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Abstract

This paper presents the first population-based path relinking algorithm for solv-
ing the NP-hard vertex separator problem in graphs. The proposed algorithm
employs a dedicated relinking procedure to generate intermediate solutions be-
tween an initiating solution and a guiding solution taken from a reference set
of elite solutions (population) and uses a fast tabu search procedure to improve
some selected intermediate solutions. Special care is taken to ensure the diver-
sity of the reference set. Dedicated data structures based on bucket sorting are
employed to ensure a high computational efficiency. The proposed algorithm
is assessed on four sets of 365 benchmark instances with up to 20,000 vertices,
and shows highly comparative results compared to the state-of-the-art methods
in the literature. Specifically, we report improved best solutions (new upper
bounds) for 67 instances which can serve as reference values for assessment of
other algorithms for the problem.

Keywords: Vertex separator; Graph partitioning; Path relinking; Population-
based heuristics.

1. Introduction

Given an undirected graph G (which may be disconnected) with a vertex
set V = {v1, . . . , vn} where each vertex vi is associated with an non-negative
weight wi and an unweighted edge set E, the vertex separator problem (VSP)
is to partition V into three disjoint subsets A, B and C, where A and B are
non-empty, such that the total weight of vertices in C is minimized subject to
two constraints: (i) there is no edge between A and B and (ii) the cardinality of
A and B does not exceed a given positive integer b. Set C is called the separator
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of G while A and B are called the shores of the separator. Formally, VSP is
formulated as follows.

min
∑
i∈C

wi (1)

subject to C = V \ (A ∪B), (A×B) ∩ E = ∅, A ∩B = ∅ (2)

max{|A|, |B|} ≤ b (3)

A 6= ∅, B 6= ∅, A,B,C ⊂ V (4)

where constraint (2) ensures that no edge exists for any pair of vertices between
shores A and B and constraint (3) requires both A and B contain no more than
b vertices. A separator C is considered as balanced if max{|A|, |B|} ≤ 2|V |/3.

One of the main and first applications of the VSP concerns sparse matrix
re-orderings (George & Liu, 1981). Other applications include, for instance,
detection of brittle nodes in telecommunication networks (Biha & Meurs, 2011),
identification of the minimal separator in the divide-and-conquer based graph
algorithms (Evrendilek, 2008; Lipton & Tarjan, 1979) as well as finding protein
conformation in bioinformatics (Fu & Chen, 2006). From the point view of
computational complexity, the VSP is known to be NP-hard for general graphs
(Bui & Jones, 1992) and even for planar graphs (Fukuyama, 2006).

As general solution methods, Leighton (1983) presented an approximation
algorithm based on a linear relaxation technique and achieved an approximation
ratio of O(log n). Feige et al. (2008) improved this result to O(

√
log n) by

utilizing a semidefinite relaxation method.
There are several exact algorithms, which are able to solve instances with

up to a few hundred of vertices. In 2005, de Souza & Balas (2005) designed a
branch-and-cut algorithm which explores valid polyhedral inequalities obtained
in Balas & de Souza (2005) and conducted extensive computational experi-
ments. In 2011, de Souza & Cavalcante (2011) proposed a hybrid algorithm
that combines Lagrangian relaxation with cutting plane techniques. Compu-
tational results showed that the hybrid algorithm outperforms the best exact
algorithm available. In 2011, Biha & Meurs (2011) presented an exact approach
based on a new class of valid inequalities and performed comparisons with the
algorithm in de Souza & Balas (2005).

In addition to the above approximation and exact approaches, heuristic and
metaheuristic algorithms have been devised to obtain good quality solutions for
large VSP instances in reasonable computing times. We summarize the state-
of-the-art heuristic algorithms in the literature as follows.

In 2013, Benlic & Hao (2013) presented the breakout local search (BLS) al-
gorithm which combines a local search procedure with an adaptive perturbation
procedure. The local search procedure uses a dedicated move operator to trans-
form the current solution to a neighbor solution. This is achieved by displacing
a vertex v from the separator C to the shore subset A or B, followed by displac-
ing all the adjacent vertices of v from the opposite shore subset to the separator
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C. The perturbation procedure employs an adaptive mechanism to apply ei-
ther a directed perturbation or a random perturbation to escape local optimum
traps and direct the search toward unexplored areas. Experimental results on
benchmark instances with up to 3000 vertices demonstrated the effectiveness of
the BLS method.

In 2014, Sánchez-Oro et al. (2014) introduced several variable neighborhood
search (VNS) algorithms, which alternate between a local search phase and
a shaking phase. Two initial solution constructive procedures (random and
greedy) are used to generate seeding solutions. The local search phase relies on
three types of basic moves and two combined moves to attain a local optimum.
A variable neighborhood descent procedure is then used to further improve the
encountered solution with the two combined neighborhoods. The shaking phase
carries out random perturbations to produce new starting feasible solutions.
Experiments on benchmark instances with up to 1000 vertices showed the effec-
tiveness of the VNS algorithms.

In 2015, Hager & Hungerford (2015) proposed a continuous optimization ap-
proach. The VSP problem is first formulated as a continuous bilinear quadratic
program, which is then solved by a multilevel algorithm. Following the general
multilevel graph approach, the proposed algorithm is composed of three phases
including 1) a coarsening phase that hierarchically coarsens a graph into a se-
quence of smaller graphs; 2) a refinement phase that finds an initial solution to
the graph in the coarsest level; and 3) an uncoarsening phase that projects the
solution of the lower-level graph to its upper level graph. Both hill climbing
and Fiduccia–Mattheyses heuristics are used to solve each hierarchy of graphs.
Experiments showed that this approach outperforms the general graph parti-
tioning package METIS in terms of solution quality for graphs with 1000 to
5000 vertices, but is outperformed by the BLS method (Benlic & Hao, 2013).

Recently, the population-based path relinking framework (Glover & Laguna,
1997; Glover, 1998) has attracted much attention in combinatorial optimization
and intelligent problem solving. The approach has shown outstanding perfor-
mances in solving a number of challenging decision and optimization problems
in various settings, such as unconstrained binary quadratic optimization (Wang
et al., 2012), flow shop sequencing and scheduling (Costa et al., 2012; Peng
et al., 2015; Zeng et al., 2013), clustering (Martins de Oliveira et al., 2014), web
services composition (Parejo et al., 2014), frequency assignment (Lai & Hao,
2015) and quadratic multiple knapsack (Chen et al., 2016). PR has also been
combined with other metaheuristics such as genetic algorithms (Vallada & Ruiz,
2010), scatter search (González et al., 2015) and GRASP (Mestria et al., 2013)
to solve several difficult combinatorial problems.

In this work, we are interested in advancing the state-of-the-art of solving
the VSP with heuristics. For this purpose, we propose the first population-based
path relinking algorithm for the VSP (named PR-VSP). We identify the main
contributions of this work as follows.

• The proposed PR-VSP algorithm is the first adaptation of the general
evolutionary path-relinking framework to the NP-hard vertex separator
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problem. To ensure its search efficiency, PR-VSP combines a fast solution
improvement procedure with a dedicated path relinking method. The so-
lution improvement procedure relies on two complementary neighborhood
search operators to visit promising candidate solutions while the relink-
ing method employs a distanced-based strategy to generate new solutions.
Additionally, special care is taken to ensure the diversity of the reference
set (or population) of elite solutions. Dedicated data structures based on
bucket sorting are employed to ensure a high computational efficiency.

• The performance of the proposed algorithm is assessed on four sets of 365
benchmark instances (with up to 20,000 vertices) commonly used in the
literature and compared with state-of-the-art VSP algorithms. The com-
putational results show that PR-VSP competes very favorably compared
to the current best performing algorithms in terms of solution quality and
computing efficiency. Specifically, the proposed algorithm finds new best
solutions (updated upper bounds) for 67 instances and matches previous
best solutions for all but one instance. The new upper bounds are partic-
ularly useful for assessment of other VSP algorithms.

The reminder of the paper is organized as follows. Section 2 presents the
general scheme and each component of the proposed PR-VSP. Section 3 is ded-
icated to experimental results and comparisons with state-of-the-art algorithms
in the literature. Concluding remarks are given in Section 4.

2. The proposed path relinking algorithm for VSP

Path relinking is a population-based general framework which was originally
proposed for enhancing the tabu search method (Glover & Laguna, 1997; Glover,
1998). Like other general metaheuristics, when applying such a method to
a particular problem, it is necessary and indispensable to make a number of
specific adaptations to the problem under consideration (Wang et al., 2017;
Wang & Punnen, 2017). In this section, we first expose the main scheme of the
proposed algorithm and then explain each specific component.

2.1. Main scheme

Algorithm 1 shows the general scheme of the PR-VSP algorithm. It first
creates a reference set RefSet consisting of a set of elite (feasible) solutions
{S1, S2, . . . , Sp} and constructs a set PairSet composed of indexes of all pairwise
solutions inRefSet (See Alg. 2, Section 2.3). Then, for each pair of solutions (Si
and Sj), a relinking method is utilized to build a solution path (i.e., a sequence
of intermediate solutions) that connects the initiating solution where the path
starts from (say Si) and the guiding solution where the path ends (say Sj) (see
Section 2.5). By interchanging the initiating and guiding solutions, another path
is built in the same way. A solution selection method (see Section 2.6) is then
applied to pick one or multiple solutions from the path for further improvement
by the iterated tabu search method (see Section 2.4). The improved solution
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Algorithm 1 Outline of the path relinking algorithm

1: Input: an undirected graph G = (V,E) with its vertex weight vector, an upper limit
b for the size of each shore subset, an integer p for the RefSet size

2: Output: the best solution S∗ found and its objective value f(S∗)
3: repeat
4: Initialize RefSet and PairSet with |RefSet| = p (see Section 2.3)
5: Record the best solution S∗ in RefSet and the objective value f(S∗)
6: while (PairSet 6= ∅) do
7: Pick an index pair (i, j) ∈ PairSet to get a pair of solutions (Si, Sj) from

RefSet
8: Apply the Relinking Method to build a path from Si to Sj and another path

from Sj to Si (see Section 2.5)
9: Apply the Solution Selection Method to select solutions on each path (see Section

2.6)
10: Apply the Solution Improvement Method to the selected solutions (see Section

2.4)
11: Update the best solution S∗ and its objective value f(S)∗

12: Update RefSet and PairSet (see Section 2.3)
13: end while
14: until A stopping condition (e.g., a cutoff time limit) is met

is then used to update RefSet, PairSet and the best solution found S∗ (see
Section 2.3). When Pairset becomes empty, the algorithm re-initializes RefSet
and then repeats the whole procedure until a stopping condition (e.g., a cutoff
time limit) is reached.

2.2. Search space

Given G = (V,E), a candidate solution to the VPS is any partition of the
vertex set V into a separator C and two shores A and B satisfying constraints
(2), (3) and (4) given in the introduction. Thus, we define the search space Ω
explored by the PR-VSP algorithm to be the set of all such possible three-way
partitions {A,B,C} of V , i.e.,

Ω = {{A,B,C} : A,B ⊂ V,C = V \ (A ∪B), (A×B) ∩ E = ∅,
A ∩B = ∅,max{|A|, |B|} ≤ b}, A 6= ∅, B 6= ∅. (5)

For a given candidate solution S = {A,B,C} of Ω, its quality is directly
given by its objective value, i.e., the weight sum of the vertices in the separator
C, f(S) =

∑
i∈C wi. For two candidate solutions S′ and S′′ in the search space,

S′ is better than S′′ if and only if f(S′) < f(S′′).
Notice that for a graph of reasonable size (say several hundreds of vertices),

the number of possible solutions in Ω can be already quite large. Moreover,
the search space Ω will increase very rapidly with the increase of the number
of vertices of the graph. The purpose of the proposed PR-VSP algorithm is to
locate a solution as good as possible in this highly combinatorial search space
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within a given computing effort. To reach this goal, PR-VSP calls for a number
of dedicated search operators and strategies that are explained below.

2.3. RefSet and PairSet initialization and updating

Algorithm 2 RefSet and PairSet Initialization

1: Input: an undirected graph G = (V,E) and an integer p for the size of RefSet
2: Output: reference set RefSet composed of p elite solutions, an index pair set PairSet

consisting of index pairs of all pairwise solutions in RefSet
3: iter ← 0
4: repeat
5: {A,B} ← RandAssign(V ) /* Randomly assign all vertices v ∈ V into the shore

subsets A and B*/
6: for each (vi, vj) ∈ E where vi ∈ A, vj ∈ B do
7: v∗ ← RandSelect({vi, vj}) /* Randomly select a vertex v∗ from {vi, vj} */
8: Displace v∗ to the separator C
9: end for

10: for each X ∈ {A,B} do
11: while |X| > b do
12: v∗ ← RandSelect(X) /* Randomly select a vertex v∗ from X */
13: Displace v∗ to C
14: end while
15: end for
16: S ← {A,B,C}
17: Siter ← Tabu search(S) /* Siter is the best solution found by tabu search and is

considered as a candidate initial solution */
18: Set iter = iter + 1
19: until iter ≥ 2p
20: RefSet← SelectBestSolutions(p, {S0, S1, ..., S2p−1}) /* Select p non-identical so-

lutions with the best objective values */
21: PairSet← {{i, j} : Si ∈ RefSet, Sj ∈ RefSet, i < j}

The reference set RefSet contains the working solutions of the PR-VSP
algorithm and is composed of p elite solutions (See Alg. 1, line 4). RefSet is
created by employing a randomized initialization procedure to acquire diverse
solutions and a tabu search based solution improvement method to assure high
quality of the acquired solutions (See Alg. 2). Each initial solution is generated
by the procedure presented in Benlic & Hao (2013), which applies the following
steps. First, we randomly assign the vertices into the shore subsets A and B
(See Alg. 2, line 5). Then, for each cutting edge (vi, vj) ∈ E such that vi ∈ A
and vj ∈ B, we displace randomly vi or vj to the separator C (See Alg. 2, lines
6 - 9). Finally, if a shore has a cardinality that surpasses the upper limit b, we
randomly displace vertices from the shore into the separator C until the upper
limit constraint is satisfied (See Alg. 2, lines 10 - 15). Once a new solution is
generated, it is immediately improved by the tabu search procedure of Section
2.4 (See Alg. 2, line 17). We repeat the above procedure to produce 2p improved
solutions, from which p non-identical solutions with the best objective values
are chosen to form RefSet (See Alg. 2, line 19).
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The RefSet updating procedure decides the way of inserting a newly gen-
erated solution in RefSet and removing an existing solution from RefSet (See
Alg. 1, line 12). To maintain a healthy RefSet, the updating mechanism (See
Alg. 3) requires that the new solution Sn considered for insertion satisfies both
a specified distance threshold τ and a solution quality criterion (Lai & Hao,
2015). Specifically, we first determine a solution Sc in RefSet such that Sc has
the minimum distance dmin to the solution Sn, the distance between Sc and
Sn being the number of vertices not shared in the two separators (See Alg. 3,
line 3). If dmin ≤ τ , then Sn replaces the solution Sc if Sc is no better than
Sn; otherwise Sn is directly discarded. If dmin > τ , then Sn replaces the worst
solution Sw in RefSet if Sn is no worse than Sw or is discarded otherwise (See
Alg. 3, lines 4 - 12). The complexity of each RefSet updating operation is
O(p · |C|).

Algorithm 3 RefSet Update

1: Input: G = (V,E), RefSet, a new solution Sn considered for insertion, the worst
solution Sw in RefSet

2: Output: RefSet
3: Sc, dmin ← FindMinDistanceSolution(RefSet, Sn)
4: if dmin ≤ τ then
5: if f(Sn) ≤ f(Sc) then
6: Add Sn to Refset and remove Sc from RefSet
7: end if
8: else
9: if f(Sn) ≤ f(Sw) then

10: Add Sn to Refset and remove Sw from RefSet
11: end if
12: end if

PairSet is used to mark each pairwise solutions which will experience a path
relinking procedure (See Alg. 1, lines 4 and 7). It is initialized as the index
pair of each pair of solutions in RefSet (See Alg. 2, line 20). Each time an
index pair experiences a path relinking, it is removed from PairSet (See Alg.
4, line 3). Moreover, as shown in Algorithm 4, if a newly produced solution
replaces a solution in RefSet, all the index pairs related to this replaced solution
are removed from PairSet and new index pairs composed of the new solution
and each other solution in RefSet are added into PairSet. When RefSet is
not updated for a certain consecutive number of times, all the index pairs are
removed and PairSet becomes empty.

2.4. The solution improvement method

Within the proposed PR-VSP algorithm, we use an iterated tabu search
(ITS) procedure as the solution improvement method. Basically, this ITS pro-
cedure alternates between a tabu search phase (Glover & Laguna, 1997) and
a perturbation phase. Each tabu search phase stops when the best solution is
not improved for a consecutive number of iterations (called iteration cutoff, set
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Algorithm 4 PairSet Update

1: Input: PairSet, the removed solution Sk from RefSet
2: Output: an updated PairSet
3: Remove the used index pair in the current path relinking procedure from PairSet
4: for each Si ∈ RefSet do
5: if i < k & (i, k) /∈ PairSet then
6: PairSet = PairSet ∪ {(i, k)}
7: end if
8: if i > k & (i, k) /∈ PairSet then
9: PairSet = PairSet ∪ {(k, i)}

10: end if
11: end for

as β ∗ |C| where β is a parameter). At this moment, the perturbation phase is
triggered to generate a perturbed solution which serves as the starting solution
of the next ITS run. The following sections describe the key components of the
ITS procedure.

2.4.1. Moves and calculation of move gain

As explained in Section 2.2, a candiate solution of the VSP is a partition S =
{A,B,C} of the vertex set V satisfying the problem constraints (A 6= ∅, B 6= ∅,
(A× B) ∩ E = ∅ and max{|A|, |B|} ≤ b). To generate neighbor solutions from
the current solution, the following two move operators are employed.

The first move operator (called 1-move) displaces a vertex vi from the separa-
tor C to a shore subset A or B, without violating the constraint max{|A|, |B|} ≤
b. To ensure the constraint (A×B)∩E = ∅, a repair operation is followed to dis-
place to the separator C all the vertices in the opposite shore which are adjacent
to vi. This 1-move operator has been used in various algorithms (Ashcraft &
Liu, 1994; Benlic & Hao, 2013; Sánchez-Oro et al., 2014). The objective gain of
performing a 1-move (i.e., the objective variation between its neighbor solution
and the current solution S, also called move gain) is calculated as

mg1(vi, S) =

{
−wi +

∑
vj∈B,(vi,vj)∈E wj if vi ∈ C moves to A

−wi +
∑
vj∈A,(vi,vj)∈E wj if vi ∈ C moves to B

(6)

The second move operator (called swap-move) is a new operator introduced
in this work, which is designed to handle the case where the size of a shore
subset reaches the upper limit b (i.e., |A| = b or |B| = b). The swap-move
operator displaces a vertex vi from the separator C to the shore subset whose
size is equal to the upper limit b (thus momentarily violating the constraint
max{|A|, |B|} ≤ b) and then displaces another vertex wmin with the minimum
weight from this shore subset to the separator C (to re-establish the constraint
max{|A|, |B|} ≤ b). To satisfy the constraint (A × B) ∩ E = ∅, the same
repair operation as for 1-move is employed. The objective gain of performing a
swap-move operation is calculated according to Eq. (7).
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Figure 1: Two examples showing the benefit of the swap-move operator

mg2(vi, S) =

{
−wi + wAmin +

∑
vj∈B,(vi,vj)∈E wj if |A| = b and vi ∈ C moves to A

−wi + wBmin +
∑
vj∈A,(vi,vj)∈E wj if |B| = b and vi ∈ C moves to B

(7)

To show the interest of the newly introduced swap-move operator with re-
spect to the conventional 1-move operator, let us consider two illustrative ex-
amples (Fig. 1).

The left graph in Fig. 1 (|V | = 8 and b = 4) shows a candidate solution
S = {A = {a, b, c, d}, B = {g, h}, C = {e, f}} with an objective value of 4
(f(S) = 4). If we use 1-move to displace vertex e ∈ C, then e must be moved
from C to B since the number of vertices in A has already reached the given
upper limit b. Once e is displaced in B, the repair operation displaces its
adjacent vertices c and d from A to C. Therefore, the move gain obtained by
this 1-move operation is −we + wc + wd = −3 + 2 + 3 = 2 (i.e., the objective
function value of the resulting solution S′ is f(S′) = f(S) + 2 = 6). However,
if we apply swap-move to exchange vertex e from separator C against a from
shore A, the resulting solution S′′ has an objective gain of −we + wa = −2,
leading to a better objective value of f(S′′) = f(S)− 2 = 2.

The right graph in Fig. 1 (|V | = 12 and b = 6) shows a solution S = {A =
{a, b, c, d, i, j}, B = {g, h, l, k}, C = {e, f}} which includes 4 isolated vertices
I = {i, j, k, l}. If we use 1-move to displace e from C to B, the resulting solution
S′ gets an objective increase of 2. Note that 1-move can in no way move any
vertex of I into the separator C since the vertices of I are not connected to any
other vertex (including those of C). On the other hand, we can use swap-move
to exchange e against the vertex i or j to obtain an improved solution with an
objective decrease of 2.

It is noted that using swap-move is particularly useful when the graph con-
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Figure 2: An example of the bucket structure for the vertex separator problem

tains isolated vertices or vertices with low degrees.

2.4.2. Bucket sorting

To quickly calculate the move gain for a 1-move and swap-move, we use
an n-dimensional vector ∆A, where each entry ∆A

i records the total weight
of all vertices of the shore subset A which are adjacent to a vertex vi (i.e.,
∆A
i =

∑
vj∈A,(vi,vj)∈E wj). With ∆A

i preliminarily computed, the objective

gains of performing both 1-move and swap-move shown in Eq. (6) and (7) can
be obtained in O(1) time. Similarly, another vector ∆B is employed in the same
way for the shore subset B. By simply replacing all the occurrences of A by B,
we obtain the updating equations of ∆B .

In addition, a bucket sorting technique inspired from (Fiduccia & Matthey-
ses, 1982) is utilized to quickly identify the best move in O(1) time instead of
scanning all the move gains of vertices in the separator C. Specifically, we use
two arrays of buckets BktA and BktB to record the objective gain of displac-
ing any vertex from the separator C to each shore subset A or B. Notice that
when the condition for performing a swap-move is satisfied, the corresponding
entry in the bucket actually represents the objective gain of swap-move. In each
bucket array, the qth entry stores all the vertices with the objective gain cur-
rently equaling to q, which are managed by a doubly linked list. To ensure a
direct access to the vertex in the doubly linked list, another index array is also
employed, in which each entry stores the address that points to its vertex in the
doubly linked list. For each array of buckets, identifying the best vertex with
the maximum objective gain equals to the identification of the first non-empty
bucket from the top of the bucket array, from which a vertex is randomly chosen
from the doubly linked list.

Fig. 2 shows an illustrative example of the bucket structure for the VSP.
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The graph (Fig. 2, left) has 11 vertices, where all the vertices have a weight
of 1 for simplicity. Given the solution S = {A = {a, b, c, d}, B = {i, j, k}, C =
{e, f, g, h}}, the bucket sorting structure is shown in Fig. 2 (right). To see how
the vertices are arranged in the structure, we consider vertex e as an example.
The move gain of displacing e from C to A is calculated as −we + ∆B

e = 0, so e
is stored in the position p = 0 of the bucket array BktA. In the same token, the
vertex index e is stored in the position p = −1 of the bucket array BktB . For
each vertex in the separator C, we store it in the right entries of the buckets
BktA and BktB in the same way. In addition, each entry of the index array of
vertices shown at the bottom of Fig. 2 points to the position of this vertex in
the buckets BktA and BktB . From the top of buckets, we see that displacing f
to A, h to B, g to A and g to B leads to the same maximum gain of -1, from
which one move will be chosen at random.

To perform a 1-move or swap-move operation, the following three steps are
concerned: 1) a vertex is displaced from the separator to either shore subset;
2) the adjacent vertices in the opposite shore subset of the displaced vertex are
displaced to the separator; 3) a vertex is displaced from a shore subset to the
separator. Now, let us take the shore subset A as an example to illustrate how
to quickly update the ∆A vector.

• If a vertex vi is displaced from C to A, the ∆A vector is updated as
∆A
j = ∆A

j + wi, for all vj ∈ V where (vi, vj) ∈ E

• Let NA(i) denote the set of the vertices in A that are adjacent to the
vertex vi ∈ B. If all the vertices in NA(i) are displaced from A to C, ∆A

is updated as ∆A
j = ∆A

j −
∑
vk∈NA(i),(vk,vj)∈E wk, for all vj ∈ V

• If a vertex vi is displaced from A to C, ∆A is updated as ∆A
j = ∆A

j −wi,
for all vj ∈ V where (vi, vj) ∈ E

The method to update ∆B for the operations on the shore subset B is
obtained by replacing all the appearances of A by B and B by A.

The operations on the bucket structure with regard to the above mentioned
move operations are as follows.

• Delete: delete a vertex from BktA and BktB if it is displaced from C to
A

• Add: add a vertex into BktA and BktB if it is displaced from A to C

• Shift: shift a vertex to the correct entry in each bucket array according to
its updated objective gains

Our experimental results indicate that the devised bucket sorting technique
considerably improves the computational efficiency, thus the performance of our
path relinking algorithm.
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2.4.3. Tabu search

The tabu search phase uses both the 1-move and swap-move operators to
exploit the search space. At each iteration, TS performs a best move among
the set of eligible moves. A move is eligible if it is not forbidden by the tabu
list (see below), or if it leads to a solution better than any solution visited so
far. Precisely, if the size of each shore subset is less than the upper limit b, then
only the 1-move operator is used during the search. Otherwise, both 1-move
and swap-move have a chance to be applied. Specifically, if the objective gain
of performing a swap-move is better than that of performing a 1-move, then
each type of move will be selected with an equal probability of 50%. This rule
is overridden if performing a swap-move leads to a solution better than the best
solution found so far. In this case, the swap-move is always performed. The idea
to take a worse 1-move into consideration is to reduce the shore subset whose
size reaches b, which to some extent enhances the search diversification. Note
that if a shore subset becomes empty during a certain tabu search iterations,
the next iteration will force a vertex to be displaced to this empty subset. In
this way, we assure that the tabu search focuses its exploration on the feasible
search area.

Tabu search uses a short memory (called tabu list) to prohibit recently dis-
placed vertices from being moved again for the next tt iterations (called tabu
tenure) (Glover & Laguna, 1997). The tabu tenure is adaptively tuned accord-
ing to the search status. Specifically, let C be the separator and dmax denote
the average value of the highest 5% vertex degrees, then the tabu tenure is set as
tt = min{dmax, |C|/2}+min{Rand(α×dmax), |C|/2}, where Rand(α×dmax)
returns a random integer no greater than α× dmax and α is a parameter. For
a 1-move which displaces a vertex vi from C to A, given that vi may go back
to C due to the change of vertices in B, we prohibit vi from joining A for the
next tt iterations. For a swap-move which exchanges a vertex vi of C against
a vertex vj of A, we prohibit both vi and vj from moving to A for the next tt
iterations. The other vertices involved in a move are not concerned by the tabu
list.

2.4.4. Perturbation

The perturbation phase performs a number of consecutive 1-move opera-
tions on the local optimum from the last tabu search phase. Specifically, each
perturbation step randomly displaces a vertex from the separator C to either
shore subset with equal probability, followed by a repair operation to make the
resulting solution feasible if needed. A large number of perturbation moves
changes a large part of the input solution while a small number of perturba-
tion moves may fail to lead the search to escape the attractor around the local
optimum. We set experimentally the number of perturbation moves as ρ ∗ |C|,
where ρ < 0.5 is a parameter.

2.5. The relinking method

The relinking method constructs a solution path connecting an initiating
solution and a guiding solution (both from RefSet), where each intermediate
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solution on the path gradually incorporates attributes from the guiding solution
and finally matches the guiding solution (Glover, 1998). Algorithm 5 shows the
outline of our proposed path relinking method for the vertex separator problem.

It first calculates the distance between the initiating solution and the guiding
solution (See Alg. 5, lines 3 - 4). For two solutions Si = (Ai, Bi, Ci) and
Sg = (Ag, Bg, Cg), let SD denote the symmetric difference of the sets Ci and
Cg, i.e., SD = Ci∆Cg = (Ci ∪ Cg) \ (Ci ∩ Cg). The distance d between Si and
Sg is defined as the cardinality of SD, i.e., by d = |SD|.

Then a sequence of intermediate solutions S(1), S(2), . . . , S(d− 1) from the
initiating solution Si = {Ai, Bi, Ci} to the guiding solution Sg = {Ag, Bg, Cg}
are produced by using operations OP1 and OP2 (See Alg. 5, lines 5 - 19). For
vertices in Ci \ Cg, OP1 moves a vertex from Ci to Ai, if it is in Ag, or moved
to Bi, if it is in Bg. For vertices in Cg \ Ci, OP2 displaces a vertex from its
current shore subset in the solution Si to the separator Ci. repair operation is
needed when an infeasible solution S(t) on the path relinking step is obtained
by performing the OP1 operation. The method of repairing S(t) to a feasible
solution Ŝ(t) is to move all the adjacent vertices in the opposite shore subset of
the displaced vertex vi to the separator Ci (See Alg. 5, line 10). This can be

realized in O(|V | · c) where c = 2|E|
|V |(|V |−1) is the density of the graph G(V,E).

Suppose that two consecutive OP1 operations (moving the vertex vk from Ci to
Ai and moving the vertex vl from Ci to Bi) are performed on the path solution
S(t) to obtain the path solutions S(t + 1) and S(t + 2). To get the feasible
solution Ŝ(t+ 1), the solution S(t+ 1) is repaired by displacing all the adjacent
vertices of vk from Bi to Ci. To get the feasible solution Ŝ(t+ 2), the solution
S(t + 2) is repaired by displacing first all the adjacent vertices of vk from Bi
to Ci and then all the adjacent vertices of vl from Ai to Ci. Note that if the
repaired solution Ŝ(t+ 2) is obtained from Ŝ(t+ 1), then only the latter repair
operation that displaces all the adjacent vertices of vl from Ai is needed.

Each step t for building the path selects a vertex from SD such that it
results in a feasible solution with the best objective gain after performing OP1

and OP2 operations. This can be achieved in O(|SD| · |V | · c). Each time a
vertex in SD is displaced, it is deleted from SD and the distance between the
resulting path solution and the guiding solution is decreased by 1. The next
solution S(t + 1) is obtained by performing an OP1 or OP2 operation on the
solution S(t). After d− 1 steps, the path relinking method terminates and the
sequence of intermediate solutions on the path are obtained.

Fig. 3 provides an example to illustrate the relinking procedure. Two so-
lutions Si = {Ai = {a, e, g, i}, Bi = {b, f}, Ci = {c, d, h}} and Sg = {Ag =
{a, e, g, h}, Bg = {d, f}, Cg = {b, c, i}} are given. To build a path starting
from the solution Si (initiating solution) and ending at the solution Sg (guid-
ing solution), we first identify the symmetric difference SD = {b, d, h, i} be-
tween the separators Ci and Cg. Then for each step in the relinking pro-
cedure, a vertex from SD goes through a OP1 or OP2 operation. Hence,
four vertices can be chosen in the first relinking step, by displacing the ver-
tex b from Bi to Ci, d from Ci to Bi, h from Ci to Ai or i from Ai to
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Algorithm 5 Relinking method

1: Input: an initiating solution Si and a guiding solution Sg

2: Output: path solutions S(1), S(2),. . . , S(d− 1)
3: Identify the symmetric difference set SD between the separator subsets Ci and Cg

4: Set d = |SD|, S(0) = Si, t = 1
5: while t < d do
6: Set S(t) = S(t− 1), gmax = −∞
7: for each vm ∈ SD do
8: if vm ∈ Ci \ Cg then
9: Perform the operation OP1 for the solution S(t − 1) to obtain the solution

S(t)
10: Repair the solution S(t) to obtain a feasible solution Ŝ(t) and record the

objective gain gm
11: else
12: Perform the operation OP2 for the solution S(t − 1) to obtain the solution

S(t) and record the objective gain gm
13: end if
14: if gm > gmax then
15: v∗ = vm, S∗ = S(t), gmax = gm
16: end if
17: end for
18: Set S(t) = S∗, SD = SD \ {v∗}, t = t+ 1
19: end while

Ci, which produce four candidate path solutions. Among them the solution
S(1) = {Ai = {a, e, g, i}, Bi = {b, d, f}, Ci = {c, h}} is chosen as the path
solution because it leads to a feasible solution with the best objective value.
Then starting from S(1), three vertices can be chosen in the second relink-
ing step to create three candidate path solutions, from which the solution
S(2) = {Ai = {a, e, g}, Bi = {b, d, f}, Ci = {c, h, i}} is chosen to be on the
path. After a total of three steps, the path relinking procedure stops.

2.6. The solution selection method

The solution selection method aims to identify solutions from the sequence
of intermediate solutions produced by the relinking method for further improve-
ment by iterative tabu search. In general, several solutions can be selected for
improvement. Considering that the solutions on the path are quite close to each
other, running ITS on multiple solutions would lead to the same locally optimal
solution. Therefore, we just select one solution from the path with the best
objective value.

3. Experimental results

This section is dedicated to a large experimental assessment of the proposed
PR-VSP algorithm. For this purpose, we present computational results on four
sets of benchmark instances and compare our results with those reported by the
state-of-the-art algorithms in the literature.
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Figure 3: An illustrative example of the path relinking procedure

3.1. Experimental protocols

We use the following four sets of 365 benchmark instances which are com-
monly tested in the literature1.

• Traditional benchmarks: This set2 contains 104 small instances with
11 ≤ |V | ≤ 191 and 20 ≤ |E| ≤ 13, 992 with known optimal solutions.
This set of instances was first introduced and studied in de Souza & Balas
(2005) and also tested in Benlic & Hao (2013); Biha & Meurs (2011).

• Hermberg and Rendl benchmarks: This set3 is composed of 71 struc-
tured and random instances with |V | ranging from 800 to 20,000 and graph
density ranging from 0.000131 to 0.06. Note that the last 17 large graphs
are investigated for the first time in this work. This set of instances was
first tested in Benlic & Hao (2013).

• Barabasi-Albert benchmarks: This set4 includes 95 instances with
100 ≤ |V | ≤ 1000 and a random vertex degree in [1, |V |]. Graphs of this

1The solution certificates will be made available at http://www.info.univ-
angers.fr/ hao/prvsp.html

2http://www.ic.unicamp.br/ cid/Problem-instances/VSP.html#VSP
3http://www.optsicom.es/maxcut/#instances
4http://www.optsicom.es/vs
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Table 1: Parameter setting of the PR-VSP algorithm

Parameters Section Description Value

p 2.3 RefSet size 20
τ 2.3 coefficient used in the distance threshold 0.3
α 2.4 coefficient used in the tabu tenure 1.6
β 2.4 coefficient used in the iteration cutoff 2.4
ρ 2.4 coefficient for the perturbation method rand(0.05,0.25)

type are widely observed in the Internet, the World Wide Web, citation
networks and some social networks. This set of instances was tested in
Sánchez-Oro et al. (2014).

• Erdos-Renyi benchmarks: This set5 contains 95 random instances with
100 ≤ |V | ≤ 1000 and each pair of vertices connected with a probabil-
ity randomly chosen from [0.2, 1.0]. This set of instances was tested in
Sánchez-Oro et al. (2014).

Our PR-VSP algorithm was programmed in C++ and compiled using GNU
g++ on a Xeon E5440 (2.83 GHz CPU and 8 GB of RAM). The following time
limits were used as stopping conditions of our experiments: 1 second for the tra-
ditional benchmarks, 3600 seconds for the Hermberg and Rendl benchmarks and
10 seconds for both the Barabasi-Albert and Erdos-Renyi benchmarks. Given
the stochastic nature of the PR-VSP algorithm, we run PR-VSP to solve each
problem instance 100 times independently and report computational statistics
based on the outcomes of the 100 runs.

3.2. Parameter setting

Table 1 shows the parameter setting of the PR-VSP algorithm used for our
experiments. To identify the adopted parameter values, we conducted a param-
eter sensitivity analysis on a set of 20 representative instances by comparing dif-
ferent values for each parameter: p ∈ {10, 15, 20, 25, 30}, α ∈ {0.4, 0.8, 1.2, 1.6, 2.0},
β ∈ {1.0, 1.5, 2.0, 2.5, 3.0}, ρ ∈ {rand(0.05, 0.20), rand(0.05, 0.25), rand(0.10, 0.25),
rand(0.15, 0.25), rand(0.15, 0.30)} and γ ∈ {0.2, 0.25, 0.3, 0.35, 0.4}. By varying
the values of one parameter and keeping the values of the other parameters un-
changed, we ran the PR-VSP algorithm 20 times to solve each chosen instance
and recorded the average solution values. Hence, we obtained a table for each
parameter where the columns represent different values for this parameter and
the rows represent the average solution values for each instance. Furthermore,
we employed Friedman statistical tests to verify if different values for a specific
parameter present statistical differences.

Experimental results indicated that varying values of the parameters p, β, ρ
and γ present no significant differences with p-values of 0.7925, 0.5374, 0.4147
and 0.8769, respectively. This means that the algorithm is not sensitive to these
four parameters. However, the p-value of 0.0007 for the parameter α indicates

5http://www.optsicom.es/vs
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Table 2: Post-hoc statistical tests for the parameter α

α 0.4 0.8 1.2 1.6

0.8 0.8853
1.2 0.0474 0.1612
1.6 0.0015 0.0019 0.3327
2.0 0.0231 0.1291 0.5298 0.6241

that the algorithm is sensitive to the tabu tenure. Furthermore, we conducted
a post-hoc analysis to check statistical differences between each pair of α values
and showed the results in Table 2. As it can be seen in Table 2, four pairs of
values present significant differences with a p-value < 0.05, among which two
pairs are related to the setting α = 1.6. In order to choose the best parameter
setting, we also evaluated the number of best solutions achieved by each setting
as a secondary criterion. The results showed that the setting α = 1.6 obtains
the best solution for 18 out of the 20 tested instances and performed the best
among all the settings. In conclusion, this experiment reveals the rationality of
the chosen parameter setting of Table 1.

3.3. Reference algorithms

For the purpose of our comparative study, we used the following state-of-
the-art algorithms as our references.

• Breakout local search (BLS) (Benlic & Hao, 2013) is a heuristic algorithm
which reported results on the 104 traditional benchmarks as well as the
71 Hermberg and Rendl benchmarks. Like our PR-VSP algorithm, BLS
was written in C++ and compiled with GNU g++ under GNU/Linux
running on an Intel Xeon E5440 (2.83 GHz and 2 GB of RAM). The
stopping condition was a maximum running time of 10 seconds for the
104 traditional benchmarks and 3600 seconds for the 71 Hermberg and
Rendl benchmarks.

• General variable neighborhood search (GVNS) (Sánchez-Oro et al., 2014)
is a heuristic algorithm which reports results on the 104 traditional bench-
marks, the 95 Barabasi-Albert benchmarks and the 95 Erdos-Renyi bench-
marks. GVNS was implemented in Java SE7 and the results were obtained
on a computer with an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB of
RAM. The stopping condition used was a maximum running time of 5 sec-
onds for the 104 traditional benchmarks and 1800 seconds for the other
benchmarks.

• B-S (de Souza & Balas, 2005) is a branch-and-cut exact algorithm based on
the results of an in-depth polyhedral study. Computational reports were
reported on the 104 traditional benchmarks on a Pentium 4 computer (2.5
GHz and 2 GB of RAM) with a time limit of 1800 seconds.
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• NDHYBRID is the best hybrid algorithm proposed in (de Souza & Cav-
alcante, 2011), which combines a branch-and-cut algorithm with a relax-
and-cut algorithm as the pre-processing phase. The NDHYBRID algo-
rithm reported results on 40 out of the 104 traditional instances and ad-
ditional 7 MIPLIB instances (Borndorfer et al., 1998). These results were
obtained on a Pentium 4 computer (2.66 GHz and 1 GB of RAM) with a
stopping condition of 1800 seconds. Unfortunately, the MIPLIB instances
tested are no more available and thus we focus our comparison on the 40
tested traditional instances.

• B-M (Biha & Meurs, 2011) is an exact approach which applies the general
CPLEX 9.0 solver to a mixed-integer program. The results on the 104
traditional benchmarks were obtained on a Pentium M740 computer with
1.73 GHz and 1 GB of RAM. The stopping condition was not explicitly
indicated in the paper.

Given that the compared algorithms (except BLS) were run on computing
platforms which are different from our computer, it is difficult to make a fair
comparison of the computing times. For this reason, we focused our compar-
isons on the solution quality criterion while providing the timing information
only for indicative purposes. To make the time information somewhat mean-
ingful, we used the CPU performance measurement suits from the well-known
SPEC (https://www.spec.org/benchmarks.html) to normalize the computing
times of the compared algorithms with our machine as the reference. As such,
we multiplied the computing times reported by GVNS, B-S, NDHYBRID and
B-M by 1.2, 0.8, 0.8 and 0.6 respectively. It is important to note that the nor-
malized ratios from SPEC do not ensure an exact run time conversion among
the compared algorithms, given that the run time of an algorithm also depends
on multiple factors such as the programming language, data structures, and
compiler options. Consequently, the timing information is to be interpreted
with caution.

3.4. Computational results and comparisons

Table 3 shows the computational results on the 104 traditional instances
obtained by our PR-VSP algorithm along with the results of four reference
algorithms: breakout local search (BLS) (Benlic & Hao, 2013), general variable
neighborhood search (GVNS) (Sánchez-Oro et al., 2014) and the three exact
algorithms presented in (de Souza & Balas, 2005; de Souza & Cavalcante, 2011;
Biha & Meurs, 2011). Since this set of benchmark instances have known optimal
solutions, we report the number of instances for which the optimal solutions are
obtained by each algorithm and the computational time. For the two heuristics
(PR-VSP and BLS), we indicate the best time, the average time and the worst
time in seconds. From Table 3, we find that our algorithm is able to reach the
optimal solutions for all the 104 instances, with a worst time of 0.82 seconds and
an average time of 0.03 seconds, which is the shortest among all the compared
algorithms. Among the three exact algorithm, only B-M (Biha & Meurs, 2011)
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Table 3: Computational results of the PR-VSP algorithm on the set of 104 small traditional
instances in comparison with four reference algorithms: BLS (Benlic & Hao, 2013), GVNS
(Sánchez-Oro et al., 2014), B-S (de Souza & Balas, 2005), NDHYBRID (de Souza & Caval-
cante, 2011) and B-M (Biha & Meurs, 2011)

Algorithms tavg tbest tworst #solved instances

PR-VSP 0.03 0.00 0.82 104/104
BLS 0.08 0.00 3.06 104/104
GVNS 4.81 0.55 10.81 104/104
B-S 62.18 - 1131.60 97/104
NDHYBRID 63.11 - 592.13 37/40
B-M 140.28 - 9783.08 104/104

was able to solve all the 104 instances with long run time up to 9783.08 seconds,
while B-S (de Souza & Balas, 2005) and NDHYBRID (de Souza & Cavalcante,
2011) failed to solve 7 out of 104 instances and 3 out of 40 instances respectively.
According to these results, we conclude that these 104 traditional instances do
not represent any challenge any more.

Table 4 is dedicated to the set of 71 Hermberg and Rendl benchmark in-
stances and presents the comparative results between the PR-VSP algorithm
and the state-of-the-art BLS algorithm. The second column (fprev) indicates
the current best known results reported in the literature. The results of PR-
VSP and BLS are respectively shown in columns 3-5 and columns 6-8 in terms
of the best solution value Best, the average solution value Avg and the average
time Time to reach Best. To make a fair comparison, we reran BLS on our
computer under the same time limit as our PR-VSP algorithm. From Table 4,
we observe that PR-VSP is able to find new best solutions (displayed in bold)
for 22 out of 71 instances and fails to reach the best known results for only
one instance (G46). Moreover, PR-VSP obtains better, equal and worse aver-
age solution values relative to the BLS algorithm for 45, 14 and 12 instances,
respectively, demonstrating its competitiveness compared to BLS in terms of
solution quality. Finally, the computational time taken by PR-VSP to reach
better solutions is competitive with the time taken by BLS.

Tables 5 and 6 compare the PR-VSP and GVNS algorithms on 90 Barabasi-
Albert instances and 90 Erdos-Renyi instances, respectively. For the PR-VSP
algorithm, we report the best solution value Best, average solution value Avg
and the computational time Time to reach Best obtained for each instance.
The results of the GVNS algorithm are taken from Sánchez-Oro et al. (2014).
Since the two compared algorithms are implemented in different languages and
have been tested on different computing platforms, the timing information was
provided only for indicative purposes. As shown in Tables 5 and 6, PR-VSP
consistently attains better solutions (shown in bold) than GVNS for 26 Barabasi-
Albert instances and 20 Erdos-Renyi instances, respectively. For the other in-
stances, our algorithm matches the best solution values found by the GVNS
algorithm. In particular, the computational time of PR-VSP is 50 times shorter
than that of GVNS on average.
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Table 4: Computational results of the PR-VSP algorithm on the set of 71 Hermberg
and Rendl instances in comparison with the state-of-the-art BLS algorithm (Benlic
& Hao, 2013)

Instances fprev
PR-VSP BLS

Best Avg Time Best Avg Time

G1 257 257 257 0.84 257 257 8.23
G2 257 257 257 0.38 257 257 7.49
G3 257 257 257 1.43 257 257.05 76.35
G4 363 363 363 11.54 363 363.5 1735.65
G5 257 257 257 5.18 257 257 180.59
G6 257 257 257 0.41 257 257 7
G7 257 257 257 0.63 257 257 5.78
G8 257 257 257 1.92 257 257 153.27
G9 257 257 257 1.37 257 257 29.89
G10 257 257 257 3.56 257 257 220.92
G11 16 16 16 0.15 16 16 0.14
G12 32 32 32 0.08 32 32 0.05
G13 45 45 46.8 69.75 45 45 5.02
G14 146 146 146.3 386.15 146 146 1009.69
G15 144 144 144 12.98 144 144 13.83
G16 144 144 144 11.29 144 144 8.38
G17 144 144 144 55.89 144 144 54.88
G18 146 146 146.1 184.52 146 146 632.42
G19 144 144 144 8.97 144 144 19.47
G20 144 144 144 14.73 144 144 16.24
G21 144 144 144.1 67.01 144 144 16.08
G22 588 587 587 826.47 588 588.4 1023.94
G23 590 590 590 10.06 590 590.4 1342.36
G24 589 587 587.9 1228.16 589 589.5 1384.47
G25 589 588 588.3 1515.4 589 589.2 841.67
G26 587 587 587 671.46 588 588.15 1005.26
G27 820 818 818.7 815.85 820 820.05 798.99
G28 822 821 821.7 996.89 822 822.95 163.71
G29 820 819 819 1246.36 820 820.75 1922.14
G30 821 820 820.6 1716.18 821 821.75 1041.71
G31 819 819 819 976.61 819 819.65 1771.11
G32 40 40 40 0.44 40 40 0.66
G33 50 50 50 0.26 50 50 0.2
G34 80 80 82 0.21 80 82 0.14
G35 436 435 435.2 2025.4 436 436.35 1696.19
G36 441 440 440.4 1105.17 441 442.05 1302.49
G37 435 434 434.7 2307.84 435 438.2 2211.1
G38 439 439 439 1010.22 439 440.3 2156.96
G39 436 435 435.3 1415.07 436 437.8 1843.45
G40 440 440 440.4 1129.67 440 442.1 2365.89
G41 435 434 434.5 1160.87 435 437.05 1400.01
G42 439 438 438.8 650 439 440.8 2080.13
G43 411 411 411 5.28 411 411 11.52
G44 411 411 411 1.86 411 411 247.13
G45 410 410 410 4.04 410 410 53.78
G46 411 412 412 0.96 412 412 3.92
G47 411 411 411 17.88 411 411.95 0.62
G48 100 100 104 0.49 100 102 0.82
G49 60 60 60 1.25 60 60 0.52
G50 50 50 50 1.02 50 50 0.99
G51 224 224 224 38.18 224 224 59.11
G52 223 223 223.4 383.27 223 223.25 1140.31
G53 221 221 221.2 187.11 221 221.35 626.08
G54 219 219 219 18.14 219 219 32.88
G55 995 979 987 2752.88 997 1006.95 3170.29
G56 999 972 987.7 3345.15 999 1010.4 2357.58
G57 100 100 110 8.11 100 100 1.25
G58 1109 1085 1101 3352.99 1109 1133.35 3433.27
G59 1105 1088 1102.2 776.48 1105 1127.1 3396
G60 1376 1354 1372 3375.54 1386 1397.15 3343.69
G61 1385 1350 1368.2 3561.93 1385 1397.8 2653.87
G62 140 140 146 1.67 140 149 43.09
G63 1575 1546 1560.4 3321.63 1575 1596.85 2139.52
G64 1582 1549 1566.6 3363.47 1582 1602.6 3205.26
G65 160 160 164 7.72 160 160 34.39
G66 180 180 184 39.73 180 181 35.56
G67 194 194 197 782.94 194 196.7 411.21
G70 605 320 328.1 2977.13 609 633.25 2503.34
G72 194 194 197.5 487.76 194 195.5 643.86
G77 200 200 219.6 136.63 200 206.2 632.68
G81 200 200 220 4.58 200 213.85 39.27
Better 22
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Table 4 – continued from previous page

Instances fprev
PR-VSP BLS

Best Avg Time Best Avg Time

Equal 48
Worse 1

Table 5: Computational results of the PR-VSP algorithm on the set of 95 Barabasi-
Albert instances in comparison with the state-of-the-art GVNS algorithm (Sánchez-
Oro et al., 2014)

Instances PR-VSP GVNS

Best Avg Time Best Time

barabasi albert 1(100,65) 43 43 0.02 43 5.13
barabasi albert 1(1000,878) 564 564 3.24 564 93.57
barabasi albert 1(150,137) 86 86 0.04 86 7.64
barabasi albert 1(200,175) 112 112 0.06 112 10.11
barabasi albert 1(250,146) 99 99 0.26 99 13.01
barabasi albert 1(300,255) 160 160 0.19 160 16.01
barabasi albert 1(350,320) 198 198 0.23 198 17.98
barabasi albert 1(400,376) 234 234 0.24 234 20.86
barabasi albert 1(450,326) 218 218 0.55 218 23.45
barabasi albert 1(500,277) 204 204 0.51 204 25.16
barabasi albert 1(550,499) 314 314 1 314 33.41
barabasi albert 1(600,541) 348 348 1.1 349 32.74
barabasi albert 1(650,465) 320 320 0.71 320 45.84
barabasi albert 1(700,649) 409 409 1.54 415 40.76
barabasi albert 1(750,422) 303 303 1.11 303 59.74
barabasi albert 1(800,627) 418 418 1.37 418 59.07
barabasi albert 1(850,619) 418 418 2.86 418 76.26
barabasi albert 1(900,817) 522 522 4.63 527 59.72
barabasi albert 1(950,626) 442 442 2 444 57.83
barabasi albert 2(100,69) 45 45 0.02 45 5.05
barabasi albert 2(1000,856) 556 556 4.64 556 100.28
barabasi albert 2(150,94) 65 65 0.04 65 7.66
barabasi albert 2(200,161) 105 105 0.09 105 10.17
barabasi albert 2(250,235) 147 147 0.12 147 12.5
barabasi albert 2(300,220) 147 147 0.17 148 15.11
barabasi albert 2(350,182) 129 129 0.16 129 21.29
barabasi albert 2(400,227) 164 164 0.32 165 23.78
barabasi albert 2(450,392) 252 252 0.78 252 25.52
barabasi albert 2(500,288) 205 205 0.46 205 36.97
barabasi albert 2(550,355) 242 242 0.74 247 31.19
barabasi albert 2(600,520) 335 335 0.7 335 35.86
barabasi albert 2(650,485) 327 327 1.02 327 41.45
barabasi albert 2(700,545) 368 368 1.85 368 47.1
barabasi albert 2(750,395) 285 285 0.66 293 61.85
barabasi albert 2(800,617) 416 416 1.14 419 54.16
barabasi albert 2(850,739) 478 478 4.07 478 53.72
barabasi albert 2(900,576) 404 404 1.04 411 49.2
barabasi albert 2(950,744) 501 501 4.72 505 91.86
barabasi albert 3(100,64) 43 43 0.02 43 5.1
barabasi albert 3(1000,601) 430 430 2.34 430 72.14
barabasi albert 3(150,129) 83 83 0.04 83 7.62
barabasi albert 3(200,111) 81 81 0.07 81 10.66
barabasi albert 3(250,191) 124 124 0.15 124 13.26
barabasi albert 3(300,260) 159 159 0.11 159 15.56
barabasi albert 3(350,251) 166 166 0.3 166 17.98
barabasi albert 3(400,284) 191 191 0.21 193 22.92
barabasi albert 3(450,243) 177 177 0.25 179 24.86
barabasi albert 3(500,273) 200 200 0.47 200 25.12
barabasi albert 3(550,294) 217 217 0.29 217 35.87
barabasi albert 3(600,435) 293 293 0.82 293 35.01
barabasi albert 3(650,642) 387 387 0.76 387 41.02
barabasi albert 3(700,678) 417 417 0.83 418 37.65
barabasi albert 3(750,643) 416 416 0.74 416 38.4
barabasi albert 3(800,595) 399 399 5.16 409 59.2
barabasi albert 3(850,693) 453 453 2.3 458 65.65
barabasi albert 3(900,851) 535 535 1.81 535 54.22
barabasi albert 3(950,553) 398 398 1.48 401 62.09
barabasi albert 4(100,87) 51 51 0.02 51 5.1
barabasi albert 4(1000,509) 381 381 3.31 391 78.21
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Table 5 – continued from previous page

Instances PR-VSP GVNS

Best Avg Time Best Time

barabasi albert 4(150,111) 71 71 0.05 71 7.55
barabasi albert 4(200,197) 127 127 0.07 127 10.11
barabasi albert 4(250,133) 98 98 0.16 98 13.23
barabasi albert 4(300,205) 139 139 0.23 139 17.08
barabasi albert 4(350,294) 188 188 0.27 188 17.53
barabasi albert 4(400,350) 225 225 0.22 225 22.92
barabasi albert 4(450,229) 165 165 0.19 165 26.05
barabasi albert 4(500,496) 305 305 0.3 305 26.78
barabasi albert 4(550,347) 245 245 0.46 245 31.13
barabasi albert 4(600,305) 226 226 0.43 226 31.05
barabasi albert 4(650,535) 347 347 0.59 347 36.09
barabasi albert 4(700,621) 395 395 1.18 395 45.1
barabasi albert 4(750,722) 447 447 1 453 42.79
barabasi albert 4(800,750) 477 477 1.08 477 59.9
barabasi albert 4(850,646) 434 434 1.44 434 72.54
barabasi albert 4(900,768) 504 504 3.97 510 68.77
barabasi albert 4(950,758) 507 507 0.99 507 89.51
barabasi albert 5(100,89) 55 55 0.02 55 5.05
barabasi albert 5(1000,578) 413 413 1.19 413 74.64
barabasi albert 5(150,103) 67 67 0.05 67 7.64
barabasi albert 5(200,199) 132 132 0.05 132 10.15
barabasi albert 5(250,132) 94 94 0.18 94 13.07
barabasi albert 5(300,211) 139 139 0.13 139 16.11
barabasi albert 5(350,249) 164 164 0.16 168 18.01
barabasi albert 5(400,233) 162 162 0.35 162 23.82
barabasi albert 5(450,424) 269 269 0.38 270 25.17
barabasi albert 5(500,408) 270 270 1.48 270 27.48
barabasi albert 5(550,495) 317 317 0.48 317 31.76
barabasi albert 5(600,475) 316 316 0.73 316 30.97
barabasi albert 5(650,434) 298 298 0.68 304 47.87
barabasi albert 5(700,501) 341 341 0.67 346 35.7
barabasi albert 5(750,744) 453 453 1.71 453 43.28
barabasi albert 5(800,663) 432 432 0.75 432 49.66
barabasi albert 5(850,635) 430 430 3.16 433 71.7
barabasi albert 5(900,662) 446 446 1.27 452 88.55
barabasi albert 5(950,818) 534 534 2.48 534 83.49
Better 25
Equal 70
Worse 0

Table 6: Computational results of the PR-VSP algorithm on the set of 95 Erdos-
Renyi instances in comparison with the state-of-the-art GVNS algorithm (Sánchez-
Oro et al., 2014).

Instances PR-VSP GVNS

Best Avg Time Best Time

erdos renyi 1(100,0.89) 82 82 0.02 82 5.004
erdos renyi 1(1000,0.27) 333 333 0.4 333 66.929
erdos renyi 1(150,0.86) 118 118 0.06 118 7.531
erdos renyi 1(200,0.82) 147 147 0.07 147 10.202
erdos renyi 1(250,0.89) 205 205 0.1 205 12.583
erdos renyi 1(300,0.34) 99 99 0.06 99 16.779
erdos renyi 1(350,0.32) 116 116 0.07 116 20.186
erdos renyi 1(400,0.79) 290 290 0.34 290 20.517
erdos renyi 1(450,0.25) 149 149 0.09 149 22.897
erdos renyi 1(500,0.95) 454 454 0.47 454 25.097
erdos renyi 1(550,0.64) 316 316 0.45 316 36.505
erdos renyi 1(600,0.59) 316 316 0.56 318 39.628
erdos renyi 1(650,0.24) 216 216 0.17 216 38.103
erdos renyi 1(700,0.41) 243 243 0.46 254 57.626
erdos renyi 1(750,0.57) 394 394 1.05 401 54.65
erdos renyi 1(800,0.31) 266 266 0.3 266 76.686
erdos renyi 1(850,0.91) 746 746 1.77 746 44.4
erdos renyi 1(900,0.37) 299 299 0.43 299 55.387
erdos renyi 1(950,0.81) 733 733 2.39 733 54.825
erdos renyi 2(100,0.12) 28 28 0.01 28 5.095
erdos renyi 2(1000,0.30) 333 333 0.41 333 69.413
erdos renyi 2(150,0.51) 60 60 0.03 60 7.87
erdos renyi 2(200,0.23) 65 65 0.38 65 10.825
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Table 6 – continued from previous page

Instances PR-VSP GVNS

Best Avg Time Best Time

erdos renyi 2(250,0.81) 183 183 0.1 183 12.812
erdos renyi 2(300,0.52) 132 132 0.09 132 15.142
erdos renyi 2(350,0.19) 115 115 0.05 115 20.724
erdos renyi 2(400,0.40) 133 133 0.13 133 25.606
erdos renyi 2(450,0.10) 144 144 1.04 145 29.39
erdos renyi 2(500,0.05) 153 153 4.03 155 34.925
erdos renyi 2(550,0.33) 183 183 0.15 183 36.158
erdos renyi 2(600,0.21) 198 198.1 0.19 199 44.549
erdos renyi 2(650,0.36) 216 216 0.24 216 46.489
erdos renyi 2(700,0.49) 300 300 0.45 300 52.715
erdos renyi 2(750,0.94) 678 678 0.95 678 38.341
erdos renyi 2(800,0.36) 266 266 0.36 266 41.346
erdos renyi 2(850,0.64) 506 506 3.06 511 61.056
erdos renyi 2(900,0.61) 507 507 0.92 511 79.593
erdos renyi 2(950,0.83) 754 754 1.62 755 50.552
erdos renyi 3(100,0.78) 61 61 0.02 61 5.009
erdos renyi 3(1000,0.92) 891 891 6.2 891 52.155
erdos renyi 3(150,0.38) 49 49 0.03 49 7.88
erdos renyi 3(200,0.35) 66 66 0.03 66 10.753
erdos renyi 3(250,0.37) 83 83 0.05 83 14.101
erdos renyi 3(300,0.25) 99 99 0.05 99 15.334
erdos renyi 3(350,0.55) 161 161 0.14 161 18.249
erdos renyi 3(400,0.11) 129 129 2.46 130 22.915
erdos renyi 3(450,0.75) 309 309 0.41 309 22.976
erdos renyi 3(500,0.50) 211 211 0.27 223 36.001
erdos renyi 3(550,0.87) 452 452 0.57 452 27.84
erdos renyi 3(600,0.25) 199 199 0.14 199 30.911
erdos renyi 3(650,0.45) 246 246 0.28 246 46.143
erdos renyi 3(700,0.44) 265 265 0.39 278 55.913
erdos renyi 3(750,0.94) 676 676 0.86 676 38.087
erdos renyi 3(800,0.61) 437 437 1.07 437 65.796
erdos renyi 3(850,0.27) 283 283 0.29 283 84.293
erdos renyi 3(900,0.81) 686 686 1.77 686 47.637
erdos renyi 3(950,0.80) 726 726 1.53 726 55.15
erdos renyi 4(100,0.32) 33 33 0.02 33 5.01
erdos renyi 4(1000,0.55) 507 507 1.59 512 67.073
erdos renyi 4(150,0.69) 89 89 0.05 89 7.6
erdos renyi 4(200,0.61) 102 102 0.06 102 10.423
erdos renyi 4(250,0.69) 153 153 0.1 153 12.757
erdos renyi 4(300,0.35) 99 99 0.06 99 16.594
erdos renyi 4(350,0.22) 115 115.4 0.06 116 18.767
erdos renyi 4(400,0.86) 307 307 0.23 307 20.179
erdos renyi 4(450,0.94) 407 407 0.38 407 22.679
erdos renyi 4(500,0.75) 343 343 0.65 344 27.087
erdos renyi 4(550,0.83) 432 432 0.51 432 29.448
erdos renyi 4(600,0.76) 425 425 0.74 425 35.145
erdos renyi 4(650,0.59) 347 347 1.13 348 33.057
erdos renyi 4(700,0.62) 390 390 0.71 397 39.808
erdos renyi 4(750,0.57) 380 380 1.1 380 55.152
erdos renyi 4(800,0.98) 765 765 1.14 765 40.252
erdos renyi 4(850,0.74) 582 582 3.57 592 52.937
erdos renyi 4(900,0.35) 299 299 0.4 299 57.307
erdos renyi 4(950,0.45) 371 371 0.67 371 67.883
erdos renyi 5(100,0.71) 58 58 0.02 58 5.004
erdos renyi 5(1000,0.86) 821 821 2.7 821 57.026
erdos renyi 5(150,0.07) 40 40 0.02 42 8.252
erdos renyi 5(200,0.44) 69 69 0.04 69 10.815
erdos renyi 5(250,0.68) 149 149 0.09 149 12.991
erdos renyi 5(300,0.36) 99 99 0.07 99 16.772
erdos renyi 5(350,0.55) 170 170 0.14 172 20.441
erdos renyi 5(400,0.38) 133 133 0.12 133 25.181
erdos renyi 5(450,0.25) 149 149 0.09 149 22.936
erdos renyi 5(500,0.21) 165 165.1 0.34 165 30.532
erdos renyi 5(550,0.60) 290 290 0.44 290 31.482
erdos renyi 5(600,0.24) 199 199 0.15 199 30.702
erdos renyi 5(650,0.65) 386 386 1.09 390 41.257
erdos renyi 5(700,0.94) 633 633 1.01 633 35.291
erdos renyi 5(750,0.70) 473 473 0.98 473 52.227
erdos renyi 5(800,0.38) 266 266 0.72 266 42.812
erdos renyi 5(850,0.33) 283 283 0.33 283 44.077
erdos renyi 5(900,0.22) 299 299 0.29 299 47.898
erdos renyi 5(950,0.29) 316 316 0.36 316 59.508
Better 20
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Table 6 – continued from previous page

Instances PR-VSP GVNS

Best Avg Time Best Time

Equal 75
Worse 0

3.5. Analysis

To complement the computational studies presented in the last section, we
now provide an analysis of some key ingredients of the proposed PR-VSP al-
gorithm to shed light on their impacts on the performance of the algorithm.
As explained in Section 2, relative to the existing leading heuristics like Benlic
& Hao (2013); Sánchez-Oro et al. (2014), PR-VSP includes two distinguishing
features: a new local search operator (i.e., swap-move) and a dedicated path
relinking procedure. In order to assess their contributions, we create two PR-
VSP variants by disabling the swap-move operator (denoted by PR non-swap)
and the path relinking procedure (denoted by ITS). We compare PR-VSP with
these two variants based on a selection of 31 representative instances.

For this experiment, we ran the two PR variants under the same condition
as the PR-VSP algorithm. The results are summarized in Table 7 where we
indicate the best solution value Best, the average solution value Avg and the
average time Time to reach Best obtained by PR-VSP, PR non-swap and ITS.
The results of PR-VSP are directly extracted from Table 4. As shown in Table 7,
PR-VSP dominates PR non-swap and ITS since the two variants can only attain
respectively 13 and 11 Best values reported by PR-VSP for the 31 instances.
Moreover, PR-VSP performs better in terms of the average solution value, with
an average of 680.4 against 691.76 for PR non-swap and 685.82 for ITS. In
addition, the computing time of PR-VSP remains competitive with those of
PR non-swap and ITS, while attaining solutions of higher quality.

This experiment demonstrates the effectiveness of the new swap-move oper-
ator and the dedicated relinking procedure to the performance of the PR-VSP
algorithm.

4. Conclusion

We presented the first path relinking algorithm for solving the NP-hard ver-
tex separator problem. The proposed PR-VSP algorithm integrates specially a
new swap operator in its local improvement procedure and a dedicated relinking
procedure for path generations. The proposed algorithm was assessed on four
sets of 365 benchmark instances with up to 20,000 vertices. Comparisons with
the best performing algorithms in the literature showed that our algorithm com-
petes very favorably with the reference methods. Specifically, it is able to find
improved best solutions (new upper bounds) for 67 large instances and matches
previously best known results for all but one instance. The experiments also
indicated that the proposed algorithm is computationally effective.

As future work, we can consider another form of path relinking called Ex-
terior Path Relinking (Glover, 2014), which offers the possibility of including,
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Table 7: Comparative results on 31 instances between PR-VSP and two variants

Instances
PR-VSP PR non-swap ITS

Best Avg Time Best Avg Time Best Avg Time

G1 257 257 0.84 257 257 0.25 257 257 0.34
G10 257 257 3.56 257 257 1.21 257 257 5.16
G14 146 146.3 386.15 146 146.65 502.14 147 147 280.09
G21 144 144.1 67.01 144 144.2 115.4 144 144.95 619.74
G22 587 587 826.47 588 588.65 1520.39 588 589.66 1745.23
G23 590 590 10.06 590 590 50.57 590 590.95 315.59
G24 587 587.9 1228.16 588 588.35 1821.29 589 590.64 1564.18
G25 588 588.3 1515.4 589 589.5 1747.17 589 589.65 1573.66
G26 587 587 671.46 587 588.3 837.26 587 588.57 2552.6
G27 818 818.7 815.85 819 819.95 967.38 820 820.75 2136.41
G28 821 821.7 996.89 822 822.4 1372.29 822 822.95 1947.28
G29 819 819 1246.36 820 820.3 724.32 819 820.3 2841.23
G30 820 820.6 1716.18 820 820.6 1936.48 820 820.8 1901.36
G35 435 435.2 2025.4 435 435.65 2825.71 435 436.65 1576.71
G36 440 440.4 1105.17 440 440.95 1247.53 441 441.6 1647.73
G37 434 434.7 2307.84 435 436.7 539.92 435 436.7 1969.17
G38 439 439 1010.22 439 441.1 1828.57 440 441.5 1975.54
G39 435 435.3 1415.07 436 438.37 1521.74 437 438.95 1724.79
G40 440 440.4 1129.67 440 441.95 1019.46 440 441.95 2104.56
G41 434 434.5 1160.87 435 438.39 1437.12 435 441.15 2017.85
G47 411 411 17.88 411 411.3 135.58 411 412.3 887.64
G51 224 224 38.18 224 224.4 121.52 224 225.8 472.4
G55 979 987 2752.88 989 992.8 3301.25 984 990.45 3017.85
G56 972 987.7 3345.15 989 997.05 3470.67 976 998.12 3214.04
G58 1085 1101 3352.99 1092 1105.78 3102.21 1090 1103.72 2974.58
G59 1088 1102.2 776.48 1090 1109.13 1034.11 1094 1101.45 2457.45
G60 1354 1372 3375.54 1369 1385.8 1509.75 1359 1375.8 2434.87
G61 1350 1368.2 3561.93 1380 1398.12 2087.28 1356 1368.3 2641.79
G63 1546 1560.4 3321.63 1552 1565.4 2935.84 1563 1575.55 3017.75
G64 1549 1566.6 3363.47 1553 1564.36 3157.48 1559 1579.65 2974.47
G70 320 328.1 2977.13 505 584.26 3015.65 401 410.6 2748.64
AVG 676.00 680.4 1500.71 685.19 691.76 1480.24 680.94 685.82 1849.7
best/total 31/31 13/31 11/31
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during the relinking process, characteristics other than those of the guiding so-
lution. It would also be interesting to verify the merit of the newly defined swap
operator for other graph partition problems.
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