for
the MDP by introducing the concept of opposition-based learning into the memetic
algorithm framework. OBMA brings several improvements into the basic memetic
algorithm framework. First, OBMA employs an opposition-based learning (OBL)
strategy to reinforce population initialization as well as the evolutionary search
process, by simultaneously considering a candidate solution and its an opposite
solution. Specifically, in the population initialization, a random solution and its
an opposite solution are simultaneously generated and locally optimized, and the
best between them is inserted into the population, this process is repeated until
the number of individuals reaches the size of population 𝑝. Moreover, at each
generation of the evolutionary search process, a crossover operator is used to generate
an offspring solution as well as its an opposite solution, and the two offspring
solutions are then optimized by a local search procedure. Second, OBMA employs an
improved tabu search method which relies on a constrained neighborhood as its local
search procedure, where the size of the constrained neighborhood is controlled by a
parameter 𝛼. Third, OBMA employs a rank-based quality-and-distance population
updating strategy to maintain a healthy population, where the quality of an individual
is measured by its rankings with respect to the objective value and the average distance
to the population.

Lai et al. (2018) introduced a diversification-driven memetic algorithm for the
MDP. To enhance its diversification ability, the proposed algorithm adds dynamically
a number of randomly generated new solutions into the population during the search
process. Specifically, at each generation of the evolutionary search process, the
algorithm generates randomly an initial solution with a probability of 𝛽 and improves
it by a tabu search method. Then, the improved offspring solution is used to update the
population by a quality-and-distance updating strategy. Experimental results show
that such a strategy enhances significantly the population diversity and the searching
ability of the memetic algorithm.

Liu et al. (2020) proposed a two-phase tabu search based evolutionary algorithm
(TPTS/EA) for the MDP, which uses only two individuals in the population, like the
HEAD algorithm for graph coloring (Moalic and Gondran, 2018). TPTS/EA uses
two path-relinking based combination operators to generate the offspring solutions
and a two-phase tabu search method as its local search procedure. To reach a good
tradeoff between diversification and intensification, the tabu search method consists
of a solution-based tabu search procedure and an attribute-based tabu search pro-
cedure. In comparison, the solution-based tabu search has a stronger intensification
ability and the attribute-based tabu search has a stronger diversification ability. More-
over, to further enhance its diversification ability, the TPTS/EA algorithm generates
randomly new initial solutions as parent solutions when the search stagnates, which
shares the same spirit as (Lai et al., 2018).

In summary, these memetic algorithms for the MDP share several common char-
acteristics, including efficient tabu search methods with a small-sized and focused
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neighborhood, fast neighborhood evaluation techniques, solution recombination op-
erators, and efficient population management strategies considering both the quality
of solutions and the diversity of population. Indeed, these carefully designed algo-
rithmic components ensure together the high performances of these algorithms for
the MDP.

4.1.2 Computational results and comparison

Table 1 Comparison between four memetic algorithms in the literature. The computational results
of algorithms are taken from the literature (Liu et al., 2020)

𝐵𝐾𝑅 − 𝑓𝑏𝑒𝑠𝑡 𝐵𝐾𝑅 − 𝑓𝑎𝑣𝑔
Instance 𝐵𝐾𝑅 MAMDP TS/MA OBMA TPTS/EA MAMDP TS/MA OBMA TPTS/EA
MDG-a 21 114271 0 0 0 0 8.1 10.4 5.2 0.5
MDG-a 22 114327 0 0 0 0 8.8 8.8 0.1 0
MDG-a 23 114195 0 0 0 0 15.2 8.5 15.2 7
MDG-a 24 114093 0 0 0 0 15.7 19.9 11.2 5.3
MDG-a 25 114196 0 0 0 0 42.1 29.5 41.5 30.6
MDG-a 26 114265 0 0 0 0 10.8 15.6 10.2 2.6
MDG-a 27 114361 0 0 0 0 0 0 0.2 0
MDG-a 28 114327 0 0 0 0 20.9 25.2 18.9 0.1
MDG-a 29 114199 0 0 0 0 7.6 7.8 4.4 0.8
MDG-a 30 114229 0 0 0 0 9.3 4.1 8.1 0
MDG-a 31 114214 0 0 0 0 17.8 24.3 16.7 9
MDG-a 32 114214 0 0 0 0 26.8 21.5 23.7 12
MDG-a 33 114233 0 0 0 0 3.6 1.2 2 0
MDG-a 34 114216 0 0 0 0 3.4 3.6 2.4 0.1
MDG-a 35 114240 0 0 0 0 1.2 1.7 1.6 1.7
MDG-a 36 114335 0 0 0 0 8.6 7.3 5.7 3.6
MDG-a 37 114255 0 0 0 0 6.5 11.7 5.2 0
MDG-a 38 114408 0 0 0 0 0.7 1 0.5 0.6
MDG-a 39 114201 0 0 0 0 3.4 4 2 0
MDG-a 40 114349 0 0 0 0 24.1 15.6 23 19.9
b2500-1 1153068 0 0 0 0 72.1 0 0 0
b2500-2 1129310 0 0 0 0 143.7 73,9 37.9 30.9
b2500-3 1115538 0 0 0 0 184.5 184.7 0.4 92.7
b2500-4 1148012 172 172 172 0 324.3 331 237.8 126.5
b2500-5 1144756 0 0 0 0 10.5 45.2 5.3 47.4
b2500-6 1133572 0 0 0 0 80.5 54.4 0 0
b2500-7 1149064 0 0 0 0 45 65 14.1 25
b2500-8 1142762 0 0 0 0 1.7 1.2 1.5 0
b2500-9 1138866 0 0 0 0 3.7 0 1.3 0
b2500-10 1153936 0 0 0 0 0 0 0 0
p3000-1 6502330 0 0 0 0 76.7 35.1 24.4 16.4
p3000-2 18272568 0 0 0 0 146.1 0 0 7.1
p3000-3 29867138 0 0 0 0 527.9 0 0 0
p3000-4 46915044 0 0 0 0 399.5 1.2 1.2 0
p3000-5 58095467 0 0 0 0 210.7 2.27 0 18.3
p5000-1 17509433 64 64 64 0 229.1 96.4 192.2 66.8
p5000-2 50103092 21 21 0 0 475.5 65 22.8 19.4
p5000-3 82040316 176 0 0 0 1419 171.3 209.3 235
p5000-4 129413710 279 0 0 0 800.9 198.1 97.8 141.7
p5000-5 160598156 136 0 0 0 411.9 139.1 102.9 138
#Best 34 37 38 40 3 9 12 28

To illustrate the relative performances of these (best) memetic algorithms for
the MDP, Table 1 shows their computational results on 40 representative instances
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(extracted from Liu et al. (2020)). Columns 1 and 2 indicate the names and the
best-known results (𝐵𝐾𝑅) of the instances, columns 3–6 give the gaps between
𝐵𝐾𝑅 and the best objective value obtained ( 𝑓𝑏𝑒𝑠𝑡 ) by these algorithms, and columns
7–10 present the gaps between 𝐵𝐾𝑅 and the average objective value ( 𝑓𝑎𝑣𝑔). The last
row ’#Best’ shows the number of instances for which the corresponding algorithm
obtained the best result among the compared algorithms in terms of 𝑓𝑏𝑒𝑠𝑡 and 𝑓𝑎𝑣𝑔.
It is observed that improvements are continually made while the latest two-phase
tabu search based memetic algorithm (Liu et al., 2020) holds the current best results.

4.2 Memetic algorithm for the max-mean dispersion problems

Given a set of 𝑉 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} of 𝑛 elements and a distance matrix [𝑑𝑖 𝑗 ]𝑛×𝑛
among elements, the max-mean dispersion problem (MaxMeanDP) consists of se-
lecting a subset𝑀 from𝑉 , such that the mean dispersion among the selected elements
is maximized. Formally, the MaxMeanDP problem can be expressed as a fractional
0–1 programming problem:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 (𝑥) =
∑𝑁−1
𝑖=1

∑𝑁
𝑗=𝑖+1 𝑑𝑖 𝑗𝑥𝑖𝑥 𝑗∑𝑖=𝑛
𝑖=1 𝑥𝑖

(7)

𝑠.𝑡.

𝑛∑︁
𝑖=1

𝑥𝑖 ≥ 2 (8)

where 𝑥𝑖 is a binary variable which takes 1 if 𝑒𝑖 is selected to be a member of 𝑀 and
0 otherwise.

The generalized MaxMeanDP problem (GMaxMeanDP) is a generalization of the
MaxMeanDP where each element 𝑒𝑖 is associated with a weight 𝑤𝑖 . Like MaxMe-
anDP, the GMaxMeanDP can be expressed as a fractional 0–1 programming problem
as follows:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 (𝑥) =
∑𝑁−1
𝑖=1

∑𝑁
𝑗=𝑖+1 𝑑𝑖 𝑗𝑥𝑖𝑥 𝑗∑𝑖=𝑛
𝑖=1 𝑤𝑖𝑥𝑖

(9)

𝑠.𝑡.

𝑛∑︁
𝑖=1

𝑥𝑖 ≥ 2 (10)

Thus, for both problems, a candidate solution can be conveniently indicated by a
0-1 vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛).

4.2.1 Memetic algorithm

The first memetic algorithm for the MaxMeanDP (denoted by MAMMDP) was in-
troduced in (Lai and Hao, 2016). Later, this algorithm was adapted to the GMaxMe-
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anDP in (Lai et al., 2020), where another perturbation-based evolutionary algorithm
(PBEA) was also presented. As an example, we focus on the MAMMDP algorithm,
whose general scheme is shown in Algorithm 3.

Input: The set 𝑉 of 𝑛 elements, the population size 𝑝, the timeout limit 𝑡𝑚𝑎𝑥 ;
Output: The best solution 𝑠∗ found;
while 𝑡𝑖𝑚𝑒 ( ) < 𝑡𝑚𝑎𝑥 do

𝑃𝑂𝑃 = {𝑠1, . . . , 𝑠𝑝 } ← PopInitialization(𝑝);
if the loop is not performing its first execution then

𝑠𝑤 ← 𝑎𝑟𝑔 𝑚𝑖𝑛{ 𝑓 (𝑠𝑖 ) : 𝑖 = 1, . . . , 𝑝};
𝑃𝑂𝑃 ← 𝑃𝑂𝑃 ∪ {𝑠∗} \ {𝑠𝑤 };

end
𝑠∗ ← 𝑎𝑟𝑔 𝑚𝑎𝑥{ 𝑓 (𝑠𝑖 ) : 𝑖 = 1, . . . , 𝑝} // 𝑠∗ keeps the best solution

found
𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← {(𝑠𝑖 , 𝑠 𝑗 ) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑝};
while 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ≠ ∅ and 𝑡𝑖𝑚𝑒 ( ) < 𝑡𝑚𝑎𝑥 do

Randomly pick a solution pair (𝑠𝑖 , 𝑠 𝑗 ) ∈ 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ;
𝑠𝑜 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑠𝑖 , 𝑠 𝑗 ) // uniform crossover
𝑠𝑜 ← 𝑇𝑎𝑏𝑢𝑆𝑒𝑎𝑟𝑐ℎ (𝑠𝑜 );
if 𝑓 (𝑠𝑜 ) > 𝑓 (𝑠∗ ) then

𝑠∗ ← 𝑠𝑜;
end
𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 \ { (𝑠𝑖 , 𝑠 𝑗 ) };
𝑠𝑤 ← 𝑎𝑟𝑔 𝑚𝑖𝑛{ 𝑓 (𝑠𝑖 ) : 𝑖 = 1, . . . , 𝑛𝑝};
if 𝑠𝑜 dose not exist in 𝑃𝑂𝑃 and 𝑓 (𝑠𝑜 ) > 𝑓 (𝑠𝑤 ) then

𝑃𝑂𝑃 ← 𝑃𝑂𝑃 ∪ {𝑠𝑜 } \ {𝑠𝑤 };
𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 \ { (𝑠𝑤 , 𝑠𝑘 ) : 𝑠𝑘 ∈ 𝑃𝑂𝑃};
𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ∪ { (𝑠𝑜 , 𝑠𝑘 ) : 𝑠𝑘 ∈ 𝑃𝑂𝑃};

end
end

end
return 𝑠∗
Algorithm 3: Memetic algorithm for the MaxMeanDP and GMaxMeanDP

In addition to the population, the algorithm uses a reference set (𝑃𝑎𝑖𝑟𝑆𝑒𝑡) to
contain the solution pairs of the population for crossover operations. At each genera-
tion, a solution pair (𝑠𝑖 , 𝑠 𝑗 ) is randomly picked from 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 and then the crossover
operator is applied to the selected solution pair (𝑠𝑖 , 𝑠 𝑗 ) to generate a new solution
𝑠𝑜. After a crossover, the reference 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 is accordingly updated as follows: 1)
The solution pair (𝑠𝑖 , 𝑠 𝑗 ) is removed from 𝑃𝑎𝑖𝑟𝑆𝑒𝑡; 2) If the offspring solution 𝑠𝑜
replaces the worst solution 𝑠𝑤 in the population, all the solution pairs containing 𝑠𝑤
are removed from 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 and all possible solution pairs that can be generated by
combining 𝑠𝑜 with other solutions in the population are added into 𝑃𝑎𝑖𝑟𝑆𝑒𝑡. This
strategy, inspired by the path relinking method (Glover et al., 2000), ensures that
every pair of solutions in the population is combined exactly once, favoring a more
intensified search. Second, the algorithm employs an efficient tabu search method as
its local optimization method. Third, the population is recreated once the reference
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set 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 becomes empty, while preserving the best solution (𝑠∗) found so far in
the new population.

Another key feature of the MAMMDP algorithm concerns the tabu search method
which employs the 1-flip neighborhood induced by the 1-flip move operator. Given
a candidate solution 𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), the 1-flip operator changes the value of a
single variable 𝑥𝑖 to its complementary value 1 − 𝑥𝑖 , while keeping the values of
other variables unchanged. Thus, the neighborhood 𝑁1 (𝑠) can be written as:

𝑁1 (𝑠) = {𝑠 ⊕ 𝑓 𝑙𝑖𝑝(𝑖) |1 ≤ 𝑖 ≤ 𝑛} (11)

Compared to the swap neighborhood 𝑁𝑠𝑤𝑎𝑝 in Section 4.1.1, the 1-flip neigh-
borhood is of smaller size and has a stronger exploitation ability that can access any
region in the solution space.

For an efficient evaluation of candidate neighboring solutions, the tabu search
procedure employs a fast neighborhood evaluation technique. This technique main-
tains a 𝑛-dimensional vector 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) (i.e., Δ-table) to incrementally
calculate the move gain of each possible 1-flip move applicable to the current solu-
tion 𝑠, where the entry 𝑝𝑖 represents the sum of distances between the element 𝑖 and
the selected elements for the current solution 𝑠, i.e., 𝑝𝑖 =

∑
𝑗∈𝑀; 𝑗≠𝑖 𝑑𝑖 𝑗 , where 𝑀 is

the set of selected elements. When a 1-flip move is performed by flipping variable
𝑥𝑖 as 𝑥𝑖 ← (1 − 𝑥𝑖), the move gain Δ𝑖 can be incrementally calculated as follows:

Δ𝑖 =


− 𝑓 (𝑠)
|𝑀 | + 1

+ 𝑝𝑖

|𝑀 | + 1
, for 𝑥𝑖 = 0; (12)

𝑓 (𝑠)
|𝑀 | − 1

− 𝑝𝑖

|𝑀 | − 1
, for 𝑥𝑖 = 1; (13)

where 𝑓 (𝑠) is the objective value of the current solution 𝑠 and |𝑀 | is the number of
the selected elements in 𝑠. Subsequently, the vector 𝑃 is accordingly updated as:

𝑝 𝑗 =


𝑝 𝑗 + 𝑑𝑖 𝑗 , for 𝑥𝑖 = 0, 𝑗 ≠ 𝑖; (14)
𝑝 𝑗 − 𝑑𝑖 𝑗 , for 𝑥𝑖 = 1, 𝑗 ≠ 𝑖; (15)
𝑝 𝑗 , for 𝑗 = 𝑖; (16)

For the GMaxMeanDP, the move gain Δ𝑖 is calculated as follows when variable
𝑥𝑖 is flipped:

Δ𝑖 =


− 𝑓 (𝑠)𝑤𝑖
𝑆𝑀 + 𝑤𝑖

+ 𝑝𝑖

𝑆𝑀 + 𝑤𝑖
, for 𝑥𝑖 = 0; (17)

𝑓 (𝑠)𝑤𝑖
𝑆𝑀 − 𝑤𝑖

− 𝑝𝑖

𝑆𝑀 − 𝑤𝑖
, for 𝑥𝑖 = 1; (18)

where 𝑆𝑀 =
∑
𝑖∈𝑀 𝑤𝑖 is the sum of vertex weights of the selected elements in 𝑠.

The vector 𝑃 is initialized at the beginning of each call of the tabu search procedure
in𝑂 (𝑛2), and is updated in𝑂 (𝑛) at each iteration. With the fast evaluation technique,
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the best 1-flip move in 𝑁1 (𝑠) can be identified in 𝑂 (𝑛) and thus the total complexity
of each iteration of the tabu search method is bounded by 𝑂 (𝑛).

The tabu search method uses a specific tabu list management strategy, which is
based on a periodic step function defined on the number of iterations to periodically
adjust the tabu tenure 𝑡𝑡. Denote the current iteration by 𝑖𝑡𝑒𝑟 and the tabu tenure of
the current move by 𝑡𝑡 (𝑖𝑡𝑒𝑟), the tabu tenure function is defined by a sequence of
values (𝑎1, 𝑎2, · · · , 𝑎𝑞) and a sequence of interval margins (𝑏1, 𝑏2, · · · , 𝑏𝑞+1), such
that for any 𝑖𝑡𝑒𝑟 in [𝑏𝑖 , 𝑏𝑖+1 − 1] 𝑡𝑡 (𝑖𝑡𝑒𝑟) = 𝑎𝑖 + 𝑟𝑎𝑛𝑑 (𝐶), where 𝑟𝑎𝑛𝑑 (𝐶) denotes
a random integer between 0 to 𝐶. The value of 𝑞 is set to 15, and (𝑎)𝑖=1, · · · ,15 =
𝑇𝑚𝑎𝑥

8 × (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1), where 𝑇𝑚𝑎𝑥 is a parameter that is used
to control the maximum tabu tenure. The interval margins are then defined by 𝑏1 = 1,
𝑏𝑖+1 = 𝑏𝑖 + 5𝑎𝑖 (𝑖 ≤ 15). In principle, a small tabu tenure leads usually to strong
search intensification while a large tabu tenure favors search diversification. Thus, the
periodical change of the tabu tenure among several small and large values provides
a strategy to reach a desirable balance between intensification and diversification of
the search.

Finally, as recombination operator, the uniform crossover is used for offspring
generation. Given two selected parent solutions 𝑠𝑖 = (𝑥𝑖11 , 𝑥

𝑖
2, . . . , 𝑥

𝑖
𝑛) and 𝑠2 =

(𝑥 𝑗1 , 𝑥
𝑗

2 , . . . , 𝑥
𝑗
𝑛), the value of each component 𝑥𝑜

𝑖
(𝑖 = 1, 2, . . . , 𝑛) of the offspring

solution 𝑠𝑜 is randomly chosen from the set {𝑥1
𝑖
, 𝑥2
𝑖
} with an equal probability of 0.5.

4.2.2 Computational results and comparison

To illustrate the related performance of the MAMMDP algorithm on the MaxMe-
anDP, Tables 2 - 4 summarize the results of MAMMDP on benchmark instances
with 𝑛 = 500, 750, 1000, 1500, 2000 elements compared to other best MaxMeanDP
algorithms: a GRASP and path relinking approach (GRASP-PR) (Martı́ and San-
doya, 2013), a two-phased hybrid heuristic (2PHA) (Della Croce et al., 2014), a
three-phase hybrid approach (3PHA) (Della Croce et al., 2016), and a two-phase
tabu search (TP-TS) method (Carrasco et al., 2015), and the perturbation-based evo-
lutionary algorithm (PBEA) (Lai et al., 2020), including the best objective value over
20 independent runs ( 𝑓𝑏𝑒𝑠𝑡 ), the average objective value ( 𝑓𝑎𝑣𝑔), the success rate (SR),
and the average computational time 𝑡 (𝑠) in seconds. Tables 2 and 3 show that for the
instance with 𝑛 ≤ 1000, the MAMMDP algorithm dominates other algorithms both
in terms of solution quality and computational efficiency. For the largest instances
with 𝑛 = 1500, 2000, Table 4 indicates that the two evolutionary algorithms MAM-
MDP and PBEA dominates the variable neighborhood search algorithm (VNS) in
(Brimberg et al., 2017), while MAMMDP and PBEA perform quite similarly on
these very large instances.

As to the GMaxMeanDP problem, Table 5 shows the computational results of
MAMMDP (Lai and Hao, 2016) and PBEA (Lai et al., 2020) on 40 large-scale
instances with 𝑛 = 3000. The results indicate that the MAMMDP and PBEA al-
gorithms have a comparable performance in terms of computational results and
efficiency.
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Table 2 Computational results of best MaxMeanDP algorithms on the set of 20 representative
instances with 𝑛 = 500. Each instance is independently solved 20 times by MAMMDP, and
dominating results are indicated in bold compared to the previous best-known results 𝑓𝑝𝑟𝑒 in the
literature.

MAMMDP
Instance 𝑛 𝑓𝑝𝑟𝑒 GRASP-PR 2PHA 3PHA TP-TS 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR 𝑡 (𝑠)
MDPI1 500 500 81.28 78.6050000 81.25 81.28 81.28 81.277044 81.277044 20/20 0.69
MDPI2 500 500 77.79 76.8734667 77.45 77.79 77.60 78.610216 78.610216 20/20 1.43
MDPI3 500 500 76.30 75.6914063 75.31 76.30 75.65 76.300787 76.300787 20/20 2.71
MDPI4 500 500 82.33 81.8058434 82.28 82.33 81.47 82.332081 82.332081 20/20 0.95
MDPI5 500 500 80.08 78.5695714 80.01 80.08 79.92 80.354029 80.354029 20/20 2.80
MDPI6 500 500 81.25 79.6426282 81.12 81.25 79.93 81.248553 81.248553 20/20 0.78
MDPI7 500 500 78.16 75.4989726 78.09 78.16 77.71 78.164511 78.164511 20/20 0.92
MDPI8 500 500 79.06 76.9836424 79.01 79.06 78.70 79.139881 79.139881 20/20 1.27
MDPI9 500 500 77.36 75.7209449 76.98 77.36 77.15 77.421000 77.421000 20/20 2.37
MDPI10 500 500 81.25 80.3789051 81.24 81.25 81.02 81.309871 81.309871 20/20 0.91
MDPII1 500 500 109.38 108.152545 109.16 109.38 109.33 109.610136 109.610136 20/20 0.75
MDPII2 500 500 105.33 103.287851 105.06 105.33 104.81 105.717536 105.717536 20/20 0.88
MDPII3 500 500 107.79 106.301714 107.64 107.79 107.18 107.821739 107.821739 20/20 0.89
MDPII4 500 500 106.10 104.618442 105.37 106.10 105.69 106.100071 106.100071 20/20 0.56
MDPII5 500 500 106.59 103.608188 106.37 106.55 106.59 106.857162 106.857162 20/20 0.99
MDPII6 500 500 106.17 104.813987 105.52 105.77 106.17 106.297958 106.297958 20/20 0.98
MDPII7 500 500 107.06 104.503378 106.61 107.06 106.92 107.149379 107.149379 20/20 0.88
MDPII8 500 500 103.78 100.021407 103.41 103.78 103.49 103.779195 103.779195 20/20 0.59
MDPII9 500 500 106.24 104.927769 106.20 106.24 105.97 106.619793 106.619793 20/20 1.11
MDPII10 500 500 104.15 103.497014 103.79 104.15 103.56 104.651507 104.651507 20/20 1.01
#Better 13 13
#Equal 7 7
#Worse 0 0

4.3 Discussions

In this section, we discuss the main features of the top-performing memetic algo-
rithms for the three diversity and dispersion problems.

First, like for many combinatorial search problems, tabu search methods with
a small-sized neighborhood and a fast neighborhood evaluation technique play the
key role of search intensification (Wu and Hao, 2013; Wang et al., 2014; Lai et al.,
2018; Lai and Hao, 2016; Lai et al., 2020; Liu et al., 2020). Moreover, a combined
use of solution-based and attribute-based tabu searches can further raise the search
capacity of the algorithm (Liu et al., 2020). This strategy creates a better balance be-
tween diversification and intensification and helps to better solve some very difficult
instances.

Second, crossover is another contributing search component. In particular, the
uniform crossover (Lai and Hao, 2016; Lai et al., 2020) and the backbone-based
crossover (Wu and Hao, 2013; Zhou et al., 2017) allow the offspring solution to
inherit the favorable features of elite parent solutions, and contribute to the discovery
of promising new regions that are difficult to attain by local search methods.

Finally, as for the population management, the popular quality-based strategy that
replaces the worst solution of the population by a better offspring solution has the
main advantage of simplicity (Wang et al., 2014; Lai and Hao, 2016; Lai et al.,
2020). More advanced methods such as rank-based update (Zhou et al., 2017) and
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Table 3 Computational results of MAMMDP (Lai and Hao, 2016) and TS (Carrasco et al., 2015)
on the set of 40 representative instances with 750 ≤ 𝑛 ≤ 1000. Each instance is independently
solved 20 times by MAMMDP, and improved results are indicated in bold.

MAMMDP
Instance 𝑛 TS 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR 𝑡 (𝑠)
MDPI1 750 750 95.86 96.650699 96.650699 20/20 4.31
MDPI2 750 750 97.42 97.564880 97.564880 20/20 3.82
MDPI3 750 750 96.97 97.798864 97.798864 20/20 1.81
MDPI4 750 750 95.21 96.041364 96.041364 20/20 4.38
MDPI5 750 750 96.65 96.761928 96.761928 20/20 0.65
MDPI6 750 750 99.25 99.861250 99.861250 20/20 5.55
MDPI7 750 750 96.26 96.545413 96.545413 20/20 1.01
MDPI8 750 750 96.46 96.726976 96.726976 20/20 1.73
MDPI9 750 750 96.78 98.058377 98.058377 20/20 2.18
MDPI10 750 750 99.85 100.064185 100.064185 20/20 3.42
MDPII1 750 750 127.69 128.863707 128.863707 20/20 5.66
MDPII2 750 750 130.79 130.954426 130.954426 20/20 2.31
MDPII3 750 750 129.40 129.782453 129.782453 20/20 11.64
MDPII4 750 750 125.68 126.582271 126.582271 20/20 1.48
MDPII5 750 750 128.13 129.122878 129.122878 20/20 1.32
MDPII6 750 750 128.55 129.025215 129.025215 20/20 7.98
MDPII7 750 750 124.91 125.646682 125.646682 20/20 3.38
MDPII8 750 750 130.66 130.940548 130.940548 20/20 1.91
MDPII9 750 750 128.89 128.889908 128.889908 20/20 1.30
MDPII10 750 750 132.99 133.265300 133.265300 20/20 1.81
MDPI1 1000 1000 118.76 119.174112 119.174112 20/20 8.25
MDPI2 1000 1000 113.22 113.524795 113.524795 20/20 3.52
MDPI3 1000 1000 114.51 115.138638 115.138638 20/20 2.32
MDPI4 1000 1000 110.53 111.150397 111.150397 20/20 3.58
MDPI5 1000 1000 111.24 112.723188 112.723188 20/20 1.61
MDPI6 1000 1000 112.08 113.198718 113.198718 20/20 7.72
MDPI7 1000 1000 110.94 111.555536 111.555536 20/20 1.88
MDPI8 1000 1000 110.29 111.263194 111.263194 20/20 3.55
MDPI9 1000 1000 115.78 115.958833 115.958833 20/20 2.38
MDPI10 1000 1000 114.29 114.731644 114.731644 20/20 2.16
MDPII1 1000 1000 145.46 147.936175 147.936175 20/20 1.60
MDPII2 1000 1000 150.49 151.380035 151.380035 20/20 1.78
MDPII3 1000 1000 149.36 150.788178 150.788178 20/20 4.92
MDPII4 1000 1000 147.91 149.178006 149.178006 20/20 3.80
MDPII5 1000 1000 150.23 151.520847 151.520847 20/20 3.28
MDPII6 1000 1000 147.29 148.343378 148.343378 20/20 3.22
MDPII7 1000 1000 148.41 148.742375 148.742375 20/20 6.30
MDPII8 1000 1000 145.87 147.826804 147.826804 20/20 13.52
MDPII9 1000 1000 145.67 147.083880 147.083880 20/20 3.83
MDPII10 1000 1000 148.40 150.046137 150.046137 20/20 2.13
#Better 40 40
#Equal 0 0
#Worse 0 0

quality-and-distance based update (Wu and Hao, 2013; Lai et al., 2018) are more
likely to better preserve population diversity and prevent premature convergence.

5 Conclusions

Memetic algorithms are a category of hybrid evolutionary algorithms that combine
single trajectory local search and population based evolutionary search. Memetic
algorithms are quite successful for a number of difficult combinatorial optimiza-
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Table 4 Comparison between MAMMDP (Lai and Hao, 2016) and PBEA (Lai et al., 2020) on
the 40 MaxMeanDP instances with 𝑛 = 1500 or 2000 from the literature. Each instance was
independently solved 20 times using both algorithms respectively, and the improved results are
indicated in bold in terms of 𝑓𝑏𝑒𝑠𝑡 .

MAMMDP PBEA
Instance VNS 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR 𝑡 (𝑠) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR 𝑡 (𝑠)
MDPI1 1500 136.26 136.535222 136.535222 20/20 14.21 136.535222 136.535222 20/20 18.75
MDPI2 1500 138.00 138.341482 138.341482 20/20 5.38 138.341482 138.341482 20/20 8.04
MDPI3 1500 138.91 139.200599 139.200599 20/20 3.17 139.200599 139.200599 20/20 3.28
MDPI4 1500 139.81 140.166920 140.166920 20/20 5.65 140.166920 140.166920 20/20 4.67
MDPI5 1500 136.47 137.129630 137.129630 20/20 7.73 137.129630 137.129630 20/20 12.65
MDPI6 1500 136.22 136.508768 136.508768 20/20 7.05 136.508768 136.508768 20/20 10.13
MDPI7 1500 137.65 137.971032 137.971032 20/20 2.49 137.971032 137.971032 20/20 3.20
MDPI8 1500 138.02 138.728444 138.728444 20/20 13.56 138.728444 138.728444 20/20 13.95
MDPI9 1500 136.30 136.495674 136.495674 20/20 21.39 136.495674 136.495674 20/20 28.95
MDPI10 1500 140.33 140.333159 140.333159 20/20 3.47 140.333159 140.333159 20/20 3.90
MDPI1 2000 158.03 158.588217 158.588217 20/20 10.40 158.588217 158.588217 20/20 11.79
MDPI2 2000 162.91 163.939616 163.939616 20/20 19.11 163.939616 163.939616 20/20 31.71
MDPI3 2000 158.98 159.570786 159.545090 13/20 39.86 159.570786 159.528479 6/20 38.94
MDPI4 2000 159.14 160.185217 160.185217 20/20 28.46 160.185217 160.184761 17/20 54.41
MDPI5 2000 156.11 156.805331 156.758147 10/20 41.25 156.805331 156.776147 13/20 55.30
MDPI6 2000 161.61 161.839100 161.839100 20/20 11.30 161.839100 161.839100 20/20 13.72
MDPI7 2000 157.58 158.336131 158.336131 20/20 9.79 158.336131 158.336131 20/20 7.93
MDPI8 2000 161.43 161.446931 161.446931 20/20 20.03 161.446931 161.446931 20/20 22.30
MDPI9 2000 159.15 160.190374 160.190374 20/20 29.21 160.190374 160.187769 17/20 44.28
MDPI10 2000 160.90 161.638099 161.638099 20/20 7.60 161.638099 161.638099 20/20 4.99
MDPII1 1500 181.67 182.089413 182.089413 20/20 6.33 182.089413 182.089413 20/20 8.23
MDPII2 1500 185.48 186.243869 186.243869 20/20 6.78 186.243869 186.243869 20/20 4.66
MDPII3 1500 181.55 182.142902 182.142902 20/20 3.13 182.142902 182.142902 20/20 4.76
MDPII4 1500 184.91 185.557302 185.500190 8/20 42.93 185.557302 185.514675 9/20 35.93
MDPII5 1500 190.15 190.860529 190.860529 20/20 2.25 190.860529 190.860529 20/20 1.65
MDPII6 1500 183.14 183.575336 183.575336 20/20 3.05 183.575336 183.575336 20/20 1.90
MDPII7 1500 179.34 179.820242 179.820242 20/20 13.93 179.820242 179.820242 20/20 18.43
MDPII8 1500 186.60 186.602804 186.602804 20/20 2.74 186.602804 186.602804 20/20 3.30
MDPII9 1500 181.43 181.918814 181.918814 20/20 17.85 181.918814 181.918814 20/20 14.75
MDPII10 1500 182.70 183.384692 183.384692 20/20 32.37 183.384692 183.384692 20/20 26.01
MDPII1 2000 208.85 209.845273 209.845273 20/20 8.13 209.845273 209.845273 20/20 11.24
MDPII2 2000 218.19 218.404860 218.404860 20/20 16.03 218.404860 218.404860 20/20 22.40
MDPII3 2000 209.57 210.819147 210.807415 19/20 15.52 210.819147 210.819147 20/20 18.05
MDPII4 2000 211.99 212.424859 212.424859 20/20 16.15 212.424859 212.424859 20/20 25.81
MDPII5 2000 215.33 216.088722 216.088722 20/20 9.90 216.088722 216.088722 20/20 8.96
MDPII6 2000 210.61 211.769151 211.769151 20/20 10.88 211.769151 211.769151 20/20 6.88
MDPII7 2000 209.65 209.780651 209.780651 20/20 19.95 209.780651 209.780651 20/20 25.74
MDPII8 2000 212.43 212.575432 212.575432 20/20 17.03 212.575432 212.575432 20/20 27.75
MDPII9 2000 214.61 215.007759 215.007759 20/20 15.87 215.007759 215.007759 20/20 12.92
MDPII10 2000 210.06 210.735749 210.735436 15/20 28.22 210.735749 210.735561 17/20 28.19
#Improved 38 38 38 38
#Better 0 3 0 4
#Equal 40 33 40 33
#Worse 0 4 0 3

tion problems, including diversity and dispersion problems. This chapter illustrates
some representative and effective memetic algorithms designed for the maximum
diversity problem, the max-mean dispersion problem, and the generalized max-mean
dispersion problem.

These memetic algorithms generally integrate three complementary features. An
effective tabu search procedure is used to intensively examine a given search area.
This is achieved by exploring constrained (small-sized) 1-flip and swap neighbor-
hoods and adopting fast neighborhood evaluation techniques. A crossover operator is
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Table 5 Comparison between MAMMDP (Lai and Hao, 2016) and PBEA (Lai et al., 2020) on the
40 GMaxMeanDP instances with 𝑛 = 3000. Each instance was independently solved 20 times by
each algorithm, and better results between the two algorithms are indicated in bold both in terms
of 𝑓𝑏𝑒𝑠𝑡 and 𝑓𝑎𝑣𝑔.

MAMMDP PBEA
Instance 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR 𝑡 (𝑠) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR 𝑡 (𝑠)
I 3000 1 80.743467 80.743467 20/20 44.45 80.743467 80.743467 20/20 92.53
I 3000 2 84.201027 84.201027 20/20 17.82 84.201027 84.201027 20/20 46.71
I 3000 3 81.630082 81.630082 20/20 6.62 81.630082 81.630082 20/20 9.34
I 3000 4 80.234334 80.234334 20/20 29.61 80.234334 80.234334 20/20 28.07
I 3000 5 81.218062 81.218043 19/20 108.59 81.218062 81.218062 20/20 138.28
I 3000 6 83.197618 83.197618 20/20 37.99 83.197618 83.197618 20/20 64.05
I 3000 7 81.732080 81.732080 20/20 2.73 81.732080 81.732080 20/20 4.50
I 3000 8 80.624273 80.624273 20/20 79.61 80.624273 80.624273 20/20 83.53
I 3000 9 80.574438 80.574438 20/20 7.59 80.574438 80.574438 20/20 10.76
I 3000 10 83.397670 83.397670 20/20 48.63 83.397670 83.397670 20/20 138.84
II 3000 1 99.055143 99.055143 20/20 15.04 99.055143 99.055143 20/20 12.66
II 3000 2 105.574146 105.574146 20/20 29.08 105.574146 105.574146 20/20 63.27
II 3000 3 101.299271 101.299271 20/20 3.31 101.299271 101.299271 20/20 6.71
II 3000 4 101.079824 101.079824 20/20 8.41 101.079824 101.079824 20/20 8.03
II 3000 5 100.029225 100.029225 20/20 84.01 100.029225 100.028322 18/20 241.64
II 3000 6 101.978783 101.978783 20/20 5.80 101.978783 101.978783 20/20 4.56
II 3000 7 100.189718 100.189718 20/20 6.43 100.189718 100.189718 20/20 17.36
II 3000 8 101.160428 101.160428 20/20 3.36 101.160428 101.160428 20/20 4.52
II 3000 9 98.665034 98.665034 20/20 39.15 98.665034 98.665034 20/20 59.96
II 3000 10 104.896612 104.896612 20/20 4.40 104.896612 104.896612 20/20 11.86
III 3000 1 27.847334 27.847334 20/20 102.65 27.847334 27.847334 20/20 108.70
III 3000 2 27.776796 27.774430 7/20 214.29 27.776796 27.774272 4/20 120.08
III 3000 3 27.946519 27.944592 17/20 147.23 27.946519 27.946519 20/20 157.85
III 3000 4 27.816272 27.816272 20/20 81.41 27.816272 27.816272 20/20 70.66
III 3000 5 27.727167 27.727167 20/20 115.40 27.727167 27.727167 20/20 160.51
III 3000 6 27.686986 27.677719 8/20 136.73 27.691682 27.686631 4/20 131.25
III 3000 7 27.642060 27.642060 20/20 74.29 27.642060 27.642060 20/20 158.84
III 3000 8 27.736643 27.733842 5/20 287.29 27.736643 27.734079 6/20 184.58
III 3000 9 27.745820 27.744637 19/20 139.88 27.745820 27.745820 20/20 77.88
III 3000 10 27.561083 27.560295 19/20 157.43 27.561083 27.561083 20/20 92.74
IV 3000 1 278.039443 278.037117 19/20 137.79 278.039443 278.027811 15/20 151.80
IV 3000 2 276.539877 276.530847 18/20 216.82 276.539877 276.539691 18/20 238.37
IV 3000 3 277.334878 277.334878 20/20 31.02 277.334878 277.334878 20/20 40.40
IV 3000 4 278.956422 278.956422 20/20 42.08 278.956422 278.956422 20/20 61.36
IV 3000 5 276.595238 276.595238 20/20 152.28 276.595238 276.595238 20/20 108.00
IV 3000 6 280.721533 280.721533 20/20 55.32 280.721533 280.721533 20/20 60.47
IV 3000 7 273.653396 273.653396 20/20 84.47 273.653396 273.653396 20/20 169.85
IV 3000 8 276.358447 276.358447 20/20 70.96 276.358447 276.358447 20/20 81.56
IV 3000 9 274.864865 274.821773 17/20 159.03 274.864865 274.838571 18/20 241.92
IV 3000 10 276.428571 276.411918 17/20 220.16 276.428571 276.407810 16/20 151.95
#Better 0 4 1 8
#Equal 39 28 39 28
#Worse 1 8 0 4

employed to discover promising new search regions guided by elite parent solutions.
This is achieved by inheriting the common elements from the parents. A certain
level of population diversity is maintained during the search, which is warranted
by adopting a suitable population updating strategy, often relying on both solution
quality and distance to the population solutions.

Finally, it is worth indicating that for some other dispersion problems such as the
minimum difference dispersion problem, the current best performing method is based
on an intensification-driven solution-based tabu search (IDTS) (Lai et al., 2019),
which outperforms significantly other algorithms including a previous memetic al-
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gorithm (Wang et al., 2017). It would be interesting to combine these two approaches
to create a still better algorithm for this problem by adopting the IDTS algorithm
within the memetic framework. Using the best local optimization is part of the best
practices for designing effective memetic algorithms. This approach can be applied
to better solve other diversity and dispersion problems.
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Lü Z., Glover F., Hao J.-K. (2010) A hybrid metaheuristic approach to solving the ubqp problem.
European Journal of Operational Research, Published online: 30 June 2010.

Mahfoud S. W. (1992) Crowding and preselection revisited. In: Männer R., Manderick B. (eds)
Parallel Problem Solving from Nature 2, PPSN-II, Brussels, Belgium, September 28-30, 1992,
Elsevier Science, pp. 27–36.



26 Jin-Kao Hao and Xiangjing Lai

Malaguti E., Monaci M., Toth P. (2008) A metaheuristic approach for the vertex coloring problem.
INFORMS Journal on Computing, 20(2):302–316.

Martı́ R., Sandoya F. (2013) Grasp and path relinking for the equitable dispersion problem. Com-
puters & Operations Research, 40(12):3091–3099.

Martı́ R., Gallego M., Duarte A., Pardo E. G. (2013) Heuristics and metaheuristics for the maximum
diversity problem. Journal of Heuristics, 19(4):591–615.

Moalic L., Gondran A. (2018) Variations on memetic algorithms for graph coloring problems.
Journal of Heuristics, 24(1):1–24.

Morrison R. W., Jong K. A. D. (2002) Measurement of population diversity. In: et al. P. C. (ed)
Selected Papers from the 5th International Conference on Artificial Evolution, Le Creusot,
France, October 29-31, 2001, Springer, Lecture Notes in Computer Science, vol 2310, pp.
31–41.

Moscato P. (1999) Memetic algorithms: a short introduction. In: Corne D., Dorigo M., Glover F.
(eds) New Ideas in Optimization, McGraw-Hill Ltd., Maidenhead, UK., pp. 219–234.

Nagata Y., Kobayashi S. (1997) Edge assembly crossover: a high-power genetic algorithm for the
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