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Abstract—Graph partitioning is one of the most studied NP-
complete problems. Given a graphG = (V, E), the task is to
partition the vertex set V into k disjoint subsets of about the same
size, such that the number of edges with endpoints in different
subsets is minimized. In this work, we present a highly effective
multilevel memetic algorithm, which integrates a new multi-
parent crossover operator and a powerful perturbation-based
tabu search algorithm. The proposed crossover operator tendsto
preserve the backbone with respect to a certain number of parent
individuals, i.e. the grouping of vertices which is common to all
parent individuals. Extensive experimental studies on numerous
benchmark instances from the Graph Partitioning Archive show
that the proposed approach, within a time limit ranging from
several minutes to several hours, performs far better than any
of the existing graph partitioning algorithm in terms of solution
quality.

Index Terms—Graph partitioning, multi-parent crossover, tabu
search, backbone, landscape analysis.

I. I NTRODUCTION

Graph partitioning is one of the fundamental combinatorial
optimization problems which is notable for its applicability to
a wide range of domains, such as VLSI design [1], [39], data
mining [47], image segmentation [37], etc. It is well known
that the general graph partitioning problem is NP-complete
[15], so approximate approaches are very useful to address
this problem.

Evolutionary algorithms are among the most popular ap-
proaches for the graph partitioning problem. Some represen-
tative examples include: Mansour and Fox [29], who enforce
the equi-partition constraint with a penalty term; Talbi and
Bessiere [42], whose genetic algorithm is based on a cellular
population structure; Bui and Moon [10], who additionally
employ a preprocessing phase scheme that improves the space
searching capability of the genetic algorithm; Gil et al. [16],
who use the direct encoding for circuit partitioning; Kang and
Moon [23], and Kim and Moon [27], who perform extensive
experiments on graphs with up to 5,000 vertices that show
an improvement over the local optimization approaches. In
[43], von Laszewski employs a ‘structural genetic operator’
which copies subsets of vertices to the offspring. The current
most effective population-based approach is the one reported
by Soper et al. [38], which employs a multilevel heuristic
algorithm to provide an effective crossover. Although this
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approach requires considerable computing time (up to one
week), it achieves partitions significantly better than those
generated by the state-of-art graph partitioning packages.

Moreover, a great number of well-known graph partitioning
approaches are based on other popular metaheuristics includ-
ing Tabu Search [12], [36], [4], Simmulated Annealing [21],
Neural Networks [2], Swarm Intelligence [41], etc.

To handle very large graphs, the so-called multilevel
paradigm has shown to be very effective for partitioning
graphs [3], [19], [25], [44], [31]. The basic idea of multilevel
approaches is to first coarsen the original graphG down to a
certain number of vertices, generate a partition of this much
smaller graph, and then project this partition back towardsG
by successively refining the partition.

In this paper, we introduce a new multilevel memetic
algorithm which combines a dedicated multi-parent crossover
operator based on the notion of backbone and a perturbation-
based tabu search algorithm. This work extends thus a prelim-
inary memetic algorithm presented in [5], where a different
crossover operator and a hill-climbing based local search
algorithm are used. Compared to this previous work, the new
algorithm presented in this paper ensures better exploration
with the new multi-parent crossover operator, and better ex-
ploitation provided by an effective tabu search algorithm.Fur-
thermore, this paper additionally includes: (a) more extensive
experimental evaluations on a set of benchmark instances from
the Graph Partitioning Archive; (b) a detailed analysis on
several key issues such as the distribution of local optima and
the backbone size; (c) a comparison of the proposed crossover
operator with the traditional uniform crossover, and analysis
on the impact of perturbation within the proposed crossover
operator; and (d) an analysis on the impact of the employed
local search mechanism on the overall performance of our
memetic algorithm.

The paper is organized as follows. In the next section, we
recall the definition of the graph partitioning problem and
some basic notations used. In Section III, we describe the mul-
tilevel paradigm, as well as the general scheme of the proposed
multilevel approach. In Section IV, we present the memetic
algorithm, which is the partition refinement mechanism of the
multilevel approach. In Section V, we provide computational
results of extensive experiments on benchmark instances from
the Graph Partitioning Archive. In Sections VI, we show a
landscape and backbone analysis, and based on the observa-
tions made, provide a motivation for our proposed multi-parent
crossover operator. In Section VII, we compare the proposed
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crossover with a conventional uniform crossover operator,and
study the impact of perturbation strength within our multi-
parent crossover operator. In Section VIII, we analyze the
impact of local search on the overall algorithm performance
before concluding in Section IX.

II. PROBLEM DESCRIPTION AND NOTATIONS

Given an undirected graphG = (V,E), V and E being
the set of vertices and edges respectively, and a fixed number
k, a k-partition of G can be defined as a mapping (partition
function) π : V → {1, 2, ..., k} that distributes the vertices of
V amongk disjoint subsetsS1 ∪ S2 ∪ ... ∪ Sk = V .

Let {S1, S2, ..., Sk} be a partition ofV obtained byπ, Ec

the set of all the cutting edges ofG induced byπ, i.e. Ec

= {{x, y} ∈ E | x ∈ Si and y ∈ Sj and i 6= j }, and let
ϕ be the set of all the partition functions ofG. The graph
k-partitioning problem consists in determiningπ∗ ∈ ϕ such
that the partition{S1, S2, ..., Sk} given by π∗ minimizes the
number of cutting edges inEc while ensuring that eachSi,
i ∈ {1, 2, ..., k} is of roughly equal size.

Throughout this paper, the initial input graphG is sup-
posed to have a unit cost weight for both vertices and
edges. However, as explained in Section III-B, the multi-
level approach generates intermediate (coarsened) graphswith
weighted edges and vertices. It is then useful to define the
notion of edge and vertex weight.

Let |v| denote the weight of a vertexv in a coarsened graph,
which corresponds to the number of aggregated vertices of the
initial graph. Then, the weightW (Si) of a vertex subsetSi is
equal to the sum of weights of the vertices inSi, W (Si) =
∑

v∈Si
|v|. The weight of a set of edges in the coarsened graph

can similarly be defined.
In this paper, we are essentially interested in finding almost

evenly balanced partitions. The notion of balance is defined
as follows. LetWopt = ⌈|V |/k⌉ be the optimal subset weight,
where⌈x⌉ represents the first integer≥ x, then the quantity
ε = maxi∈{1..k}W (Si)/Wopt defines the degree of imbalance
among thek subsets of a partition{S1, S2, ..., Sk}. ε = 1
means that the partition is perfectly balanced whileε > 1
indicates an imbalanced partition with largerε corresponding
to larger imbalance.

The optimization objectivef of our graph partitioning
algorithm is to find ak-partition with the smallest number of
edge cuts inEc, such that each partition subset is of almost
equal size (ǫ = 1.00).

III. M ULTILEVEL MEMETIC ALGORITHM FOR GRAPH

PARTITIONING

A. General procedure

Our multilevel memetic approach follows the general mul-
tilevel paradigm [9], [3], [19], [45]. GraphG is first coarsened
down to a certain number of vertices (coarsening phase), an
initial partition of this much smaller graph is generated (initial
partitioning phase), and then this partition is projected back
towards the original graph (uncoarsening phase) followed by
partition refinement.

The proposed multilevel approach, which employs memetic
partition refinement at each uncoarsening step, is presented in
Algorithm 1.

Algorithm 1 The general scheme of the proposed multilevel
algorithm

Require: An undirected graphG0 = (V0, E0) and the number
of subsetsk

Ensure: A k partition of G0

1: i := 0
2: while |Vi| > coarsening threshold do
3: Gi+1 = Coarsen(Gi) /*Section III-B*/
4: i := i + 1
5: end while
6: POPi = Initial Partition (Gi) /*Section III-C*/
7: POPi = Short Tabu Search(POPi) /*Section IV-C*/
8: POPi = Memetic Refinement(POPi) /*Section IV*/
9: while i > 0 do

10: i := i− 1
11: POPi = Project(POPi+1, Gi) /*Section III-D*/
12: POPi = Short Tabu Search(POPi)
13: POPi = Memetic Refinement(POPi)
14: end while

B. Coarsening phase

Let G0 = (V0, E0) be the initial graph. Creating a coarser
graphGi+1 = (Vi+1, Ei+1) from Gi = (Vi, Ei) consists in
finding an independent subset of edges (matching)Γ ⊂ Ei,
and then collapsing the two vertices of each edge inΓ to
form a new vertex inVi+1. Any vertex that is not part ofΓ
is simply copied over toGi+1 (see Fig. 1 for an illustrative
example).

When two verticesv1, v2 ∈ Vi are collapsed to form a new
vertexva ∈ Vi+1, the weight of the resulting vertexva is set
equal to the sum of weights of verticesv1 andv2. Therefore,
the weight of a vertex of a coarsened graph equals the number
of aggregated vertices of the initial graphG0.

Similarly, let va, vb ∈ Vi+1 be two vertices formed by
collapsing {v1, v2} ∈ Γ and {v3, v4} ∈ Γ. All the edges
incident to{v1, v2} and {v3, v4} are merged to form a new
edge{va, vb} ∈ Ei+1 with a weight that is set equal to the
sum of weights of edges incident to{v1, v2} and{v3, v4}.

One key issue here is the selection of the independent subset
of graph edgesΓ to be collapsed at each step of the coarsening
phase. This can be achieved by finding a maximal matching
of the graph [32]. There exist polynomial time algorithms for
tackling this problem, with running time of at leastO(|V |

2.5
).

Unfortunately, this is too slow to be applicable to the par-
titioning problem. That is why we compute an approximate
maximal matching using a fast heuristic called heavy-edge
matching (HEM), which hasO(|E|) time complexity [24].
This method considers vertices in random order, matching
each unmatched vertexv with its unmatched neighboru, if
any, such that the weight of edge{u, v} is maximal among
all the edges incident tov. An example of vertex and edge
aggregation with HEM of an initial graph with seven vertices
is provided in Figure 1.
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Fig. 1. An example of coarsening with HEM of an initial unweighted graphG0 with seven vertices. The weight of a vertex|v| of a coarsened graphGi

equals the number of aggregated vertices of the initial graphG0. The weight of the resulting edge, which is incident to the collapsed vertexvc = {u, v} is
set equal to the sum of weights of all the edges incident tou andv minus the weight of edge{u, v}.

C. Initial partition and its refinement

To create each individual of the initial population in the
second phase (line 6 of Alg. 1), we first assign randomly the
vertices of the coarsest graphGm = (Vm, Em) to subsets
Si ∈ {S1, S2, ..Sk}, such that each subset is as evenly
balanced as possible, i.e. eachSi, i ∈ {1, ..., k} has a similar
weight W (Si). Afterwards, we apply a short run of the
perturbation-based tabu search, previously presented in [6], to
improve all individuals of this initial population (see Section
IV-C), followed by the memetic refinement which is described
in Section IV (lines 7–8 of alg. 1).

This refinement step is essential for our approach to improve
progressively the quality of partitions. It should be noted
that for certain graphs, it may be impossible to obtain a
perfectly balanced initial partition, since weights of vertices
in the coarsest graph are often greatly inhomogeneous. This
imbalance is gradually reduced throughout each uncoarsening
step, and (usually) completely eliminated by the end of the
algorithm execution.

D. Uncoarsening phase

The uncoarsening phase carries out the inverse of the
coarsening phase. The idea is to go from level to level,
uncoarsening the clustered vertices in the same way they were
grouped during the coarsening phase. The partition projection
from a graphGi = (Vi, Ei) onto a partition of the parent graph
Gi−1 = (Vi−1, Ei−1) is a trivial process. If a vertexv ∈ Vi is
in subsetSm, then the matched pair of verticesv1, v2 ∈ Vi−1

which represents vertexv ∈ Vi will also be in subsetSm.
Before projecting a partition on to the next level, we

first apply a short run of the perturbation-based tabu search
to improve all the individuals of the population, which is
immediately followed by the memetic refinement (lines 12–
13 of alg. 1). Experiments show that the local optimization
applied on the initial population before memetic refinement
(lines 7 and 12 of Alg. 1) influences favorably the final result,
though this influence is not very important.

As the uncoarsening-refining process proceeds, the partition
quality of a graphGi−1 is usually better than that ofGi

because there is a greater degree of freedom for refinement.
This is one of the most attractive characteristics of a multilevel
algorithm.

IV. T HE MEMETIC REFINEMENT

The general idea behind memetic approaches is to com-
bine advantages of both crossover that discovers unexplored
promising regions of the search space, and local search that
finds good solutions by concentrating the search around these
regions. Given an initial population which consists of locally
optimal solutions, a memetic approach generates a new set of
improved local optima by applying a crossover operator and/or
mutation to the population, followed by local refinement. The
success of this method depends critically on the crossover
operator that discovers new promising regions of the search
space by performing ‘jumps’ from one local optimum to
another. These jumps need to be far enough to escape from the
basin of attraction of the current local optimum, but still not
too far to degenerate into a simple random search algorithm.
Furthermore, in order to perform a directed ‘jump’, a crossover
operator should be able to recognize what elements must be
preserved through the recombination and what elements can
be perturbed.

Motivated by the observation that high quality partitions
share many groupings of vertices (backbone, see below), we
propose in this work an original backbone-based multi-parent
crossover (BBC) which preserves the backbone with respect to
a certain number of parent individuals. After the offspringhas
been generated by the proposed crossover, it is refined with a
perturbation-based tabu search algorithm. Finally, we apply a
replacement strategy, which takes into consideration boththe
partition quality and the distance between individuals in the
population.

The general architecture of our memetic approach is de-
scribed in Algorithm IV. The main components are detailed
in the following subsections.

A. Encoding and fitness function

Given a graphGi = (Vi, Ei) at level i and an integerk,
an individualI corresponds to a partition ofVi into k disjoint
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Algorithm 2 Memetic refinement of our multilevel approach
Require: PopulationPOPi at graph leveli
Ensure: Refined populationPOPi

1: I∗ ← Best(POPi) /* the best individual found so far */
2: for n := 1 to number of crossoversθ do
3: Select p (p ≥ 2) individuals {I1, ..., Ip} with the

tournament selection strategy
4: I0 ← BBC(I1, ..., Ip) /* Section IV-B */
5: I0 ← Tabu Search(I0) /* Section IV-C */
6: if (f(I0) < f(I∗)) then
7: I∗ ← I0 /* update best individual found so far */
8: end if
9: POPi ← Pool Updating(I0, POPi) /* Section IV-D2

*/
10: end for

groups or subsetsI = {S1, ..., Sk}, such that eachSj , j ∈
{1, ..., k} is composed of vertices that are assigned to thejth

subset.
The optimization objective of ourk-partitioning problem

is to minimize the cutting edges inEc (see Section II),
while maintaining the best possible balance between partition
subsets.

The fitness functionf(I) of our memetic algorithm is
directly related to the optimization objective and sums up
the cutting edge weights of ak-partition (individual) I =
{S1, ..., Sk}. More formally,

f(I) =
∑

{u,v}∈Ei

̺u,v(I) (1)

̺u,v(I) =

{

wu,v if u ∈ Sx andv ∈ Sy (x 6= y);
0, otherwise.

wherewu,v represents the weight of edge{u, v} ∈ Ei, i.e. the
number of unit cost edges of the original graphG0 = (V0, E0)
that are aggregated within{u, v} ∈ Ei during the coarsening
phase.

Then, individualIA is considered better than individualIB

only if f(IA) < f(IB) (lines 6-8 of algo. 2).
Since our goal is to find perfectly balanced partitions

(ε = 1.00), the partition balance is imposed as a constraint
rather than an objective. However, as mentioned earlier, itis
sometimes impossible to establish perfect balance in coarsened
graphs since vertex weights can be extremely inhomogeneous.
It is during the partition refinement of levels which are closer
to the original graph that the balance condition is (usually)
completely satisfied. More precisely, the tabu search procedure
of our memetic algorithm employs two move operators that
take care of partition imbalance by transferring vertices to
subsets of smaller weight (see Section IV-C). In addition,
the proposed backbone-based crossover operator insures that
the balance is not degraded during the crossover process (see
Section IV-B).

B. Backbone and crossover

1) Notion of backbone:Our backbone-based multi-parent
crossover described in this section tries to preserve the back-

bone with respect to a number of parent individuals while
redistributing with a certain probability vertices that donot
belong to the backbone.

For optimization problems, the termbackboneis usually
used to define a set of variablesB having the same value as-
signment throughout all the global optima, while thebackbone
sizecorresponds to the number of elements inB. The similar
idea has been used in several contexts [13], [26], [46], [48].

For our graph partition problem, the notion of backbone can
be defined as follows.

Definition 1 (Backbone): Let G be a graph,Ω the set of
all optimal k-partitions of G. The backboneB of G is a
set of k subsets of vertices{B1, ..., Bk} such that eachBi,
i ∈ {1, ..., k} is the subset of vertices that are grouped together
throughout all the optima ofΩ.

Definition 2 (Backbone size): Given a backboneB =
{B1, ..., Bk}, its size|B| equals|B1 ∪ ... ∪Bk|.

Such a definition cannot be applied in practice given that
the optimal solutions are unknown (our goal is to find such a
solution). Therefore, in this paper, we use a relaxed definition
of backbone by considering a set of locally optimal (high
quality) solutions. Therefore, if a set of vertices are shared
through the set of selectedk-partitions, these vertices are
considered to have a high chance to be part of the backbone.

2) The backbone-based multi-parent crossover operator
(BBC): Given the setP = {I1, ..., Ip} of p parent individuals,
BBC constructs the offspringI0 = {S0

1 , ..., S0
k} in k passes

(one for each subset of the partition). In each passµ it
performs the following steps:

1) Select a subsetSi
j of Ii such that the weightW (Si

j) is
maximal across the subsetsj ∈ {1..k} of each individual
Ii ∈ P , i.e. maxi∈{1..p},j∈{1..k}{W (Si

j)}, with the
constraint that at most⌈k/p⌉ subsets can be chosen from
each individualIi ∈ P (line 5 of alg. 3).

2) GivenIi andSi
j determined in Step 1, foreachindividual

It ∈ P (t 6= i), let
∏

t contain the largest number of
vertices that are shared by the subsetSi

j of Ii and a subset
St

η of It, i.e.
∏

t = {Si
j∩St

η|maxη∈{1..k}|S
i
j∩St

η|}. Then,
∏

= {
∏

1, ..,
∏

p−1} forms a set of these vertex subsets
(lines 6–9 of alg. 3).

3) SetS0
µ =

∏

1 ∩
∏

2 ∩...∩
∏

p−1. S0
µ is the largest subset

of vertices that are shared by all the parent individuals.
For each vertexv ∈ Si

j and v 6= S0
µ, v is assigned to

subsetS0
µ of I0 if c(v)/p− 1 is greater than or equal to

some random real number in the range[0, 1], wherec(v)
is the number of subsets of

∏

in which v occurs (lines
11–15 of alg. 3).

4) When a vertexv is assigned to subsetS0
µ of I0 in theµth

pass,v is removed from all the parent individual subsets
in which it occurs, and the weights of these subsets are
adjusted accordingly (lines 17–18 of alg. 3).

After the previous four steps, the last step handles the
unassigned vertices. Any vertexv missing fromI0 is placed
at random to a subsetSr of I0 such thatW (Sr∪{v}) ≤Wopt

(lines 21–26 of alg. 3), whereWopt is defined in Section II.
This step introduces a degree of diversification in the crossover
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Fig. 2. An illustration of the BBC crossover with three parents. A circled subset of a parent corresponds to the subset chosen in theµth pass, i.e. the subset
of maximal weight across all the parent individuals with the constraint that at most⌈k/p⌉ subsets can be chosen from each individual.

process.
Notice that the proposed BBC operator never degrades the

balance with respect to the set of parent individualsP , since
given a subsetSi

j of individual Ii which is chosen in the
µth pass (see line 5 of alg. 3), at most|Si

j | vertices can be
transmitted to the subsetS0

µ of offspring I0. In addition, an
unassigned vertexv in I0 is assigned to a subsetS0

r only if
addingv to S0

r does not exceed the expected optimal subset
weight Wopt.

The complexity of the proposed crossover isO(p∗k ∗ |Vi|),
where|Vi| is the number of vertices in graphGi(Vi, Ei).

To determine the subsetP ⊂ POP of p parent individuals,
we employ the tournament selection strategy. Letλ be the size
of the tournament pool. We select each individualIi ∈ P in
the following way: randomly chooseλ individuals fromPOP ;
among theλ chosen individuals, place the best one intoP if
it is not already present inP .

An example of this crossover with three parent individuals
(p = 3) for k = 3 is provided in Figure 2.

C. Perturbation-based Iterated Tabu Search improvement

To improve the newly generated offspring, we apply an
iterated tabu search algorithm [6] whose basic components
are briefly described in this section.

Basically, the TS algorithm uses two neighborhood relations
(call themN1 andN2) which are explored in a token-ring way.
That is, we repeatedly apply one neighborhood search to the
best local optimum produced by the other neighborhood. The
algorithm incorporates as well a perturbation mechanism in
order to bring diversification into the search.

1) Neighborhood relations:Given a subsetSi of a k-
partition I = {S1, S2, ..., Sk}, the basic idea of the neighbor-
hood relations is to move a vertexv from another subset toSi.
Such a move is constrained such thatv must be a border vertex
relative toSi, i.e.v /∈ Si has at least one adjacent vertex inSi.
Note that in this way, the size of the neighborhoods is limited,
since the set of border vertices relative toSi is generally of
small size. In addition, such a neighborhood allows the search
to concentrate around these critical vertices.

The key concept related to the two neighborhoods is the
move gain, which represents the change in the optimization
objective. It expresses an estimate on how much a partition
could be improved if a vertexv is moved to another subset
Sn. Given a vertexv from subsetSc, the gaing(v, n) can
be computed for every other subsetSn, n 6= c. The selection
of the vertex with the highest gain, as well as the updates
needed after each move, are achieved efficiently by using an
adaptation of bucket sorting [6] that was originally proposed
in [14] for graph bisection.

Let I = {S1, S2, ..., Sk} be a k-partition, V (Si) the
set of border vertices relative to subsetSi, and Smax =
{Si|maxi∈{1..k}{W (Si)}} the subset with the maximum ver-
tex weight. The neighborhood relationsN1 and N2 can be
explained by the two move operators given below.

Move 1: Move one highest gain vertexvm. Choose ran-
domly a subsetSm ∈ {S1, S2, ..., Sk} − {Smax}. Then,
select thehighest gainvertexvm ∈ V (Sm) whose current
subset isSc, such thatSc ∈ {S ∈ I|W (S) > W (Sm)}.
Move the selected vertexvm to subsetSm.
Move 2: Move two highest gain verticesvm and vn.
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Algorithm 3 Backbone-based multi-parent crossover (BBC)

Require: SetP = {I1, ..., Ip} of p parent individuals
Ensure: An offspring I0 = {S0

1 , ..., S0
k}

1: Initialize offspringI0 = φ
2: Set for eachIe ∈ P the number of times it has been

selected:q(Ie) = 0
3: Determine subset weightsW (Se

b ) of eachIe ∈ P , ∀b ∈
{1..k}

4: for µ := 1 to k do
5: /* Step 1 */

Select an individualIi and its subsetSi
j such that:

maxi∈{1..p},j∈{1..k}{W (Si
j)} andq(Ii) ≤ ⌈k/p⌉

/* Step 2: Determine
∏

= {
∏

1, ..,
∏

p−1} */
6: for each It 6= Ii, It ∈ P do
7:

∏

t = {{Si
j ∩ St

η}|maxη∈{1..k}|S
i
j ∩ St

η|}
8: end for
9: S0

µ ←
∏

1 ∩
∏

2 ∩... ∩
∏

p−1

10: /* Step 3: Assign vertices */
Count the number of occurrencesc(v) of each vertex
v ∈ Si

j in
∏

11: for all verticesv ∈ Si
j do

12: if (v /∈ S0
µ andc(v)/p− 1 ≥ random[0..1]) then

13: S0
µ = S0

µ ∪ {v}
14: end if
15: end for
16: q(Ii) = q(Ii) + 1

/* Step 4 */
17: Remove all verticesv ∈ S0

µ from eachIe ∈ P
18: Update subset weightsW (Se

b ) of eachIe ∈ P , ∀b ∈
{1...k}

19: end for
20: /* Step 5: Handle unassigned vertices */

Compute subset weightsW (S0
b ) of I0, ∀b ∈ {1..k}

21: for all verticesv ∈ V do
22: if v /∈ ∪k

i=1S
0
i then

23: Assign v to a random subsetS0
r , r ∈ {1..k} such

that W (S0
r ∪ {v}) ≤Wopt

24: Update subset weightW (S0
r )

25: end if
26: end for
27: return I0 = {S0

1 , S0
2 , ..., S0

k}

Choose vertexvm and its new subsetSm as in the
first move operator. Choose randomly a new subset
Sn ∈ {S1, S2, ..., Sk}−{Smax, Sm}. Then, select vertex
vn ∈ V (Sn) whose current subset isSc, such that
Sc ∈ {S ∈ I|S 6= Sn}. Move vm to Sm, and vn to
Sn.

It is important to note that these move operators progres-
sively lead the search toward a balanced partition since they
basically constraint (partially with Move 2) vertex migration
from heavy weight subsets to light weight subsets. Indeed,
with Move 1 and the first choice of Move 2, a vertex can
never be moved to a subset of the highest weight. The second
choice of Move 2 is allowed to bring some diversification into
the search.

Let Vcand ⊂ V (Sm) be the set of the highest gain vertices
which are considered for migration to subsetSm. The selection
of vertexv, which is moved toSm, is based on several pieces
of history information.

This selection strategy is first conditioned by the tabu status
(see IV-C2). It also employs two additional criteria which are
based onvertex move frequencyandvertex weight. The move
frequency is a long term memory that records, for each vertex
v, the number of timesv has been moved to a different subset.
Our usage of this frequency information penalizes moves with
vertices having high frequency count, by giving priority to
those that have been moved less often. If there is more than
one vertex with the same move frequency in the setVcand, we
use the second criterion to distinguish them and prefer a vertex
v which, when moved to subsetSm, minimizes the weight
difference between the target subsetSm and the original subset
Sc.

2) Tabu list and tabu tenure management:Each time a
vertex v is moved from a subsetSc to another subsetSm,
it is forbidden to movev back to its original subsetSc for
the nexttt iterations (tabu tenure). The tabu tenurett of v is
tuned adaptively according to the number of border vertices
relative toSc,

tt(Sc)(v) = |V (Sc)| ∗ α,

where|V (Sc)| is the number of border vertices relative toSc,
and α a parameter that takes randomly a value in the range
[0.05, ..., 0.2].

3) Perturbation mechanism:Since our local search proce-
dure focuses its search only around border (critical) vertices, it
can get trapped in a local optimum. Therefore, we periodically
apply a simple perturbation which consists in moving a
fixed number of verticesγ, including nonborder ones, in the
following way.

Let Smax be the set of vertices with the maximum vertex
weight, Smax = maxi∈{1..k}{W (Si)}. Randomly select a
subsetSm ∈ {S1, S2, ..., Sk} − {Smax}. Then, randomly
choose a vertexvm whose current subset isSc, such that
Sc ∈ {S ∈ I|W (S) > W (Sm)}. Move the selected vertexvm

to subsetSm. This operation is repeatedγ times (perturbation
strengthγ is set in this paper to2% of the total number of
vertices).

Making such moves introduces naturally more diversifica-
tion into the search.

D. Population updating based on distance

After offspring I0 has been obtained with the proposed
multi-parent crossover operator, we improve it with the
perturbation-based tabu search algorithm from Section IV-C,
and then decide whetherI0 should be inserted into the
population. To base this decision, our algorithm combines
the ideas presented in [34] and [28] and considers both
the solution quality and the distance between individuals in
population. Therefore, we first formally define the notion of
distance between two individuals before presenting the used
replacement strategy.
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1) Distance measure:To determine the distance be-
tween two individualsIA = {SA

1 , SA
2 , .., SA

k } and IB =
{SB

1 , SB
2 , .., SB

k }, we use the well-known set-theoretic par-
tition distance [17] (call itd), which is the minimum num-
ber of one-move steps needed to transformIA to IB , i.e.
d(IA, IB) = |V | − sim(IA, IB), wheresim(IA, IB) is the
similarity function.

Given the partition encoding from Section IV-A, the similar-
ity functionsim(IA, IB) is defined asmaxσ∈Ψ

∑k
i=1 Mi,σ(i),

where Ψ is the set of all the possible permutations of
{1, 2, .., k} andM a matrix with elementsMi,j = |SA

i ∩SB
j |.

This functionsim(IA, IB), which reflects structural similarity,
corresponds to the number of elements that do not need to be
moved to transformIA to IB .

Algorithm 4 Pool updating strategy

Require: PopulationPOP = {I1, ..., Im} and offspringI0

Ensure: Updated populationPOP = {I1, ..., Im}
1: Tentatively addI0 to population:POP ′ = POP ∪ {I0}
2: for i := 0 to m do
3: Calculate the minimum distanceDi,POP ′ betweenIi

and any individual inPOP ′ according to Eq.(2)
4: Calculate the goodness scoreHi,POP ′ of Ii according

to Eq.(3)
5: end for
6: Select individual Iw with the largest H score

maxj∈{0..m}{Hj,POP ′}
7: Determine the minimum distance between two individu-

als: Dmin = minj∈{0..m}{Dj,POP ′}
8: if (I0 6= Iw) and (D0,POP > Dmin or f(Ibest) > f(I0)))

then
9: ReplaceIw with I0: POP = POP ∪ {I0} \ {Iw}

10: end if

2) Pool updating strategy:Given a populationPOP =
{I1, I2, ..., Im} of sizem and the distancedi,j between any
two individuals Ii and Ij (i, j ∈ {1...m} and i 6= j), the
minimum distance betweenIi and any other individual in
POP is given by:

Di,POP = min{di,j |I
j ∈ POP, j 6= i} (2)

Offspring I0 is then inserted intoPOP if it is of the
best quality relative to the population, or ifD0,POP >
mini∈{1..m}{(Di,POP )}, i.e. the minimum distance between
I0 and any other individual in the population is greater than
the minimum distance between any two individuals in the
population. This idea was originally proposed in [34], and has
shown to be very effective in ensuring the population diversity.

To determine the individual that is to be replaced byI0,
we adopt the strategy proposed in [28]. This strategy uses a
quality-and-distance scoring functionH to rank the individuals
of the population.

Hi,POP = f(Ii) + β/Di,POP (3)

wheref is the objective function defined in Section IV-A and
β a parameter set toβ = 0.08 ∗ |V |.

Our pool updating strategy consists thus of three phases:
for each individualIi ∈ POP , calculatingDi,POP and the
correspondingHi,POP score (lines 2–5 of alg. 4); identifying
the minimum distanceDmin between any two individuals as
well as the worst individualIw (lines 6–7 of alg. 4); and
updating the pool (lines 8–10 of alg. 4). This pool updating
strategy contributes to maintaining a healthy diversity ofthe
population.

V. EXPERIMENTAL RESULTS

A. Benchmark instances

To evaluate the efficiency of our proposed memetic ap-
proach, we carry out extensive experiments on a set of graphs
that are frequently used to assess graph partitioning algorithms.
These benchmark graphs are samples of small to medium scale
real-life problems arising in different applications. They can
be downloaded from Walshaw’s Graph Partitioning Archive
at: http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/ in the
same format as used by JOSTLE [44], METIS [25] and
CHACO [18]. These graphs have unit vertex and edge weights.
Table I shows the main characteristics of the graphs.

B. Experimental protocol

There is generally a trade-off between execution time and
partition quality. The preference of time vs. quality is problem
dependent. For instance, in the context of network layout or
VLSI design, even a slight improvement of partition qual-
ity can be of significant importance. For these applications,
it is worthwhile to employ a partition algorithm able to
obtain excellent quality solutions even if the algorithm is
computationally intensive. On the other hand, in other cases
like sparse matrix-vector multiplication, a very fast algorithm
is indispensable since the computing time required for the
partitioning task has to be less than the time needed by a
fast vector multiplication algorithm.

Our MMA algorithm is designed to produce excellent
quality partitions with the possibility to be used to generate
solutions of various qualities depending on the amount of
computing time allowed. We thus report computational results
of two experiments with short and long runs of MMA. For the
first experiment, we parameterize our MMA such that each
run lasts from one second to 15 minutes depending on the
size of the graph (see Table II and Section V-C). The second
experiment aims to assess our MMA approach with respect to
the best partitions reported at the Graph Partitioning Archive.
For this experiment, we use a set of parameter values that
lengthens each run of the MMA algorithm (see Section V-D).
The second experiment allows us to test the limit of MMA
and to obtain the best results possible with more computing
budgets. Given the stochastic nature of MMA, computational
statistics are based on 20 or 30 independent runs of MMA on
each graph.

The proposed multilevel memetic algorithm is programmed
in C++, and compiled with GNU gcc on a Xeon E5440 with
2.83 GHz and 8GB. The parameter settings applied in both
experiments are reported in Table II. We fix experimentally
the number of parentsp for BBC relative tok: p = 3 for
k = 16; p = 4 for k = 2, 32, 64; p = 5 for k = 4, 8.
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TABLE I
THE LIST OF BENCHMARK GRAPHS TOGETHER WITH THEIR CHARACTERISTICS

Size Degree
Grap h |V | |E| Max Min Avg Type
add20 2395 7462 123 1 6.23 20-bit adder
data 2851 15093 17 3 10.59 3D FEM
3elt 4720 13722 9 3 5.81 2D nodal graph
uk 4824 6837 3 1 2.83 2D dual graph

add32 4960 9462 31 1 3.82 32-bit adder
bcsstk33 8738 291583 140 19 66.74 3D stiffness matrix
whitaker3 9800 28989 8 3 5.92 2D nodal graph

crack 10240 30380 9 3 5.93 2D nodal graph
wing-nodal 10937 75488 28 5 13.80 3D nodal graph

fe-4elt2 11143 32818 12 3 5.89 2D FEM
vibrobox 12328 165250 120 8 26.8 Sparse matrix
bcsstk29 13992 302748 70 4 43.27 3D stiffness matrix

4elt 15606 45878 10 3 5.88 2D nodal graph
fe-sphere 16386 49152 6 4 5.99 3D FEM

cti 16840 48232 6 3 5.73 3D semi-structured graph
memplus 17758 54196 573 1 6.10 Memory circuit

cs4 22499 43858 4 2 3.90 3D nodal graph
bcsstk30 28924 1007284 218 3 69.65 3D stiffness matrix
bcsstk31 35588 572914 188 1 32.197 3D stiffness matrix
fe-pwt 36519 144794 15 0 7.93 3D FEL

bcsstk32 44609 985046 215 1 44.1636 3D stiffness matrix
fe-body 45097 163734 28 0 7.26 3D FEM

t60k 60005 89440 3 2 2.98 2D dual graph
wing 62032 121544 4 2 2.57 3D dual graph

brack2 62631 366559 32 3 11.71 3D nodal graph
finan512 74752 261120 54 2 6.99 stochastic programming matrix
fe-tooth 78136 452591 39 3 11.58 3D FEM
fe-rotor 99617 662431 125 5 13.30 3D FEM
598a 110971 741934 26 5 13.37 3D FEM

fe-ocean 143437 409593 6 1 5.71 3D dual graph

TABLE II
SETTINGS OF IMPORTANT PARAMETERS.

Parameters Description Values for Comp. 1 Values for Comp. 2
k number of partition subsets [2, 4, 8, 16, 32, 64] [2, 4, 8, 16, 32, 64]

POPs size of population 10 30
p number of parents involved in crossover [3, 4, 5] [3, 4, 5]
λ size of tournament pool 6 6
θ number of crossover operations 10 30
sr number of TS iter. before crossover (line 7 of alg. 1) |V | 10 ∗ |V |
lr number of TS iter. after crossover 5 ∗ |V | 100 ∗ |V |
ct coarsening threshold 200 200

pstr perturbation strength 0.02 ∗ |V | 0.02 ∗ |V |
γ non-improvement TS iter. before perturbation 0.01 ∗ |V | 0.01 ∗ |V |

C. Computational results with short running time

In this section, we show computational results of the first
experiment and compare our results with those of the latest
versions of METIS (METIS-4.0) [25] and CHACO (CHACO-
2.2) [18] available at the time of writing. For METIS, we use
the multilevel pMetis algorithm, and for CHACO, we choose
the multilevel KL algorithm with recursive bisection and a
coarsening threshold of 100. Notice however that the purpose
of this experiment is not to show a rigorous comparison
of MMA with METIS and CHACO, given that MMA is a
computationally intensive stochastic algorithm while METIS
and CHACO are based on very fast heuristics (order of second)
whose computing time cannot be tuned. Instead, we want
to assess whether MMA can obtain good partitions with a
reduced running time (one second to 15 minutes). Only for
this purpose, we use the results of METIS and CHACO as our
references. We do not claim that MMA can be a substitute for
the existing fast partition packages. Therefore, this comparison
should be interpreted with caution.

The computational results of the first experiment are shown
in Table III. Columns two and three report respectively the par-

tition quality obtained by pMetis and CHACO, while columns
MMAB andMMAAv provide respectively the result of the
best and average partition obtained with MMA (based on 30
independent runs per graph). We indicate the MMA’s average
partition in bold if it is better than the partitions obtained by
both pMetis and CHACO. The last column shows the average
time (in seconds) needed by our approach to generate the
reported partition.

From Table III, we observe that the best partitions obtained
with our MMA approach within a time limit ranging from less
than one second up to 15 minutes are of far better quality in
almost every case. In addition, the average quality of partitions
obtained with MMA are also generally better than those of
pMetis and CHACO.

However ask increases, MMA (but also pMetis) fails to
generate partitions of perfect balance in some cases. For
imbalanced partitions, we indicate in parentheses the degree
of imbalance or ‘-’ if the resulting partition has an imbalance
degree greater than 1.07. For these cases, partition balance can
not be completely established since the tabu search procedure
does not move vertices strictly from the highest to the lightest
weight subsets (see Section IV-C1). Although Move 1 of the
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TABLE III
COMPARISON OF OURMMA APPROACH WITH PMETIS AND CHACO FOR k ∈ {2, 4, 8, 16, 32, 64}. PMETIS IS PART OF THEMETIS FAMILY OF

MULTILEVEL PARTITIONING ALGORITHMS. CHACO IS A PACKAGE THAT INTEGRATES A VARIETY OF ALGORITHMS FOR GRAPH PARTITIONING. BESIDE

PROVIDING THE VALUES OF PARTITIONS OBTAINED WITHPMETIS AND CHACO, WE SHOW THE BEST(MMAB ) AND AVERAGE (MMAAv )
PARTITIONS OBTAINED WITH MMA AFTER 30 RUNS, AS WELL AS THE AVERAGE TIME IN SECONDS. IF THE PARTITION IS IMBALANCED, WE REPORT THE

DEGREE OF IMBALANCE BETWEEN PARENTHESES.

k=2 k=4 k=8
Graph pMetis CHACO MMAB MMAAv time pMetis CHACO MMAB MMAAv time pMetis CHACO MMAB MMAAv time
add20 729 742 697 709.0 0.9 1292 1329 1179 1205.1 3.6 1907 1867 1708 1730.7 8.4
data 218 199 189 195.0 0.8 480 433 383 409.7 3.0 842 783 674 699.6 3.2
3elt 108 103 90 103.2 1.5 231 234 201 208.4 4.8 388 389 348 359.5 4.9
uk 23 36 20 24.4 1.5 67 69 43 50.8 4.9 101 119 93 102.0 5.1

add32 21 11 10 12.8 1.9 42 56 33 39.5 7.5 81 115 66 76.9 7.1
bcsstk33 10205 10172 10171 10224.4 17.1 23131 23723 21748 22119.0 37.6 40070 39070 34443 34585.1 51.3
whitaker3 135 131 127 127.3 5.1 406 425 383 394.3 17.1 719 765 659 669.3 12.7

crack 187 225 184 188.4 6.5 382 445 367 372.2 14.1 773 777 685 711.2 14.2
wing nodal 1820 1823 1708 1721.1 8.0 4000 4022 3582 3625.1 16.9 6070 6147 5445 5534.6 19.5

fe 4elt2 130 144 130 148.6 10.4 359 402 349 354.2 17.7 654 718 613 635.7 15.4
vibrobox 12427 11367 11184 11404.6 15.1 21471 21774 19288 19664.0 41.5 28177 33362 24790 24975.7 47.3
bcsstk29 2843 3140 2843 3030.1 20.0 8826 9202 8495 8663.1 37.3 16555 18158 15760 16587.6 43.9

4elt 154 158 139 179.4 14.3 406 433 327 360.6 25.6 635 688 548 581.3 26.4
fe sphere 440 424 386 386.0 18.1 872 852 771 773.8 26.2 1330 1302 1212 1231.8 23.0

cti 334 372 334 340.4 13.6 1113 1117 970 994.4 29.4 2110 2102 1801 1876.6 31.2
memplus 6337 7549 5556 5645.4 29.3 10559 11535 9687 9916.6 63.5 13110 14265 12438 12546.3 73.8

cs4 414 517 374 379.0 28.6 1154 1166 977 1003.9 18.3 1746 1844 1497 1532.7 43.8
bcsstk30 6458 6563 6394 9664.5 91.6 17685 17106 16681 20002.4 127.7 36357 37406 35909 38441.3 113.9
bcsstk31 3638 3391 2767 3404.1 74.1 8770 9199 7699 8314.2 125.3 16012 15551 13465 15088.7 150.4
fe pwt 366 362 340 428.8 85.8 738 911 707 722.6 91.2 1620 1670 1452 1486.5 92.9

bcsstk32 5672 6137 4667 5611.8 170.4 12205 15704 9386 11203.7 175.3 23601 25719 21790 23546.6 208.6
fe body 311 1036 262 291.5 88.9 957 1415 672 802.6 188.8 1348 2277 1115 1290.5 137.0

t60k 100 91 84 111.3 176.7 255 235 221 256.7 199.6 561 524 490 524.6 205.2
wing 950 901 814 842.5 182.8 2086 1982 1696 1740.1 331.4 3205 3174 2595 2668.6 228.7

brack2 738 976 731 819.5 173.0 3250 3462 3087 3199.6 318.0 7844 8026 7246 7641.1 274.4
finan512 162 162 162 194.4 343 324 325 324 448.2 427.8 810 648 648 734.4 429.7
fe tooth 4297 4642 3822 4019.1 277.8 8577 8430 6941 7110.9 435.1 13653 13484 11688 11966.6 344.2
fe rotor 2190 2151 2098 2102.3 426.2 8564 8215 7310 7745.1 525.2 15712 15244 13026 13693.3 518.8

598a 2504 2465 2398 2405.5 504.8 8533 8975 8044 8240.1 645.7 17276 17530 16061 16524.2 598.5
fe ocean 505 499 464 647.2 977.4 2039 2110 1897 1910.5 894.6 4516 5309 4210 4313.1 984.1

k=16 k=32 k=64
Graph pMetis CHACO MMAB MMAAv time pMetis CHACO MMAB MMAAv time pMetis CHACO MMAB MMAAv time
add20 2504 2297 2113 2113.8 16.3 – 2684 2447(1.01) 2439.4 20.6 3433(1.07) 3349 3050(1.05) 3068.7 38.5
data 1370 1360 1154 1168.3 3.4 2060(1.01) 2143 1859 1881.9 3.9 3116(1.03) 3145 – – –
3elt 665 660 579 589.9 5.4 1093 1106 978 988.8 5.6 1710 1722 1574 1583.9 6.4
uk 189 211 164 182.1 4.7 316(1.01) 343 288(1.01) 307.8 11.2 495(1.02) 540 513 508.2 5.9

add32 128 174 117 129.3 7.9 288(1.01) 303 212(1.01) 224.9 7.7 626(1.02) 730 572 574.8 8.2
bcsstk33 59791 61890 55522 55800.7 54.1 86008 84613 78844 79374.2 80.5 116203(1.01)115530 125407 125275.0 142.4
whitaker3 1237 1218 1101 1121.6 11.9 1891 1895 1727 1750.7 12.8 2796(1.01) 2811 2594 2621.2 14.9

crack 1255 1253 1101 1142.6 13.9 1890 1962 1730 1767.4 13.71 2847(1.01) 2904 2609(1.01) 2640.7 15.8
wing nodal 9290 9273 8437 8508.7 24.3 13237 13258 11990 12064.7 23.5 17899(1.01) 17783 16075(1.01) 16178 32.9

fe 4elt2 1152 1135 1015 1041.8 15.7 1787 1796 1655 1681.8 15.1 2765(1.01) 2781 2574 2585.6 17.5
vibrobox 37441 43064 33919 34839.1 73.2 46112 51006 42579 45100.9 94.2 53764(1.01) 58392 55189 54632.1 135.8
bcsstk29 28151 28629 24508 25711.3 51.2 41190 42935 36330 37265.4 57.9 62891(1.01) 63576 58272(1.01) 58607.5 93.2

4elt 1056 1083 951 983.3 24.2 1769 1766 1597 1650.5 27.3 2953 2921 2640 2692.9 28.0
fe sphere 2030 2037 1752 1806.3 26.8 2913 2920 2638 2686.7 24.6 4191 4151 3803 3834.5 29

cti 3181 3083 2921 2989.6 29.9 4605 4532 4243 4335.3 28.3 6461 6334 6014 6070.8 35.3
memplus 14942 16433 13361 13558.5 273.8 17303 17936 14778 15110.4 569.6 19140(1.01) 18978 – – –

cs4 2538 2552 2160 2221.7 44.8 3579 3588 3057 3111.6 39.6 4791 4817 4219 4278.9 49.8
bcsstk30 77293 81069 76258 76954.5 141.9 131405 128694 119413 123824.0 267.3 191691 191445 184829 204726.0 662.3

bcsstk31 27180 28557 24934 26192.0 147.3 42645 45354 40742 41573.5 123.1 66526 68375 61778 63207.6 266.1
fe pwt 2933 3200 2839 2864.5 83.4 6029 6036 5783 5966.2 92.8 9310 9231 8532 8577.7 96.8

bcsstk32 43371 47829 38361 40966.4 214.2 70020 73377 64186 68541.7 406.7 106733 108855 101861 106247.0 711.8
fe body 2181 2947 2118 2201.7 140.4 3424 4194 3385 3516.2 137.4 5843 6326 5576 5683.7 142.5

t60k 998 977 899 922.9 228.9 1613 1594 1488 1549.3 194.5 2484 2506 2331 2397.7 201.7
wing 4666 4671 4076 4154.1 235.1 6700 6843 5896 6001.0 224.1 9405 9308 8065 8185.9 220.6

brack2 12655 13404 12055 12322.4 269.6 19786 20172 17855 18411.1 295.6 28872 29223 27056 27853.8 308.5
finan512 1377 1296 1296 1368.9 391.2 2592 2592 2592 2592.0 362.9 10842 11962 10764 10978.4 350.3
fe tooth 19346 20887 17857 18204.5 348.7 29215 29849 25787 26179.6 345.5 40162 40306 35864 36055.7 456.3
fe rotor 23863 23936 20694 21398.3 460.6 36225 36367 32034 33831.1 559.2 53623 52497 48518 50043.5 943.2

598a 28922 29674 26361 26807.0 578.0 44760 45780 39470 40244.3 615.5 64307 65094 58483 58985.7 928.9
fe ocean 9613 9690 7908 8206.6 930.8 14613 15059 13237 13571.8 908.7 23317 22692 21143 21554 1010.3
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tabu search procedure generally reduces the partition imbal-
ance after each iteration, the imbalance may not be decreased
after an iteration of Move 2 since the balance constraint is only
partially imposed. As it can be seen from the experimental
results, the balance is always established fork ≤ 16. For
largerk, there is generally a large number of feasible moves
implying more freedom for vertex migrations. As a result, it
is more difficult to establish a perfect partition balance via the
two move operators.

D. Comparisons with the best known results

To better assess the performance of our MMA approach, we
show in this section experimental results under relaxed time
constraint. We prolong the running time from several minutes
up to 5 hours for the largest graph (notice that the current most
effective evolutionary approach by Soper et al. [38] requires
computing time of up to one week to produce state-of-the-
art results). The main purpose of this experiment is to know
whether our MMA algorithm can improve further the current
best solutions.

For comparison, we use thecurrent best partitionsreported
at the Walshaw’s Graph Partitioning Archive. The majority of
these best partitions are generated with the hybrid evolutionary
algorithm presented by Soper et al. [38], which uses JOSTLE
multilevel procedure as a black box. Since each run of Soper
et al.’s algorithm consists of 50,000 calls to JOSTLE, this
approach requires significant running time of up to one week
for large graphs. Another great portion of these current best
partitions are produced with NetWorks, which is a commer-
cialized version of JOSTLE. The remaining best results are
obtained with several other approaches [20], [31], [11]. Since
the experimental conditions to obtain the current best results
are not available, we focus on comparing solution quality
based on the best objective value.

Table IV summarizes the current best results from the Graph
Partitioning Archive (column ‘Best’)1, the best results obtained
by MMA (column ‘MMA’) 2, as well as the average and
standard deviation of partitions obtained by MMA (column
‘Avg(Std)’). The last row with heading ‘Total’ shows the
number of times MMA succeeds to improve the current
best partition. All the comparisons are carried out between
partitions of the same balance. In most cases, the partitions
of MMA are perfectly balanced (i.e.ε = 1.00, this is the
default balance). For the cases where MMA produces imbal-
anced partitions (k ∈ {32, 64}), we indicate the imbalance
in parentheses next to the objective value and compare the
partitions with the same imbalance.

The results show that, in the case of bisection, our MMA
approach succeeds to reach the same solution quality of more
than two thirds of the best balanced bisections reported at
the archive. It also improves the best bisection in three cases,
and produces, only in four cases, bisections that are less good
than the current best ones. More importantly, ask increases
(4 ≤ k ≤ 64), MMA improves even 63%, 90%, 93%, 83%

1Results retrieved in June 2010
2Our best results are available at: http://www.info.univ-angers.fr/pub/hao/

MMAbest.html

and 77% of the current bestk-partitions from the archive when
k is equal to 4, 8, 16, 32 and 64 respectively.

VI. L ANDSCAPE AND STRUCTURAL ANALYSIS

In this section, we wish to obtain some insight on the
search space and provide motivations for the proposed multi-
parent crossover operator. For this purpose, we employ the
fitness distance analysis (FDA) [22], which investigates the
correlation between quality (fitness) of local optima and their
distances to the optimum. Additionally, we analyze structural
similarity between local optima in terms of backbone size.

A. Analysis protocol

We perform the analysis on seven graph partitioning in-
stances of different types, with the cardinal numberk set to
4, 8, 16 and 32. The results reported for each graph andk are
based on 1500 independent runs of the multilevel perturbation-
based tabu search algorithm from Section IV-C, and using
the distance measure introduced in Section IV-D1. Since the
optimal solutions for the selected instances are not known,we
use instead the best local optima found to compute fitness-
distance correlation. Table V contains the data to which we
will be referring in the following sections.

B. FDA for selected graph partitioning instances

The fitness distance correlation (FDC) coefficientρfdc [22]
is a well-known tool for landscape analysis and can provide
useful indications about the problem hardness, even if such
an analysis has some known shortcomings and limits. FDC
estimates how closely related are the fitness and distance
to the nearest optimum. For a minimization problem, if the
fitness of a solution decreases with the decrease of distance
from the optimum, then it would be easy to reach the target
optimum for an algorithm that concentrates around the best
candidate solutions found so far, since there is a “path” to
the optimum via solutions with decreasing (better) fitness.A
value ofρfdc = 1 indicates perfect correlation between fitness
and distance to the optimum. For correlation ofρfdc = −1,
the fitness function is completely misleading. FDC can also
be visualized with the FD plot, where the same data used for
estimatingρfdc is displayed graphically. Such plots have been
used to estimate the distribution of local optima for a number
of problems including for instance the TSP problem [7], graph
bipartitioning problem [30] and flow-shop scheduling problem
[35].

In column ‘ρfdc’ of Table V, we report FDC coefficients
ρfdc for the 7 selected graphs. For illustrative purpose, FD
plots of only two graphs (3elt and vibrobox) are given in
Figure 3 for k ∈ {4, 8, 16, 32}. To make the difference in
fitness distribution more obvious, we “normalize” the actual
fitness values in the FD plots by subtracting from them the
best objective value.

As it can be seen from Table V, there is a signification
fitness distance correlation in many cases. However, the FDA
analysis also reveals the existence of several cases among the
selected instances for which there is virtually no correlation
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TABLE IV
COMPARISON WITH THE BEST RESULTS FROM THEGRAPH PARTITIONING ARCHIVE (COLUMN ‘ BEST’) AND THE BEST RESULTS OBTAINED BYMMA

(COLUMN ‘MMA’) OVER 20 INDEPENDENT RUNS FORk ∈ {2, 4, 8, 16, 32}. COLUMN ‘AVG(STD)’ PROVIDES THE AVERAGE AND STANDARD DEVIATION

OF PARTITIONS OBTAINED WITHMMA. I F THE PARTITION IS IMBALANCED, WE REPORT THE DEGREE OF IMBALANCE BETWEEN PARENTHESES.

k=2 k=4 k=8
Graph Best MMA Avg(Std) Best MMA Avg(Std) Best MMA Avg(Std)
add20 596 678 708.5 (20.6) 1203 1159 1187.6 (17.1) 1714 1696 1705.5 (14.1)
data 189 189 189.0 (0.0) 383 382 391.6 (8.4) 679 669 675.6 (4.3)
3elt 90 90 90.0 (0.0) 201 201 202.4 (2.2) 348 345 346.8 (1.0)
uk 20 19 20.8 (0.9) 43 42 43.1 (0.7) 89 84 87.1 (2.2)
add32 11 10 10.3 (0.46) 34 33 34.8 (1.89) 75 66 68.9 (4.0)
bcsstk33 10171 10171 10171.0 (0.0) 21719 21730 22193.6 (431.8) 34579 34455 34491.3 (34.9)
whitaker3 127 127 127.0 (0.0) 382 382 382.1 (0.2) 661 658 659.4 (1.3)
crack 184 184 184.0 (0.0) 368 366 366.0 (0.0) 687 679 686.6 (5.7)
wing-nodal 1707 1707 1707.8 (0.4) 3581 3578 3608.6 (27.0) 5443 5438 5481.8 (42.1)
fe-4elt2 130 130 130.0 (0.0) 349 349 349.0 (0.0) 610 609 615.8 (5.6)
vibrobox 10343 10343 10984.5 (265.4) 19245 19138 19534.1 (217.2) 24715 24583 24747.8 (74.7)
bcsstk29 2843 2843 2846.0 (3.3) 8159 8475 8484.9 (13.4) 14322 15340 15905.8 (247.0)
4elt 139 139 139.2 (0.7) 326 326 329.6 (4.3) 548 547 548.5 (2.5)
fe-sphere 386 386 386.0 (0.0) 770 770 771 (0.9) 1193 1165 1182.2 (18.3)
cti 334 334 334.0 (0.0) 963 955 970.0 (5.3) 1812 1795 1841.1 (21.4)
memplus 5513 5524 5587.6 (53.2) 9643 9646 9792.5 (56.6) 11872 11879 12040.1 (132.9)
cs4 371 371 374.0 (1.6) 964 934 962.1 (14.6) 1496 1455 1474.9 (12.3)
bcsstk30 6394 6394 6394.0 (0.0) 16652 16652 16856.0 (220.9) 34921 34910 34948.4 (34.9)
bcsstk31 2762 2762 2768.1 (6.5) 7469 7355 7621.6 (140.2) 13812 13370 13755.3 (383.3)
fe-pwt 340 340 358.1 (5.3) 709 707 718.8 (5.7) 1465 1450 1465.1 (22.1)
bcsstk32 4667 4667 4679.5 (23.5) 9492 9318 9383.4 (53.0) 22757 21119 22377 (786.4)
fe-body 262 262 262.0 (0.0) 703 624 661.5 (13.1) 1234 1055 1086.9 (30.5)
t60k 79 83 85.5 (1.2) 213 218 222.3 (1.3) 476 474 486.9 (11.1)
wing 791 798 806.4 (5.3) 1666 1644 1672.9 (22.0) 2589 2525 2564.3 (24.7)
brack2 731 731 731.0 (0.0) 3090 3084 3100.5 (24.7) 7269 7151 7268.2 (104.9)
finan512 162 162 162.0 (0.0) 324 324 336.2 (28.9) 648 648 656.1 (24.3)
fe-tooth 3850 3819 3876.5 (78.7) 7142 6919 6969.1 (67.6) 11935 11475 11680.5 (173.3)
fe-rotor 2098 2098 2103.8 (10.0) 7480 7277 7630.7 (195.5) 13292 12912 13152.4 (139.0)
598a 2398 2398 2398.9 (1.0) 8154 8016 8072.6 (43.3) 16884 15938 16160.2 (115.6)
fe-ocean 464 464 467.6 (1.2) 1902 1895 1898.9 (2.9) 4299 4205 4233.5 (16.5)
Total 4 3 4 19 2 27

k=16 k=32 k=64
Graph Best MMA Avg(Std) Best MMA Avg(Std) Best MMA Avg(Std)
add20 2149 2064 2073.6 (7.5) 2493(1.03) 2387(1.03) 2402.9 (8.9) 3152(1.03) 3021(1.03) 3021.1 (7.9)
data 1162 1135 1146 (6.3) 1802(1.03) 1824(1.02) 1836.8 (7.0) 2798 – –
3elt 581 573 575.6 (2.4) 969(1.01) 969(1.01) 972.3 (2.57) 1564(1.01) 1554(1.01) 1557.2 (2.2)
uk 159 153 158 (2.6) 258(1.01) 264(1.01) 273.0 (4.5) 438(1.01) 454(1.01) 460.7 (5.0)
add32 121 117 122.4 (5.9) 212(1.01) 212(1.01) 215.4 (8.6) 493 499 514.2 (7.7)
bcsstk33 55136 54763 55250.5 (337.7) 78132 61047 61984 (552.3) 108505(1.01) 107862(1.01) 108144 (219.7)
whitaker3 1108 1095 1102.3 (4.3) 1718 1697 1708.4 (4.3) 2569 2552 2563.1 (8.3)
crack 1108 1094 1111.4 (10.3) 1728 1693 1704.6 (5.1) 2566(1.01) 2561(1.01) 2574.3 (6.4)
wing-nodal 8422 8359 8404.1 (29.4) 12080 11828 11891.1 (34.55) 16134(1.01) 15888(1.01) 15911.1 (28.7)
fe-4elt2 1018 1010 1013.1 (3.4) 1657 1633 1643.8 (7.3) 2537 2519 2533.2 (6.4)
vibrobox 32654 32532 33207.3 (249.7) 42187 40098 40607.2 (282.0) 49521(1.01) 48040(1.01) 48794 (1006.3)
bcsstk29 22869 24106 25167.5 (694.5) 36104 35637 36100.3 (239.3) 57054(1.01) 56792(1.01) 57640.1 (448.8)
4elt 956 942 950.2 (6.096) 1592 1563 1577.7 (9.5) 2636 2596 2603.8 (6.4)
fe-sphere 1750 1734 1739.4 (3.1) 2567 2542 2565.3 (12.4) 3663 3625 3655.7 (15.7)
cti 2909 2837 2894.5 (27.8) 4288 4142 4200.0 (33.1) 5955 5818 5862.8 (36.0)
memplus 13516 13054 13099.0 (31.1) 14634 14501 14601.6 (75.5) 17446 – –
cs4 2206 2107 2136.8 (15.1) 3110 2938 2979.7 (16.5) 4223 4051 4095.7 (19.8)
bcsstk30 72007 70910 71978.7 (411.9) 119164 113788 115716 (1030.4) 173945(1.01) 174982(1.01) 176496 (1066.3)
bcsstk31 24551 23807 24152.2 (226.3) 38484 37927 38432.7 (447.0) 60724 58241 58651.4 (230.4)
fe-pwt 2855 2838 2845.0 (6.1) 5758 5663 5693.1 (24.3) 8495 8338 8358.4 (15.0)
bcsstk32 38711 36518 37225.7 (506.1) 63856 60898 61670.1 (538.7) 95199 91863 93633.2 (826.3)
fe-body 2057 1834 1890.6 (36.0) 3371 3060 3101.7 (35.1) 5460 4903 5021.7 (47.7)
t60k 866 881 890.1 (6.3) 1440 1431 1453.5 (10.6) 2233 2260 2273.7 (7.9)
wing 4198 3921 3960.9 (27.2) 6009 5643 5703.7 (33.2) 8132 7690 7752.7 (33.8)
brack2 12323 11689 11859.5 (92.6) 18229 17398 17612.7 (135.8) 27178 25997 26154.6 (108.6)
finan512 1296 1296 1356.8 (35.1) 2592 2592 2592.0 (0.0) 10560 10560 10662.3 (82.6)
fe-tooth 18382 17428 17636.3 (96.3) 26346 24985 25292.4 (178.0) 35980 34433 34688.9 (100.9)
fe-rotor 21241 20438 20711 (129.7) 32783 31369 31720.5 (257.7) 49381 45984 46364.3 (209.0)
598a 26427 25783 26095.5 (147.1) 41538 38682 38939.2 (161.1) 59708 56260 56574.5 (163.4)
fe-ocean 8622 7803 7944.7 (98.8) 14277 12903 13032 (75.7) 22301 20146 20331.3 (148.1)
Total 2 27 2 25 5 23
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Fig. 3. FD correlation plots with respect to the normalized solution fitness and distance to the optimum for3elt andvibroboxwhenk ∈ {4, 8, 16, 32}. The
first four plots are related to the3elt graph, while the last four are related to thevibrobox.

between fitness and distance, i.e. cases whereρfdc < 0.15.
Indeed, from plots in Figure 3, it is clear that there is
practically no correlation for ‘vibrobox’ whenk ∈ {4, 8}. In
addition, the correlation is weak for ‘vibrobox’ whenk = 32.
On the other hand, the strongest correlation is observed for
graph ‘3elt’ whenk ∈ {4, 16} and ‘vibrobox’ whenk = 16.
The presence of significant FD correlation in many cases
explains to some extent why the local optimization engine
(tabu search) used in MMA is extremely powerful.

The strong correlation between solution quality (fitness) and
its distance to the reference solution also indicates the presence

of a big valley structure in the search landscape around
the selected local optimum [8]. Intuitively, in this structure
the global optimum (in our case, the best local optimum)
is surrounded by many local optima whose fitness values
deteriorate with the increase of distance from the optimum.
To investigate the existence of the big valley structure, we
provide in Figure 4 plots with respect to solution fitness and
averagedistance between any two solutions of a given set
of local optima. As it can be expected, the plots give further
evidence for the big valley structure in cases of graph ‘3elt’



13

Fig. 4. FD correlation plots with respect to the normalized solution fitness and the average distance between any two solutions of a given set of local optima
for 3elt andvibroboxwhenk ∈ {4, 8, 16, 32}. The first four plots are related to3elt, while the last four are related to thevibrobox.

and ‘vibrobox’ whenk = 16, i.e. high correlation between
fitness and average distance between any two local optima.
On the other hand, such correlation is not visible in case of
‘vibrobox’ when k ∈ {4, 8, 32}.

The big valley structure implies that high-quality local
optima tend to be positioned centrally within the region of
sampled local optima. Although we did not include fitness-
distance plots for all the analyzed graph partitioning instances,
except for some very rare cases, these plots confirm our
observation on the distribution of local optima in the search
space.

For informative purpose, columns ‘avg dlo’ and ‘avg dgo’

from Table V report respectively the average distance between
local optima and the average distance of local optima from the
best local optimum, expressed as a percentage of|V |. Given
that the maximum distance between any two solutions is|V |,
these results also confirm that local optima are not uniformly
distributed, but are rather concentrated within a limited number
of regions in the search space.

C. Backbone analysis and motivation for the BBC operator

To evaluate the degree of similarity between local optima
(including global optima which are technically speaking also
local optima), we provide an analysis of the backbone size.
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TABLE V
ANALYTICAL RESULTS FOR SEVEN GRAPH PARTITIONING INSTANCES WHEN k ∈ {4, 8, 16, 32}. COLUMNS ‘dlo ’ AND ‘dgo ’ REPORT RESPECTIVELY THE

AVERAGE DISTANCE BETWEEN LOCAL OPTIMA AND THE AVERAGE DISTANCE OF LOCAL OPTIMA FROM THE BEST LOCAL OPTIMUM, EXPRESSED AS A

PERCENTAGE OF|V |. COLUMN ‘ρfdc ’ SHOWS THE CORRELATION COEFFICIENTS WITH RESPECT TO FITNESSAND DISTANCE, WHILE COLUMNS ‘avgBlo ’
AND ‘Bhq ’ INDICATE RESPECTIVELY (IN PERCENTAGE OF|V |) THE AVERAGE BACKBONE SIZE WITH RESPECT TO10 RANDOMLY CHOSEN LOCAL

OPTIMA, AND THE BACKBONE SIZE WITH RESPECT TO BEST LOCAL OPTIMA FOUNDDURING THE SEARCH.

k=4 k=8
Graph avg dlo avg dgo ρfdc avg Blo Bhq avg dlo avg dgo ρfdc avg Blo Bhq

data 30.5 34.8 0.57 21.5 95.2 17.8 16.0 0.68 46.6 64.7
3elt 19.1 18.7 0.7 50.0 97.3 17.2 14.6 0.53 58.2 69.6
uk 18 14.3 0.61 60.2 68.4 26.3 25.7 0.24 34.2 51.4
crack 3.5 2.2 0.89 98.3 98.9 22.5 19.6 0.51 59.8 95.4
wing-nodal 26.1 21.6 0.81 36.5 91.5 17.1 13.6 0.91 53.4 96.0
fe-4elt2 9.8 6.7 0.74 61.9 88.0 26.0 24.4 0.68 28.3 62.4
vibrobox 40.1 41.4 -0.02 21.7 40.7 22.4 19.7 0.03 54.1 52.4

k=16 k=32
Graph avg dlo avg dgo ρfdc avg Blo Bhq avg dlo avg dgo ρfdc avg Blo Bhq

data 22.5 23.7 0.08 42.3 42.2 24.9 23.1 0.6 32.4 50.9
3elt 14.0 12.1 0.75 61.8 77.2 20.5 17.1 0.53 43.3 61.5
uk 26.9 25.1 0.33 32.9 30.0 27.4 24.9 0.44 34.6 61.5
crack 27.7 22.9 0.74 24.8 79.6 28.1 26.3 0.58 24.5 33.8
wing-nodal 31.0 27.3 0.56 25.2 33.2 37.5 35.6 0.4 13.5 15.5
fe-4elt2 16.4 14.7 0.51 55.3 73.5 28.7 25.5 0.51 20.1 34.3
vibrobox 41.5 45.5 0.65 12.3 7.5 49.7 46.8 0.21 4.6 3.2

While the column ‘avg Blo’ from Table V reports the
average backbone size with respect to 10 randomly chosen
local optima, column ‘Bhq ’ presents the backbone size with
respect to best local optima found during the search. The
backbone size is expressed as the percentage of|V |. From
these results, we observe that except for very few cases, the
backbone is generally of significant size. We also note that the
values reported in ‘Bhq ’ are generally higher than the ones
in ‘avg Blo’, which indicates that the structure of a set of
high quality solutions is very similar to the structure of the
supposed global optimum. This suggests that if a significant
number of vertices is grouped together throughout each of the
high quality partitions, there is a strong chance that they are
also grouped together in the global optimum. This observation
constitutes the first motivation for the BBC crossover which
tries to preserve the backbones through the search process.

On the other hand, the FD analysis above shows the
presence of a big valley structure and high fitness-distancecor-
relation in many cases. This provides justifications about why
the tabu search based local optimization is important within
our memetic approach. This additionally gives an argument
for preferring a constructive crossover operator like BBC over
highly destructive ones like uniform crossover. To enforcethis
comment, we show in Section VII a computational comparison
between the BBC crossover and a uniform crossover, and study
the influence of the perturbation strength within BBC.

VII. A COMPARATIVE ANALYSIS OF THE BBC OPERATOR

A. Comparison with a traditional crossover operator

We compare the performance of the BBC operator with
an adapted uniform crossover on the set of 30 instances of
the Graph Partitioning Archive fork ∈ {4, 8, 16, 32}. For the
uniform crossover, each vertex in the offspring partition keeps
with equal probability the subset of either parent partition,
with the constraint that the subset weight in the offspring
partition does not exceedWopt (see Section II). In addition,
we reinforce the randomness of the crossover by performing
some vertex swaps after the uniform crossover.

In order to highlight the role of the crossover operators, we
set the number of generations to 1000 and reduce the number
of tabu search iterations to0.5∗|Vm|, where|Vm| is the number
of vertices in themth graph level. We execute 20 times the
two versions of our multilevel memetic algorithm, i.e. with
BBC and uniform operators, and report the results in Table VI.
For each value ofk, columns ‘b. BBC’ and ‘b. UNI’ report
respectively the best partition obtained with our approach
integrating the BBC and uniform crossover, while columns
‘BBC Avg(Std)’ and ‘UNI Avg(Std)’ report respectively the
average and standard deviation of the generated partitions
when BBC and uniform crossovers are employed. A lower
average value is indicated in bold. In addition, we perform
a statistical analysis using the Welch’st-test, and report in
column ‘p-value’ the two tailedp-value over the two partition
sets.

From Table VI we observe that there is no significant
statistical difference between the solution sets for lowervalues
of k, i.e. k ∈ {4, 8}. However, ask increases, we note that
our BBC operator visibly outperforms the uniform crossover
in almost each case fork ∈ {16, 32}. One explanation is that
intuitively, given the semantics of the BBC crossover, larger
k would favor the preservation of backbone information by
BBC whereas the number of parts has a weak influence for the
uniform crossover operator as to backbone preservation. Addi-
tionally, we compare in Table VII-A the average percentage of
perturbed vertices over 20 generations with the two crossovers
as well as with a variant of the BBC (see Section VII-B)
for k ∈ {4, 8, 16, 32}. The perturbation strength is expressed
as the minimum (set-theoretic partition) distance between
a resulting individual and the parents participating in the
crossover. As it can be expected, the perturbation introduced
by the proposed crossover is always significantly weaker than
the one introduced with the uniform crossover. Moreover, the
degree of perturbation introduced with the uniform crossover
increases withk. This may constitute another explanation why
the BBC performs better than the uniform crossover for larger
values ofk ∈ {16, 32}, since according to the observations
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TABLE VI
A COMPARISON OF PARTITIONS OBTAINED WITHBBC AND UNIFORM CROSSOVER OPERATOR ON THE SET OF30 BENCHMARK GRAPHS FOR

k ∈ {4, 8, 16, 32}. WE REPORT THE BEST PARTITION OBTAINED WITHBBC (B. BBC) AND UNIFORM OPERATOR(B. UNI) , THE AVERAGE AND

STANDARD DEVIATION OF PARTITIONS OBTAINED WITH BBC (BBC AVG(STD)) AND UNIFORM CROSSOVER(UNI AVG(STD)), AND THE p-VALUE

BETWEEN THE TWO PARTITION SETS. IF THE PARTITION IS IMBALANCED, WE INCLUDE THE DEGREE OF IMBALANCE IN PARENTHESES.

k=4 k=8
Graph b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value
add20 1159 1196.9 (23.5) 1154 1188.8(14.5) 0.199 1696 1729.2 (23.2) 1698 1725.0(24.5) 0.581
data 383 419.3 (21.1) 395 410.2(10.4) 0.095 681 725.9 (29.7) 712 747.9 (35.6) 0.041
3elt 201 222.6 (20.9) 204 220.5(13.5) 0.708 348 369.6(23.0) 348 385.2 (27.1) 0.057
uk 43 49.2 (6.5) 45 48.8 (4.2) 0.819 88 96.0 (6.8) 102 115.4 (9.6) 0.000
add32 41 42.0 (6.9) 33 42.8 (8.6) 0.748 67 76.4 (7.2) 74 96.0 (17.1) 0.000
bcsstk33 21779 22234.5(402.4) 21779 22536.5 (605.0) 0.072 34430 34689.8 (471.8) 34480 34683.0(282.2) 0.956
whitaker3 384 403.1 (24.1) 381 393.5(15.0) 0.141 659 670.4(10.0) 662 685.0 (24.1) 0.019
crack 366 394.1 (32.5) 366 385.5(26.9) 0.368 687 714.7(15.8) 687 727.5 (34.5) 0.143
wing nodal 3582 3646.3 (45.0) 3579 3643.4(33.6) 0.819 5457 5590.6 (115.9) 5454 5515.6(41.0) 0.012
fe 4elt2 349 379.8 (31.4) 349 365.1(26.3) 0.117 608 644.0 (28.2) 614 640.6(16.8) 0.646
vibrobox 19228 19795.8(336.0) 19170 19832.8 (331.6) 0.728 24935 25038.7 (311.2) 24739 25011.0(150.3) 0.723
bcsstk29 8475 8613.0(280.7) 8493 8981.2 (754.7) 0.052 15586 16778.7(709.3) 16025 16945.0 (554.8) 0.415
4elt 326 364.0(24.2) 326 366.1 (22.7) 0.779 546 608.0(36.0) 570 690.7 (66.6) 0.000
fe sphere 770 770.3(0.6) 770 770.8 (0.9) 0.047 1208 1225.5(12.6) 1216 1242.4 (22.8) 0.007
cti 971 1052.0 (86.0) 954 1028.4(87.4) 0.395 1808 1927.9 (62.1) 1799 1896.9(53.8) 0.100
memplus 9677 9794.3 (98.6) 9628 9688.9(55.6) 0.000 12476 12533.5 (35.9) 12164 12517.6(178.4) 0.700
cs4 971 995.5(16.7) 970 995.7 (25.8) 0.977 1502 1531.6 (20.7) 1485 1510.8(15.8) 0.001
bcsstk30 16671 19802.4(4547.3) 16695 19878.4 (4598.1) 0.959 35810 38342.3(3451.6) 35904 38490.6 (3533.7) 0.894
bcsstk31 7642 8633.7 (994.1) 7396 7955.0(574.1) 0.013 13730 15336.7(1272.6) 13675 15447.5 (1224.8) 0.781
fe pwt 722 744.3 (54.6) 707 736.4(59.7) 0.665 1462 1546.5 (98.2) 1453 1506.2(31.8) 0.094
bcsstk32 9499 13218.8 (2161.9) 9312 10907.5(1423.9) 0.000 21420 23211.9(788.3) 22403 24198.1 (1318.1) 0.007
fe body 660 826.7 (99.7) 691 821.5(97.0) 0.868 1079 1164.5(60.9) 1122 1196.5 (78.4) 0.158
t60k 219 248.3(44.6) 223 252.1 (34.5) 0.765 484 518.3(17.5) 500 536.9 (26.6) 0.013
wing 1665 1730.3(55.7) 1680 1763.2 (55.1) 0.068 2575 2666.8(72.3) 2629 2716.1 (61.5) 0.026
brack2 3097 3235.1(208.7) 3084 3275.7 (417.4) 0.700 7491 7800.7 (207.3) 7222 7756.4(291.4) 0.583
finan512 324 490.1 (129.3) 324 494.1 (72) 0.905 729 866.7(109.0) 729 907.2 (125.5) 0.283
fe tooth 6933 7273.5(328.5) 6975 7304.3 (362.4) 0.780 11875 12188.5 (215.2) 11591 11952.5(221.6) 0.002
fe rotor 7296 7888.1(419.2) 7495 7932.4 (429.9) 0.744 13184 13784.2(458.1) 13396 14039.2 (440.0) 0.081
598a 8071 8352.4 (313.2) 8058 8321.7(396.2) 0.787 16032 16899.1 (632.6) 16124 16888.0(670.6) 0.957
fe ocean 1890 2007.9(270.2) 1890 2220.0 (425.5) 0.069 4224 4502.3 (257.2) 4211 4389.7(149.7) 0.100

k=16 k=32
Graph b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value b. BBC BBC Avg(Std) b. UNI UNI Avg(Std) p-value
add20 2073 2094.9(13.7) 2145(1.01) 2201.7 (30.6) 0.000 2436(1.03) 2425.9(13.8) 2541(1.03) 2620.3 (84.9) 0.000
data 1138 1164.3(18.5) 1348 1409 (39.4) 0.000 1833(1.07) 1870.0(20.7) 204(1.01) 2074.5 (37.2) 0.000
3elt 600 595.7(10.0) 661 734.3 (30.2) 0.000 971 988.6(11.7) 1076 1116.3 (21.2) 0.000
uk 155 180.2(16.5) 211 227.3 (9.5) 0.000 330 344.1(8.3) 342(1.01) 353.7 (8.1) 0.001
add32 123 134.4(8.8) 172(1.01) 196.9 (17.5) 0.000 215 238.7(26.0) 275(1.01) 332.5 (24.3) 0.000
bcsstk33 55318 55854.9(486.9) 55411 56477 (650.5) 0.002 77990 79380.1(1013.7) 80642 82517.8 (1862.8) 0.000
whitaker3 1114 1128.4(11.5) 1204 1292.9 (40.5) 0.000 1862 1802.9(60.6) 1840 1905.4 (29.2) 0.000
crack 1109 1151.9(21.8) 1301 1384.3 (39.3) 0.000 1907 1895.0(78.1) 1890 1975.8 (46.4) 0.000
wing nodal 8478 8550.5(61.8) 8832 8962.5 (279.3) 0.000 12291 12383.8(78.6) 12400 12561.8 (143.5) 0.000
fe 4elt2 1025 1054.9(18.6) 1114 1297.4 (83.4) 0.000 1673 1765.0(83.5) 1833 1902.1 (44.0) 0.000
vibrobox 33613 35292.2(784.2) 35975 37234.7 (563.2) 0.000 43861 45060.1(1090.2) 44462 45463.8 (1493.1) 0.336
bcsstk29 25567 25849.3 (705.3) 24456 25586.9(673.4) 0.236 36514 37362.3(876.1) 39819 41205.5 (748.5) 0.000
4elt 959 992.8(53.3) 1154 1223.8 (43.1) 0.000 1706 1783.3(68.3) 1789 1863.7 (37.6) 0.000
fe sphere 1734 1808.8(45.2) 1969 2072.3 (59.5) 0.000 2636 2825.8(66.6) 2826 2886.2 (29.9) 0.001
cti 2936 3020.0(54.1) 2962 3085.9 (84.1) 0.024 4237 4365.4(78.3) 4870 5025.0 (88.7) 0.000
memplus 13733 14061.1(204.4) 13999 14183.5 (103.4) 0.024 14659(1.01) 14907.7(255.8) – – –
cs4 2178 2220.9(18.0) 2198 2361.5 (110.7) 0.000 3110 3273.8(120.1) 3347 3424.8 (48.0) 0.000
bcsstk30 76258 76954.5(2185.0) 82533 87968.0 (4704.3) 0.000 124969 128905.8(2207.1) 131402 134148.5 (2429.8) 0.000
bcsstk31 24484 25796.5(849.1) 26360 30709.5 (2517.2) 0.000 41529 43540.6(1173.0) 43758 47259.5 (1593.3) 0.000
fe pwt 2847 2891.8(41.1) 2869 3052.1 (94.5) 0.000 5872 6268.7(138.0) 6304 6356.3 (42.0) 0.013
bcsstk32 38535 42422.7(3105.7) 46771 51044.6 (3010.2) 0.000 66966 71105.2(2711.7) 70806 74726.5 (2168.4) 0.000
fe body 1890 2103.2(131.7) 1986 2222.8 (135.1) 0.007 3444 3532.1(64.1) 3809 3697.8 (81.4) 0.000
t60k 900 908.5(11.8) 1049 1122.4 (49.5) 0.000 1673 1702.2(37.5) 1661 1732.1 (39.3) 0.019
wing 4097 4155.6(50.8) 4098 4653.4 (150.8) 0.000 6054 6560.8(242.0) 6572 6718.7 (108.9) 0.013
brack2 12019 12259.5(234.3) 13019 13695 (574.0) 0.000 18413 19588.4(541.7) 19613 20495.7 (504.5) 0.000
finan512 1296 1458.0(88.7) 1539 1680.8 (109.9) 0.000 2592 2592.0(0.0) 2592 2592.0(0.0) –
fe tooth 17993 18342.5(198.6) 18337 19521.8 (990.0) 0.000 27333 27785.9(986.0) 28373 29090.2 (472.9) 0.000
fe rotor 21007 21473.4(380.2) 21392 24644.9 (1776.4) 0.000 34348 35049.2(2134.0) 39322 40929.3 (806.2) 0.000
598a 26194 27014.8(359.8) 26534 28206.1 (1385.0) 0.001 39711 40351.5(426.7) 41713 46046.0 (2017.5) 0.000
fe ocean 7982 8262.4 (193.9) 7965 8215.4(169.6) 0.420 13158 13880.0 (447.3) 13321 13519.8(200.6) 0.003
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TABLE VII
PERCENTAGE OF PERTURBED VERTICES WITHBBC, SBBCAND UNIFORM CROSSOVER(UNI) FOR k ∈ {4, 8, 16, 32}. FOR BBC AND SBBC THE

NUMBER OF PARENTSp = 6, WHILE FOR UNI p = 2.

k=4 k=8 k=16 k=32
Graph BBC SBBC UNI BBC SBBC UNI BBC SBBC UNI BBC SBBC UNI
data 4.64 48.86 29.40 4.12 5.89 30.14 6.89 40.17 33.70 14.51 55.32 44.23
3elt 3.79 14.87 25.50 4.36 7.59 29.83 6.65 21.33 32.25 11.48 46.89 41.47
uk 8.36 26.35 25.92 5.38 39.38 31.52 24.13 60.04 32.71 10.82 69.14 35.28
crack 3.04 5.27 25.26 8.10 9.78 29.58 6.16 9.46 32.56 8.38 60.45 35.01
wing-nodal 2.88 3.62 25.58 2.26 5.26 29.64 9.90 9.06 31.75 12.73 61.00 34.75
fe-4elt2 5.17 9.58 25.83 4.92 51.24 29.94 6.65 15.65 32.21 8.80 71.99 35.14
vibrobox 2.12 57.77 25.38 2.90 6.07 29.58 31.14 75.16 32.40 17.20 94.15 56.26

from the analysis in Section VI, a weaker form of perturbation
should be used because of the generally high FDC and the
marked big valley structure in the landscape.

To see the convergence behavior of the proposed algorithm,
we provide in Figure 5 evolution curves of the multilevel
memetic algorithm respectively with the BBC and uniform
crossovers. The curves are plotted over 300 generations per-
formed on each graph level (Gm, Gm−1, .., G0) for graph
‘data’ with k = 4 and ‘fe-4elt2’ whenk = 32. The x-
axis corresponds to the current number of generations, where
the first 300 generations are performed onGm, the 300–600
generations onGm−1, etc. They-axis shows the ‘normalized’
average fitness value obtained by subtracting the best fitness
value over 10 independent executions. Both crossover opera-
tors start the refinement on a population of the same quality at
the coarsest graphGm. One observes that for graph ‘data’ with
k = 4, the BBC is outperformed by the uniform crossover,
while the situation is opposite for ‘fe-4elt2’ withk = 32.
From the two curves, we also note that the algorithm converges
in both cases toward its best partition after approximately
the same number of generations. This is partially due to the
quality-and-distance based population updating strategyof our
MMA which ensures a healthily diversified population.

B. Perturbation strength of BBC operator

In this section, we provide an analysis on the impact
of perturbation strength introduced by our new multi-parent
crossover operator (BBC) by comparing the performance of
BBC from Section IV-B2 with its slight variation (call it
SBBC) which mainly differs from BBC in the degree of
perturbation introduced in offspring. As explained in Section
IV-B2, BBC preserves all the vertices from the backbone
B = {B1, ..., Bk} with respect top parent individuals, and
perturbs with a certain probability a vertexv if it is not
present in any subset ofB (see alg. 3, lines 12–13). On the
other hand, SBBC consists in preserving only the vertices
v ∈ {B1 ∪ ... ∪ Bk} and assigning the rest of vertices to
random subsetsSr of I0, such thatW (Sr ∪ {v}) ≤ Wopt.
Consequently, SBBC implies much stronger perturbation in
I0 than BBC.

For this analysis, we use the same set of seven benchmark
instances as in Section VI. To perform the statistical analysis,
we use the Welch’st-test on sets of solutions obtained after 50
runs of our multilevel memetic algorithm. Table VII-A shows
the average perturbation degree expressed as a percentage of
|V |, which is introduced by both BBC and SBBC whenp =

6 for k ∈ {4, 8, 16, 32}. As expected, we observe that the
number of perturbed vertices is always significantly largerwith
SBBC than with BBC.

To analyze the difference in performance, we provide in
Table VIII the t-value, the degree of freedomdf , and the
two tailed p-value over the two solution sets generated with
BBC and SBBC respectively. We observe that thep-value is
extremely significant (p-value < 0.001) except in one case,
which suggests a statistically significant difference between the
two solution sets. The negativet-value indicates that the mean
value of partitions obtained by BBC is, except in two cases,
significantly lower that the one produced by SBBC. These
results imply that BBC outperforms in a more pronounced
way SBBC, which suggests that a too strong perturbation
introduced in offspring is not desirable. This result remains
consistent with that observed when the uniform crossover is
used.

VIII. I NFLUENCE OF LOCAL OPTIMIZATION

In this section, we briefly analyze the contribution of
local optimization to the overall performance of the memetic
algorithm by comparing the proposed perturbation-based tabu
search procedure [6] with its hill-climbing version. The hill-
climbing procedure is basically the same as the tabu search
procedure with the tabu list disabled.

We perform a statistical analysis on seven graphs withk ∈
{4, 8, 16, 32} using the Welch’st-test on solution sets obtained
after 20 independent runs. For this analysis, we set the number
of generations to 500, and the number of local optimization
iterations before and after crossover to0.5 ∗ |Vi| and5 ∗ |Vi|
respectively, where|Vi| is the number of vertices at theith

graph level.
Table IX shows the statistical result between solution sets

generated with two versions of our algorithms, which integrate
respectively the tabu search procedure (TS) and the hill
climbing procedure (HC). For eachk ∈ {4, 8, 16, 32}, columns
‘ t-value’, ‘df’ and ‘p-value’ report respectively thet-value,
degree of freedom andp-value over the two solution sets. In
each case, thet-values are negative which indicates that the
proposed multilevel approach always performs better when the
TS algorithm is employed. From these very smallp-values
(< 0.001), one concludes that the difference is statistically
significant. These analytical results, along with the FD analysis
shown previously, provide clear evidence that the perturbation-
based tabu search procedure plays an important role in the
overall performance of our multilevel memetic algorithm.
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(a) Graph ‘data’ whenk = 4
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(b) Graph ‘fe-4elt2’ whenk = 32

Fig. 5. Evolutionary curves of the multilevel memetic algorithm with the BBC and uniform crossovers over 300 generations per graph levelGm, Gm−1, ..., G0

for graphs ‘data’ withk = 4 and ‘fe-4elt2’ withk = 32. Thex-axis corresponds to the current number of generations, while they-axis shows the ‘normalized’
average fitness value over 10 independent executions. Both algorithms start with a population of the same quality.

TABLE VIII
STATISTICAL ANALYSIS USING THE WELCH’ S t-TEST OVER TWO SOLUTION SETS GENERATED WITHBBC AND SBBC WITH p = 6 FOR k EQUAL TO 4, 8,

16 AND 32. A NEGATIVE t-VALUE MEANS THAT BBC OUTPERFORMS THESBBC OPERATOR.

k=4 k=8 k=16 k=32
Graph t-value df p-value t-value df p-value t-value df p-value t-value df p-value
data -6.547 93 0.000 -12.103 95 0.000 -18.154 91 0.000 -13.626 91 0.000
3elt -6.314 72 0.000 -14.111 76 0.000 -9.535 93 0.000 -13.351 97 0.000
uk -10.916 92 0.000 -8.175 98 0.000 -5.123 98 0.000 -3.716 93 0.000
crack -4.214 81 0.000 -13.438 72 0.000 -10.535 97 0.000 -5.638 96 0.000
wing-nodal 3.539 95 0.001 3.756 94 0.000 -11.502 93 0.000 -7.492 96 0.000
fe-4elt2 -7.338 72 0.000 -13.236 70 0.000 -8.886 94 0.000 -9.757 96 0.000
vibrobox 3.390 98 0.001 -8.410 84 0.000 -5.165 92 0.000 -1.103 98 0.273

TABLE IX
STATISTICAL ANALYSIS USING THE WELCH’ S t-TEST OVER SOLUTION SETS GENERATED WITH TWO VERSIONS OF OUR ALGORITHMS, WHICH

INTEGRATE RESPECTIVELY THE PROPOSED PERTURBATION-BASED TABU SEARCH PROCEDURE(TS) AND A HILL CLIMBING PROCEDURE (HC). A
NEGATIVE t-VALUE MEANS THAT THE ALGORITHM WITH TS PERFORMS BETTER THAN THE ALGORITHM WITHHC.

k=4 k=8 k=16 k=32
Graph t-value df p-value t-value df p-value t-value df p-value t-value df p-value
data -4.440 38 0.000 -0.550 38 0.585 -2.144 38 0.039 -9.505 27 0.000
3elt -4.712 29 0.000 -2.639 33 0.013 -1.773 34 0.085 -3.590 25 0.001
uk -6.541 25 0.000 -4.728 32 0.000 -5.785 36 0.000 -13.136 26 0.000
crack -11.441 23 0.000 -7.541 31 0.000 -4.428 38 0.000 -8.628 28 0.000
wing nodal -4.086 32 0.000 -3.919 35 0.000 -9.030 31 0.000 -10.938 26 0.000
fe 4elt2 -1.784 19 0.091 -7.541 31 0.000 -3.747 35 0.001 -7.188 28 0.000
vibrobox -19.047 37 0.000 -8.222 21 0.000 -7.232 32 0.000 -6.693 27 0.000

IX. CONCLUSION

In this paper, we have presented a highly efficient multi-
level memetic algorithm for the balanced graph partitioning
problem. Our MMA algorithm uses an original backbone-
based multi-parent crossover operator, a perturbation-based
tabu search procedure as the local optimization engine, and
a pool replacement strategy that takes into consideration
both the solution quality and the distance between solutions.
The backbone-based multi-parent crossover operator of MMA
tries to preserve the elements which hopefully belong to the
optimal partition while permitting limited perturbationswithin
offspring solutions. The tabu search procedure (via its tabu list
and occasional random moves), and the quality-and-distance
based population updating strategy provide MMA with a

healthy population diversity during its search.
We have proposed landscape analysis using FDC to put

forward the existence of the big valley structure for some prob-
lem instances, and studied the backbone phenomenon within
a set of high quality solutions which provided motivation for
the design of our BBC crossover. We have also investigated
the role of perturbation within the crossover operators and
the influence of local optimization on the performance of the
memetic algorithm.

We have assessed extensively the performance of the pro-
posed memetic algorithm with both short and long run times,
on a collection of benchmark graphs from the Graph Parti-
tioning Archive, with the cardinal numberk set to 2, 4, 8,
16, 32 and 64. We have shown that the results generated in
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short computing time (from less than one second to some 15
minutes) are very competitive with those produced by the two
well-known graph partitioning packages METIS and CHACO.
When the running time is prolonged (from several minutes to
5 hours), our approach succeeds even to improve more than
two thirds of the best partitions of the given balance reported
at the Graph Partitioning Archive.

This study focuses on obtaining perfectly balanced or
slightly imbalanced partitions. It is known that allowing more
imbalance may lead to partitions of better quality. Indeed,
when we relaxed the balance constraint up to a certain
degree, with a slight modification of our MMA algorithm
described in this paper, we obtained imbalanced partitions
(not reported here) which are highly competitive with the
best-known partitions reported in the literature. However, we
believe that further research needs to be realized in order to
design a dedicated algorithm which could improve even more
the quality of imbalanced partitions.
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