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Abstract. In this paper the Minimum Linear Arrangement (MinLA)
problem is studied within the framework of memetic algorithms (MA).
A new dedicated recombination operator called Trajectory Crossover
(TX) is introduced and its performance is compared with four previous
crossover operators. It is shown that the TX crossover induces a better
population diversity. The MA using TX is evaluated on a set of well-
known benchmark instances and is compared with several state-of-art
MinLA algorithms.
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1 Introduction

TheMinimum Linear Arrangement problem (MinLA) was first stated by Harper
in [11]. His aim was to design error-correcting codes with minimal average ab-
solute errors on certain classes of graphs. MinLA arises also in other application
areas like graph drawing, VLSI layout, software diagram layout and job schedul-
ing [3].
MinLA can be stated formally as follows. Let G(V,E) be a finite undi-

rected graph, where V (|V | = n) defines the set of vertices and E ⊆ V × V =
{{i, j}|i, j ∈ V } is the set of edges. Given a one-to-one function ϕ : V → {1..n},
called a linear arrangement, the total edge length for G with respect to arrange-
ment ϕ is defined according to the equation 1.

LA(G,ϕ) =
X

(u,v)∈E
|ϕ(u)− ϕ(v)| (1)

Then the MinLA problem consists in finding an arrangement ϕ for a given
G so that LA(G,ϕ) is minimized.
There exist polynomial time exact algorithms for some special cases of MinLA

such as trees, rooted trees, hypercubes, meshes, outerplanar graphs, and others



(see [3] for a detailed survey). However, MinLA is NP-hard for general graphs [7]
and for bipartite graphs [4]. Therefore, there is a need for heuristics to address
this problem in reasonable time. Among the reported algorithms are a) heuristics
especially developed for MinLA, such as the binary balanced decomposition tree
heuristic (DT) [1], the multi-scale algorithm (MS) [13] and the algebraic multi-
grid scheme (AMG) [18]; and b) metaheuristics such as Simulated Annealing [16]
and Genetic Algorithms [17].
In this paper, we investigate the potential of the paradigm of Memetic Al-

gorithms (MAs), which are known to be very powerful for hard combinatorial
optimization problems [5, 6, 12]. In particular, we are interested in the design of
an effective mechanism to recombine solutions which constitutes one of the key
elements of MAs. A recombination operator, called Trajectory Crossover (TX),
is introduced. This operator is based on the path relinking technique proposed
in [8] and incorporates problem specific knowledge. Its performance is compared
with four other classical crossover operators.
Our MA incorporates a fast greedy heuristic used to create the initial popu-

lation and a local search operator based on a fine tuned Tabu Search algorithm.
The effectiveness of the MA with TX is demonstrated with a set of 21 benchmark
instances taken from the literature. The computational results are reported and
compared with previously published ones, showing that our algorithm is able to
improve on some previous best results.
The rest of the paper is organized as follows. Section 2 presents the different

components of the MA used for the comparisons. Then, the studied recombina-
tion operators are reviewed in Section 3. Section 4 is dedicated to computational
experiments and comparisons with previous reported results. Last section sum-
marizes the main contributions of this research work.

2 Memetic Algorithms for MinLA

In this section we present a Memetic algorithm for solving the MinLA problem.
Next the details of its implementation are presented.

2.1 Search Space, Representation and Fitness Function

The search space A for the MinLA problem is composed of all possible arrange-
ments from V to {1, 2, ..., n}. It is easy to see then, that there are n! possible
linear arrangements for a graph with n vertices. In our MA a linear arrangement
ϕ is represented as an array l of n integers, which is indexed by the vertices and
whose i-th value l[i] denotes the label assigned to the vertex i. The fitness of ϕ
is evaluated by using Equation 1.

2.2 The General Procedure

Our MA starts building an initial population P , which is a set of configurations
having a fixed constant size |P | (initPopulation). Then it performs a series of



cycles called generations. At each generation, a predefined number of recombina-
tions (offspring) are executed. In each recombination two configurations A and
B are chosen randomly from the population (selectParents). A recombination
operator is then used to produce an offspring C from A and B (recombineIndi-
viduals). The local search operator (localSearch) is applied to improve C for a
fixed number of iterations L and the improved configuration C is inserted in the
population. Finally, the population is updated by choosing the best individuals
from the pool of parents and children (UpdatePopulation). This process repeats
until a stop condition is verified, usually when a predefined number of gener-
ations (maxGenerations) is reached. Note however, that the algorithm may
stop before reaching maxGenerations, if a better solution is not produced in a
predefined number of successive generations (maxFails).

2.3 The Initialization Operator

The operator initPopulation(|P |) initiates the population P with |P | configura-
tions. To create a configuration, we use the binary balanced decomposition tree
heuristic (DT) reported in [1], slightly adapted in order to work in a randomized
form. The algorithm is based on a divide-and-conquer approach, the idea is to
divide the vertices into two sets, to recursively arrange each set internally at
consecutive locations, and finally to join the two ordered sets, deciding which
will be put to the left of the other. Due to the randomness of the DT algorithm,
the initial population is well diversified.

2.4 Selection

Mating selection (selectParents(P )) prior to recombination is performed on a
purely random basis without bias to fitter individuals, while selection for survival
(updatePopulation(P )) is done by choosing the best individuals from the pool
of parents and children. It is done by taking care that each phenotype exists
only once in the new population. Thus, replacement in our algorithm is similar
to the (µ, λ) selection scheme used in [5, 6, 14].

2.5 The Recombination Operator

The main idea of the recombination operator (recombineIndividuals(A,B)) is
to generate new diversified and potentially promising individuals. To do that, a
good MinLA recombination operator should take into consideration, as much as
possible, the individuals’ semantic. In Section 3, several recombination operators
are presented, including the new TX recombination operator for MinLA.

2.6 The Local Search Operator

The purpose of the local search (LS) operator localSearch(C,L) is to improve
a configuration C produced by the recombination operator for a maximum of



L iterations before inserting it into the population. In our implementation, we
have decided to use Tabu Search (TS) [8].
TS starts with a configuration, then it proceeds iteratively to visit a series of

locally best configurations following a neighborhood function. At each iteration,
a best neighbor is chosen to replace the current configuration, even if the former
does not improve the current one. In order to avoid the stops at suboptimal
points and the occurrence of cycles, TS introduces the notion of tabu list. The
basic idea is to record each visited configuration, or generally its attributes and
to forbid to visit again this configuration during the next T iterations (T is called
the tabu tenure).
In our LS operator the neighbor of a given arrangement ϕ is obtained by

swapping the labels of any pair (i, j) of different vertices. When such a move is
performed the couple of vertices (i, j) is classified tabu for the next T iterations.
Therefore, the vertices i and j cannot be exchanged during this period. Never-
theless, a tabu move leading to a configuration better than the best configuration
found so far is always accepted (aspiration criterion). The tabu tenure T for a
move is fixed to 0.10∗n. To implement the tabu list, it is sufficient to use an array
of size |V |. The algorithm stops either if it reaches the predefined maximum of
L iterations or when it ceases to make progress. In the proposed implementation
a lack of progress exists when S successive iterations do not produce a better
solution.
The algorithm memorizes and returns the most recent arrangement ϕ∗ among

the best configurations found: after each iteration, the current configuration ϕ
replaces ϕ∗ if LA(G,ϕ) ≤ LA(G,ϕ∗). It permits to produce a solution which is
as far away as possible from the initial solution in order to better preserve the
population diversity.

3 Recombination Operators

The recombination (crossover) operator plays a very important role in any
Memetic Algorithm. Indeed, it is this operator that is responsible for creat-
ing potentially promising individuals. There are several crossover operators that
can be applied to permutation problems [2, 5, 9, 15, 19]. In this section, we focus
on four of these operators, as well as the new Trajectory Crossover dedicated to
the MinLA problem.

3.1 Order Crossover

The Order Crossover (OX) operator was first proposed by Davis in [2]. It is
implemented by selecting two random crossover points. The offspring inherits
the elements between the two crossover points, inclusive, from the first parent
in the same order and position as they appeared in it. The remaining elements
are inherited from the second parent in the order in which they appear in that
parent, beginning with the first position following the second crossover point
and skipping over all elements already present in the offspring.



3.2 Partially Matched Crossover

The Partially Matched Crossover (PMX) operator was introduced in [9]. It is
designed to preserve absolute positions from both parents. It works by selecting
two crossover points in the first parent and copying the elements between them
to the offspring. This transfer also defines a set of mappings between the elements
that have been copied and the elements in the corresponding positions in the
second parent. Then, the rest of the elements are copied in the positions they
occur in the second parent. If one position is occupied by an element already
copied from the first parent, the element provided by the mappings is considered.
This process is repeated until the conflict is solved.

3.3 Cycle Crossover

Cycle Crossover (CX) is an operator that was proposed in [15]. It preserves the
information contained in both parents in the sense that all elements of the off-
spring are taken from one of the parents, in other words CX does not perform
any implicit mutation. In CX the offspring inherits all the elements found at the
same position in the two parents. Then, starting with a randomly chosen unas-
signed position in the offspring, an element from one of the parents is randomly
selected. After that, additional assignments are made to ensure that no implicit
mutation occurs. Then, the next unassigned position to the right is processed in
the same way until all the elements have been considered. In case there are still
unassigned positions and we are at the end of the genome then we proceed at
its beginning.

3.4 Distance Preserving Crossover

The Distance Preserving Crossover (DPX) operator reported in [5] relies on the
notion of distance between solutions. DPX aims at producing an offspring that
has the same hamming distance to each of its parents, and this distance is equal
to the distance between the parents themselves. DPX starts by copying all the
elements found at the same position in both parents to the offspring. Then,
the rest of the positions in the offspring are randomly assigned with the yet
unassigned elements, taking care that no assignment that is found in one of the
parents is inherited into the child.

3.5 Trajectory Crossover

The new Trajectory Crossover (TX) for MinLA is inspired from the path re-
linking algorithm presented by Glover and Laguna as an alternative to integrate
intensification and diversification strategies in the context of Tabu Search [8].
TX generates new offspring while exploring trajectories that connect two

parents (A and B), by starting from one parent, called initial solution, and
generating a trajectory in the neighborhood space that leads toward the alternate
parent, called guiding solution. This process is accomplished by selecting moves



(a) (b)

Fig. 1. Trajectory Crossover example

that introduce attributes contained in the guiding solution. Please note that each
new solution in the trajectory corresponds to an individual.

In the TX operator the offspring inherits any element common to both the
parents. Then, starting at a random position of the parents, their elements are
examined from left to right in a cyclic fashion. If the elements at the position
being looked at are the same, that position is skipped; otherwise, a swap is
performed between two elements in parent A or in parent B, whichever gives the
fitter solution, so that the elements at the analyzed position become alike. This
process is repeated until all positions have been considered. All chromosomes
obtained using this process are valid offspring of A and B; out of them the
fittest offspring C is returned.

An example of the TX crossover is illustrated in Fig. 1. Suppose we start at
a randomly chosen position, for this example position 3. In parent A, element 7
is located at the position 3 and in parent B element 5 is located at this position.
There are two ways in which the two parents can move closer to one another;
by swapping the elements 5 and 7 in parent A or in parent B (Fig. 1(a)). The
fitness values of these two solutions are computed, suppose that child X has the
lower cost. Then childW is eliminated and the next position in the two resulting
solutions (A andX) is considered. In Fig. 1(b) the children obtained by swapping
the elements 1 and 8 in parent A or in children X are presented. Their fitness is
calculated and the child with higher cost is eliminated, the process is repeated
until all positions have been considered.

4 Computational Experiments

In this section, we present a set of experiments accomplished to evaluate the
performance of the different recombination operators presented in Section 3.
Their characteristics were investigated by using them within the MA framework
presented in Section 2. The algorithms were coded in C and compiled with gcc
using the optimization flag -O3. They were run sequentially into a cluster of 10
nodes, each having a Xeon bi-CPU at 2 GHz, 1 GB of RAM and Linux.



The test-suite used in the experiments presented in this paper is composed
of the instances proposed by Petit1 [16] and used later in [1, 13, 17]. It consists
of six different families of graphs having a number of vertices between 62 and
9800.

4.1 Comparison of Recombination Operators

The purpose of the first experiment is to evaluate the performance of the differ-
ent recombination operators presented in Section 3. The evaluation takes into
account two aspects: the capacity to generate new potentially promising indi-
viduals and the ability to keep a diversified population. Both characteristics are
very important in the whole search process because they represent the classical
trade-off between exploration and exploitation. For the first criterion the aver-
age fitness is used, while the population diversity is calculated with the entropy
measure proposed in [10] and shown in Equation 2, where nij represents the
number of times the variable i is set to the value j in the population P . This
function takes values in the interval [0, 1]. An entropy of 0 indicates that all the
individuals in the population are identical.

entropy(P ) =

−
nP
i=1

nP
j=1
(
nij
|P | ) log(

nij
|P | )

n logn
(2)

In order to enable a fair comparison all the recombination operators were
tested under the same conditions on three representative instances (randomA1,
c2y and mesh33x33) taken from the the Petit’s test-suite [16]. The follow-
ing parameters were used for the MA in this experiment: a) population size
|P | = 100, b) recombinations per generation offspring = 50, c) maximal num-
ber of local search iterations L = 500, d) maximal number of generations
maxGenerations = 1500 and e) maximal number of successive failed genera-
tions maxFails = 100. A relative small number of local search iterations was
used, to reduce the strong influence of the local search in the results.
Due to the non-deterministic nature of the algorithm, 20 independent runs

were executed for each instance/operator combination. The results of these exe-
cutions are summarized in Table 1. For each instance/operator combination we
present the average population fitness and the average population entropy after
1500 generations. This table shows clearly that the TX operator allows us to
obtain better results for the three graphs while conserving also the population
diversity. In our experiments we have tested other instances and they provide
similar results. This dominance is better illustrated in Fig. 2, where the behavior
of the studied operators is presented over the randomA1 instance. In Fig. 2(a)
the X axis represents the number of generations, while the Y axis indicates the
average population fitness. Fig. 2(b) presents the evolution of the population en-
tropy (Y axis) with respect to the number of generations. Observe that the best
trade-off between exploration and exploitation is obtained by the TX operator.

1 http://www.lsi.upc.es/˜jpetit/MinLA/Experiments



Table 1. Comparison of memetic recombination operators for MinLA

Operator randomA1 mesh33x33 c2y
OX 894603.0 0.031 35054.6 0.031 89088.3 0.033
PMX 916023.3 0.334 35952.3 0.218 89193.0 0.223
DPX 899313.6 0.208 34975.3 0.258 84651.3 0.296
CX 891294.0 0.331 35041.6 0.032 84673.3 0.035
TX 881023.0 0.469 34827.0 0.305 83865.0 0.277
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Fig. 2. Graphs representing the behavior of 5 memetic recombination operators over
the randomA1 instance. (a) Average population fitness, (b) Population entropy.

4.2 Comparison with the Best Known Results

In the second experiment we have tunned the combination of our MA and the
TX operator (MA+TX). Then a performance comparison of the MA+TX pro-
cedure with the following heuristics was carried out: SS+SA [16], DT+SA [1],
AMG [18] and GH [17]. In this experiment the MA+TX parameters were: a)
population size |P | = 50, b) recombinations per generation offspring = 25, c)
maximal number of local search iterations L = 10000, d) maximal number of
generations maxGenerations = 10000 and e) maximal number of successive
failed generations maxFails = 100.
Table 2 presents the detailed computational results produced by this exper-

iment. The first three columns in the table indicate the name of the graph, its
number of vertices and its number of edges. The rest of the columns indicate the
best total edge length found by each of the compared heuristics. These results
were taken from their corresponding papers. Finally, the last column presents
the difference (∆C) between the best total edge length found by MA+TX and
the previous best known solution reported in the literature.
From Table 2, one observes that MA+TX is able to improve on 4 previous

best known solutions and to equal these results in 5 instances. For the other
instances, MA+TX did not reach the best reported solution, but its results
are very close to the best reported (in average 1.1%). Notice that for some



instances the improvement is important; leading to a significant decrease of the
total edge length (∆C up to −6108). With respect to the computational effort
we have noted that MA+TX, given that it is a memetic algorithm, consumes
considerably more computer time than some heuristics especially developed for
MinLA such as DT [1], MS [13] and AMG [18].

Table 2. Performance comparison between MA+TX and several state-of-the-art algo-
rithms.

Graph |V | |E| SS+SA DT+SA AMG GH MA+TX ∆C

randomA1 1000 4974 869648 884261 888381 878637 868724 -924
randomA2 1000 24738 6536540 6576912 6596081 6550292 6535849 -691
randomA3 1000 49820 14310861 14289214 14303980 14246646 14240538 -6108
randomA4 1000 8177 1721490 1747143 1747822 1735691 1719906 -1584
randomG4 1000 8173 150940 146996 140211 142587 141538 1327
bintree10 1023 1022 4069 3762 3696 3807 3808 112
hc10 1024 5120 523776 523776 523776 523776 523776 0
mesh33x33 1089 2112 31929 33531 31729 32040 31917 188
3elt 4720 13722 363686 363204 357329 383286 363079 5750
airfoil1 4253 12289 285597 289217 272931 306005 285429 12498
whitaker3 9800 28989 1169642 1200374 1144476 1203349 1167089 22613
c1y 828 1749 63145 62333 62262 62562 62333 71
c2y 980 2102 79429 79571 78822 79823 79420 598
c3y 1327 2844 123548 127065 123514 125654 123521 7
c4y 1366 2915 116140 115222 115131 117539 115204 73
c5y 1202 2557 97791 96956 96899 98483 96962 63
gd95c 62 144 509 506 506 506 506 0
gd96a 1096 1676 96366 99944 96249 98388 96253 4
gd96b 111 193 1416 1422 1416 1416 1416 0
gd96c 65 125 519 519 519 519 519 0
gd96d 180 228 2393 2409 2391 2391 2391 0

5 Conclusions

In an extensive study, several recombination operators, including the new Tra-
jectory Crossover (TX) operator, were compared within a Memetic Algorithm
framework. From this comparison we can conclude that the best trade-off be-
tween exploration and exploitation is obtained by the TX operator. Furthermore,
the performance of our MA+TX algorithm was assessed through extensive ex-
perimentation over a set of well known benchmark instances and compared with
four other state-of-the-art algorithms: SS+SA [16], DT+SA [1], MS [13] and
GH [17]. The results obtained by MA+TX are superior to those presented by
the previous proposed evolutionary approach [17], and permit to improve on
some previous best known solutions.
There are some issues for future research. For example, to investigate the

behavior of MA+TX when it is applied to larger instances, like those proposed
by Koren and Harel in [13], in order to study its scalability.
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