30 SOLVING THE PROGRESSIVE
PARTY PROBLEM BY LOCAL SEARCH

Philippe Galinier and Jin-Kao Hao

LGI2P, EMA-EERIE, Parc Scientifique Georges Besse, F-30000 Nimes, France.

galinier@eerie.fr, haoQeerie.fr

Abstract:

The Progressive Party Problem (PPP) is a complex, constrained combina-
torial optimization problem. The goal of the problem consists of finding as-
signments of resources to variables for a given number of time periods while
satisfying a set of multiple constraints. So far, two quite different approaches
have been tried to solve the problem: Integer Linear Programming and Con-
straint Programming. All attempts with Integer Linear Programming failed,
while Constraint Programming obtained better results. In this work, we present
a third approach based on Local Search. We show that this approach gives bet-
ter results than the previous ones and constitutes a very effective alternative
to solve the PPP. We investigate different techniques for solving the problem,
in particular issues related to search space, cost function and neighborhood
functions.

30.1 INTRODUCTION

The Progressive Party Problem is a complex, constrained combinatorial prob-
lem. It consists in assigning resources to several variables for a given number
of time periods while satisfying a set of multiple constraints. The PPP is inter-
esting because it is known to be extremely hard for some mathematical method
and remains unsolved. Moreover, the problem possesses many non trivial, het-
erogeneous constraints.

The problem has been proposed by a yacht club in order to organize a party
taking place during several successive time periods [2, 8]. There are some host
boats that receive the crews of other boats. For each time period, each guest
crew must visit one of the host boats while respecting the following constraints:

m Each guest crew moves to a different host at each time period.
443

444 META-HEURISTICS 98: THEORY & APPLICATIONS
m Two crews meet each other at most once.

m The capacities of the host boats must be respected: for each time period
and each host boat, the sum of the sizes of the crews who visit this boat
during this time period cannot be greater than the capacity of the host.

Given these constraints, the problem consists in finding an assignment of
the boats to the guest crews that respects all the constraints for the maximal
possible number of time periods. There exists in the literature a well-known
instance coming directly from the initial organization problem. Moreover, the
basic version of the problem was to find, for this instance, a consistent assign-
ment for a number of time periods fixed to six. So far, two different approaches
have been tried to solve the above mentioned benchmark instance of the prob-
lem: Integer Linear Programming (ILP) [2] and Constraint Programming (CP)
[8]. All attempts with Integer Linear Programming failed since no solution was
found for the basic problem of 6 time periods. On the contrary, CP proved to
be a more successful approach because it found solutions not only for the basic
problem, but also for 7 and 8 time periods!. However, it was unknown if a
solution would exist for more time periods.

In this work, we investigate a third approach based on Local Search to
tackle the PPP. To model the PPP, we follow the CP approach, i.e. we con-
sider the PPP as a Constraint Satisfaction Problem (CSP) [9, 14]. Based on
this modeling, we introduce a search space, a cost function and two differ-
ent neighborhoods, and experiment them with some well-known local search
meta-heuristics. We show that this approach allows us to find better results
than previous methods for the benchmark instance. Indeed, we are able to find
solutions for 9 time periods in several seconds of CPU time.

The paper is organized as follows. In the next section, we present an overview
of solving constraint satisfaction problems using Local Search and we represent
the PPP using the formalism CSP (Section 30.2). Then, we present the different
components of our local search algorithms (Section 30.3) and computational
results (Section 30.4). In the last section, we give some conclusions of the
work.

30.2 LOCAL SEARCH FOR CSP
Constraint Satisfaction Problem (CSP)

A CSP [9] [14] is defined by a triplet (X,D,C) with:
m g finite set X of n variables : X = {x1, -+ ,xn}.

m a set D of associated domains : D = {D,,,--+ , D, }. Each domain D,,
specifies the finite set of possible values of the variable z;.

I Better results were obtained very recently, see Section 30.4 for more discussions.

THE PROGRESSIVE PARTY PROBLEM 445

m q finite set C of p constraints : C = {Ci,---,Cp}. Each constraint is
defined on a set of variables and specifies which combinations of values
are compatible for these variables.

Given such a triplet, the problem consists in finding a complete assignment
of the values to the variables that satisfies all the constraints: such an assign-
ment is then said consistent. Since the set of all assignments (not necessarily
consistent) is defined by the Cartesian product D, X --- X D, of the domains,
solving a CSP means to determine a particular assignment among a potentially
huge number of possible assignments.

The CSP formalism is a powerful and general model. In fact, it can be
used to model conveniently some well-known problems such as k-coloring and
satisfiability as well as many practical applications related to resource assign-
ments, planning or timetabling. As we will see below, the PPP is also easily
represented as a CSP.

Local Search (LS) LS, also called neighborhood search, constitutes a power-
ful approach for tackling hard optimization problems [12]: given a couple (S, f)
with S being a finite set of configurations and f a cost function f : S — R,
to determine an element s, € S such that f(s.) = minses f(s). To solve an
optimization problem, Local Search needs a so-called neighborhood function
N:S — 29 (N(s) C S is called the neighborhood of s € §). A Local Search
algorithm begins with an initial configuration sqg € S and then generates a
series of configurations (s;)icfo,1,...} such that Vi € {0,1,---}, si11 € N(si).
Well-known examples of LS methods include various descent methods, simu-
lated annealing (SA) [7] and Tabu Search (TS) [4, 5]. The main difference
among LS methods concerns the way of visiting the given neighborhood.

Several LS methods, called repair methods, have been developed to solve
CSPs in Artificial Intelligence. One well-known example is the Min-conflict
(MC) heuristic [10]. With this heuristic, one seeks for a best value for a given
conflicting variable at each iteration?. This method corresponds in fact to a
special descent method and cannot go beyond a local optimum. This method
has been enforced by a noise strategy called random-walk [13]. Other extensions
or similar methods are reported in [6, 11, 15]. Recently, more advanced LS
methods such as Tabu Search and Simulated Annealing are also used to solving
constraint satisfaction problems [3].

In all these studies, a configuration is a complete assignment of values to
variables and the search space is defined by the Cartesian product Dy, X -+ X
D, . Two configurations are neighbors if and only if they are different at the
value of a single variable. The cost of a configuration is simply the number
of violated constraints by the configuration (a cost of zero corresponds to a
consistent assignment, thus a solution).

2A variable is said conflicting if it is involved in some unsatisfied constraints.

446 META-HEURISTICS 98: THEORY & APPLICATIONS

Formulation of the PPP as a Constraint Satisfaction Problem Recall
the PPP consists in finding an assignment of the boats to the guest crews that
respects all the constraints for the maximal possible number of time periods.
Let T be the number of time periods, G the number of guest crews and H
the number of host boats. We use ¢(g) to denote the size of a guest crew
g € {1,---,G}, C(h) the capacity of a host boat h € {1,--- ,H} and 4, €
{1,---, H} the host boat visited by the crew g during the time period ¢. In
the benchmark instance, there are H = 13 host boats and G = 29 guest crews.
Table 30.1 indicates the capacities of the boats and the sizes of the crews.

capacity C | #boats size ¢ | #Hcrews

10 2 7 1
9 6 1
8 6 5 3
7 1 4 8
6 1 3 2
4 2 2 14

13 29

Table 30.1 Capacities of the boats and sizes of the crews

Note however that an obvious upper bound for T is 10. Indeed, there is a
guest crew of size 7 and only 10 hosts have a capacity greater or equal to 7.
Hence only this 10 hosts can be assigned to this guest crew in order to respect
the capacity constraint. Moreover, this guest crew must visit a different host
at each time period. Hence, the number of time periods cannot exceed 10.

We use P,, to denote the problem of finding a consistent assignment for a
fixed number n of time periods in the benchmark instance of the problem. The
instance is naturally solved by solving P, for the different possible values of n
(from 1 to 10). For a fixed value of n, P, can be modeled as a CSP (X, D,C) as
follows. The set of variables is naturally X = {z,,,1 < g <G,1 <¢<T} and
all domains are equal to D = {1,2,--- ,H}: Vo € X, D, = D. The constraint
set C contains the following three different types of constraints:

m The first type of constraints imposes that each crew moves to a different
host at each time period. For each g, 1 < g < G, we impose the constraint:
DIFF(g) © x4,1,%q,2, - ,&q 7 are all different.

m The second type of constraints imposes that two crews meet at most once:
for each pair of guest crews, the number of time periods when these two
crews meet is 0 or 1. For each pair {g1, g2}, we impose the constraint:
ONCE({g1,92}) & {t,1 St < T | g, 0 = xg, 4} < 1.

m The third type of constraints imposes that the capacity of the host boats
must be respected. For each time period ¢, 1 < ¢t < T and each host boat
h,1 < h < H, we impose the constraint:
CAPA(ht) & Elgggc,xg,t:h c(g) < C(h)

THE PROGRESSIVE PARTY PROBLEM 447

Note that although each DIFF constraint may be replaced by a set of |T| *
(IT| —1)/2 binary constraints of difference, the constraints of types ONCE and
CAPA cannot be defined simply using binary constraints.

30.3 SOLVING THE PPP WITH LOCAL SEARCH

We define below the components of our local search procedures that are the
search space, the cost function, the neighborhood function and the meta-
heuristic.

30.3.1 Search space

As presented above, a configuration is a complete assignment of the numbers
in D={1---H =13} to the variables of X = {z,+,1<¢g<G,1<t<T}: a
configuration is a G x T table (G=29 and T' = 6,7,8,9 or 10) whose elements
are integers from {1---13}. The search space is the set of all such assignments.

30.3.2 Cost function

As stated in Section 30.2, the cost of a configuration of a CSP is often defined
as the number of violated constraints and one associates to each constraint C' a
penalty fo(s) which takes 1 or 0 according to whether the constraint is violated
or not for the configuration s. This 0/1 penalty function works generally well
for binary constraints, but is no more appropriate for n-ary constraints. In
fact, this function cannot distinguish a “strongly” violated constraint from
a “weakly” violated one. In the PPP, constraints are more complex, this is
why we introduce a more informative multi-valued penalty function for each
constraint.

Penalty for a constraint of type DIFF Recall that DIFF(g) is satisfied
if and only if 41,242, -+ , 241 are all different. For a constraint DIFF(g),
we define the penalty as the number of pairs {z4+,, 24+, } of variables having
the same value. That is, for any DIFF constraint C = DIFF(g) and any con-
figuration s, fo(s) = |[{{zg,t1, T2} | $(xg,t,) = $(zg,t,)}|, where s(x) denotes
the value assigned to x in s.

Penalty for a constraint of type ONCE Given a constraint of type ONCE
C = ONCE({g1,92}), we use Meety, 4, to denote the number of time peri-
ods when these two crews meet: Meety, g,(s) = {t,1 <t < T | s(zg,¢) =
8(Zgy,¢)}|- Recall that the constraint is satisfied for s if and only if Meet,, 4,(s)
< 1. If the constraint is violated (Meety, 4, > 1), we define the penalty fc to
be equal to Meety, 4, — 1 in order to incite the value of Meety, 4, to decrease
progressively until the constraint becomes satisfied (i.e. Meetq, 4, = 1).

0 if Meetg, 4,(s) <1
Meetg, 4,(s) —1 otherwise

fe(s) = {

448 META-HEURISTICS 98: THEORY & APPLICATIONS

Penalty for a constraint of type CAPA Given a constraint of type CAPA
C = CAPA(h,t), let o+ be the overloading of the host h for the time period
t: on(s) = C(h) — ZISQSG,s(wg‘t):h c(g). When op,; < 0, the penalty is
naturally 0 because the constraint is satisfied. The penalty is fixed to 1 if
on,t = 1 and increases progressively for higher values of oy, ¢, in order to incite
on,t to decrease: fc =1+ B x (o, — 1). We fixed B = 1/4 empirically.

_ 0 if o, (s) <0
fe(s) = { 1+ (one(s)—1)/4 othertwise

Remark Note that the penalty fc(s) for a constraint C of type ONCE is
exactly the minimum number of variables that must be changed in s in order
to satisfy the constraint C. It is also roughly the case for the constraints of
type CAPA, considering that the average size of a crew is about 4 (3.24 more
precisely). This principle is applicable to other n-ary constraints in order to
define an effective penalty function.

Cost function Finally, the cost function is the weighted sum of the penalty
functions of all the constraints C € C:

Vse S, f(s) = ZP(C) * fo(s)

cec

where p is a weight function p: C — R.

The weight for each of three types of constraints is determined empirically.
The best weights found are 2, 1 and 2 for DIFF, ONCE and CAPA respectively
- more precisely, the weights are 4, 2 and 4, in order to have integer values for

1.

30.3.3 Conflicting variables

Many search methods give a different role to a variable depending on whether
it is in conflict or not. If a constraint C is satisfied, no variable is conflicting
for this constraint. But if C' is violated, some variables are conflicting. The
notion of conflicting variable in the PPP is defined as follows.

For a DIFF constraint C = DIFF(g) , variable x4, is in conflict in a
configuration s if and only if there exists another variable x4+, (t1 # t2) such
that s(zg+,) = (g,)

For a constraint C = ONCE({g1, g»}): variables z,, ; and x4, ; are conflict-
ing for the constraint C if the constraint is violated (Meet,, 4,(s) > 1) and
S(xght) = S(Igz,t)‘

For a constraint C' = CAPA(h,t): variable x4, is conflicting for the con-
straint C' if, first, the constraint is violated (o} +(s) > 0) and, second, s(z4:) =
h.

THE PROGRESSIVE PARTY PROBLEM 449

30.3.4 Definition of the neighborhood function

Recall that a neighborhood function is any function N : § — 29. In order to
simplify the presentation, we will use the notion of mowve to define a neighbor-
hood. Applying a move m to a configuration s € S leads to a new configuration
denoted by s@&m. Let M (s) be the set of all possible moves which can be applied
to s, then the neighborhood of s is defined by: N(s) = {s@®m | m € M(s)}.

For the PPP, we introduce two quite different types of moves denoted by
OneMove and Swap. From these two types of moves, we define two neighbor-
hoods denoted by N; and Ns.

Neighborhood N; A move of type OneMove consists simply in changing the
host boat affected to a given crew for a given period, i.e. the current value of
a single variable z is replaced by a new one v. Such a move is denoted by the
couple (z,v) € X x D where s(x) # v. The neighborhood N is defined from
My = OneMove.

m M(s) = OneMove(s) = {(z,v) € X x D | s(z) # v},

§'(z) = v and
vy € X —{z},5'(y) = s(y)

= Ni(s) = {s @ (z,v) | (z,v) € Mi(s)}.

" s’zS@(ﬂc,U)@{

Neighborhood Ny A swap move consists in reversing the host boats assigned
to two crews g; and go during the same time period ¢. It is denoted by a couple
(gy,t) Tgo,t). Applying the move (x4, +,2g,.+) tO s consists in assigning the value
5(xgy,¢) to x4, + and inversely the value s(zg, +) to x4, ;. The neighborhood N
combines the moves of OneMove and Swap.

u Swap(s) = {(xgl,tvxgmt) | S(xght) 7é S(wgz,t)} ’

s' (g, ,t) = $(2gy,¢) and
m s'=s® (Iglyt’xyz,t) < Sl(mgz,t) = 5($91,t) and
Vy €X-— {xgl,t)xgz,t})sl(y) = S(y)
m My(s) = OneMove(s) U Swap(s),
B No(s)={s'=sd&m|me M(s)}.
Candidate list based on conflicting variables A common heuristic used
to make the search more efficient is to restrict the choice of a move to the
subset of M(s) involving variables which are conflicting in s. Such an heuristic
can be seen as a particular candidate list strategy. For the PPP, this conflict-

based subset, denoted by Mi crr(s) and Mz crr(s) for the 2 neighborhoods,
is defined as follows.

m Mcpr(s) ={(z,v) € Mi(s) | z is conflicting in s }

M corr(s) = {(z1,22) € Ma(s) | z1 or x2 is conflicting in s }

450 META-HEURISTICS 98: THEORY & APPLICATIONS

Data : 0 : parameter, N : neighborhood
Result : the best configuration found
begin
generate a random configuration s
while not Stop-Condition do
choose randomly a move m € M
§:=f(sdm)—f(s)
if6<0thens:=s®dm
else with probability e %/? do s := s @& m
end

Figure 30.1 The Metropolis algorithm

30.3.5 DMeta-heuristics tested

We experimented mainly two meta-heuristics: a Metropolis algorithm and a
Tabu Search algorithm. Both algorithms use the above mentioned candidate
list strategy.

Algorithm of Metropolis Metropolis algorithm is a simplified version of
Simulated Annealing [7] using a constant value for its temperature parameter.
The algorithm begins with an initial configuration in the search space S and
then performs a series of iterations. At each iteration, a single neighbor (or
equivalently a single move) of the current configuration is randomly chosen and
then a probabilistic criterion is performed in order to decide if this neighbor
is accepted or not. The principle of the Metropolis algorithm is to accept any
move that does not increase the cost function, and to accept, in a controlled
manner, deteriorating moves. So the algorithm is not trapped in local optima.

The method has one parameter 6 called temperature: the higher the value
of the temperature, the easier degradations are accepted (a zero temperature
corresponds to a simple descent algorithm as all deteriorating moves are refused
while an infinite temperature is a random walk in the search space as all moves
are accepted).

More precisely, suppose that the move m has been chosen at the current
iteration. Then, one considers the difference § = f(s@®m)— f(s) that represents
the effect of the chosen move on the cost function. If the move m does not
increase the cost function (6 < 0), then it is always accepted. If it does (§ > 0),
the move is accepted with a probability e 9/? so that a bigger deterioration is
more rarely accepted.

Tabu algorithm A typical TS procedure [4] begins with an initial configu-
ration in the search space § and then proceeds iteratively to visit a series of
locally best configurations following the neighborhood. At each iteration, a best
move m is applied to the current configuration s even if s’ = s & m does not
improve the current configuration in terms of the value of the cost function.

THE PROGRESSIVE PARTY PROBLEM 451

Data : £ : tabu tenure; N : neighborhood

Result : the best configuration found

begin

generate a random configuration s

initialize the Tabu list to empty

while not Stop-Condition do
choose a best move m such that m is not tabu or satisfies the
aspiration criterion
introduce during k iterations the couple < z, s(x) > in the Tabu
list for all modified variables x € X
s:=s@dm

end

Figure 30.2 The tabu search algorithm

This iterative process may suffer from cycling and get trapped in local op-
tima. To avoid the problem, TS introduces the notion of Tabu lists. A tabu list
is a special short term memory that maintains a selective history H, composed
of previously encountered solutions or more generally pertinent attributes of
such solutions. A simple TS strategy based on this short term memory #H
consists in preventing solutions of H from being reconsidered for next k iter-
ations (k, called tabu tenure, is problem dependent). Now, at each iteration,
TS searches for a best neighbor from this dynamically modified neighborhood
N(H,s), instead of from N(s) itself. Such a strategy prevents Tabu from being
trapped in short term cycling and allows the search process to go beyond local
optima. Moreover, note that Tabu restrictions may be overridden under certain
conditions, called aspiration criterion.

A move for the PPP corresponds to changing the value of one variable
(OneMove) or two variables (Swap). When a variable z is involved in a move,
its current value v is replaced by a new one v’. At this time, the couple < z,v >
is classified tabu for the next k iterations and that means that the value v is
not allowed to be re-assigned to z during this period. Nevertheless, a tabu
move leading to a configuration better than the best configuration found so far
is always accepted (aspiration criterion).

More precisely, a move (z,v) € OneMove is declared tabu iff the cou-
ple < z,v > is tabu. A move (x4, ¢+, Zg,+) € Swap is declared tabu iff <
Tgy t,8(Tgy 1) > Or < Ty, 1, 5(zg, ¢) > is tabu.

Remarks: Stop-Condition: the algorithm stops if f(s) = 0 or if a given
limit is reached concerning the time, the number of iterations or the number of
moves.

We also tested a simple Descent Method. This algorithm chooses at each
iteration a best possible neighbor that does not degrade the performance and
hence it is easily trapped in a local optimum.

452 META-HEURISTICS 98: THEORY & APPLICATIONS

The efficiency of Tabu is greatly influenced by the ability of finding quickly
a best move at each iteration. For moves of type OneMove, we use a data
structure that permits to find in constant time the performance of a given
move. This data structure is updated each time a move is performed.

30.4 COMPUTATIONAL RESULTS

In this section, we first compare the best results of Local Search with the
best results obtained by Integer Linear Programming (ILP) and Constraint
Programming (CP) for the PPP. Then we present and analyze in detail the
results obtained by our Local Search procedures (LS).

30.4.1 Comparison of LS, ILP and CP

Table 30.2 presents the best known results of the three methods ILP, CP and
LS. The published results of CP are denoted by CP1. From the table, we see
that ILP fails to solve any of Ps to Pig. CP1 solves P; and P in 27 and 28
minutes respectively (using a SPARCstation IPX), but fails to solve Py and
Piy. Recently, new strategies using CP were reported leading to much better
results (CP2) [1]. Indeed Pr and Py are now solved in a few seconds (after
several hundreds of backtracks) by CP2. The problem Py is also solved, but
using several hours (and millions of backtracks). Using LS we solve the problem
up to 9 time periods ® and fail for 10 periods. More detailed results will be
presented below.

problem ILP CP1 CP2 LS
Ps fail 27 min. a few sec. < 1s.
Pr fail 28 min. a few sec. < 1s.
Py fail fail a few sec. 1 s.
Py fail fail hours 4 s.
Pig fail fail fail fail

Table 30.2 Results of the ILP, CP and Local Search for the PPP

30.4.2 Results of Local Search

We tested the two LS algorithms presented in Section 30.3 (algorithm of Metro-
polis denoted by Mt and Tabu algorithm denoted by 7'S) and used the two
neighborhoods N; and N;. So we tested four different procedures (denoted
by Mt-Ny, TS-N7, Mt-N2 and TS-No). With these four procedures, we tried
to solve the increasingly difficult problems from Ps up to Pjg. All these four
procedures solved Py (and easier problems) but none of them could solve Pjg.
Note however that we don’t know if Piy has a solution. Our local search

3The running time is obtained on a Sun ULTRA 1 (128 RAM, 134MHz). The LS algorithms
are implemented in C++.

THE PROGRESSIVE PARTY PROBLEM 453
algorithms give repeatedly solutions violating a single constraint (of any of the
three types) for Pjg. Table 30.3 presents the results obtained by these four
procedures for P;, Py and Py.

Each procedure was run 20 times. For each problem, the left column indi-
cates the average number of moves (#moves) and of iterations (#iter) and the
right column the average computing time (in seconds). Recall that for Tabu,
each iteration leads to a move (hence, #moves = #iter), while for Metropolis
several iterations are needed to lead to a move. Each method has been run
with different values of its parameter on the problem Py. The best value found
has been used for the two other problems. These values are 6§ = 130 for Mt-V;
and Mt-Ny, k =9 for TS-N; and k = 6 for TS-Ns.

Py Pg Py
#mowves/#iter time #moves/#iter time #mowves/#iter time
Mt-Ny 1,228/38,438 1.6 2,635/111,628 4.3 | 24,458/2,064,295 | 66.4
TS-N; 330 0.5 1,366 1.7 51,507 67.5
Mt-No 494/5,724 0.6 682/11,582 1.0 1,488/63,685 3.6
TS-No 110 2.0 171 3.3 347 6.5

Table 30.3 Results of Local Search procedures for solving the PPP

From Table 30.3, we first note that all methods can solve the problems P; and
Ps very easily (in less than 5 seconds and 3,000 moves). Py can be solved very
easily using the enlarged neighborhood N;. Using V7 to solve Py needs more
effort (more than one minute for Mt-N; and TS-Nj). Moreover, we observe
that the results obtained do not strongly depend on the method used since the
number of moves and computing time are often similar when the two methods
are used to solve the same problem using the same neighborhood.

method problem | success rate method problem | success rate
Desc-N1 Ps 26 Desc-No Ps 93
Py 9 Pgs 52
Ps 3 P 11
Py 1

Table 30.4 Results of the Descent Method

Table 30.4 shows results obtained by the two Descent procedures with the
two different neighborhoods (denoted by Desc-N; and Desc-N»). Each proce-
dure is run 100 times for each problem. The table indicates the number of
success for the 100 runs. Each run corresponds to a single execution of the
algorithm (there is no retry) and the algorithm is stopped after 1,000 itera-
tions without improvement of the cost function. We observe that the Descent
Algorithm can solve the PPP up to 5 time periods with the neighborhood Ny
and up to 8 time periods with N,. These results illustrate the power of Local
Search for the problem in that a problem that a simple descent method can
solve can be estimated very easy for Local Search.

454 META-HEURISTICS 98: THEORY & APPLICATIONS

30.4.3 Comparisons between the two neighborhoods

From the above results, we observe a big difference of performance with the
two neighborhoods. We compare now precisely the performance of the two
neighborhoods. Concerning the number of iterations of TS, we observe that
the ratio between the two neighborhoods is of 1 to 3 for Pr (330 moves using
TS-N; and 110 moves using TS-N5), but becomes 8 and 148 for Pg and Py.
This means that this ratio increases when the problem becomes more difficult
and, in particular, the ratio increases dramatically for Py.

Concerning computing time, we can compute from Table 30.4 that an it-
eration using the enlarged neighborhood Ny costs (for Tabu) 12 times more
than using N;. Although P; and Py are solved more quickly using the limited
neighborhood, the advantage turns strongly to the enlarged neighborhood for
the most difficult problem Py.

Moreover N, allows a simple descent method to solve up to Pz while N
cannot go beyond Ps. Therefore the enlarged neighborhood N3 is more powerful
than N7 especially for solving difficult problems. Experiments on P;¢ confirm
this remark, as the two algorithms 7'S and Mt can easily find solutions that
violate a single constraint using N2, but not using N1. So we can hope that an
improved procedure using N5 will find a solution for Pjg, if there exists one.

[0.5[[[5..10] | [10..15] | [15..20] | [20..25] | [25..30[| [30..35]
01(%) | 1.7 14 15.6 37.3 423 42.8 52.0
¥2(%) | 103 | 41.1 51.2 60.6 67.1 67.9 69.5

Table 30.5 Percentage of configurations which are not local optima for N1 and No

Now we present another measure in order to explain the power difference of
the two neighborhoods. We observed for the PPP a well-known phenomenon:
starting with a high value of the cost function, the cost value decreases very
quickly at the beginning of the search and then oscillates when the search
becomes more and more difficult. The reason of the initial fast decrease of the
cost function is that most of configurations have at least one neighbor which has
a smaller cost: these configurations are not local optima for the neighborhood
considered. On the contrary, many configurations encountered at the end of
the search are local optima. So, the percentage of local optima tends to be
related to the difficulty of the search. To study more precisely this point, the
following experiment was carried out.

We used a local search procedure to solve Py. At each iteration we tested if
the current configuration is a local optimum for the two neighborhoods N and
N,. Using this information, we computed the percentages ¢ (f) and 1o(f) of
configurations of cost f that are not local optima for N7 and N, respectively.
Table 30.5 gives a summary of this experiment. The different columns represent
the values of the cost function grouped in classes. For example, the first column
means that 1.7% and 10.3% of the encountered configurations having a cost of
0, 1, 2, 3 or 4 are not local optima for N; and Ny respectively.

REFERENCES 455

For high values of f, i.e., at the beginning of the search, we observe that
the percentage is high for both neighborhoods: for example, for f € [30, 35],
this percentage is about 50% and 70% for N; and N> respectively. Hence
it is generally easy to find a move that improves the current configuration,
using indifferently one of the two neighborhoods. For smaller values of f, this
percentage decreases dramatically for N7, while it remains much higher for Ns.
For example, for f € [0,4], ¥1(f) = 1.7% and ¥a(f) = 10.3%. Hence there
are much more useful improving moves in Ny than in N;. These results are
averages computed on 100 runs performed with the algorithm TS-N; on the
problem Py, but experiments carried out with the other LS procedures show
similar properties.

Besides, we note that N, is about only two times larger than Nj: in Py, the
size of Ny is 29%9% (13 —1) = 3132 while the size of Ny is 3132+9%(29%28/2) =
3132 + 3654 = 6876.

In summary, we see that the neighborhood N; contains many solutions of
high quality that are not present in N; while its size is about only two times
larger than N;. This is probably an important factor that explains the observed
difference of efficiency between the two neighborhoods.

30.5 CONCLUSIONS

In this paper we have presented a local search approach for the Progressive
Party Problem. Based on a formulation of the PPP as a Constraint Satisfac-
tion Problem, the proposed approach introduces two different neighborhoods
and penalty-based cost function for handling complex and heterogeneous con-
straints.

The approach was tested on the available benchmark instance. Results were
compared with previous ones obtained with Integer Linear Programming and
Constraint Programming. Numerical experiments showed that both a simple
tabu algorithm and a metropolis algorithm give better results since they solve
the problem up to 9 time periods in only several seconds of cpu time. Even a
descent is successful for up to 8 time periods if the swap neighborhood is used.
Therefore, LS should be considered as one of the most competitive approaches
for the PPP.

Until now, all reported studies on the PPP concern a particular instance
arising form the initial party organization problem. It is now natural and
interesting to know how different approaches will behave for other instances of
the problem.

Acknowledgements

We would like to thank the referees of this paper for their useful comments.

References

[1] N. Beldiceanu, E. Bourreau, P. Chan and D. Rivreau, Partial Search

456

META-HEURISTICS 98: THEORY & APPLICATIONS

Strategy in CHIP, presented at MIC’97, Sophia-Antipolis, 1997.

S. C. Brailsford, P. M. Hubbard and B. M. Smith, The Progressive Party
Problem: A Difficult Problem of Combinatorial Optimization, Computers
and Operations Research, 23:845-856, 1996.

P. Galinier and J. K. Hao, Tabu Search for Maximal Constraint Satis-
faction Problems, Lecture Notes in Computer Science 1330, ppl196-208,
1997.

F. Glover and M. Laguna, Tabu Search, USA, Boston: Kluwer Academic
Publishers, 1997.

P. Hansen and B. Jaumard, Algorithms for the Maximum Satisfiability
Problem, Computing, 44:279-303, 1990.

J. K. Hao and R. Dorne, Empirical Studies of Heuristic Local Search for
Constraint Solving, Lecture Notes in Computer Science 1118, pp194-208,
1996.

S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by Simu-
lated Annealing, Science, 220:671-680, 1983.

B. M. Smith, S. C. Brailsford, P. M. Hubbard and H. P. Williams, The
Progressive Party Problem: Integer Linear Programming and Constraint
Programming Compared, Constraints, 1(1/2):119-138, 1996.

A K. Mackworth, Constraint Satisfaction, in S.C. Shapiro (Ed.) Encyclo-
pedia on Artificial Intelligence, John Wiley & Sons, NY, 1987.

S. Minton, M.D. Johnston and P. Laird, Minimizing Conflicts: a Heuris-
tic Repair Method for Constraint Satisfaction and Scheduling Problems,
Artificial Intelligence, 58(1-3):161-206, 1992.

P. Morris, The Breakout Method for Escaping from Local Minima, Proc.
of AAAI-93, ppd0-45, 1993.

C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization - Algo-
rithms and Complexity, Prentice Hall, 1982.

S. Selman, H.A. Kautz and B. Cohen, Noise strategies for improving local
search, Proc. of AAAI-94, pp337-343, Seattle, WA, 1994.

E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

N. Yugami, Y. Ohta and H. Hara, Improving Repair-based Constraint
Satisfaction Methods by Value Propagation, Proc. of AAAI-9/, pp344-
349, Seattle, WA, 1994.

