3 TABU SEARCH FOR GRAPH
COLORING, T-COLORINGS AND SET
T-COLORINGS

Raphaél Dorne and Jin-Kao Hao

LGI2P, EMA-EERIE
Parc Scientifique Georges Besse, F-30000 Nimes, France.

dorne@eerie.fr, haoQeerie.fr

Abstract: In this paper, a generic tabu search is presented for three coloring
problems: graph coloring, T-colorings and set T-colorings. This algorithm inte-
grates important features such as greedy initialization, solution re-generation,
dynamic tabu tenure, incremental evaluation of solutions and constraint han-
dling techniques. Empirical comparisons show that this algorithm approaches
the best coloring algorithms and outperforms some hybrid algorithms on a wide
range of benchmarks. Experiments on large random instances of T-colorings and
set T-colorings show encouraging results.

3.1 INTRODUCTION

The graph coloring problem is one of the most studied NP-hard problems and
can be defined informally as follows. Given an undirected graph, one wishes to
color the nodes of the graph with a minimal number of colors in such a way that
two colors assigned to two adjacent nodes must be different, i.e., have a minimal
distance greater than zero. Graph coloring has many practical applications
such as timetabling and resource assignment. Given the NP-completeness of
the coloring problem, it is natural to design heuristic methods. Indeed many
heuristic methods have been developed: constructive methods in the 1960s and
1970s [1, 23], local search meta-heuristics in the 1980s and 1990s [15, 3, 18, 10]
and genetic or population-based local search methods in the 1990s [9, 5, 24, 6].
Moreover, there are a large number of well-known benchmarks for evaluating
and comparing different algorithms.

33

34 META-HEURISTICS 98: THEORY & APPLICATIONS

Several extensions of this classical graph coloring problem exist allowing
more applications to be embraced. T-colorings and set T-colorings are two im-
portant extensions allowing one to model the frequency assignment problem.
In T-colorings, the forbidden separation distance for colors assigned to adjacent
nodes is no longer limited to the singleton {0}, but may be any set of positive
integers. In set T-colorings, a node may receive several colors verifying some
forbidden separation distances. There is extensive literature on the applica-
tion side, i.e., the frequency assignment problem, including studies on specific
heuristic algorithms [13, 12, 22], meta-heuristic algorithms [20, 8, 2, 21, 14] and
lower bounds [11, 16]. On the contrary, studies on heuristic methods for the
general problems of T-colorings and set T-colorings are much limited. Costa
experimented with some known methods such as Dsatur, tabu search, and sim-
ulated annealing for T-colorings [4]. Jiang studied various methods including
greedy, dynamic ordering, and tabu search as well as some combinations of
these methods for set T-colorings [17]. Until now, there are very few well-
established benchmarks available for evaluating algorithms for T-colorings and
set T-colorings.

In this paper, we present a generic tabu search algorithm for these three
coloring problems. To evaluate its performance, we use well-known benchmarks
for graph coloring and introduce a set of random instances for T-colorings
and set T-colorings. Moreover, we make these instances (and our instance
generator) available to other researchers in the hope that these instances may
serve as benchmarks for further studies.

The paper is organized as follows. Section 3.2 defines the three families of
coloring problems. Section 3.3 introduces our random instance generator for the
T-colorings and set T-colorings problems. Section 3.4 presents our generic tabu
search algorithm for these coloring problems. Section 3.5 shows experimental
results on a wide range of random instances. Section 3.6 gives some conclusions.

3.2 COLORING PROBLEMS

3.2.1 Graph coloring

Given an undirected graph G=(V, E) with V={vy,...,ux} the set of nodes and
E={e;;| 3 an edge between v; and v;} the set of edges. The graph coloring
problem is determine a partition of V' with a minimum number of color classes
C1,C,...,Cy such that for each edge e;; € E, v; and v; are not in the same
color class [25]. Given c(v;) which is the color (a positive integer) assigned to
the node v;, a proper coloring must meet the following color constraint:

Veij € E, |c(v;) —c(v;)| #0 (3.1)

The chromatic number X (G) corresponds to the smallest value of k such that
G is k-colorable.

TABU SEARCH FOR GRAPH COLORING, T-COLORINGS AND SET T-COLORINGS 35

3.2.2 T-colorings

Given an undirected graph G=(V, E) as above, a collection of sets T={T;; €
IN| for each e;; € E} is now defined to determine for each edge e;; the color
separations which are not allowed between the nodes v; and v;. Each Tj; is a
set of unsigned integers such as {0,2,4, 7}, and the color constraint to be met
is:

Vey € B, le(v;) — c(v;)| ¢ Ty (3.2)

The separation of colors assigned to two adjacent nodes v; and v; must be
different from those of Tj;. A T-coloring of a graph is a partition of V in
different color classes C1, Cs, ..., Ck such that the property (3.2) is verified for
each edge of G. The chromatic number X1 (G) corresponds to the minimum
number of different color values used to color G. The span of a T-coloring is the
difference between the smallest and the highest color values needed to obtain
the T-coloring of G. The T-colorings problem is determine the minimum span
spr(G) for all the possible colorings of G [13].

If each Tj; € T is a set of consecutive integers of the form T;; = {0,1,2,...,
tij -1}, the restricted T-colorings problem can be defined where constraint (3.2)
becomes:

V@ij S E, |C(Ui) — C(’Uj)‘ Z tij (33)

It is easy to see that the graph coloring problem is a special case of the
T-colorings problem where all T;; = {0}.

sp(G)=x(G) — L.

3.2.3 Set T-colorings

Given an undirected graph G=(V, E) and a collection of sets T" as above, a
set of demand values D={dy,...,dy| d; € IN} is now added for each node v;
corresponding to the number of colors required by the node that is:

Yo, €V (dl =l = C(Ui) = {Ci,h ...,Ci’l}) (34)

And for each set of colors assigned to the same node, a set of forbidden
separations called co-node constraints, is also defined:

VCimyCin € c(Vi),m#n |Cim — Cin| & Ti (3.5)

Finally, the color constraint between two adjacent nodes can be stated as:
Veij € E,\Ncim € c(vi),Vejn € ¢(vj) |Cim — Cinl & Tij (3.6)
The problem of set T-colorings of G consists of finding a coloring such that

the properties (3.4), (3.5), (3.6) are satisfied for the graph. The chromatic

number X2 (G) corresponds to the minimum number of different color values

36 META-HEURISTICS 98: THEORY & APPLICATIONS

used to color G. The span is the difference between the smallest and the
highest color values needed to obtain such a coloring of G. The problem of set
T-colorings is the optimization problem of finding the minimum span spZ(G)
of the graph G [17]. As stated above, if each T;; is a set of consecutive integers,

the restricted set T-colorings problem can be defined by replacing constraints
(3.5) and (3.6) with:

Veim,Cin € c(Vi),m# N |Cim — Cin| > ti (3.7)

Veij S E,Vci’m S C(’UZ'),Vijn € C(Uj) |Ci,m — ij‘ > tij (38)

It is easy to see that the T-colorings problem is a special case of the set
T-colorings problem where each node v; has the same demand d;=1. Note
that a graph of set T-colorings G=(V, E) can be transformed into a graph of
T-colorings G'=(V", E’) by creating a node for each demand (|V'|=)_, .y di)-
A co-node constraint becomes a set of edges forming a clique of d; nodes with
a separation equal to Tj; for each edge. And for each color separation e;;, each
new node of v; is connected to each new node v; with a color value separation
equal to Tj; (see Fig. 3.1).

di =2 dj =3
H——®
Tij _>
Tii Tjj
— — - from co-node constraint
——— fromcolor constraint
set T-colorings T-colorings

Figure 3.1 Transformation of a graph of set T-colorings into a graph of T-colorings

3.3 BENCHMARKS

3.3.1 Graph coloring

For graph coloring, there exists a large number of well-known benchmarks
[15, 18]'. Instances used in this study will be introduced in Section 3.5 when
experimental results are presented.

IMost of these benchmarks can be downloaded via ftp from:
dimacs.rutgers.edu/pub/challenge/graph/benchmarks/

TABU SEARCH FOR GRAPH COLORING, T-COLORINGS AND SET T-COLORINGS 37

3.3.2 T-colorings and Set T-colorings

Definitions

For these two classes of problems, no benchmark is available. Therefore, we
developed a random instance generator for restricted T-colorings and restricted
set T-colorings, following the same principles defined for generating random
graphs for graph coloring [18].

For restricted T-colorings, each instance is defined by three parameters: N,
the number of nodes; d € [0,1], the edge density; and Sep, the largest color
separation. To generate such an instance, we first build a graph of N nodes with
d(N(N-1))/2 edges uniformally distributed on these nodes. Then, a uniform
random value from [1, Sep] is assigned to each edge.

For restricted set T-colorings, two more parameters are necessary: D, the
maximum number of colors required by a node and CoSep, the maximum sep-
aration required between two colors of the same node. As above, to generate a
restricted set T-colorings instance, we make for each node two uniform random
choices from [1, D] and [1, CoSep].

Note that from an instance for restricted set T-colorings, we can get an
instance for restricted T-colorings (with an identical edge topology) by setting
for each node v; its separation d; to 1. In the same way, we can obtain a random
graph coloring instance with an identical edge topology by setting for each edge
ei; the separation Tj; to {0}.

Probabilistic estimations for the minimum span

Unlike graph coloring, there is no estimation available for the minimum span
for T-colorings. There are some theoretical lower and upper bounds, but these
bounds are of little use in our case because they are often far from the real
minimum span. Establishing a good estimation for T-colorings is very helpful
for us, but seems to be difficult for the general T-colorings. We thus limit our
attention to restricted T-colorings with a color separation uniformly chosen in
[1..Sep]. So we can define the following estimation:

$pr(Gnp) = (X(Gnp) — 1) * Sepaye (3.9)

where Sepgy. is the average of color separations over the graph. This estimation
considers that from an edge topology which allows a k-coloring, if each edge
has a color separation equal to Sepgy,. on average, then the minimum span of
T-colorings is equal to the difference between the highest color value 1+ (k —
1) * Sepgye and the lowest color value, i.e., 1. For the instances used in this
study, Sepgve is equal to 3 because the color separation is uniformly chosen
between 1 and 5 (see next subsection).

As for T-colorings, we try to establish an estimation for the minimum span
for random set T-colorings graphs. In order to do this, we need to transform
the graph of set T-colorings into a graph of T-colorings. As explained in Section
3.3, a co-node constraint becomes a clique of d; nodes with a separation equal
to t;; on each edge. And for each color separation e;;, each new node of v; is

38 META-HEURISTICS 98: THEORY & APPLICATIONS

connected to each new node of v; with a color value separation equal to t;;.
Since the color separations for co-nodes and for adjacent nodes are very close
in our case, the influence of the demand of each node, thus the estimation,
depends mainly on the edge density. The lower the edge density is, the higher
the influence of the demand is on the minimum span sp? (Gy ,) of G.

Given Dg,. the average demand per node, and Sep,,. the average color
separation over the graph, we can define two estimations: one for low edge
density (3.10) and one for high edge density (3.11).

@?(Gn,p) = ((X(Gn,p) — 1) * Sepave) * Dave (3.10)

The first estimation considers that the graph is divided into Dy, similar
and strongly connected subgraphs.

gjj?(Gn,p) = (X(GDyyesn,p) — 1) * Sepave (3.11)

In the second case, because we have a high edge density, only the number of
nodes in the transformed graph of T-colorings is modified and the edge density
before and after the transformation remains nearly the same.

For the instances used in this study, the demand for each node and the co-
node separation are on average equal to 3 (demands and co-node separations
are uniformly chosen between 1 and 5) (see next subsection).

Random instances

For the purpose of this study, we generate 15 random instances of restricted set
T-colorings with the following possible values: N € {30,100, 300, 500,1000},
d € {0.1,0.5,0.9}, Sep=D=coSep=>5. Each instance is defined by a name of
the form N.Dg,.,.d.STcol, where ST col means set T-colorings and Dy, is the
sum of all the demands (Dgyy, = Zie[l’m d;).

From these instances, we built 15 random instances of T-colorings denoted by
N.d.Tcol (resp. graph coloring instances denoted by N.d.col) by assigning Vi €
[1,N],d; = 1 (resp. by assigning Vi € [1,N],d; = 1 and VT;, € T,T;, = {0}
for coloring). So we have the same graph topology (edge structure) of different
densities for the three families of problems. These 45 instances? enable us to
study the differences among them, in terms of separation distance, demands
and edges density.

3.4 GENERIC TABU SEARCH FOR COLORING PROBLEMS

Given the fact that graph coloring and T-colorings are special cases of set T-
colorings, the following presentation is oriented to set T-colorings. It should
be clear that some components of the algorithm are not necessary for graph

2These instances and the generator are available from the authors via email and via internet
at http://www.eerie.fr/~dorne

TABU SEARCH FOR GRAPH COLORING, T-COLORINGS AND SET T-COLORINGS 39
coloring or T-colorings.

Configuration and search space

Given a graph involving N nodes, with d; (i € {1..N}) demand per node
and NC' available colors numbered from 1 to NC, a configuration s = <
C1,1..-Cl,d; ---Ci,1---Ci.d;---CN,1,CN,dy > IS a complete coloring satisfying the fol-
lowing condition:

VeCim,Cin € c(vi),m#n |cim — cin| & Ti

The search space S is thus composed of all possible configurations meeting
the co-node constraints. Integrating co-node constraints into configurations is
an important factor in improving the search efficiency for the set T-colorings
problem. This point is developed in [7] for the frequency assignment problem.

Cost function

For each configuration s € S, f(s) is simply the total number of unsatisfied
color constraints.

9= Y aleimenn)

eij € ci,m€c(vi)

¢j,n€c(vy)

1 if [eim — ¢jn| € Ty

where g(ci,m,cjn) = { 0 otherwise

Neighborhood and candidate list

Given s € S, let s(i,m) be equal to the value of the m*”" color of the node v;
in s. Then the neighborhood N is defined as follows. s’ € N(s) if and only if
the following condition is verified:

31ie {1.N}, 3! m € {1..d;} such that s(i,m) # s’(i,m)

A neighbor of s can thus be obtained by changing the value of a color of a
node in s and in such a way that the new value always satisfies the co-node
constraint. A move is thus characterized by a triplet < i,m,v >, i, m and v
being a node, a demand of the node, and a color value, respectively. Note that
the number of neighbors of a configuration may be very high for large graphs.

In this work, the following strategy is used to define the candidate list V*
= {s’ € N(s) such that s’ and s are different only at the color of a conflicting
demand of a node in s}. A demand of a node is said to be conflicting if its color
value violates some color constraints. Let C'D be the set of conflicting demands
of the nodes in s, then |[V*|=|CD|* (NC — 1). Clearly, |V*| varies during the
search according to the number of conflicting demands. This candidate list
strategy reduces the number of neighbors to be considered at each iteration;

40 META-HEURISTICS 98: THEORY & APPLICATIONS
more importantly, it helps the search to concentrate on influential moves.
Incremental evaluation and neighborhood examination

To evaluate the configurations, we use an approach inspired by a technique
proposed in [10]. The main idea consists of maintaining incrementally ¢, the
move value or cost variation for each possible move from the current configura-
tion s, where W = Efil d; in a NC *+ W matrix. Each time a move is carried
out, the elements affected by the move are updated accordingly. Initializing ¢
takes time O(NC * W?). The matrix can be updated in time O(NC * W) in
the worst case. Now a best neighbor in V* can be evaluated in time O(|]V*]).
Thus each iteration takes time O(NC « W + |[V*|).

Tabu list and tabu tenure

When the color of a demand m of a node v; in a configuration s is changed
to a new value, the triplet < v;, m,oldvalue > is classified tabu for [(tabu
tenure) iterations. That is, the old value will not be allowed to be re-assigned to
v; during this period. The tabu tenure ! is dynamically adjusted by a function
defined over the number of conflicting demands of the nodes. More precisely, [
= ax*|CD|+random(g) where the function random(g) returns an integer value
uniformly chosen in [1..g]. The values of a and g are empirically determined and
1 is limited by |V*|. Since C'D varies during the search, so does [for any fixed a.

Aspiration criteria

A very simple aspiration criterion is used to override the tabu restriction.
The tabu status of a move will be cancelled if the move leads to a better con-
figuration than the best configuration s* encountered so far.

Generic Tabu Search (GTS)

Our Generic Tabu Search algorithm is composed of three parts: greedy
construction of initial coloring, configuration re-generation and searching for
proper coloring (see Fig. 3.2).

m Initial configuration: GTS uses a Dsatur-based greedy algorithm [1] to
generate initial configurations. This greedy step is fast and provides,
with the tabu algorithm, a far better initial configuration than a random
approach.

m Configuration re-generation: the re-generation aims at producing quickly
a k-1 coloring with a minimum of color conflicts. It proceeds as follows:
given a coloring with & colors, the nodes colored with the k** color are
given a new color from [1..k—1] in such a way that the new color minimizes
the color conflicts over the graph (break ties randomly).

TABU SEARCH FOR GRAPH COLORING, T-COLORINGS AND SET T-COLORINGS 41

Input: G, a graph
Output: NC, the minimum number of color used (minimum span for T-colorings
and set T-colorings is equal to NC-1)

%Variables
% f,f*: objective function and its best value encountered so far
% s,s™: current configuration and the best configuration encountered so far
% V*,l, MAX: candidate list, the size of tabu list and the limit of the iterations
% NC: the minimum number of color used
% colors(s): returns the highest color value
begin
M = 0 /* to initialize tabu matrix */
NB = 0 /* to initialize iteration counter */
s = generate() /* initial configuration generated with a greedy algorithm */
NC = colors(s)-1
s = re-generate(s,NC) /* re-generation from s with NC colors */
while (NB < MAX) do
s =s
=10
while (f* > 0and NB < MAX) do
if (f(best_neighbor(s)) < f*) then
s = best_neighbor(s) /* Aspiration criterion, s(¢, m) = new_v */
else
s = best_non_tabu_neighbor(s) /* s(i,m) = new_v */
Mli,m,oldv] = NB+1; /* < v;, m,old-v > becomes tabu */
l=a=|CD| + random(g);
if (f(s) < f*) then
s*=s
fr=1(s")
|l NB=NB+1
if (f* =0) then
NC=NC-1
s = re-generate(s,NC)
L L NB=0
return NC+1
end

Figure 3.2 Algorithm: Generic Tabu Search (GTS)

42 META-HEURISTICS 98: THEORY & APPLICATIONS

m Searching for proper coloring: beginning from such an improper coloring,
the tabu algorithm tries to reduce the number of color conflicts to zero.
If this happens, the algorithm finds a proper coloring and proceeds to
re-generate a new improper coloring with one less color.

It stops when an optimal known coloring is obtained or when MA X iterations
have been carried out without finding a conflict-free (proper) coloring for the
current number of colors k. The lowest number of colors used to find a conflict-
free coloring is returned.

3.5 EXPERIMENTAL RESULTS

3.5.1 Settings for experiments

In this section, we report experimental results on various instances for the three
coloring problems. All the tests have been performed on an Ultra Sparc station
with a 143 MHz processor and 128 MB of memory. The GTS algorithm was
implemented in C+4 and compiled by CC compiler with option -O5. The
computing time reported corresponds to the average running time of the entire
algorithm including the above three steps.

For graph coloring, GTS runs with a dynamic tabu tenure determined by
2 % |CN| + random(10) for all the instances except for the three flat1000...
graphs where the chosen value is 4 * |CN| + random(10) (CN corresponds to
the set of conflicting nodes). For T-colorings and set T-colorings, tabu tenure
is set to I=4 % |CD|+ random(10) for all instances (C'D is the set of conflicting
demands). The maximum number of iterations for an attempt of finding a
proper coloring is fixed at 10,000,000 (for some large or hard graph coloring
instances this value is increased to 20,000,000).

3.5.2 Graph coloring

For graph coloring, we used benchmarks from 2nd Dimacs Challenge, Hertz
and De Werra [15], and Johnson et al. [18]. Results are compared with the
best ones published in the literature:

1. Fleurent and Ferland, a tabu algorithm [10] (denoted by la in the tables)
and a genetic tabu algorithm (denoted by 1b) [9]. These algorithms use an
efficient pre-processing technique of [15], which reduces the initial graphs
by removing a large number of independent sets. Coloring algorithms
are then used to color the residual graphs. This technique is applied to
graphs larger than 300 nodes and systematically used by many existing
coloring algorithms.

2. Costa, an evolutionary hybrid algorithm EDM (denoted by 2) with the
above pre-processing technique [5].

3. Morgenstern, distributed local search algorithms (denoted by 3) based
on a particular neighborhood and initialized by a parallelized version of
Johnson et al’s XRLF algorithm [24].

TABU SEARCH FOR GRAPH COLORING, T-COLORINGS AND SET T-COLORINGS 43

4. Johnson et al., the Successive Augmentation Method XRLF (4a) and a
set of methods based on simulated annealing: Penalty Function Annealing
(4b), Kempe Chain Annealing (4c), and Fized-K Annealing (4d) [18].

problems Best Known Generic Tabu Search
k Method Time(sec.) runs(fail.) k Iterations Time(sec.)
R125.1.col 5 3,1a 1 10(0) 5 T 1
R125.5.col 35 la 1,380 10(0) 36 147,000 65
R125.1c.col 46 3,1a 1 10(0) 46 1 1
R250.1.col 8 3,1a 1 10(0) 8 1 1
R250.5.col* 65 3 181 5(2) 66 7,800 6
R250.1c.col 64 3,1a 60 5(1) 64 462 1
R1000.1.col 20 3 18 3(0) 20 1 1
R1000.5.col* 241 3 2,078 3(0) 242 6,027,000 18,758
R1000.1c.col* 98 3 1,240 3(0) 98 1,623,000 4,500
flat300-20-0.col 20 3 1 5(0) 20 33,000 17
flat300-26_0.col 26 3 22 5(0) 26 1,723,000 850
flat300-28-0.col* 31 3 4,214 2(0) 31 17,000,000 9,200
flat1000-50-0.col* 50 3 1 10(0) 50 1,664,000 3,020
flat1000-60-0.col* 60 3 1 5(0) 60 5,548,000 10,579
flat1000-76-0.col* 84 1b 14,520 10(5) 89 5,410,000 8,015

Table 3.1 2nd Dimacs Challenge instances

Tables 3.1-3.3 give comparative results for Dimacs, Hertz and De Werra,
and Johnson et al. graphs. Table 3.1 shows our results on Dimacs instances
with the best-known results given in the above papers. The best known results
are summarized in columns 2-4: the smallest number of colors ever obtained,
methods which produced such a coloring and the best computing time required.
For example, the third line indicates that two methods find a coloring with 46
colors for the problem R125.1c.col, and the best method requires 1 second.
Note that information about computing time is only for indicative purpose
because these methods have been run on different machines. The last four
columns report results obtained by our Tabu algorithm. We give the number
of total runs with the number of failures (unsuccessful runs) in parentheses
(5*" column), the smallest number of colors obtained (6*" column), the number
of iterations and computing time averaged over successful runs (7" and 8"
columns).

From Table 3.1, we see that the results of GTS are very competitive on
these instances. Indeed, except for four instances, GTS manages to produce
the best-known result. This is remarkable if we compare these results with
those of Fleurent and Ferland (la): GTS gives better colorings on a wide
range of instances (all these instances are marked with a star ”*”) and in
particular we find the optimal configuration for the problems flat1000-50_0.col
and flat1000-60_0.col while the method la produces a solution with 90 colors.

Table 3.2 shows a comparison on Hertz and De Werra instances between
GTS and the methods 1la, 1b and 2. These instances belong to four classes
of 100, 300, 500 and 1000 nodes, respectively composed of 20 (gl-g20), 10
(ggl-ggl0), 5 (gggl-ggeh®), and 2 instances (ggggl-gggeg2?). k* corresponds to

3gggh is identical to DSJC500.5.col
4gggg? is identical to DSJC1000.5.col

44 META-HEURISTICS 98: THEORY & APPLICATIONS

problems Best Known Generic Tabu Search
i kmoy Method Time Tuns 2 Tterations Time kmoy
(fail.)
g1-20 15 14.95 1b 9.5 sec. 10(0) 15 8,000 2,5 sec 14.95
ggl-10 34 33.3 2 11,000 sec. 5(0) 33 1,302,000 635.9 sec 32.90
gggl-5 49 49 1b,3 0 sec. 3(0) 50 4,037,000 3,500 sec 49.75
geegl-2 84 84 1b 41 hours 2(0) 90 12,355,000 19,514 sec 90.0
residual 23 23 1b 5 hours 5(0) 23 834,000 382 23.0 sec

Table 3.2 Hertz and De Werra instances

the smallest number of colors used for all the instances of one class and ky,oy
is the average. On small instances (ggl-ggl0), GTS gives better results and
brings down the value of k* to 33. For large instances, we get worse results.
However, remember that these methods (1a, 1b and 2) use the “independent
sets removing” pre-processing, this makes it impossible to compare these results
directly. To get a fair comparison, we run GTS on the residual graph of gggg2
(or DSJC1000.5.col). This residual graph is obtained after having removed 61
independent sets and is given in [9]. GTS finds a 23 coloring leading to an 84
coloring to the initial graph. GTS took 382 seconds and 834,000 iterations to
reach a 23-coloring, while 1a needs more than 19 hours and about 50,000,000
iterations, and 1b more than five hours. Note also that Costa’s algorithm
obtains only 85-colorings.

problems Best Known Generic Tabu Search
Kk Method Time runs(Jail) & Tterations Time(sec.)
DSJC125.1.col 5 1a T 10(0) 5 5,000 <1
DSJC125.5.c0l 17 3 14 10(0) 17 348,000 136
DSJC125.9.col 44 ad 1,080 10(0) 44 9,000 5
DSJC250.1.col 8 ad 9,360 5(0) 8 168,000 32
DSJC250.5.col* 28 3 591 5(0) 28 3,604,000 1,716
DSJC250.9.col 72 4c 72,000 5(0) 72 720,000 591
DSJC500.1.col 12 3 5,452 3(0) 13 16,000 5
DSJC500.5.col* 48 3 49,000 3(0) 50 3,078,000 2,327
DSJC500.9.col 126 3 158,400 3(0) 127 4,211,000 6,150
DSJC1000.1.col 21 3 210 3(0) 21 290,000 154
DSJC1000.5.col* 84 3,1b 118,000 3(1) 20 11,211,000 16,799
DSJC1000.9.col 226 3 65,500 2(0) 226 | 13,283,000 39,554

Table 3.3 Johnson et al. instances

Table 3.3 shows the results on random instances from Johnson et al. [18]
with different edge densities of 10, 50, and 90 %. GTS remains competitive on
instances for graphs of low or high edge density. On large instances with 50 %
of edges, our method has some difficulties and certainly needs an independent
set pre-processing to improve its results.

3.5.3 T-colorings and set T-colorings

Before giving our results on the 15 random T-colorings and set T-colorings
instances (Section 3.3), Table 3.4 shows the results on the instances considered
as graph coloring. The chromatic number ¥ is estimated with the Johri and

TABU SEARCH FOR GRAPH COLORING, T-COLORINGS AND SET T-COLORINGS 45

Matula probabilistic method [19]. Note that the results obtained by GTS are
similar to those of the Table 3.3.

Generic Tabu Search

problems X runs(fail.) Epest kave Iterations Time(sec.)
30.1.col 1 3(0) 3 3.0 2 <1
30.5.col 8 3(0) 7 7.0 14 <1
30.9.col 15 3(0) 15 15.0 10 <1
100.1.col 6 3(0) 5 5.0 81 <1
100.5.col 16 3(1) 14 14.33 2,514,000 1,875
100.9.col 36 3(0) 37 37.0 29,000 32
300.1.col 11 3(0) 9 9.0 15,597 6
300.5.col 35 3(2) 32 32.67 4,746,000 2,262
300.9.col 84 3(0) 84 84.0 790,000 376
500.1.col 14 3(0) 13 13.0 12,000 9
500.5.col 50 3(2) 49 49.67 10,951,000 8,279
500.9.col 124 2(1) 127 127.5 2,908,000 4,247
1000.1.col 22 1(0) 21 21.0 2,256,000 1,198
1000.5.col 85 1(0) 91 91.0 4,013,000 6,013
1000.9.col 222 1(0) 226 226.0 16,484,000 49,085

Table 3.4 Results for graph coloring

To evaluate the GTS algorithm on the T-colorings instances, the estimation
of the minimum span, defined in Section 3.3.2, allows us to have a rough idea
about the performance of the GTS algorithm. In order to further evaluate the
performance of GTS, we adapted Dsatur algorithm for T-colorings and set T-
colorings during the constructive process, when a color c is assigned to a node
v; the values included in [c¢ — (¢;; — 1), ¢+ (t;; — 1)] are now forbidden for any
adjacent node v;. This is the only difference from Dsatur for coloring. Table
3.5 gives comparative results on the 15 T-colorings instances.

From Table 3.5, several remarks may be made. First, GTS gives far better
results than Dsatur. Indeed, GTS requires much fewer colors (up to —231
colors) for these graphs. Second, the estimation given in the equation (3.9)
seems reasonably good. Finally, the computing time necessary to get good
T-colorings is high for large and dense graphs.

Table 3.6 gives comparative results for the 15 set T-colorings instances. From
the data, we may make similar remarks as for T-coloring. In particular, we
see that GTS outperforms Dsatur on all the instances, especially on large

Dsatur Generic Tabu Search

problems spr SPheat Spave runs(fail.) SPheat SPave Iterations Time(sec.)
30.1.Tcol 9 9 9.0 3(0) 9 9.0 1 <1
30.5.Tcol 21 23 25.2 3(0) 17 17.0 55,000 21
30.9.Tcol 42 40 44.9 3(0) 31 31.0 293,000 114
100.1.Tcol 15 23 23.0 3(0) 14 14.0 154,000 82
100.5.Tcol 45 63 66.1 3(0) 43 43.67 936,000 365
100.9.Tcol 105 124 125.0 3(1) 82 82.33 4,327,000 2,317
300.1.Tcol 30 40 43.8 3(0) 29 29.0 4,720,000 899
300.5.Tcol 102 159 161.3 3(2) 110 111.0 11,967,000 6,285
300.9.Tcol 249 304 318.9 3(2) 216 217.0 32,734,000 26,869
500.1.Tcol 39 61 62.5 3(0) 43 43.0 2,363,000 711
500.5.Tcol 147 240 247.5 3(0) 175 175.67 6,900,000 5,216
500.9.Tcol 369 483 493.1 2(0) 351 351.0 14,523,000 20,811
1000.1.Tcol 63 104 105.1 1(0) 77 77.0 12,537,000 6,657
1000.5.Tcol 252 436 441.4 1(0) 328 328.0 31,554,000 47,281
1000.9.Tcol 663 896 904.2 1(0) 665 665.0 18,949,000 56,426

Table 3.5 Comparative results for T-colorings

46 META-HEURISTICS 98: THEORY & APPLICATIONS

=D
problems spp Dsatur Generic Tabu Search
Tow high SPbest sPave Tuns SPbest sPave Tterations Time
(fail.) (sec.)
30.86.1 27 15 28 33.6 2(0) 26 26.0 193,000 101
30.95.5 63 42 74 76.1 2(1) 61 61.50 2,468,000 2,721
30.90.9 126 99 145 153.7 3(1) 102 102.33 2,004,000 2,050
100.275.1 45 30 62 62.0 2(1) 15 45.50 1,563,000 1,294
100.304.5 135 102 170 176.2 2(1) 114 114.50 7,332,000 17,974
100.299.9 315 249 320 340.3 3(1) 224 224.33 2,690,000 6,020
300.937.1 90 57 112 114.6 2(1) 80 80.50 11,526,000 20,890
300.905.5 306 234 431 443.9 2(1) 267 268.50 17,169,000 | 129,291
300.940.9 747 609 902 921.2 3(2) 572 573.33 19,350,000 96,800
500.1507.1 117 84 157 166.0 2(1) 112 113.0 19,300,000 20,308
500.1484.5 441 351 677 677.0 1(0) 402 402.0 14,750,000 | 133,673
500.1536.9 1,107 915 1,409 1,432.3 1(0) 931 931.0 3,593,000 42,938
1000.3049.1 189 138 281 285.7 2(1) 178 178.50 27,879,861 126,854
1000.3024.5 756 615 1,220 1,226.3 1(0) 846 846.0 19,179,000 | 382,898
1000.2975.9 1,989 | 1,665 2,522 2,541.0 1(0) 1,723 1,723.0 9,000,000 670,000

Table 3.6 Comparative results for set T-colorings. All problem instances are of type STcol.

instances with a difference of about 500 colors. The computing times to color
these instances are high because the search space is huge (up to about 3,000
variables and 4,000,000 constraints). Indeed, each node requires several colors
and the number of colors needed for the graph is very high (up to about 2,000).
Finally, we mention that in addition to these tests, a variant of GTS was
also applied to solve frequency assignment instances in mobile-radio networks
coming from French National Center for Telecommunications [14]. GTS was
compared with methods based on constraint programming, simulated anneal-
ing, Gamst’s constructive method and evolutionary algorithms. Experimental
results showed that GTS finds the best results for all the tested instances.

3.6 CONCLUSIONS

In this paper, a robust and effective tabu search algorithm has been presented
for three coloring problems: graph coloring, T-colorings and set T-colorings.
The algorithm integrates some important features such as greedy construction
of initial configurations, re-generating configurations, dynamic tabu tenure, and
co-node constraint handling. Compared with many best known algorithms, this
algorithm remains simpler and easier to tune.

The performance of the algorithm was evaluated on a wide range of random
graphs. For graph coloring, the algorithm produces highly competitive results
compared with some well-known and more complicated algorithms. The “inde-
pendent sets” pre-processing technique should improve the performance of the
algorithm. For T-colorings and set T-colorings, experimental results show that
GTS outperforms largely a Dsatur algorithm adapted to these problems for all
the instances tested. Given that there are few benchmarks for T-colorings and
set T-colorings, the random generator and instances used in this study may
help to improve this situation.

A last remark to conclude the paper: the independent sets extracting is a
widely-used technique for the graph coloring problem and has proven to be
important for all well-known algorithms to color large graphs. Unfortunately,

REFERENCES 47

no equivalent technique is available for T-colorings or set T-colorings. It will
certainly be interesting and important to develop such techniques in the future.

Acknowledgements

We would like to thank the referees for their useful comments which helped to
improve the paper.

References

1]

2]

D. Brélaz. New methods to color vertices of a graph. Communications of
ACM, 22:251-256, 1979.

D.J. Castelino, S. Hurley, and N.M. Stephens. A tabu search algorithm for
frequency assignment. Annals of Operations Research, 63:301-320, 1996.

M. Chams, A. Hertz, and D. De Werra. Some experiments with simulated
annealing for coloring graphs. Furopean Journal of Operational Research,

32:260-266, 1987.

D. Costa. On the use of some known methods for T-colorings of graphs.
Annals of Operations Research, 41:343-358, 1993.

D. Costa, A. Hertz, and O. Dubuis. Embedding of a sequential procedure
within an evolutionary algorithm for coloring problems in graphs. Journal
of Heuristics, 1(1):105-128, 1995.

R. Dorne and J.K. Hao. A new genetic local search algorithm for graph
coloring. submitted to PPSN’98, Amsterdam, Sept. 1998.

R. Dorne and J.K. Hao. Constraint handling in evolutionary search: A
case study of the frequency assignment. In Intl. Conf. on Parallel Problem
Solving From Nature, volume 1141 of Lectures Notes in Computer Science,
pp 801-810, Berlin, Germany, 1996.

M. Duque-Anton, D. Kunz, and B. Riiber. Channel assignment for cel-
lular radio using simulated annealing. IEEE Transactions on Vehicular
Technology, 42:14-21, 1993.

C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph
coloring. Annals of Operations Research, 63:437-461, 1995.

C. Fleurent and J.A. Ferland. Object-Oriented Implementation of Heuristic
Search Methods for Graph Coloring, Mazximum Clique, and Satisfiability,
volume 26 of Discrete Mathematics and Theoretical Computer Science, pp
619-652. American Mathematical Society, 1996.

A. Gamst. Some lower bounds for a class of frequency assignment prob-
lems. IEEE Transactions on Vehicular Technology, 35:8-14, 1986.

48

[12]

[13]

[14]

[15]

[16]

[17]

[18]

META-HEURISTICS 98: THEORY & APPLICATIONS

A. Gamst. A ressource allocation technique for FDMA systems. Alta
Frequenza, 57(2):89-96, 1988.

W.K. Hale. Frequency assignment: Theory and applications. IEEE Trans-
actions on Vehicular Technology, 68(12):1497-1514, 1980.

J.K. Hao, R. Dorne, and P. Galinier. Tabu search for frequency assignment
in mobile radio networks. Journal of Heuristics, 4(1):47-62, 1998.

A. Hertz and D. De Werra. Using tabu search techniques for graph coloring.
Computing, 39:345-351, 1987.

S. Hurley and D.H. Smith. Bounds for the frequency assignment problem.
Discrete Mathematics, 167-168:571-582, 1997.

M. Jiang. Méthodes heuristiques pour le probleme du T-coloriage avec
intervalles. to appear in RAIRO Operational Research.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: An experimental evaluation; part II, graph
coloring and number partitioning. Operations Research, 39(3):378-406,
1991.

A. Johri and D.W. Matula. Probabilistic bounds and heuristic algorithms
for coloring large random graphs. Technical Report 82-CSE-06, Southern
Methodist University, Department of Computing Science, Dallas, 1982.

D. Kunz. Channel assignment for cellular radio using neural networks.
IEEFE Transactions on Vehicular Technology, 40:188-193, 1991.

W.K. Lai and G.G. Coghill. Channel assignment through evolutionary
optimization. IEEE Transactions on Vehicular Technology, 45(1):91-95,
1996.

R.A. Leese. Tiling methods for channel assignment in radio communication
networks. Zeitschrift fur Angewandte Mathematik und Mechanik, 76:303—
306, 1996.

F.T. Leighton. A graph coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau Standard, 84:79-100, 1979.

C. Morgenstern. Distributed Coloration Neighborhood Search, volume 26
of Discrete Mathematics and Theoretical Computer Science, pp 335-358.
American Mathematical Society, 1996.

C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization - algo-
rithms and complexity. Prentice Hall, 1982.

