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Abstract—Graph partitioning is one of the most studied NP- approach requires considerable computing time (up to one
complete problems. Given a graphG = (V, E), the task is to week), it achieves partitions significantly better thanstho
partition the vertex set V' into & disjoint subsets of about the same generated by the state-of-art graph partitioning packages
size, such that the number of edges with endpoints in different S
subsets is minimized. In this work, we present a highly effective Moreover, a great number of well-known graph p.arF't'on'ng
multilevel memetic algorithm, which integrates a new multi- @pproaches are based on other popular metaheuristicglinclu
parent crossover operator and a powerful perturbation-base ing Tabu Search [12], [36], [4], Simmulated Annealing [21],
tabu search algorithm. The proposed crossover operator tend®  Neural Networks [2], Swarm Intelligence [41], etc.
preserve the backbone with respect to a certain number of paren To handle very large graphs, the so-called multilevel

individuals, i.e. the grouping of vertices which is common to all di h h to b ffecti f titioni
parent individuals. Extensive experimental studies on numerous paradigm has shown 10 be very efiective 1or parttioning

benchmark instances from the Graph Partitioning Archive show graphs [3], [19], [25], [44], [31]. The basic idea of multik
that the proposed approach, within a time limit ranging from approaches is to first coarsen the original grépdown to a

several minutes to several hours, performs far better than ap  certain number of vertices, generate a partition of this imuc
of the existing graph partitioning algorithm in terms of solution g -(ar graph, and then project this partition back towagds
quality. by successively refining the partition.
Index Terms—Graph partitioning, multi-parent crossover, tabu In this paper, we introduce a new multilevel memetic
search, backbone, landscape analysis. algorithm which combines a dedicated multi-parent crossov
operator based on the notion of backbone and a perturbation-
I. INTRODUCTION based tabu search algorithm. This work extends thus a prelim
o . [inary memetic algorithm presented in [5], where a different
Graph partitioning is one of the fundamental combinatoriglossover operator and a hill-climbing based local search
optimization problems which is notable for its applica§jiio  41gorithm are used. Compared to this previous work, the new
a wide range of domains, such as VLSI design [1], [39], dalgqorithm presented in this paper ensures better expoorati
mining [47], image segmentation [37], etc. It is well knowRyith the new multi-parent crossover operator, and better ex
that the general graph partitioning problem is NP-complefgoitation provided by an effective tabu search algoritiiuat-
[15], so approximate approaches are very useful to addreggrmore, this paper additionally includes: (a) more esiten
this prob]em. . experimental evaluations on a set of benchmark instanoes fr
Evolutionary algorithms are among the most popular agye Graph Partitioning Archive; (b) a detailed analysis on
proaches for the graph partitioning problem. Some repres@veral key issues such as the distribution of local optinth a
tative examples include: Mansour and Fox [29], who enforgge packbone size; (c) a comparison of the proposed crassove
the equi-partition constraint with a penalty term; Talbidangperator with the traditional uniform crossover, and asialy
Bessiere [42], whose genetic algorithm is based on a celluih the impact of perturbation within the proposed crossover
population structure; Bui and Moon [10], who add|t|onall3bperator; and (d) an analysis on the impact of the employed
employ a preprocessing phase scheme that improves the spgeg search mechanism on the overall performance of our
searching capability of the genetic algorithm; Gil et ab]l1 emetic algorithm.
who use the direct encoding for circuit partitioning; Kamgla  The paper is organized as follows. In the next section, we
Moon [23], and Kim and Moon [27], who perform extensivgecall the definition of the graph partitioning problem and
experiments on graphs with up to 5,000 vertices that sha@me basic notations used. In Section I1l, we describe tHe mu
an improvement over the local optimization approaches. {fjeyel paradigm, as well as the general scheme of the pezpos
[43], von Laszewski employs a ‘structural genetic operatomyltilevel approach. In Section IV, we present the memetic
which copies subsets _Of vertices to the offs_prlng. The CUiIMey|gorithm, which is the partition refinement mechanism @ th
most effective population-based approach is the one @porttilevel approach. In Section V, we provide computationa
by Soper et al. [38], which employs a multilevel heuristi¢egyits of extensive experiments on benchmark instanoes fr
algorithm to provide an effective crossover. Although thig,e Graph Partitioning Archive. In Sections VI, we show a

. . . . landscape and backbone analysis, and based on the observa-
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crossover with a conventional uniform crossover operaiod,

The proposed multilevel approach, which employs memetic

study the impact of perturbation strength within our multipartition refinement at each uncoarsening step, is predémte
parent crossover operator. In Section VIII, we analyze thdgorithm 1.

impact of local search on the overall algorithm performance

before concluding in Section IX.

Algorithm 1 The general scheme of the proposed multilevel

algorithm

Il. PROBLEM DESCRIPTION AND NOTATIONS

Require: An undirected graplizg = (Vp, Ep) and the number

of subsetsk

Given an undirected grapty = (V,E), V and £ being Enpsure: A & partition of G
the set of vertices and edges respectively, and a fixed number ; ._
k, a k-partition of G can be defined as a mapping (partition ,. while |V;| > coarsening_threshold do

function) 7 : V' — {1,2, ..., k} that distributes the vertices of 5.

G;11 = Coarsen(G;) [*Section IlI-B*/

V amongk disjoint subsetsS; U So U ..U S, = V. 4 =i+l

Let {S1, S, ..., Sk} be a partition ofV obtained byr, E° 5. end while
the set of all the cutting edges 6f induced by, i.e. E° & pOP; = Initial _Partition (G,) /*Section 11-C*/
={{z,y} € E| 2z € Siandy € Sj andi # j }, and let 7. pOP, = Short_Tabu_SearcHPOP;) /*Section IV-C*/
¢ be the set of all the partition functions @f. The graph g pOP, = Memetic_Refinemen(POP;) /*Section IV*/
k-partitioning problem consists in determining € ¢ such  g. while i > 0 do
that the partition{ Sy, So, ..., S,.} given by 7* minimizes the 15 ;.—; 1
number of cutting edges i® while ensuring that eacli;, 11:  POP; = Project(POP;1,G;) [*Section 11I-D*/
i € {1,2,...,k} is of roughly equal size. 12.  POP; = Short_Tabu_Search POP))

Throughout this paper, the initial input gragh is sup- 13  POP, = Memetic_Refinemen{POP,))

posed to have a unit cost weight for both vertices ang.
edges. However, as explained in Section 1lI-B, the multi-
level approach generates intermediate (coarsened) gvaphs

weighted edges and vertices. It is then useful to define tBe Coarsening phase

notion of edge and vertex weight. Let Gy = (Vo, Eo) be the initial graph. Creating a coarser
Let |v| denote the weight of a vertexin a coarsened graph, raphGis1 = (Vis1, Eioq) from G; = (V;, E;) consists in
which corresponds to the number of aggregated verticeseof ding an independent subset of edges (matching) E;,
initial graph. Then, the weight/(S5;) of a vertex subse$; is  anq then collapsing the two vertices of each edgd’imo
equal to the sum of weights of the vertices. Sy W(S:) = form a new vertex inV;, ;. Any vertex that is not part of
>_ves, |v]. The weight of a set of edges in the coarsened graphsimply copied over ta3,;,, (see Fig. 1 for an illustrative
can similarly be defined. example).
In this paper, we are essentially interested in finding atmos when two vertices);, v» € V; are collapsed to form a new
evenly balanced partitions. The notion of balance is definq@rtema € V; 1, the weight of the resulting vertex, is set
as follows. LetWW,,; = [|V|/k]| be the optimal subset weight,equal to the sum of weights of vertices andv,. Therefore,
where [z] represents the first integer z, then the quantity the weight of a vertex of a coarsened graph equals the number
e = mazic (1. 1y W(S:)/Wop defines the degree of imbalanceyf aggregated vertices of the initial gragh,.
among thek subsets of a partitio S, Sa, ..., Sk}. € = 1 Similarly, let v,,v, € Viy1 be two vertices formed by
means that the partition is perfectly balanced while- 1 collapsing {v,v2} € I' and {vs,v4} € I. All the edges
indicates an imbalanced partition with largecorresponding incident to {v1,v,} and {vs, v} are merged to form a new
to larger imbalance. edge{v,, v} € E;,1 with a weight that is set equal to the
The optimization objectivef of our graph partitioning sum of weights of edges incident {@, v2} and {vs,v4}.
algorithm is to find ak-partition with the smallest number of  One key issue here is the selection of the independent subset
edge cuts inE*, such that each partition subset is of almosif graph edge§ to be collapsed at each step of the coarsening
equal size { = 1.00). phase. This can be achieved by finding a maximal matching
of the graph [32]. There exist polynomial time algorithms fo
tackling this problem, with running time of at least|V'|*°).
Unfortunately, this is too slow to be applicable to the par-
titioning problem. That is why we compute an approximate
maximal matching using a fast heuristic called heavy-edge
Our multilevel memetic approach follows the general mumatching (HEM), which hagD(]E|) time complexity [24].
tilevel paradigm [9], [3], [19], [45]. Grapld- is first coarsened This method considers vertices in random order, matching
down to a certain number of vertices (coarsening phase), @ach unmatched vertex with its unmatched neighbou, if
initial partition of this much smaller graph is generatedt{al any, such that the weight of edde:, v} is maximal among
partitioning phase), and then this partition is projectedkh all the edges incident to. An example of vertex and edge
towards the original graph (uncoarsening phase) followed bggregation with HEM of an initial graph with seven vertices
partition refinement. is provided in Figure 1.

end while

I11. M ULTILEVEL MEMETIC ALGORITHM FOR GRAPH

PARTITIONING

A. General procedure
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Fig. 1.  An example of coarsening with HEM of an initial unwetieth graphGo with seven vertices. The weight of a vertpX of a coarsened grapfy;
equals the number of aggregated vertices of the initial g@phThe weight of the resulting edge, which is incident to théapsed vertex. = {u, v} is
set equal to the sum of weights of all the edges incident amdv minus the weight of edg¢u, v}.

C. Initial partition and its refinement because there is a greater degree of freedom for refinement.

To create each individual of the initial population in the Nis is one of the most attractive characteristics of a et

second phase (line 6 of Alg. 1), we first assign randomly tigorithm.
vertices of the coarsest graghi,, = (V,., E.,,) to subsets V. THE MEMETIC REFINEMENT
S; € {S1,52,..Sk}, such that each subset is as evenly g _ ! |
balanced as possible, i.e. eagh i € {1, ..., k} has a similar .The general idea behind memetic approaches is to com-
weight W (S;). Afterwards, we apply a short run of thebine advantages of both crossover that discovers unexplore
perturbation-based tabu search, previously presentel,ino] Promising regions of the search space, and local search that
improve all individuals of this initial population (see $iea finds good solutions by concentrating the search arounethes
IV-C), followed by the memetic refinement which is describetggions. Given an initial population which consists of lica
in Section IV (lines 7-8 of alg. 1). pptimal solutions, a memetic approach generates a new set of
This refinement step is essential for our approach to impro\FBprOYed local optima b_y applying a crossover o_perator(mnd/
progressively the quality of partitions. It should be notefutation to the population, followed by local refinementeTh
that for certain graphs, it may be impossible to obtain ¥CCESS of thls_ method depends_gnucally_ on the crossover
perfectly balanced initial partition, since weights of tiges OPerator that dlscqvers.new promising regions of Fhe search
in the coarsest graph are often greatly inhomogeneous. TPIRACE by perfo_rmmg ‘jumps’ from one local optimum to
imbalance is gradually reduced throughout each uncoargenfinother. These jumps need to be far enough to escape from the

step, and (usually) completely eliminated by the end of tf&sin of attraction of the current local optimum, but stiitn
algorithm execution. too far to degenerate into a simple random search algorithm.

Furthermore, in order to perform a directed ‘jump’, a cragso
_ operator should be able to recognize what elements must be
D. Uncoarsening phase preserved through the recombination and what elements can

The uncoarsening phase carries out the inverse of fA@ perturbed.
coarsening phase. The idea is to go from level to level, Motivated by the observation that high quality partitions
uncoarsening the clustered vertices in the same way they wehare many groupings of vertices (backbone, see below), we
grouped during the coarsening phase. The partition pioject Propose in this work an original backbone-based multi-pare
from a graphs; = (V;, E;) onto a partition of the parent graphCrossover (BBC) which preserves the backbone with respect t
G = (Vi_1, E;_1) is a trivial process. If a vertex € V; is & certain number of parent individuals. After the offspriras
in subsets,,,, then the matched pair of vertices, vs € V;_; been generated by the proposed crossover, it is refined with a
which represents vertex € V; will also be in subses,,,. perturbation-based tabu search algorithm. Finally, wdyaap

Before projecting a partition on to the next level, wéeplacement strategy, which takes into consideration buth
first apply a short run of the perturbation-based tabu Seamrtltlon quality and the distance between individualsha t
to improve all the individuals of the population, which ig*opulation. _ _ _
immediately followed by the memetic refinement (lines 12— 1he general architecture of our memetic approach is de-
13 of alg. 1). Experiments show that the local optimizatioﬁcr'bed in A.Igonthm IV.. The main components are detailed
applied on the initial population before memetic refinemetit the following subsections.
(lines 7 and 12 of Alg. 1) influences favorably the final result
though this influence is not very important. A. Encoding and fitness function

As the uncoarsening-refining process proceeds, the partiti Given a graphG; = (V;, E;) at leveli and an integet,
quality of a graphG,_; is usually better than that off; an individuall corresponds to a partition &f; into & disjoint



Algorithm 2 Memetic refinement of our multilevel approachhone with respect to a number of parent individuals while
Require: PopulationPOP; at graph level redistributing with a certain probability vertices that dot
Ensure: Refined populationPO P; belong to the backbone.

1. I* « Best(POP;) I* the best individual found so far */  For optimization problems, the teripackboneis usually

2: for n :=1 to number of crossovers do used to define a set of variabléshaving the same value as-

3 Selectp (p > 2) individuals {I',...,1?} with the signment throughout all the global optima, while theckbone
tournament selection strategy sizecorresponds to the number of elements3nThe similar
19 « BBC(I',..., I?) I* Section IV-B */ idea has been used in several contexts [13], [26], [46],.[48]
I° — Tabu_Search(1°) /* Section IV-C */ For our graph partition problem, the notion of backbone can
if (f(1°) < f(I*)) then be defined as follows.

I* « I° [ update best individual found so far */

Definition 1 (Backbone): Let G be a graph2 the set of

© e NGk

end if
POP; «— Pool Updating(I°, POP;) [* Section IV-D2 all optimal k-partitions of G. The backboneB of G is a
% ’ . ’ ! set of k subsets of vertice§B,, ..., By} such that eachB;,
10: end for i €{1,...,k} is the subset of vertices that are grouped together

throughout all the optima of2.

Definition 2 (Backbone size): Given a backboneB
{Bi,..., By}, its size|B| equals|B; U ... U B|.

groups or subsetd = {5, ..., Sk}, such that eacly;, j €
{1,...,k} is composed of vertices that are assigned tojtfe
subset. Such a definition cannot be applied in practice given that
The optimization objective of ouk-partitioning problem the optimal solutions are unknown (our goal is to find such a
is to minimize the cutting edges i (see Section II), solution). Therefore, in this paper, we use a relaxed defmit
while maintaining the best possible balance between jmartit of backbone by considering a set of locally optimal (high
subsets. quality) solutions. Therefore, if a set of vertices are sHar
The fitness functionf(I) of our memetic algorithm is through the set of selecte&-partitions, these vertices are
directly related to the optimization objective and sums ugPnsidered to have a high chance to be part of the backbone.
the cutting edge weights of &-partition (individual) I = 2) The backbone-based multi-parent crossover operator
{S1, ..., Sk }. More formally, (BBC): Given the sef? = {1}, ..., I?} of p parent individuals,
BBC constructs the offspring® = {SY,...,S%} in k passes

f(I) = Z 0un(I) (1) (one for each subset of the partition). In each pas#t
{u,v}€E; performs the following steps:
_ 1) Select a subsef! of I such that the weightV(S?) is
oun(l) = { Wy, Ifue Sx andv € Sy (z # y); maximal across the subsets {1..k} of each individual
' 07 otherwise I" e P, |e maxie{l_,p}ﬁje{l_k}{W(S;)}, W|th the

wherew,, ,, represents the weight of edge, v} € E;, i.e. the constraint that at mogt:/p| subsets can be chosen from

number of unit cost edges of the original gragh = (Vo, Eo)
that are aggregated withifu, v} € E; during the coarsening 2)
phase.

Then, individuall4 is considered better than individuaf
only if f(I) < f(I®) (lines 6-8 of algo. 2).

Since our goal is to find perfectly balanced partitions
(¢ = 1.00), the partition balance is imposed as a constraint
rather than an objective. However, as mentioned earligs, it 3)
sometimes impossible to establish perfect balance in enads
graphs since vertex weights can be extremely inhomogeneous
It is during the partition refinement of levels which are €os
to the original graph that the balance condition is (usially
completely satisfied. More precisely, the tabu search pharee
of our memetic algorithm employs two move operators that
take care of partition imbalance by transferring vertices t 4)
subsets of smaller weight (see Section IV-C). In addition,
the proposed backbone-based crossover operator inswaes th
the balance is not degraded during the crossover process (se
Section IV-B).

each individuall’ € P (line 5 of alg. 3).

GivenI’ andS; determined in Step 1, fazachindividual

I' € P (t # 1), let [[, contain the largest number of
vertices that are shared by the subSgof I* and a subset
S} of I, i.e.T[, = {SjNS}]Imax,e1.xy|S;NS; |} Then,
[I=A{IL-1I, .} forms a set of these vertex subsets
(lines 6-9 of alg. 3).

SetSp =[[, N [[,N...NI],_,- S}, is the largest subset
of vertices that are shared by all the parent individuals.
For each vertexw € S; andv # S, v is assigned to
subsetS), of I° if ¢(v)/p — 1 is greater than or equal to
some random real number in the rarigel], wherec(v)

is the number of subsets ¢f in which v occurs (lines
11-15 of alg. 3).

When a vertex is assigned to subset, of 1° in the n/'"
pass,v is removed from all the parent individual subsets
in which it occurs, and the weights of these subsets are
adjusted accordingly (lines 17-18 of alg. 3).

After the previous four steps, the last step handles the

unassigned vertices. Any vertexmissing fromI° is placed

B. Backbone and crossover

at random to a subsét. of 1° such thatiV (S, U{v}) < Wy,

1) Notion of backbone:Our backbone-based multi-paren{lines 21-26 of alg. 3), wher&/,,, is defined in Section II.
crossover described in this section tries to preserve thk-baThis step introduces a degree of diversification in the awss
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Fig. 2. An illustration of the BBC crossover with three pagerA circled subset of a parent corresponds to the subseeahia theu!™ pass, i.e. the subset
of maximal weight across all the parent individuals with thestaaint that at mosfk/p] subsets can be chosen from each individual.

process. 1) Neighborhood relations:Given a subsetS; of a k-
Notice that the proposed BBC operator never degrades theatition I = {5, Ss, ..., Sk }, the basic idea of the neighbor-
balance with respect to the set of parent individuglssince hood relations is to move a vertexrom another subset t6;.
given a subse’SJ’? of individual I* which is chosen in the Such a move is constrained such thahust be a border vertex
ut" pass (see line 5 of alg. 3), at mqsﬁt}\ vertices can be relative toS;, i.e.v ¢ S; has at least one adjacent vertexSin
transmitted to the subsétg of offspring I°. In addition, an Note that in this way, the size of the neighborhoods is lichite
unassigned vertex in 1° is assigned to a subséf only if since the set of border vertices relative o is generally of
addingv to S? does not exceed the expected optimal subsemall size. In addition, such a neighborhood allows thectear

weight Wo,,. to concentrate around these critical vertices.
The complexity of the proposed crossoveC&p « k «|V;]), The key concept related to the two neighborhoods is the
where|V;| is the number of vertices in gragh;(V;, E;). move gain which represents the change in the optimization

To determine the subsét C POP of p parent individuals, objective. It expresses an estimate on how much a partition
we employ the tournament selection strategy. Lée the size could be improved if a vertex is moved to another subset
of the tournament pool. We select each individiiak P in  S,. Given a vertexv from subsetS., the gaing(v,n) can
the following way: randomly chooskindividuals fromPOP; be computed for every other subsg&t, n # c. The selection
among the\ chosen individuals, place the best one iftaf  of the vertex with the highest gain, as well as the updates

it is not already present . needed after each move, are achieved efficiently by using an
An example of this crossover with three parent individuaksdaptation of bucket sorting [6] that was originally progds
(p=3) for k = 3 is provided in Figure 2. in [14] for graph bisection.

Let I = {51,95,...,5:} be a k-partition, V(S;) the

C. Perturbation-based Iterated Tabu Search improvement set of border vertices relative to subsgt, and S,,ux =

To improve the newly generated offspring, we apply afS:imazic(1 3 {W(S;)}} the subset with the maximum ver-
iterated tabu search algorithm [6] whose basic componefX weight. The neighborhood relation$, and N, can be
are briefly described in this section. explained by the two move operators given below.

Basically, the TS algorithm uses two neighborhood relation ~ Move 1. Move one highest gain vertex,,. Choose ran-
(call themN; and N;) which are explored in a token-ring way. domly a subsefS,, € {S1,52,..., 5} — {Smaz}- Then,
That is, we repeatedly apply one neighborhood search to the select thenighest gainvertexv,, € V(.S,,) whose current
best local optimum produced by the other neighborhood. The subset isS,, such thatS. € {S € I|W(S) > W (S,,)}.
algorithm incorporates as well a perturbation mechanism in  Move the selected vertex,, to subsets,,.
order to bring diversification into the search. Move 2. Move two highest gain vertices,, and v,,.



Algorithm 3 Backbone-based multi-parent crossover (BBC) | et Veand € V(Sm) be the set of the highest gain vertices

Require: SetP = {I*,..

Ensure: An offspring = {8Y,...,S%}

1:
2:

3: Determine subset weightd’(S;) of eachI® € P, Vb €
{1..k}

4: for p:=1to k do

5. [* Step 1*/
Select an individuall* and its subsetS! such that:
mazie 1. pyjef1.k3 AW (S;)} andq(I") < [k/p]
I+ Step 2 Determine[ [ = {[[,...[[, .}

6. foreachI'# 1!, I'c P do

7 [1, = {{S]; NS} }mazyei 1y |S; NS}

8: end for

oo Sp—TLnIL N0,y

10: /* Step 3 Assign vertices */
Count the number of occurrenceg) of each vertex
veShin[]

11:  for aII verticesv € Sl do

12: if (v¢ Sy andc(v )/p — 1 > random|0..1]) then

13: S) = SO U {v}

14: end if

15:  end for

16:  q(I') = q(I') +1
/* Step 4*/

17:  Remove all vertices € 52 from eachl/¢ € P

18:  Update subset weightd/(S;) of eachl® € P, Vb €
{1...k}

19: end for

20: /[* Step 5 Handle unassigned vertices */

21:
22:
23:

24:
25:
26:
27:

Initialize offspring I = ¢

., I?} of p parent individuals

which are considered for migration to sub$gt. The selection
of vertexwv, which is moved taS,,, is based on several pieces
of history information.

Set for each/® € P the number of times it has been This selection strategy is first conditioned by the tabuwustat

selectediy(I¢) =0

Compute subset weightd’(S?) of 1°, Vb € {1..k}

for all verticesv € V do
if v¢ U SY then
ASSIgnv to a random subse§?
that W(S2 U {v}) < W
Update subset weight/ (S?)
end if
end for
return 10 = {59, 59, ..., SV}

r

r € {1..k} such

(see IV-C2). It also employs two additional criteria whiate a
based ornvertex move frequencgnd vertex weight The move
frequency is a long term memory that records, for each vertex
v, the number of times has been moved to a different subset.
Our usage of this frequency information penalizes movek wit
vertices having high frequency count, by giving priority to
those that have been moved less often. If there is more than
one vertex with the same move frequency in thelsgt,,, we
use the second criterion to distinguish them and prefertaxer
v which, when moved to subset,,, minimizes the weight
difference between the target subSgt and the original subset
Se.

2) Tabu list and tabu tenure managemeriach time a
vertex v is moved from a subse$. to another subse§,,,
it is forbidden to movev back to its original subse$, for
the nexttt iterations (tabu tenure). The tabu tenuteof v is
tuned adaptively according to the number of border vertices
relative to S,

tH(Se)(v) = [V(Se)| *

where|V (S.)| is the number of border vertices relative Sp,
and « a parameter that takes randomly a value in the range
[0.05, ...,0.2].

3) Perturbation mechanismSince our local search proce-
dure focuses its search only around border (critical) vesti it
can get trapped in a local optimum. Therefore, we perioljical
apply a simple perturbation which consists in moving a
fixed number of vertices, including nonborder ones, in the
following way.

Let S,.,.. be the set of vertices with the maximum vertex
weight, Sy = mazieqi o {W(S;)}. Randomly select a
subsetS,, € {S1,52,....,5c} — {Smaz}. Then, randomly
choose a vertex,, whose current subset iS., such that
Sc €{S e IlW(S) > W(S,,)}. Move the selected vertax,
to subsetS,,,. This operation is repeatedtimes (perturbation
strength~ is set in this paper t@% of the total number of
vertices).

Making such moves introduces naturally more diversifica-

Choose vertexv,, and its new subsef,, as in the tion into the search.
first move operator. Choose randomly a new subset

Sp € {51,592, ..., Sk} — {Smaz, Sm }- Then, select vertex

v, € V(S,) whose current subset iS§., such that D. Population updating based on distance
S. € {S € I|S # S,}. Move v, to S,,, and v, to

Sh-

After offspring I° has been obtained with the proposed
multi-parent crossover operator, we improve it with the

It is important to note that these move operators progrgserturbation-based tabu search algorithm from Sectio,IV-

sively lead the search toward a balanced partition sincg thend then decide whethef® should be inserted into the

basically constraint (partially with Move 2) vertex migmat population. To base this decision, our algorithm combines
from heavy weight subsets to light weight subsets. Indedtie ideas presented in [34] and [28] and considers both
with Move 1 and the first choice of Move 2, a vertex cathe solution quality and the distance between individuals i

never be moved to a subset of the highest weight. The secqmugpulation. Therefore, we first formally define the notion of
choice of Move 2 is allowed to bring some diversification intdistance between two individuals before presenting thel use
the search.

replacement strategy.



1) Distance measure:To determine the distance be- Our pool updating strategy consists thus of three phases:
tween two individualsI* = {S{!,S3',..,S{*} and I” = for each individuall’ € POP, calculatingD; pop and the
{SE,sB,..,SE}, we use the well-known set-theoretic pareorrespondingd; pop score (lines 2-5 of alg. 4); identifying
tition distance [17] (call itd), which is the minimum num- the minimum distancé,,,;, between any two individuals as
ber of one-move steps needed to transfafth to 77, i.e. well as the worst individuall® (lines 6-7 of alg. 4); and
d(I4,IB) = |V| — sim(I*,IP), wheresim(I4,17) is the updating the pool (lines 8-10 of alg. 4). This pool updating
similarity function. strategy contributes to maintaining a healthy diversitytrad

Given the partition encoding from Section IV-A, the similarpopulation.
ity function sim(14, 17) is defined asnaz,cu ;- M; o),
where ¥ is the set of all the possible permutations of _
{1,2,..,k} and M a matrix with elements/; ; =[S/ nSF|. A. Benchmark instances
This functionsim (14, I7), which reflects structural similarity, ~To evaluate the efficiency of our proposed memetic ap-
corresponds to the number of elements that do not need topneach, we carry out extensive experiments on a set of graphs

V. EXPERIMENTAL RESULTS

moved to transforn4 to 5. that are frequently used to assess graph partitioningitigus.
These benchmark graphs are samples of small to medium scale
Algorithm 4 Pool updating strategy real-life problems arising in different applications. Jhean
Require: PopulationPOP = {I*,...,I™} and offspring/®  be downloaded from Walshaw's Graph Partitioning Archive
Ensure: Updated populatioiPOP = {I*,..., 1™} at: http://staffweb.cms.gre.ac.ald.walshaw/partition/ in the
1: Tentatively add/® to population:POP’ = POP U {I°} same format as used by JOSTLE [44], METIS [25] and
2: for i :=0tom do CHACO [18]. These graphs have unit vertex and edge weights.

3. Calculate the minimum distancB; pop: betweenl® Table | shows the main characteristics of the graphs.
and any individual inPOP’ according to Eq.(2) i
4:  Calculate the goodness scalk pop of It according B- Experimental protocol

to Eq.(3) There is generally a trade-off between execution time and
5. end for partition quality. The preference of time vs. quality is Ipiem
6: Select individual I* with the largest H score dependent. For instance, in the context of network layout or
maz;cio.my{Hjrop} VLSI design, even a slight improvement of partition qual-
7: Determine the minimum distance between two individuty can be of significant importance. For these applications
als: Dyin = minje(o.my{Djpor } it is worthwhile to employ a partition algorithm able to
8. if (I° # I) and (Do pop > Dumin OF f(1%5t) > f(1°))) obtain excellent quality solutions even if the algorithm is
then computationally intensive. On the other hand, in other gase
9: Replacel” with 1°: POP = POP U {I°}\ {I*} like sparse matrix-vector multiplication, a very fast aitfum
10: end if is indispensable since the computing time required for the

partitioning task has to be less than the time needed by a
fast vector multiplication algorithm.

Our MMA algorithm is designed to produce excellent
quality partitions with the possibility to be used to gertera
solutions of various qualities depending on the amount of
computing time allowed. We thus report computational rssul
of two experiments with short and long runs of MMA. For the
) y o first experiment, we parameterize our MMA such that each

Di,pop = min{di;|I” € POP, j # i} () vun lasts from one second to 15 minutes depending on the
Offspring I° is then inserted intoPOP if it is of the Size of the graph (see Table Il and Section V-C). The second
best quality relative to the population, or Dy pop > experiment aims to assess our MMA approach with respect to

minic1..my1(Di.pop)}, i.e. the minimum distance betweerthe be_st partiti(_)ns reported at the Graph Partitioning Arech
I° and any other individual in the population is greater thafOr this experiment, we use a set of parameter values that
the minimum distance between any two individuals in th€ngthens each run of the MMA algorithm (see Section V-D).
population. This idea was originally proposed in [34], ard h The second experiment allows us to test the limit of MMA
shown to be very effective in ensuring the population ditgrs and to obtain the best results possible with more computing
To determine the individual that is to be replaced By bud_ge_ts. Given the stochastic na_1ture of MMA, computational
we adopt the strategy proposed in [28]. This strategy useStgtistics are based on 20 or 30 independent runs of MMA on
quality-and-distance scoring functidfi to rank the individuals €ach graph.

2) Pool updating strategy:Given a populationPOP =
{I',1?,...,I™} of sizem and the distancé, ; between any
two individuals I* and I’ (i,j € {l..m} andi # j), the
minimum distance betweeri’ and any other individual in
POP is given by:

of the population. _ The proposed m_ultilev_el memetic algorithm is programmed
in C++, and compiled with GNU gcc on a Xeon E5440 with
Hipopr = f(I') + B/ Di pop 3) 2.83 GHz and 8GB. The parameter settings applied in both

experiments are reported in Table Il. We fix experimentally
where f is the objective function defined in Section IV-A andhe number of parentp for BBC relative tok: p = 3 for
[ a parameter set tG = 0.08  |V/|. k=16;p=4for k=2,32,64; p=5 for k = 4,8.



TABLE |
THE LIST OF BENCHMARK GRAPHS TOGETHER WITH THEIR CHARACTERIECS
Size Degree
Grap h 4 |E| Max  Min Avg Type
add20 2395 7462 123 1 6.23 20-bit adder
data 2851 15093 17 3 10.59 3D FEM
3elt 4720 13722 9 3 5.81 2D nodal graph
uk 4824 6837 3 1 2.83 2D dual graph
add32 4960 9462 31 1 3.82 32-bit adder
bcsstk33 8738 291583 | 140 19 66.74 3D stiffness matrix
whitaker3 9800 28989 8 3 5.92 2D nodal graph
crack 10240 30380 9 3 5.93 2D nodal graph
wing-nodal | 10937 75488 28 5 13.80 3D nodal graph
fe-4elt2 11143 32818 12 3 5.89 2D FEM
vibrobox 12328 165250 | 120 8 26.8 Sparse matrix
besstk29 13992 302748 | 70 4 43.27 3D stiffness matrix
delt 15606 45878 10 3 5.88 2D nodal graph
fe-sphere 16386 49152 6 4 5.99 3D FEM
cti 16840 48232 6 3 5.73 3D semi-structured graph
memplus 17758 54196 573 1 6.10 Memory circuit
cs4 22499 43858 4 2 3.90 3D nodal graph
besstk30 28924 1007284 218 3 69.65 3D stiffness matrix
besstk31 35588 572914 | 188 1 32.197 3D stiffness matrix
fe-pwt 36519 144794 | 15 0 7.93 3D FEL
besstk32 44609 985046 | 215 1 44.1636 3D stiffness matrix
fe-body 45097 163734 28 0 7.26 3D FEM
t60k 60005 89440 3 2 2.98 2D dual graph
wing 62032 121544 4 2 2.57 3D dual graph
brack2 62631 366559 | 32 3 11.71 3D nodal graph
finan512 74752 261120 | 54 2 6.99 stochastic programming matrix
fe-tooth 78136 452591 39 3 11.58 3D FEM
fe-rotor 99617 662431 | 125 5 13.30 3D FEM
598a 110971 741934 | 26 5 13.37 3D FEM
fe-ocean 143437 409593 6 1 5.71 3D dual graph
TABLE Il
SETTINGS OF IMPORTANT PARAMETERS
Parameters Description Values for Comp. 1| Values for Comp. 2
k number of partition subsets [2,4,8,16,32,64] [2,4,8,16, 32, 64]
POP; size of population 10 30
p number of parents involved in crossover [3,4,5] [3,4,5]
A size of tournament pool 6 6
% number of crossover operations 10 30
sr number of TS iter. before crossover (line 7 of alg. {L) 4 10 = |V|
Ir number of TS iter. after crossover 5% |V] 100 * |V]
ct coarsening threshold 200 200
Dstr perturbation strength 0.02 * |V| 0.02 * |V|
v non-improvement TS iter. before perturbation 0.01 = |V| 0.01 = |V|

C. Computational results with short running time

should be interpreted with caution.

tition quality obtained by pMetis and CHACO, while columns

MMAg and M M Ay, provide respectively the result of the

In this section, we show computational results of the firglest and average partition obtained with MMA (based on 30
experiment and compare our results with those of the lat@stiependent runs per graph). We indicate the MMA's average
versions of METIS (METIS-4.0) [25] and CHACO (CHACO-partition in bold if it is better than the partitions obtaihby
2.2) [18] available at the time of writing. For METIS, we useyoth pMetis and CHACO. The last column shows the average
the multilevel pMetis algorithm, and for CHACO, we choosgme (in seconds) needed by our approach to generate the
the multilevel KL algorithm with recursive bisection and &eported partition.
coarsening threshold of 100. Notice however that the p&pos From Table IIl, we observe that the best partitions obtained
of this experiment is not to show a rigorous comparisofith our MMA approach within a time limit ranging from less
of MMA with METIS and CHACO, given that MMA is a than one second up to 15 minutes are of far better quality in
Computationally intensive stochastic algorithm while MBT almost every case. In addition, the average qua”ty Of[pmng
and CHACO are based on very fast heuristics (order of secorfitained with MMA are also generally better than those of
whose computing time cannot be tuned. Instead, we waiNetis and CHACO.
to assess whether MMA can obtain good partitions with a However ask increases, MMA (but also pMetis) fails to
reduced running time (one second to 15 minutes). Only fgenerate partitions of perfect balance in some cases. For
this purpose, we use the results of METIS and CHACO as ofibalanced partitions, we indicate in parentheses theegegr
references. We do not claim that MMA can be a substitute f@f imbalance or *’ if the resulting partition has an imbatan

the existing fast partition packages. Therefore, this camispn degree greater than 1.07. For these cases, partition leatanc

not be completely established since the tabu search prozedu

The computational results of the first experiment are showdoes not move vertices strictly from the highest to the kght
in Table 11l. Columns two and three report respectively the p weight subsets (see Section IV-C1). Although Move 1 of the



TABLE Il
COMPARISON OF OURMMA APPROACH WITH AMETIS AND CHACO FORE € {2,4,8,16,32,64}. PMETISIS PART OF THEMETIS FAMILY OF
MULTILEVEL PARTITIONING ALGORITHMS. CHACO IS A PACKAGE THAT INTEGRATES A VARIETY OF ALGORITHMS FOR GRAP PARTITIONING. BESIDE
PROVIDING THE VALUES OF PARTITIONS OBTAINED WITHPMETISAND CHACO, WE SHOW THE BEST(M M Ap) AND AVERAGE (M M A 4,)
PARTITIONS OBTAINED WITH MMA AFTER 30 RUNS, AS WELL AS THE AVERAGE TIME IN SECONDS |F THE PARTITION IS IMBALANCED, WE REPORT THE
DEGREE OF IMBALANCE BETWEEN PARENTHESES

k=2 k=4 k=8
Graph pMetis CHACO MMAg MMA,, time pMetis CHACO MMApg MMA,4, time pMetis CHACO MMAg MMA 4, time
add20 729 742 697 ©9.0 0.9 1292 1329 1179 1205.1 3.6 1907 1867 1708 1730.7 8.4
data 218 199 189 195.0 0.8 480 433 383 409.7 3.0 842 783 674 699.6 3.2
3elt 108 103 90 103.2 15 231 234 201 208.4 4.8 388 389 348 359.5 4.9
uk 23 36 20 24.4 1.5 67 69 43 50.8 4.9 101 119 93 102.0 5.1
add32 21 11 10 12.8 1.9 42 56 33 39.5 7.5 81 115 66 76.9 7.1
bcsstk33 10205 10172 10171 10224.4  17.1] 23131 23723 21748 22119.0 37.6 40070 39070 34443 34585.1 51.3
whitaker3 135 131 127 127.3 5.1 406 425 383 394.3 17.1 719 765 659 669.3 12.7
crack 187 225 184 188.4 6.5 382 445 367 372.2 14.1 773 777 685 711.2 14.2
wing_nodal | 1820 1823 1708 17211 8.0 4000 4022 3582 3625.1 16.9 6070 6147 5445 5534.6 195
fe_4elt2 130 144 130 148.6 10.4 | 359 402 349 354.2 17.7 654 718 613 635.7 15.4

vibrobox 12427 11367 11184 11404.6  15.1] 21471 21774 19288 19664.0 41.5 28177 33362 24790 24975.7 473
bcsstk29 2843 3140 2843 3030.1 20.0| 8826 9202 8495 8663.1 37.3 16555 18158 15760 16587.6  43.9

delt 154 158 139 179.4 14.3 | 406 433 327 360.6 25.6 635 688 548 581.3 26.4
fe_sphere | 440 424 386 386.0 18.1 872 852 771 773.8 26.2 1330 1302 1212 1231.8 23.0
cti 334 372 334 340.4 13.6 | 1113 1117 970 994.4 29.4 2110 2102 1801 1876.6 31.2
memplus 6337 7549 5556 5645.4 29.3 10559 11535 9687 9916.6 63.5 13110 14265 12438 12546.3 73.8
cs4 414 517 374 379.0 28.6 1154 1166 977 1003.9 18.3 1746 1844 1497 1532.7 43.8

bcsstk30 | 6458 6563 6394 9664.5 91.6| 17685 17106 16681 20002.4  127.f 36357 37406 35909 384413 1139
bcsstk31 | 3638 3391 2767 3404.1 74.1| 8770 9199 7699 8314.2 125.3 | 16012 15551 13465 15088.7 150.4

fe_pwt 366 362 340 428.8 85.8 | 738 911 707 722.6 91.2 1620 1670 1452 1486.5 92.9
bcsstk32 5672 6137 4667 5611.8 170.4 | 12205 15704 9386 11203.7 175.3 | 23601 25719 21790 23546.6 208.6
fe_body 311 1036 262 291.5 88.9 957 1415 672 802.6 188.8 | 1348 2277 1115 1290.5 137.0

t60k 100 91 84 111.3 176.7| 255 235 221 256.7 199.6| 561 524 490 524.6 205.2
wing 950 901 814 842.5 182.8 | 2086 1982 1696 1740.1 331.4 | 3205 3174 2595 2668.6 228.7

brack2 738 976 731 819.5 173.0 3250 3462 3087 3199.6 318.0 | 7844 8026 7246 7641.1 2744

finan512 162 162 162 194.4 343 | 324 325 324 448.2 427.8| 810 648 648 734.4 429.7

fe_tooth 4297 4642 3822 4019.1 277.8 | 8577 8430 6941 7110.9 435.1 | 13653 13484 11688 11966.6 344.2
fe_rotor 2190 2151 2098 2102.3 426.2 | 8564 8215 7310 7745.1 525.2 | 15712 15244 13026 13693.3 518.8

598a 2504 2465 2398 2405.5 504.8 | 8533 8975 8044 8240.1 645.7 | 17276 17530 16061 16524.2 598.5
fe_ocean 505 499 464 647.2 977.4) 2039 2110 1897 1910.5 894.6 | 4516 5309 4210 4313.1 984.1

k=16 k=32 k=64

Graph pMetis CHACO MMAg MMA 4, time pMetis CHACO MMAg MMA 4, time pMetis CHACO MMAg MMA 4, time
add20 2504 2297 2113 2113.8 16.3 - 2684 244¢.01) 2439.4 20.6 3433107) 3349 305@.05) 3068.7 38.5
data 1370 1360 1154 1168.3 3.4 206Q1.01) 2143 1859 1881.9 3.9 3116103 3145 -

3elt 665 660 579 589.9 5.4 1093 1106 978 988.8 5.6 1710 1722 1574 1583.9 6.4
uk 189 211 164 182.1 4.7 3161.01) 343 28%1.01) 307.8 11.2 4951.02) 540 513 508.2 5.9
add32 128 174 117 129.3 7.9 2881.01) 303 212101) 224.9 7.7 6261.02) 730 572 574.8 8.2

bcsstk33 59791 61890 55522 55800.7 54.1 86008 84613 78844 79374.2 80.5 1162031.01115530 125407  125275.0 142.4
whitaker3 1237 1218 1101 1121.6 11.9 1891 1895 1727 1750.7 12.8 279G1o01) 2811 2594 2621.2 14.9
crack 1255 1253 1101 1142.6 13.9 1890 1962 1730 1767.4 13.71 | 2847101 2904 260@.01) 2640.7 15.8
wing_nodal | 9290 9273 8437 8508.7 24.3 13237 13258 11990 12064.7 23.5 17899u.01) 17783 16076.01) 16178 32.9
fe_4elt2 1152 1135 1015 1041.8 15.7 1787 1796 1655 1681.8 15.1 27651.01) 2781 2574 2585.6 17.5

vibrobox 37441 43064 33919 34839.1 73.2 46112 51006 42579 45100.9 94.2 537641.01) 58392 55189 54632.1 135.8
bcsstk29 28151 28629 24508 25711.3 51.2 41190 42935 36330 37265.4 57.9 628911.01) 63576 5827@.01) 58607.5 93.2

delt 1056 1083 951 983.3 24.2 1769 1766 1597 1650.5 27.3 2953 2921 2640 2692.9 28.0
fe_sphere | 2030 2037 1752 1806.3 26.8 2913 2920 2638 2686.7 24.6 4191 4151 3803 3834.5 29

cti 3181 3083 2921 2989.6 29.9 4605 4532 4243 4335.3 28.3 6461 6334 6014 6070.8 35.3
memplus 14942 16433 13361 13558.5 273.8 | 17303 17936 14778 15110.4 569.6 | 1914Qu.o1) 18978 - - -

cs4 2538 2552 2160 2221.7 44.8 3579 3588 3057 3111.6 39.6 4791 4817 4219 4278.9 49.8

bcsstk30 77293 81069 76258 76954.5 l4i.9 131405 128694 119413 123824.0 267.3 | 191691 191445 184829 204726.0 662.3

bcsstk31 27180 28557 24934 26192.0 147.3 | 42645 45354 40742 415735 123.1 | 66526 68375 61778 63207.6 266.1
fe_pwt 2933 3200 2839 2864.5 83.4 6029 6036 5783 5966.2 92.8 9310 9231 8532 8577.7 96.8
bcsstk32 43371 47829 38361 40966.4 214.2 | 70020 73377 64186 68541.7 406.7 | 106733 108855 101861 106247.0 711.8
fe_body 2181 2947 2118 2201.7 140.4 3424 4194 3385 3516.2 137.4 5843 6326 5576 5683.7 142.5
t60k 998 977 899 922.9 228.9 | 1613 1594 1488 1549.3 1945 | 2484 2506 2331 2397.7 201.7
wing 4666 4671 4076 4154.1 235.1 | 6700 6843 5896 6001.0 224.1 | 9405 9308 8065 8185.9 220.6
brack2 12655 13404 12055 123224 269.6 | 19786 20172 17855 18411.1 295.6 | 28872 29223 27056 27853.8 308.5
finan512 1377 1296 1296 1368.9 391.2 2592 2592 2592 2592.0 362.9 | 10842 11962 10764 10978.4  350.3
fe_tooth 19346 20887 17857 182045 348.7 | 29215 29849 25787 26179.6 3455 | 40162 40306 35864 36055.7 456.3
fe_rotor 23863 23936 20694 21398.3 460.6 | 36225 36367 32034 33831.1 559.2 | 53623 52497 48518 50043.5 943.2
598a 28922 29674 26361 26807.0 578.0 | 44760 45780 39470 40244.3 615.5 | 64307 65094 58483 58985.7 928.9
fe_ocean 9613 9690 7908 8206.6 930.8 | 14613 15059 13237 13571.8 908.7 | 23317 22692 21143 21554 1010.3
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tabu search procedure generally reduces the partitionlimband 77% of the current bektpartitions from the archive when
ance after each iteration, the imbalance may not be decteakds equal to 4, 8, 16, 32 and 64 respectively.

after an iteration of Move 2 since the balance constrainhig o

partially imposed. As it can be seen from the experimental /|, | ANDSCAPE AND STRUCTURAL ANALYSIS
results, the balance is always established KoK 16. For

larger k, there is generally a large number of feasible movesmr tr:"S SeCt'O:é V\;ev}'é'Shmtciivogtar;n fSOrThe |nr5|ght odn rr:hllati
implying more freedom for vertex migrations. As a result, i earch space and provide motivations for thé proposed-mu

is more difficult to establish a perfect partition balance trie parent crossover operator. For this purpose, we _employ the
fwo move operators fitness distance analysis (FDA) [22], which investigates th

correlation between quality (fithess) of local optima aneirth
_ _ distances to the optimum. Additionally, we analyze strradtu
D. Comparisons with the best known results similarity between local optima in terms of backbone size.

To better assess the performance of our MMA approach, we
show in_ this section experimen_tal rgsults under relaxefda tim,_ Analysis protocol
constraint. We prolong the running time from several miaute Wi ; th vsi h itioning i
up to 5 hours for the largest graph (notice that the curreMmot € perfo(;f?f etatnayss ?{E tsheven g_rapl parbl |0nt|r;g In-
effective evolutionary approach by Soper et al. [38] re@smirS ances of ditterent types, wi € cardinal humbeset 1o

computing time of up to one week to produce state-of-tha;ls’ ;6 aggg’g‘: 'Lhe rezults report(fadhfor e?glh grlaphl@ﬂde .
art results). The main purpose of this experiment is to kno sedon Independent runs of the multilevel pert t'

whether our MMA algorithm can improve further the curren ase‘?‘ tabu search algorlthm f“’m Sectl.on IV-C, anq using
best solutions. the distance measure introduced in Section IV-D1. Since the

For comparison, we use tloeirrent best partitiongseported Op“”_‘a' solutions for the selecte_d instances are not knw_m,

at the Walshaw’s Graph Partitioning Archive. The majority oUse instead the _best local optima found to compute f Itness-
these best partitions are generated with the hybrid ewslaty d'.sllt%nce fcorrelatllor:r.] T?bllle V Contal[ns the data to which we
algorithm presented by Soper et al. [38], which uses JosT(g! be reterring in the following sections.

multilevel procedure as a black box. Since each run of Soper

et al’s algorithm consists of 50,000 calls to JOSTLE, thiB. FDA for selected graph partitioning instances
approach requires significant running time of up to one weekTne fitness distance correlation (FDC) coefficippg,. [22]
for large graphs. Another great portion of these current b§s 5 well-known tool for landscape analysis and can provide
partitions are produced with NetWorks, which is a comme(sefy| indications about the problem hardness, even if such
cialized version of JOSTLE. The remaining best results agg analysis has some known shortcomings and limits. FDC
obtained with several other approaches [20], [31], [L1icBi ggtimates how closely related are the fitness and distance
the experimental conditions to obtain the current bestit®suq the nearest optimum. For a minimization problem, if the
are not available, we focus on comparing solution qualiftness of a solution decreases with the decrease of distance
based on the best objective value. from the optimum, then it would be easy to reach the target
Table IV summarizes the current best results from the GragRtimum for an algorithm that concentrates around the best
Partitioning Archive (column ‘Best?) the best results obtained;andidate solutions found so far. since there is a “path” to

‘ n 2 . . . . . .

by MMA (column ‘MMA) %, as well as the average angne optimum via solutions with decreasing (better) fitnéss.
‘standard,dewatlon of partitions obta_lned‘ by MMA (columRaye of p; 4. = 1 indicates perfect correlation between fitness
Avg(Std)). The last row with heading ‘Total’ shows theang gistance to the optimum. For correlation/gf, = —1,
number of times MMA succeeds to improve the curreRhe fitness function is completely misleading. FDC can also
best partition. All the comparisons are carried out betwegj yisualized with the FD plot, where the same data used for
partitions of the same balance. In most cases, the Paditifstimatingp ;4. is displayed graphically. Such plots have been
of MMA are perfectly balanced (i.es = 1.00, this is the used to estimate the distribution of local optima for a numbe
default balance). For the cases where MMA produces imbgk problems including for instance the TSP problem [7], grap
anced partitionsi( € {32,64}), we indicate the imbalance pinartitioning problem [30] and flow-shop scheduling preahl
in parentheses next to the objective value and compare Egg].
partitions with the same imbalance. o In column ‘pz4." of Table V, we report FDC coefficients

The results show that, in the case of bisection, our MM#4, _ ~for the 7 selected graphs. For illustrative purpose, FD
approach succeeds to reach the same solution quality of MBI&s of only two graphs 3elt and vibroboy are given in
than two thirds of the best balanced bisections reported Ffl{:)ure 3 fork € {4,8,16,32}. To make the difference in
the archive. It also improves the best bisection in threesasfiiness distribution more obvious, we “normalize” the attua

and produces, only in four cases, bisections that are le33$ 9@ness values in the FD plots by subtracting from them the
than the current best ones. More importantly,kagcreases pggt objective value.

(4 < k < 64), MMA improves even 63%, 90%, 93%, 83% as jt can be seen from Table V, there is a signification
1Results rettieved in June 2010 fitness distance correlation in many cases. However, the FDA

20ur best results are available at: http://www.info.unigers.fr/pub/hao/ analysis QISO reveals the e_X|stence f_’f s_everal cases a_meng t
MMAbest.htm| selected instances for which there is virtually no coriefat
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TABLE IV
COMPARISON WITH THE BEST RESULTS FROM THESRAPH PARTITIONING ARCHIVE (COLUMN ‘BEST) AND THE BEST RESULTS OBTAINED BYMMA
(COLUMN ‘MMA’) OVER 20 INDEPENDENT RUNS FORk € {2,4,8,16,32}. COLUMN ‘AVG(STD)’ PROVIDES THE AVERAGE AND STANDARD DEVIATION
OF PARTITIONS OBTAINED WITHMMA. | F THE PARTITION IS IMBALANCED, WE REPORT THE DEGREE OF IMBALANCE BETWEEN PARENTHESES

k=2 k=4 k=8
Graph Best MMA Avg(Std) Best MMA Avg(Std) Best MMA Avg(Std)
add20 596 678 708.5 (20.6) 1203 1159 1187.6 (17.1) 1714 1696 1705.5 (14.1)
data 189 189 189.0 (0.0) 383 382 391.6 (8.4) 679 669 675.6 (4.3)
3elt 90 90 90.0 (0.0) 201 201 202.4 (2.2) 348 345 346.8 (1.0)
uk 20 19 20.8 (0.9) 43 42 43.1 (0.7) 89 84 87.1 (2.2)
add32 11 10 10.3 (0.46) 34 33 34.8 (1.89) 75 66 68.9 (4.0)
bcsstk33 10171 10171 10171.0 (0.0) 21719 21730 22193.6 (431.8) | 34579 34455 34491.3 (34.9)
whitaker3 127 127 127.0 (0.0) 382 382 382.1 (0.2) 661 658 659.4 (1.3)
crack 184 184 184.0 (0.0) 368 366 366.0 (0.0) 687 679 686.6 (5.7)
wing-nodal 1707 1707 1707.8 (0.4) 3581 3578 3608.6 (27.0) 5443 5438 5481.8 (42.1)
fe-4elt2 130 130 130.0 (0.0) 349 349 349.0 (0.0) 610 609 615.8 (5.6)
vibrobox 10343 10343 10984.5 (265.4) | 19245 19138 19534.1 (217.2) | 24715 24583 24747.8 (74.7)
becsstk29 2843 2843 2846.0 (3.3) 8159 8475 8484.9 (13.4) 14322 15340 15905.8 (247.0)
delt 139 139 139.2 (0.7) 326 326 329.6 (4.3) 548 547 548.5 (2.5)
fe-sphere 386 386 386.0 (0.0) 770 770 771 (0.9) 1193 1165 1182.2 (18.3)
cti 334 334 334.0 (0.0) 963 955 970.0 (5.3) 1812 1795 1841.1 (21.4)
memplus 5513 5524 5587.6 (53.2) 9643 9646 9792.5 (56.6) 11872 11879 12040.1 (132.9)
cs4 371 371 374.0 (1.6) 964 934 962.1 (14.6) 1496 1455 1474.9 (12.3)
bcsstk30 6394 6394 6394.0 (0.0) 16652 16652 16856.0 (220.9) | 34921 34910 34948.4 (34.9)
besstk31 2762 2762 2768.1 (6.5) 7469 7355 7621.6 (140.2) 13812 13370 13755.3 (383.3)
fe-pwt 340 340 358.1 (5.3) 709 707 718.8 (5.7) 1465 1450 1465.1 (22.1)
bcsstk32 4667 4667 4679.5 (23.5) 9492 9318 9383.4 (53.0) 22757 21119 22377 (786.4)
fe-body 262 262 262.0 (0.0) 703 624 661.5 (13.1) 1234 1055 1086.9 (30.5)
t60k 79 83 85.5 (1.2) 213 218 222.3 (1.3) 476 474 486.9 (11.1)
wing 791 798 806.4 (5.3) 1666 1644 1672.9 (22.0) 2589 2525 2564.3 (24.7)
brack2 731 731 731.0 (0.0) 3090 3084 3100.5 (24.7) 7269 7151 7268.2 (104.9)
finan512 162 162 162.0 (0.0) 324 324 336.2 (28.9) 648 648 656.1 (24.3)
fe-tooth 3850 3819 3876.5 (78.7) 7142 6919 6969.1 (67.6) 11935 11475 11680.5 (173.3)
fe-rotor 2098 2098 2103.8 (10.0) 7480 7277 7630.7 (195.5) 13292 12912 13152.4 (139.0)
598a 2398 2398 2398.9 (1.0) 8154 8016 8072.6 (43.3) 16884 15938 16160.2 (115.6)
fe-ocean 464 464 467.6 (1.2) 1902 1895 1898.9 (2.9) 4299 4205 4233.5 (16.5)
Total 4 3 4 19 2 27

k=16 k=32 k=64
Graph Best MMA Avg(Std) Best MMA Avg(Std) Best MMA Avg(Std)
add20 2149 2064 2073.6 (7.5) 2493103) 2387103 2402.9 (8.9) 31521030 302103 3021.1 (7.9)
data 1162 1135 1146 (6.3) 18021.03) 1824102 1836.8 (7.0) 2798 - -
3elt 581 573 575.6 (2.4) 9691.01) 9691.01) 972.3 (2.57) 15641.01) 1554101) 1557.2 (2.2)
uk 159 153 158 (2.6) 258101 264101  273.0 (4.5) 438101 454101  460.7 (5.0)
add32 121 117 122.4 (5.9) 2121.01) 2121.01) 215.4 (8.6) 493 499 514.2 (7.7)
bcsstk33 55136 54763 55250.5 (337.7) | 78132 61047 61984 (552.3) 10850%1.01) 1078621.01) 108144 (219.7)
whitaker3 1108 1095 1102.3 (4.3) 1718 1697 1708.4 (4.3) 2569 2552 2563.1 (8.3)
crack 1108 1094 1111.4 (10.3) 1728 1693 1704.6 (5.1) 2566101) 256X101) 2574.3 (6.4)
wing-nodal 8422 8359 8404.1 (29.4) 12080 11828 11891.1 (34.55) | 161341.01) 15888101) 15911.1 (28.7)
fe-4elt2 1018 1010 1013.1 (3.4) 1657 1633 1643.8 (7.3) 2537 2519 2533.2 (6.4)
vibrobox 32654 32532 33207.3 (249.7) | 42187 40098 40607.2 (282.0) | 4952%1.01) 4804Quo1) 48794 (1006.3)
becsstk29 22869 24106 25167.5 (694.5) | 36104 35637 36100.3 (239.3) | 570541.01) 56792101) 57640.1 (448.8)
delt 956 942 950.2 (6.096) 1592 1563 1577.7 (9.5) 2636 2596 2603.8 (6.4)
fe-sphere 1750 1734 1739.4 (3.1) 2567 2542 2565.3 (12.4) 3663 3625 3655.7 (15.7)
cti 2909 2837 2894.5 (27.8) 4288 4142 4200.0 (33.1) 5955 5818 5862.8 (36.0)
memplus 13516 13054 13099.0 (31.1) 14634 14501 14601.6 (75.5) 17446 - -
cs4 2206 2107 2136.8 (15.1) 3110 2938 2979.7 (16.5) 4223 4051 4095.7 (19.8)
bcsstk30 72007 70910 71978.7 (411.9) | 119164 113788 115716 (1030.4) | 17394%1.01) 1749821.01) 176496 (1066.3)
besstk31 24551 23807 24152.2 (226.3) | 38484 37927 38432.7 (447.0) | 60724 58241 58651.4 (230.4)
fe-pwt 2855 2838 2845.0 (6.1) 5758 5663 5693.1 (24.3) 8495 8338 8358.4 (15.0)
bcsstk32 38711 36518 37225.7 (506.1) | 63856 60898 61670.1 (538.7) | 95199 91863 93633.2 (826.3)
fe-body 2057 1834 1890.6 (36.0) 3371 3060 3101.7 (35.1) 5460 4903 5021.7 (47.7)
t60k 866 881 890.1 (6.3) 1440 1431 1453.5 (10.6) 2233 2260 2273.7 (7.9)
wing 4198 3921 3960.9 (27.2) 6009 5643 5703.7 (33.2) 8132 7690 7752.7 (33.8)
brack2 12323 11689 11859.5 (92.6) 18229 17398 17612.7 (135.8) | 27178 25997 26154.6 (108.6)
finan512 1296 1296 1356.8 (35.1) 2592 2592 2592.0 (0.0) 10560 10560 10662.3 (82.6)
fe-tooth 18382 17428 17636.3 (96.3) 26346 24985 25292.4 (178.0) | 35980 34433 34688.9 (100.9)
fe-rotor 21241 20438 20711 (129.7) 32783 31369 31720.5 (257.7) | 49381 45984 46364.3 (209.0)
598a 26427 5783 26095.5 (147.1) | 41538 38682 38939.2 (161.1) | 59708 56260 56574.5 (163.4)
fe-ocean 8622 7803 7944.7 (98.8) 14277 12903 13032 (75.7) 22301 20146 20331.3 (148.1)
Total 2 27 2 25 5 23
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Fig. 3. FD correlation plots with respect to the normalizellison fitness and distance to the optimum 8#lt andvibroboxwhenk € {4, 8,16, 32}. The
first four plots are related to thgelt graph, while the last four are related to thiérobox

between fitness and distance, i.e. cases whejge < 0.15. of a big valley structure in the search landscape around
Indeed, from plots in Figure 3, it is clear that there ithe selected local optimum [8]. Intuitively, in this struot
practically no correlation for ‘vibrobox’ whei € {4,8}. In the global optimum (in our case, the best local optimum)
addition, the correlation is weak for ‘vibrobox’ whén= 32. is surrounded by many local optima whose fitness values
On the other hand, the strongest correlation is observed tmteriorate with the increase of distance from the optimum.
graph ‘3elt’ whenk € {4,16} and ‘vibrobox’ whenk = 16. To investigate the existence of the big valley structure, we
The presence of significant FD correlation in many casesovide in Figure 4 plots with respect to solution fitness and
explains to some extent why the local optimization engireveragedistance between any two solutions of a given set
(tabu search) used in MMA is extremely powerful. of local optima. As it can be expected, the plots give further
The strong correlation between solution quality (fitnesg) a evidence for the big valley structure in cases of graph *3elt

its distance to the reference solution also indicates tesguce
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Fig. 4. FD correlation plots with respect to the normalizellison fitness and the average distance between any twa@wudf a given set of local optima
for 3elt andvibroboxwhenk € {4, 8,16, 32}. The first four plots are related ®elt, while the last four are related to tivébrobox

and ‘vibrobox’ whenk = 16, i.e. high correlation betweenfrom Table V report respectively the average distance betwe
fithess and average distance between any two local optiracal optima and the average distance of local optima fraen th
On the other hand, such correlation is not visible in case bést local optimum, expressed as a percentagé pfGiven
‘vibrobox’ when k € {4, 8, 32}. that the maximum distance between any two solution¥is
The big valley structure implies that high-quality locathese results also confirm that local optima are not unifgrml
optima tend to be positioned centrally within the region distributed, but are rather concentrated within a limitachber
sampled local optima. Although we did not include fitnessf regions in the search space.
distance plots for all the analyzed graph partitioninganses,
except for some very rare cases, these p|ots confirm CQH’ Backbone analySiS and motivation for the BBC Operator
observation on the distribution of local optima in the skarc To evaluate the degree of similarity between local optima
space. (including global optima which are technically speakingoal
For informative purpose, columnsavg d;,” and ‘avg d,,’ local optima), we provide an analysis of the backbone size.
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TABLE V
ANALYTICAL RESULTS FOR SEVEN GRAPH PARTITIONING INSTANCES WEN k € {4,8,16,32}. COLUMNS ‘d;," AND ‘dg,’ REPORT RESPECTIVELY THE
AVERAGE DISTANCE BETWEEN LOCAL OPTIMA AND THE AVERAGE DISTANCE OF LOCAL OPTIMA FROM THE BEST LOCAL OPTIMUM EXPRESSED AS A
PERCENTAGE OFV/|. COLUMN ‘pq." SHOWS THE CORRELATION COEFFICIENTS WITH RESPECT TO FITNE®SID DISTANCE, WHILE COLUMNS ‘avgB;,’
AND ‘ Byj," INDICATE RESPECTIVELY (IN PERCENTAGE OF|V'|) THE AVERAGE BACKBONE SIZE WITH RESPECT TALO RANDOMLY CHOSEN LOCAL
OPTIMA, AND THE BACKBONE SIZE WITH RESPECT TO BEST LOCAL OPTIMA FOUNDURING THE SEARCH

k=4 k=8
Graph avg di, avgdgo  prde avg Bio Bhg avgdi, avgdgo  prde avg Bi, Bhg
data 30.5 34.8 0.57 215 95.2 17.8 16.0 0.68 46.6 64.7
3elt 19.1 18.7 0.7 50.0 97.3 17.2 14.6 0.53 58.2 69.6
uk 18 14.3 0.61 60.2 68.4 26.3 25.7 0.24 34.2 51.4
crack 3.5 2.2 0.89 98.3 98.9 22.5 19.6 0.51 59.8 95.4
wing-nodal 26.1 21.6 0.81 36.5 91.5 17.1 13.6 0.91 53.4 96.0
fe-4elt2 9.8 6.7 0.74 61.9 88.0 26.0 24.4 0.68 28.3 62.4
vibrobox 40.1 41.4 -0.02 21.7 40.7 22.4 19.7 0.03 54.1 52.4

k=16 k=32
Graph avg di, avg dgo Pfdc avg Bi, B}Lq avg di, avg dgo Pfdc avg Bi, th
data 225 23.7 0.08 42.3 42.2 24.9 23.1 0.6 32.4 50.9
3elt 14.0 12.1 0.75 61.8 77.2 20.5 17.1 0.53 43.3 61.5
uk 26.9 25.1 0.33 32.9 30.0 27.4 24.9 0.44 34.6 61.5
crack 27.7 22.9 0.74 24.8 79.6 28.1 26.3 0.58 24.5 33.8
wing-nodal 31.0 27.3 0.56 25.2 33.2 37.5 35.6 0.4 13.5 155
fe-4elt2 16.4 14.7 0.51 55.3 73.5 28.7 25.5 0.51 20.1 34.3
vibrobox 41.5 45.5 0.65 12.3 7.5 49.7 46.8 0.21 4.6 3.2

While the column avg B;,” from Table V reports the In order to highlight the role of the crossover operators, we
average backbone size with respect to 10 randomly chossat the number of generations to 1000 and reduce the number
local optima, column B;,," presents the backbone size withof tabu search iterations t5+|V,,,|, where|V,,, | is the number
respect to best local optima found during the search. Thé vertices in them!” graph level. We execute 20 times the
backbone size is expressed as the percentag® fofFrom two versions of our multilevel memetic algorithm, i.e. with
these results, we observe that except for very few cases, B®C and uniform operators, and report the results in Table VI
backbone is generally of significant size. We also note tit tFor each value ok, columns ‘b. BBC' and ‘b. UNI’ report
values reported inB)," are generally higher than the onesespectively the best partition obtained with our approach
in ‘avg B),’, which indicates that the structure of a set ointegrating the BBC and uniform crossover, while columns
high quality solutions is very similar to the structure obth‘BBC Avg(Std)’ and ‘UNI Avg(Std)’ report respectively the
supposed global optimum. This suggests that if a significaaterage and standard deviation of the generated partitions
number of vertices is grouped together throughout eacheof tivhen BBC and uniform crossovers are employed. A lower
high quality partitions, there is a strong chance that they aaverage value is indicated in bold. In addition, we perform
also grouped together in the global optimum. This obsesaatia statistical analysis using the Welch'dest, and report in
constitutes the first motivation for the BBC crossover whicbolumn ‘p-value’ the two tailedp-value over the two partition
tries to preserve the backbones through the search processets.

On the other hand, the FD analysis above shows the
presence of a big valley structure and high fitness-distaoce ~ From Table VI we observe that there is no significant
relation in many cases. This provides justifications abouy w Statistical difference between the solution sets for lovadues
the tabu search based local optimization is important withPf 4, i.e. k& € {4,8}. However, ask increases, we note that
our memetic approach. This additionally gives an argume@’ BBC operator visibly outperforms the uniform crossover
for preferring a constructive crossover operator like BB@ro in almost each case fdr € {16, 32}. One explanation is that
highly destructive ones like uniform crossover. To enfdiie intuitively, given the semantics of the BBC crossover, éarg
comment, we show in Section VIl a computational comparisdhn Would favor the preservation of backbone information by

between the BBC crossover and a uniform crossover, and sti#§C Whereas the number of parts has a weak influence for the
the influence of the perturbation strength within BBC. uniform crossover operator as to backbone preservatiodi-Ad

tionally, we compare in Table VII-A the average percentage o
perturbed vertices over 20 generations with the two craasov
) ) N as well as with a variant of the BBC (see Section VII-B)
A. Comparison with a traditional crossover operator for k € {4,8,16,32}. The perturbation strength is expressed
We compare the performance of the BBC operator witlis the minimum (set-theoretic partition) distance between
an adapted uniform crossover on the set of 30 instancesaofresulting individual and the parents participating in the
the Graph Partitioning Archive fok € {4, 8,16,32}. For the crossover. As it can be expected, the perturbation intreduc
uniform crossover, each vertex in the offspring partiti@es by the proposed crossover is always significantly weakar tha
with equal probability the subset of either parent pantitio the one introduced with the uniform crossover. Moreoveg, th
with the constraint that the subset weight in the offsprindegree of perturbation introduced with the uniform crossov
partition does not exceel/,,; (see Section IlI). In addition, increases wittk. This may constitute another explanation why
we reinforce the randomness of the crossover by performitige BBC performs better than the uniform crossover for large
some vertex swaps after the uniform crossover. values ofk € {16, 32}, since according to the observations

VII. A COMPARATIVE ANALYSIS OF THEBBC OPERATOR



TABLE VI
A COMPARISON OF PARTITIONS OBTAINED WITHBBC AND UNIFORM CROSSOVER OPERATOR ON THE SET 030 BENCHMARK GRAPHS FOR
k € {4,8,16,32}. WE REPORT THE BEST PARTITION OBTAINED WITHBBC (8. BBC) AND UNIFORM OPERATOR(B. UNI) , THE AVERAGE AND
STANDARD DEVIATION OF PARTITIONS OBTAINED WITHBBC (BBC A/G(STD)) AND UNIFORM CROSSOVER(UNI AVG(STD)), AND THE p-VALUE
BETWEEN THE TWO PARTITION SETSIF THE PARTITION IS IMBALANCED, WE INCLUDE THE DEGREE OF IMBALANCE IN PARENTHESES
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k=4 k=8
Graph b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value | b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value
add20 1159 1196.9 (23.5) 1154 1188.8(14.5) 0.199 1696 1729.2 (23.2) 1698 1725.0(24.5) 0.581
data 383 419.3 (21.1) 395 410.2(10.4) 0.095 681 725.9(29.7) 712 747.9 (35.6) 0.041
3elt 201 222.6 (20.9) 204 220.5(13.5) 0.708 348 369.6(23.0) 348 385.2 (27.1) 0.057
uk 43 49.2 (6.5) 45 48.8(4.2) 0.819 88 96.0(6.8) 102 115.4 (9.6) 0.000
add32 41 42.0(6.9) 33 42.8 (8.6) 0.748 | 67 76.4(7.2) 74 96.0 (17.1) 0.000
bcsstk33 21779 22234.5(402.4) 21779 22536.5 (605.0) 0.072 | 34430 34689.8 (471.8) 34480 34683.0(282.2) 0.956
whitaker3 384 403.1 (24.1) 381 393.5(15.0) 0.141 659 670.4(10.0) 662 685.0 (24.1) 0.019
crack 366 394.1 (32.5) 366 385.5(26.9) 0.368 687 714.7(15.8) 687 727.5 (34.5) 0.143
wing_nodal | 3582 3646.3 (45.0) 3579 3643.4(33.6) 0.819 5457 5590.6 (115.9) 5454 5515.6(41.0) 0.012
fe_4elt2 349 379.8 (31.4) 349 365.1(26.3) 0.117 608 644.0 (28.2) 614 640.6(16.8) 0.646
vibrobox 19228 19795.8(336.0) 19170 19832.8 (331.6) 0.728 | 24935 25038.7 (311.2) 24739 25011.0(150.3) 0.723
bcsstk29 8475 8613.0(280.7) 8493 8981.2 (754.7) 0.052 | 15586 16778.7(709.3) 16025 16945.0 (554.8) 0.415
delt 326 364.0(24.2) 326 366.1 (22.7) 0.779 | 546 608.0(36.0) 570 690.7 (66.6) 0.000
fe_sphere 770 770.3(0.6) 770 770.8 (0.9) 0.047 | 1208 1225.5(12.6) 1216 1242.4 (22.8) 0.007
cti 971 1052.0 (86.0) 954 1028.4(87.4) 0.395 1808 1927.9 (62.1) 1799 1896.9(53.8) 0.100
memplus 9677 9794.3 (98.6) 9628 9688.9(55.6) 0.000 12476 12533.5 (35.9) 12164 12517.6(178.4) 0.700
cs4 971 995.5(16.7) 970 995.7 (25.8) 0.977 | 1502 1531.6 (20.7) 1485 1510.8(15.8) 0.001
bcsstk30 16671 19802.4(4547.3) 16695 19878.4 (4598.1) 0.959| 35810 38342.3(3451.6) 35904 38490.6 (3533.7) 0.894
bcsstk31 7642 8633.7 (994.1) 7396 7955.0(574.1) 0.013 13730 15336.7(1272.6) 13675 15447.5 (1224.8) 0.781
fe_pwt 722 744.3 (54.6) 707 736.4(59.7) 0.665 1462 1546.5 (98.2) 1453 1506.2(31.8) 0.094
bcsstk32 9499 13218.8 (2161.9) 9312 10907.5(1423.9) 0.000 21420 23211.9(788.3) 22403 24198.1 (1318.1) 0.007
fe_body 660 826.7 (99.7) 691 821.5(97.0) 0.868 1079 1164.5(60.9) 1122 1196.5 (78.4) 0.158
t60k 219 248.3(44.6) 223 252.1 (34.5) 0.765 | 484 518.3(17.5) 500 536.9 (26.6) 0.013
wing 1665 1730.3(55.7) 1680 1763.2 (55.1) 0.068 | 2575 2666.8(72.3) 2629 2716.1 (61.5) 0.026
brack2 3097 3235.1(208.7) 3084 3275.7 (417.4) 0.700 | 7491 7800.7 (207.3) 7222 7756.4(291.4) 0.583
finan512 324 490.1(129.3) 324 494.1 (72) 0.905 729 866.7(109.0) 729 907.2 (125.5) 0.283
fe_tooth 6933 7273.5(328.5) 6975 7304.3 (362.4) 0.780 | 11875 12188.5 (215.2) 11591 11952.5(221.6) 0.002
fe_rotor 7296 7888.1(419.2) 7495 7932.4 (429.9) 0.744 | 13184 13784.2(458.1) 13396 14039.2 (440.0) 0.081
598a 8071 8352.4 (313.2) 8058 8321.7(396.2) 0.787 16032 16899.1 (632.6) 16124 16888.0(670.6) 0.957
fe_ocean 1890 2007.9(270.2) 1890 2220.0 (425.5) 0.069 | 4224 4502.3 (257.2) 4211 4389.7(149.7) 0.100

k=16 k=32
Graph b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value | b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value
add20 2073 2094.9(13.7) 214%.01)  2201.7 (30.6) 0.000 24361.03) 2425.9(13.8) 2547103 2620.3 (84.9) 0.000
data 1138 1164.3(18.5) 1348 1409 (39.4) 0.000 | 18331.07) 1870.0(20.7) 204(1.01) 2074.5 (37.2) 0.000
3elt 600 595.7(10.0) 661 734.3 (30.2) 0.000 | 971 988.6(11.7) 1076 1116.3 (21.2) 0.000
uk 155 180.2(16.5) 211 227.3 (9.5) 0.000 | 330 344.1(8.3) 3421.01) 353.7 (8.1) 0.001
add32 123 134.4(8.8) 1721.01) 196.9 (17.5) 0.000 | 215 238.7(26.0) 27%1.01) 332.5 (24.3) 0.000
bcsstk33 55318 55854.9(486.9) 55411 56477 (650.5) 0.002 | 77990 79380.1(1013.7) 80642 82517.8 (1862.8) 0.000
whitaker3 1114 1128.4(11.5) 1204 1292.9 (40.5) 0.000 | 1862 1802.9(60.6) 1840 1905.4 (29.2) 0.000
crack 1109 1151.9(21.8) 1301 1384.3 (39.3) 0.000 | 1907 1895.0(78.1) 1890 1975.8 (46.4) 0.000
wing_nodal | 8478 8550.5(61.8) 8832 8962.5 (279.3) 0.000 | 12291 12383.8(78.6) 12400 12561.8 (143.5) 0.000
fe_4elt2 1025 1054.9(18.6) 1114 1297.4 (83.4) 0.000 | 1673 1765.0(83.5) 1833 1902.1 (44.0) 0.000
vibrobox 33613 35292.2(784.2) 35975 37234.7 (563.2) 0.000 | 43861 45060.1(1090.2) 44462 45463.8 (1493.1) 0.336
bcsstk29 25567 25849.3 (705.3) 24456 25586.9(673.4) 0.236 36514 37362.3(876.1) 39819 41205.5 (748.5) 0.000
delt 959 992.8(53.3) 1154 1223.8 (43.1) 0.000 | 1706 1783.3(68.3) 1789 1863.7 (37.6) 0.000
fe_sphere 1734 1808.8(45.2) 1969 2072.3 (59.5) 0.000 | 2636 2825.8(66.6) 2826 2886.2 (29.9) 0.001
cti 2936 3020.0(54.1) 2962 3085.9 (84.1) 0.024 | 4237 4365.4(78.3) 4870 5025.0 (88.7) 0.000
memplus 13733 14061.1(204.4) 13999 14183.5 (103.4) 0.024 | 146591.01) 14907.7(255.8) - - -
cs4 2178 2220.9(18.0) 2198 2361.5 (110.7) 0.000 | 3110 3273.8(120.1) 3347 3424.8 (48.0) 0.000
bcsstk30 76258 76954.5(2185.0) 82533 87968.0 (4704.3) 0.000 | 124969 128905.8(2207.1) 131402 134148.5 (2429.8) 0.000
besstk31 24484 25796.5(849.1) 26360 30709.5 (2517.2) 0.000 | 41529 43540.6(1173.0) 43758 47259.5 (1593.3) 0.000
fe_pwt 2847 2891.8(41.1) 2869 3052.1 (94.5) 0.000 | 5872 6268.7(138.0) 6304 6356.3 (42.0) 0.013
bcsstk32 38535 42422.7(3105.7) 46771 51044.6 (3010.2) 0.000| 66966 71105.2(2711.7) 70806 74726.5 (2168.4) 0.000
fe_body 1890 2103.2(131.7) 1986 2222.8 (135.1) 0.007 | 3444 3532.1(64.1) 3809 3697.8 (81.4) 0.000
t60k 900 908.5(11.8) 1049 1122.4 (49.5) 0.000 | 1673 1702.2(37.5) 1661 1732.1 (39.3) 0.019
wing 4097 4155.6(50.8) 4098 4653.4 (150.8) 0.000 | 6054 6560.8(242.0) 6572 6718.7 (108.9) 0.013
brack2 12019 12259.5(234.3) 13019 13695 (574.0) 0.000 | 18413 19588.4(541.7) 19613 20495.7 (504.5) 0.000
finan512 1296 1458.0(88.7) 1539 1680.8 (109.9) 0.000 | 2592 2592.0(0.0) 2592 2592.0(0.0) -
fe_tooth 17993 18342.5(198.6) 18337 19521.8 (990.0) 0.000 | 27333 27785.9(986.0) 28373 29090.2 (472.9) 0.000
fe_rotor 21007 21473.4(380.2) 21392 24644.9 (1776.4) 0.000 | 34348 35049.2(2134.0) 39322 40929.3 (806.2) 0.000
598a 26194 27014.8(359.8) 26534 28206.1 (1385.0) 0.001 | 39711 40351.5(426.7) 41713 46046.0 (2017.5) 0.000
fe_ocean 7982 8262.4 (193.9) 7965 8215.4(169.6) 0.420 13158 13880.0 (447.3) 13321 13519.8(200.6) 0.003
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TABLE VI
PERCENTAGE OF PERTURBED VERTICES WITBBBC, SBBCAND UNIFORM CROSSOVER(UNI) FORK € {4,8,16,32}. FORBBC AND SBBCTHE
NUMBER OF PARENTSp = 6, WHILE FORUNI p = 2.

k=4 k=8 k=16 k=32

Graph BBC SBBC UNI | BBC SBBC UNI | BBC SBBC UNI | BBC SBBC UNI

data 4.64 48.86 29.40] 4.12 5.89 30.14| 6.89 40.17 33.70| 1451 55.32 44.23
3elt 3.79 14.87 25.50| 4.36 7.59 29.83| 6.65 21.33 32.25| 11.48  46.89 41.47
uk 8.36 26.35 25.92| 5.38 39.38 31.52| 24.13 60.04 32.71| 10.82 69.14 35.28
crack 3.04 5.27 25.26| 8.10 9.78 29.58| 6.16 9.46 32.56| 8.38 60.45 35.01
wing-nodal | 2.88 3.62 25.58| 2.26 5.26 29.64| 9.90 9.06 31.75| 12.73  61.00 34.75
fe-4elt2 5.17 9.58 25.83| 4.92 51.24 29.94| 6.65 15.65 32.21| 8.80 71.99 35.14
vibrobox 2.12 57.77 25.38| 2.90 6.07 29.58| 31.14  75.16 32.40| 17.20 94.15 56.26

from the analysis in Section VI, a weaker form of perturbatio6 for £ € {4,8,16,32}. As expected, we observe that the
should be used because of the generally high FDC and tinémber of perturbed vertices is always significantly largih
marked big valley structure in the landscape. SBBC than with BBC.

To see the convergence behavior of the proposed algorithmTo analyze the difference in performance, we provide in
we provide in Figure 5 evolution curves of the multilevelrable VIII the ¢-value, the degree of freedom), and the
memetic algorithm respectively with the BBC and uniforntwo tailed p-value over the two solution sets generated with
crossovers. The curves are plotted over 300 generations [@BC and SBBC respectively. We observe that thealue is
formed on each graph levelG(,,G,,_1,..,Go) for graph extremely significantg-value < 0.001) except in one case,
‘data’ with & = 4 and ‘fe-4elt2’ whenk = 32. The x- which suggests a statistically significant difference leetwthe
axis corresponds to the current number of generations,evhero solution sets. The negativevalue indicates that the mean
the first 300 generations are performed @p,, the 300—600 value of partitions obtained by BBC is, except in two cases,
generations oft7,, 1, etc. They-axis shows the ‘normalized’ significantly lower that the one produced by SBBC. These
average fitness value obtained by subtracting the bestditnessults imply that BBC outperforms in a more pronounced
value over 10 independent executions. Both crossover openay SBBC, which suggests that a too strong perturbation
tors start the refinement on a population of the same qualityiatroduced in offspring is not desirable. This result remsai
the coarsest grapfi,,,. One observes that for graph ‘data’ withconsistent with that observed when the uniform crossover is
k = 4, the BBC is outperformed by the uniform crossoveused.
while the situation is opposite for ‘fe-4elt2’ with = 32.

From the two curves, we also note that the algorithm congerge VIIl. | NFLUENCE OF LOCAL OPTIMIZATION

in both cases toward its best partition after approximatelyIn this section, we briefly analyze the contribution of

the same number of generations. j’h|s IS pz?trtlally due to tnﬁ:al optimization to the overall performance of the memeti
quallty-ar_1d-d|stance based po_pula_ltlon _u_pdatmg S‘r?"’é@ﬂr algorithm by comparing the proposed perturbation-basked ta
MMA which ensures a healthily diversified population.  gear0h procedure [6] with its hill-climbing version. Thel-hi
climbing procedure is basically the same as the tabu search
B. Perturbation strength of BBC operator procedure with the tabu list disabled.
In this section, we provide an analysis on the impact We perform a statistical analysis on seven graphs with
of perturbation strength introduced by our new multi-pared4, 8, 16,32} using the Welch’s-test on solution sets obtained
crossover operator (BBC) by comparing the performance after 20 independent runs. For this analysis, we set the aumb
BBC from Section IV-B2 with its slight variation (call it of generations to 500, and the number of local optimization
SBBC) which mainly differs from BBC in the degree ofiterations before and after crossoverté = |V;| and 5 x |V;]
perturbation introduced in offspring. As explained in $@tt respectively, whereV;| is the number of vertices at thié"
IV-B2, BBC preserves all the vertices from the backbongraph level.
B = {By, ..., B;} with respect top parent individuals, and Table IX shows the statistical result between solution sets
perturbs with a certain probability a vertex if it is not generated with two versions of our algorithms, which intgr
present in any subset d® (see alg. 3, lines 12-13). On therespectively the tabu search procedure (TS) and the hill
other hand, SBBC consists in preserving only the verticembing procedure (HC). For eaéhe {4, 8,16, 32}, columns
v € {B1 U...U By} and assigning the rest of vertices tdt-value’, ‘df’ and ‘p-value’ report respectively thévalue,
random subsets, of 1Y, such thatW (S, U {v}) < W,,.. degree of freedom anptvalue over the two solution sets. In
Consequently, SBBC implies much stronger perturbation @ach case, thevalues are negative which indicates that the
I° than BBC. proposed multilevel approach always performs better when t
For this analysis, we use the same set of seven benchmagk algorithm is employed. From these very smaNalues
instances as in Section VI. To perform the statistical asigly (< 0.001), one concludes that the difference is statistically
we use the Welch's-test on sets of solutions obtained after 58ignificant. These analytical results, along with the FDiysia
runs of our multilevel memetic algorithm. Table VII-A showsshown previously, provide clear evidence that the pertioha
the average perturbation degree expressed as a percefitagmsed tabu search procedure plays an important role in the
[V|, which is introduced by both BBC and SBBC when= overall performance of our multilevel memetic algorithm.
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average fitness value over 10 independent executions. Bgahthms start with a population of the same quality.

TABLE VIl
STATISTICAL ANALYSIS USING THE WELCH' S¢-TEST OVER TWO SOLUTION SETS GENERATED WITHBBC AND SBBCWITH p = 6 FORk EQUAL TO 4, 8,
16 AND 32. ANEGATIVE t-VALUE MEANS THAT BBC OUTPERFORMS THESBBC OPERATOR

k=4 k=8 k=16 k=32
Graph t-value df p-value | t-value df p-value | t-value df p-value | t-value df p-value
data -6.547 93 0.000 -12.103 95 0.000 -18.154 91 0.000 -13.626 91 0.000
3elt -6.314 72 0.000 -14.111 76 0.000 -9.535 93 0.000 -13.351 97 0.000
uk -10.916 92 0.000 -8.175 98 0.000 -5.123 98 0.000 -3.716 93 0.000
crack -4.214 81 0.000 -13.438 72 0.000 -10.535 97 0.000 -5.638 96 0.000
wing-nodal 3.539 95 0.001 3.756 94 0.000 -11.502 93 0.000 -7.492 96 0.000
fe-delt2 -7.338 72 0.000 -13.236 70 0.000 -8.886 94 0.000 -9.757 96 0.000
vibrobox 3.390 98 0.001 -8.410 84 0.000 -5.165 92 0.000 -1.103 98 0.273
TABLE IX

STATISTICAL ANALYSIS USING THE WELCH’St-TEST OVER SOLUTION SETS GENERATED WITH TWO VERSIONS OF OUR SIORITHMS, WHICH
INTEGRATE RESPECTIVELY THE PROPOSED PERTURBATIGEASED TABU SEARCH PROCEDURETS) AND A HILL CLIMBING PROCEDURE (HC). A
NEGATIVE t-VALUE MEANS THAT THE ALGORITHM WITH TS PERFORMS BETTER THAN THE ALGORITHM WITHHC.

k=4 k=8 k=16 k=32
Graph t-value df p-value | t-value df p-value | t-value df p-value | t-value df p-value
data -4.440 38 0.000 -0.550 38 0.585 -2.144 38 0.039 -9.505 27 0.000
3elt -4.712 29 0.000 -2.639 33 0.013 -1.773 34 0.085 -3.590 25 0.001
uk -6.541 25 0.000 -4.728 32 0.000 -5.785 36 0.000 -13.136 26 0.000
crack -11.441 23 0.000 -7.541 31 0.000 -4.428 38 0.000 -8.628 28 0.000
wing_nodal -4.086 32 0.000 -3.919 35 0.000 -9.030 31 0.000 -10.938 26 0.000
fe_4elt2 -1.784 19 0.091 -7.541 31 0.000 -3.747 35 0.001 -7.188 28 0.000
vibrobox -19.047 37 0.000 -8.222 21 0.000 -7.232 32 0.000 -6.693 27 0.000

IX. CONCLUSION healthy population diversity during its search.

In this paper, we have presented a highly efficient multi- We have proposed landscape analysis using FDC to put
level memetic algorithm for the balanced graph partitigninforward the existence of the big valley structure for sonabpr
problem. Our MMA algorithm uses an original backbonelem instances, and studied the backbone phenomenon within
based multi-parent crossover operator, a perturbatisedad set of high quality solutions which provided motivation fo
tabu search procedure as the local optimization engine, dh@ design of our BBC crossover. We have also investigated
a pool replacement strategy that takes into consideratiii¢ role of perturbation within the crossover operators and
both the solution quality and the distance between solstiofthe influence of local optimization on the performance of the
The backbone-based multi-parent crossover operator of MMBemetic algorithm.
tries to preserve the elements which hopefully belong to theWe have assessed extensively the performance of the pro-
optimal partition while permitting limited perturbatiomgthin  posed memetic algorithm with both short and long run times,
offspring solutions. The tabu search procedure (viaita telh on a collection of benchmark graphs from the Graph Parti-
and occasional random moves), and the quality-and-distartioning Archive, with the cardinal numbe¥ set to 2, 4, 8,
based population updating strategy provide MMA with 46, 32 and 64. We have shown that the results generated in
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short computing time (from less than one second to some [15] C. Gil, J. Ortega, A.F. Diaz and M.G. Montoya. AnnealiBgsed
minutes) are very Competitive with those produced by the two Heuristics and Genetic Algorithms for Circuit Partitioning Parallel
well-known graph partitioning packages METIS and CHACO.

When the running time is prolonged (from several minutes to7)

5 hours), our approach succeeds even to improve more than

two thirds of the best partitions of the given balance regubrt (18]
at the Graph Partitioning Archive.
This study focuses on obtaining perfectly balanced &l
slightly imbalanced patrtitions. It is known that allowingore
imbalance may lead to partitions of better quality. Indeed,
when we relaxed the balance constraint up to a certddql

degree, with a slight modification of our MMA algorithm 21

described in this paper, we obtained imbalanced partitions
(not reported here) which are highly competitive with the

best-known partitions reported in the literature. Howeves
believe that further research needs to be realized in oaler t
design a dedicated algorithm which could improve even more
the quality of imbalanced partitions.
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