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Abstract This chapter is dedicated to Memetic Algorithms for Discrete Optimiza-
tion. It begins with a general survey, and then explains in depth the key ingredients
of a successful MA. A particular attention is given to the following issues: Design
of semantic combination operators, development of dedicated local search proce-
dures and management of population diversity. Several other important issues are
also discussed such as design of rich evaluation function and constraint handling
techniques. This chapter includes two case studies with thepurpose of showing how
these issues can be effectively implemented in practice.

1 Introduction

Discrete optimization concerns in essence the seacrh for a “best” configuration (op-
timal solution) among a set offinite candidate configurations according to a partic-
ular criterion. There are several ways to describe a discrete optimization problem.
In its most general form, it can be defined as a collection of problem instances, each
being specified by a pair(S, f ) [53], whereS is the set of finite candidate config-
urations, defining thesearch space; f is thecost or objective function, given by a
mappingf : S→ R+.

Solving the instance(S, f ) is to find ans∗ ∈ Ssuch thatf (s∗) ≤ f (s) for all s∈ S
(this minimization formulation can easily be transformed into a maximization prob-
lem). Such a configurations∗ is a globally optimal solution (or simply an optimal
solution) to the given instance.

Given its generality, discrete optimization allows many problems of practical
and theoretical importance to be conveniently formulated.Examples are the clas-
sical problems of general integer programming, permutation problems (e.g., trav-
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eling salesman problem, bandwidth minimization, linear arrangement), and con-
straint satisfaction and optimization problems (satisfiability problems in proposi-
tional logic, graph partitioning,k-coloring). Discrete optimization naturally covers
practical problems of the environment, renewable energy, distribution, infrastructure
design, communications and productivity in the manufacturing and service sectors.

However, discrete optimization problems are known to be difficult to solve in
general. Most of them, in particular those of practical interest, belong to the class
of NP-hard problems, and thus cannot be efficiently solved tooptimality. Over the
past decades, important efforts have been made to improve the solution methods
and important progresses have been achieved in both exact and heuristic strategies
in pursuit of optimal or near optimal solutions.

This chapter concerns the design of Memetic Algorithms (MAs) [48, 49] for
finding optimal or high quality near optimal solutions to hard discrete optimization
problems.

2 Survey of Memetic Algorithms for Discrete Optimization

2.1 Rationale

From a fundamental point of view, the task of searching for a best solution in a
combinatorial space is all about a suitable balance between“exploitation” and “ex-
ploration” for an effective examination of the given searchspace. The dual concept
of exploitation and exploration covers two fundamental andcomplementary aspects
of any effective search procedure. This concept is also known under the term “in-
tensification” and “diversification” introduced within theTabu Seacrh methodology
[23].

Exploitation emphasizes the ability of a method to examine intensively and in
depth specific search areas while exploration is the abilityof a method to diversify
the search in order to find promising new search areas. Consequently, if the search
focuses solely on exploitation, it will confine itself in a limited area, fails to visit
other areas of the search space, and may be trapped in poor optima. On the other
hand, a method relying heavily on exploration and overlooking exploitation will lack
capacity to examine in depth a given area and miss out solutions of good quality. To
be effective, a search method needs thus to appropriately conciliate exploitation and
exploration. Memetic Algorithms constitute a very interesting framework offering a
variety of strategies and mechanisms to achieve this general objective.

MAs are hybrid search methods that are based on the population-based search
framework [2] and neighborhood-based local search framework (LS) [35]. Popu-
lar examples of population-based methods include Genetic Algorithms and other
Evolutionary Algorithms while Tabu Search and Simulated Annealing (SA) are two
prominent local search representatives. The basic rationale behind a MA is to com-
bine these two different search methods in order to take advantage of their comple-
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mentary search strategies. Indeed, it is generally believed that the population-based
search framework offers more facilities for exploration while neighborhood search
provides more capabilities for exploitation. If they are combined in a suitable way,
the resulting hybrid method can then offer a good balance between exploitation and
exploration, assuring a high search performance.

Like other metaheuristics, MAs are a general optimization framework that can
potentially be applied to various discrete search or optimization problems. Never-
theless, it should be clear that a blind application of MAs (or any other metaheuris-
tics) to a particular problem will not be able to lead to satisfactory solutions. To be
effective, the MA framework must be carefully adapted to thegiven problem and in-
tegrate problem-specific knowledge within its search operators and strategies. This
is the very key point of a successful MA application in practice.

2.2 Memetic algorithms in overview

Memetic Algorithms [48, 49] are a population-based computational framework and
share a number of features with methods like Evolutionary Algorithms [2] and Scat-
ter Search [25]. MAs operate on a set of candidate solutions and use these solutions
to create new solutions by applying variation operators such as combinations and
local improvements.

From a general perspective, a MA is composed of a number of basic components:
a pool of candidate solutions (also called population of individuals) to sample the
search space, a combination operator (crossover) to createnew candidate solutions
(offspring) by blending two or more existing solutions, an improvement operator to
ameliorate offspring solutions, and a population management strategy. In addition
to these elements, the MA also needs an evaluation or fitness function to assess the
quality of each candidate solution as well as a selection mechanism to determine the
candidate solutions that will survive and undergo variations.

From an operational perspective, a typical MA starts with aninitial population
(see§3.4) and then repeats cycles of evolution. Each cycle, also called a generation,
consists of four sequential steps.

1. Selection of parents: Selection aims to determine the candidate solutions that
will survive in the following generations and be used to create new solutions. Se-
lection for reproduction often operates in relation with the fitness (quality) of the
candidate solutions; high quality solutions have thus morechances to be chosen.
Well-known examples of selection strategies include roulette-wheel and tourna-
ment. Selection can also be done according to other criteriasuch as diversity. In
such a case, only “distanced” individuals are allowed to survive and reproduce.
If the solutions of the population are sufficiently diversified, selection can also be
carried out randomly. The selection strategy influences thediversity of the popu-
lation (see also§3.3).
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2. Combination of parents for offspring generation: Combination aims to create
newpromisingcandidate solutions by blending (suitably) existing solutions (par-
ents), a solution being promising if it can potentially leadthe optimization pro-
cess to new search areas where better solutions may be found.To achieve this,
the combination operator is often designed such that it captures the semantics
of the targeted problem to ensure the heritage of good properties from parents
to offspring. Additionally, the design of the combination operator should ideally
take care of creatingdiversifiedoffspring. From a perspective of exploration and
exploitation, such a combination is intended to play a role of strategic diversifica-
tion with a long term goal of reinforcing the intensification. A carefully designed
combination operator constitutes a driving force of a successful MA.

3. Local improvement of offspring: The goal of local improvement is to improve
the quality of an offspring as far as possible. For this purpose, local improvement
takes an offspring as its input (current solution) and then iteratively replaces the
current solution by another solution taken from a given neighborhood. This pro-
cess stops and returns the best solution found when a user-defined stop condition
is met. Compared with the combination operator, local improvement plays essen-
tially the role of intensifying the search by exploiting search paths delimited by
the underlying neighborhood. Like combination, local improvement is another
key component and driving force of a MA.

4. Update of the population: This step decides whether a new solution should be-
come a member of the population and which existing solution of the population
should be replaced. Often, these decisions are made according to criteria related
to both quality and diversity. Such a strategy is commonly employed in meth-
ods like Scatter Search and many Evolutionary Algorithms. For instance, a basic
quality-based updating rule would replace the worst solution of the population
while a diversity-based rule would substitute for a similarsolution according to a
distance metric. Other criteria like recency (age) can alsobe considered. The poli-
cies employed for managing the population are essential to maintain an appro-
priate diversity of the population, to prevent the search process from premature
convergence, and to help the algorithm to continually discover new promising
search areas.

The general MA template is described in Algorithm 1 where special attention
must be payed to the design of particular components. The stop condition can be
a maximum number of cycles (generations), a maximum number of evaluations, a
maximum number of cycles without improving the best solution, a solution quality
to be reached or a lower-bounded threshold for the population diversity.

We deliberately leave out the mutation operator within thisMA template. In some
sense, local search can be viewed as a guided macro-mutationoperator. However,
mutation can also be applied to reinforce population diversity. As a lean design
principle, only necessary components are included in a MA, any unjustified and
superficial elements must be excluded.
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Algorithm 1 Memetic Algorithm Template
1: Input: |P| (size of populationP)
2: Output: s∗ (records best solution found)
3: P = PopGeneration(|P|)
4: PopEvaluation(P) (fitness evaluation of each individual)
5: s∗ = best(P)
6: f ∗ = f (s∗) (records the fitness of the best solution)
7: while Stop Condition is not verifieddo
8: (p1...pk) = ParentsSelection(P) (k≥ 2, two or more parents are selected)
9: s′ = Recombination(p1...pk) (one or more offspring can be generated)

10: s = OffspringImprovement(s′) (improvement of offspring solution(s) typically by local
search)

11: P = PopulationUpdate(s,P) (population is updated according to a quality-diversity rule)
12: (s∗, f ∗) = BestSolutionUpdate(s∗, f ∗,P) (the best solution and its fitness are always recorded)
13: end while

2.3 Performance of memetic algorithms for discrete optimization

The computational performance of a MA depends first on the representation of the
solution space (solution encoding) which should preferably be problem dependent
and ease the design of efficient search operators.

The performance of a MA depends then on the design of its two key search
components: Combination and local improvement operators.Their design should
integrate useful problem-specific knowledge of the given problem in order to ensure
aggressive exploitation and guided exploration.

The performance of a MA is also conditioned by the way the population is man-
aged to promote and maintain a fertile diversity during the search process. Indeed,
much like conventional Evolutionary Algorithms, premature convergence can eas-
ily occur if the population loses its diversity. Diversity management is particularly
important with MAs because of the specific nature of their aggressive and intensi-
fied search strategies. Consequently, it is crucial for a MA to maintain with rigor a
“good” population diversity as long as possible.

The interaction between the components of a MA can directly influence the be-
havior and the performance of the MA. A long or short local search phase after each
combination could change the search trajectories. Similarly, a very effective local
search procedure may weaken the role of the combination operator while a very
strong combination operator may make it less critical to have a highly efficient local
improvement procedure.

Finally, the runtime efficiency of a MA depends for a large part on the choice
of the data structures employed to implement the different components of the MA.
A typical example concerns local improvement procedures that explore the candi-
date solutions of a neighborhood and represent the most time-consuming part of a
MA. In such a situation, it is critical to devise appropriatedata structures to enable
and streamline a fast neighborhood evaluation (see§3.1.3). Otherwise, the compu-
tational overheads will jeopardize the search power of the method.
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3 Special design considerations

3.1 Design of dedicated local search

Local improvement is one of the most important components ofa MA and ensures
essentially the role of intensive exploitation of the search space. This is typically
achieved either by dedicated local search heuristics (see examples in [39, 38, 40])
or by tailored general neighborhood search methods. In thispart, we focus our dis-
cussion on adaptation of local search metaheuristics [35],but a large part of the
discussion applies to the design of local improvement procedures based on specific
heuristics.

3.1.1 Local search template

Let (S, f ) be our search problem whereSand f are respectively the search space and
optimization objective. A neighborhoodN overS is any function that associates to
each solutions∈ Ssome other solutionsN(s) ⊂ S. Any solutions′ ∈ N(s) is called
a neighboring solution or simply a neighbor ofs. For a given neighborhoodN, a
solutions is a local optimumwith respect toN if s is the best in terms off among
the solutions inN(s).

The notion of neighborhood can be explained in terms of themove operator.
Typically applying a movemv to a solutions changes slightlys and leads to a
neighboring solutions′. This transition from a solution to a neighbor is denoted
by s′ = s⊕mv. Let Γ (s) be the set of all possible moves which can be applied tos,
then the neighborhoodN(s) of scan be defined by:N(s) = {s⊕mv|mv∈ Γ (s)}.

A typical local search algorithm begins with an initial configurations in S and
proceeds iteratively to visit a series of configurations following the neighborhood.
At each iteration, a particular neighbors′ ∈ N(s) is sought to replace the current
configuration and the choice ofs′ is determined by the underlying metaheuristic and
by referring to the quality of the neighboring solution. Forinstance, a strict Descent
algorithm always replaces the current solutions by abetterneighbors′ while tabu
search replaces the current solution by abestneighbors′ even if the latter is of
inferior quality. Still with simulated annealing, the transition froms to a randomly
selected neighbors′ is conditioned by a changing probability.

3.1.2 Neighborhood design

The success of a LS algorithm depends strongly on its neighborhood. The neigh-
borhood defines the subspace of the search problem to be explored by the method.
For a given problem, the definition of the neighborhood should structure the search
space such that it helps the search process to find its ways to good solutions.
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The choice of neighborhood is conditioned by the representation (genotype) used
to encode the candidate solutions of the search space (phenotype). It may further
depend on the structure and constraints of the problem on hand. Here we briefly
review some neighborhoods associated to three conventional representations, which
have a variety of applications.

• Binary representation: With this representation, each solution of the search space
is coded by a binary string. Binary representation is very popular in discrete
optimization due to the fact that many problems are naturally formulated with
binary variables. Typical examples include SAT/Max-SAT, Knapsack, Uncon-
strained Quadratic Optimization, graph bi-partitioning etc. For these binary prob-
lems, two basic neighborhoods are defined by thek- f lip andSwapmove oper-
ators. Thek- f lip move changes the values ofk (k ≥1) variables. So any neigh-
bor s′ ∈ N(s) has a Hamming distance ofk to solutions. A larger k induces a
larger (and stronger) neighborhood. Nevertheless, whether a larger neighborhood
should be preferred in practice depends on the computational cost to evaluate the
neighborhood.Swapexchanges the values of two variables that have different
values. Note thatSwapcan be simulated by two 1-f lip moves.

• Permutation representation: Here, each solution of the search space corresponds
to a permutationπ : {1..n} → {1..n}. Permutation representation has a large
range of applications in discrete optimization. Prominentexamples include Trav-
eling Salesman Problem, Flow-Shop/Job-Shop scheduling, Linear Arrangement,
Bandwidth Minimization etc. Two basic neighborhoods for this representation
are available usingSwapandRotationmoves. Given a permutation (solution)
π, TheSwapmove exchangesπ(i) andπ( j) for somei and j (i 6= j). If π ′ is a
neighbor ofπ by swappingi and j, thenπ ′(k) = π(k) for k 6= i, j, π ′(i) = π( j)
andπ ′( j) = π(i). TheRotationmove rotates all the values betweenπ(i) andπ( j)
for somei < j. Thus, ifπ ′ is a rotation neighbor ofπ obtained withi < j, then
π ′(k) = π(k)+ 1 for i ≤ k < j, π ′( j) = π(i), andπ ′(k) = π(k) for all otherk.
Note thatRotation(i, j) can be simulated byj − i successiveSwapmoves start-
ing with Swap(i, i +1).

• Integer representation: With this representation, each solution of the search space
corresponds to an integer vector whose values are taken fromsome discrete do-
mains. Integer representation is very useful and convenient for many constraint
satisfaction and optimization problems. A common neighborhood is defined by
a “one-change” move that consists in replacing the current value of a single vari-
able by a new domain value. The set of candidate variables under consideration
for a value change can be identified with a number of rules specific to the prob-
lem at hand. For instance, if the search algorithm deals withunfeasible solutions,
i.e. some variables are receiving conflicting values relative to some constraints,
the set of candidate variables can be constituted of the subset ofconflicting vari-
ables [13, 52, 15]. Such a neighborhood is typically employed in local search
algorithms for solving Constraint Satisfaction Problems.More generally, candi-
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date variables for a value change can be identified as those that are critical for
improving the objective function or for reaching the feasibility.

These neighborhoods can be applied directly to a given problem if the problem
fits well the required representation. A common practice is to adapt a conventional
neighborhood with problem-specific knowledges of the problem. Moreover, in some
situations, it is useful to investigate the possibility of multiple neighborhoods that
can be applied at different stages of the search process (see§3.1.4 below).

3.1.3 Neighborhood evaluation

Another design issue that arises is the evaluation of a givenneighborhood. Indeed, a
local search procedure moves iteratively from the current solution to a new solution
chosen within the neighborhood. To make this choice, local search needs to know
the cost variation (also called themove value) between the current solutions and a
candidate neighbors′ ∈ N(s). The move value indicates whether the neighbors′ is
of better, worse or equal quality relative tos. Let ∆ f = f (s′) - f (s) denote this move
value.

• Incremental evaluation: Basically, there are two ways to obtain∆ f for a neigh-
bor. The trivial way is to calculatef (s′) from “scratch” using the objective func-
tion1 f . Doing this way may be expensive iff needs to be evaluated very often
or if the evaluation off itself involves complex calculations. A more efficient
alternative aims to derive the value off (s′) from the valuef (s) by updating only
what is strictly necessary. Indeed, if a neighbors′ is close to its initial solutions,
which is true for many neighborhoods, then the evaluation off (s′) can be carried
out in this incremental manner. For a number of basic neighborhoods, like those
shown previously, such an incremental evaluation is often possible.

• Full search of neighborhood: The incremental evaluation can be applied toall
the neighborsof a given neighborhood relation. In this case, it is generally useful
to investigate dedicated data structures (call it∆ -table) to store the move values
for all the neighbors of the current solution.∆ -table provides a convenient way
to know the quality of each neighbor and enables an efficient search of the full
neighborhood. With such a∆ -table, the local search algorithm can decide eas-
ily at each iteration which neighbor to take according to itssearch strategy. For
instance, a best-improvement descent algorithm will take the move that is identi-
fied by the most negative value in the∆ -table to minimize the objective function.
After each move, the∆ -table (often only a portion of it) is updated accordingly
using the incremental evaluation technique to propagate the effect of the move.
∆ -table is a very useful technique for local search algorithms. This is particularly
the case for descent-based methods like Tabu Search where a best neighbor needs

1 For the reason of simplicity, the term “objective function” is used here. A more precise term is
“evaluation function”, see§3.4.
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to be identified (see examples in [35]).

• Approximative evaluation: The practical usefulness of∆ -table depends on both
the complexity and the number of updates needed after each move transition. It
may happen that, the move value can not be incrementally calculated or the∆
updates need to change a large portion of∆ -table. In this case, it would be useful
to replace the initial evaluation function by a faster, but approximative evalua-
tion function [36]. More generally, approximate evaluation is useful if the the
evaluation function is computationally expensive to calculate or if the function is
ill-defined.

• Order of evaluation: If the neighborhood is not completely searched, one must
decide the order in which the neighborhood is explored. For instance, the first-
improvement descent technique moves to any improving neighbor. If there are
several improving neighbors, the descent search picks the “first” one encountered
in the order the neighbors are examined. To allow such a method to increase its
search diversity, a random order may be preferred [53].

3.1.4 Combination of neighborhoods

Very often, different neighborhoods may be available, enabling alternative ways to
explore the search space. In such a situation, it is interesting to consider combined
use of multiple neighborhoods. For illustrative purpose, consider two neighborhoods
N1 andN2. Then one can consider at least three ways to use them in a combined way.

First, neighborhood unionN1∪N2 includes all the neighbors of the two under-
lying neighborhoods, so that any member ofN1 andN2 is a member ofN1∪N2. A
local search algorithm using this combined neighborhood selects the next neighbor-
ing solution among all the solutions in both neighborhoods.This combination has
no sense if one neighborhood is fully included in the other one.

With Probabilistic neighborhood unionN1⊘N2, a neighbor solution inN1 (resp.
N2) belongs toN1⊘N2 with probability p (resp. probability 1-p). A local search al-
gorithm using this combined neighborhood selects at each iteration the next neigh-
bor fromN1 with probability p and fromN2 with probability 1-p.

Token-ring combination N1 → N2 is time-dependent and defined alternatively
either byN1 or N2 according to some pre-defined conditions [17]. A local search
algorithm using this combined neighborhood cycles throughthese neighborhoods.
It typically starts with one neighborhood until the search stagnates, then changes to
the other neighborhood until the search stagnates again to switch back to the first
neighborhood and so on.

The advantage of combined neighborhood was already demonstrated long time
ago in [40] for solving the Traveling Salesman Problem. Moregenerally, the issue of
transitioning among alternative neighborhoods was discussed with the Tabu Search
framework and strategic oscillation design in [21]. More recent examples of local
search methods focusing on multiple neighborhoods includeVariable Neighborhood



10 Authors Suppressed Due to Excessive Length

Search [33], Neighborhood Portfolio Search [17] and Progressive Neighborhood
Search [27]. Examples of studies on neighborhood combinations can be found in
[32, 41].

3.2 Design of semantic combination operator

3.2.1 Solution combination

Combination is another key component of a MA and constitutesone leading force
to explore the search space. The basic idea of combination isvery appealing since
it provides a very general way of generating new solutions bymixing existing solu-
tions. Contrary to local changes of local improvement, combination can bring into
new solutions more useful information, that may be beneficial for a healthy evolu-
tion of the search process.

As a first step, it would be tempting to consider the application of a blind (ran-
dom) crossover operators for solution combinations. Doingthis has the advantage
of ease of application. However, one question should be asked before this approach
is attempted: Is the crossover operator meaningful with respect to the optimization
objective? If the answer is negative, the crossover operator is probably not appropri-
ate and the sole role it would play in this case would be to introduce some random
diversification in the search process.

In practice, instead of applying blind crossovers, it is often preferable to consider
dedicated combination operators that have strong “semantics” with respect to the
optimization objective. A semantic combination aims to pass intrinsic good proper-
ties from parents to offspring. The design of such a combination operator is far from
trivial and in fact represents a challenging issue. Although there are some theoretical
guidances, the discovery of such a semantic combination operator in practice relies
basically on a deep analysis and understanding of the given problem. Compared
with the design of local search procedures, the design of a meaningful combination
operator constitutes probably one of the most creative parts of an effective MA.

3.2.2 Theoretical foundations

The schemata theory [34] and the building block hypothesis [29] are often men-
tioned to explain (partially) the performance of Genetic Algorithms. Intuitively,
building blocks are promising patterns of solutions that can be progressively as-
sembled by crossover to get improved solutions. Given that this theory is defined
for binary and simple Genetic Algorithm, it is not directly applicable in the con-
text of MAs. Nevertheless, assembling building blocks to generate new solutions
remains an appealing idea. In [56, 57], the concept of forma is introduced to gen-
eralize the schemata theory. A formal framework is even proposed to try to capture
some fundamental aspects of MA in [58]. The forma theory suggests a set of gen-
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eral principles for the design of solution representationsand recombination opera-
tors. According to this theory, a suitable recombination operator is required to fulfill
two conditions calledrespectandproper assortment. Intuitively, therespectcondi-
tion advocates the heritage of shared characteristics of parents to offspring, while
proper assortmentensures the heritage of desirable characteristics of each parent by
their offspring. This is in accordance with the general principle of conserving good
features through inheritance and discarding bad features developed in Grouping Ge-
netic Algorithms [6].

3.2.3 Design of combination operator

These abstract considerations only provide us with very general guidances for de-
signing recombination operators. For a particular problem, it is still necessary to find
out what are the building blocks (interesting patterns or characteristics) of solutions
that can be assembled and inherited through the recombination process. Unfortu-
nately, there is no short-cut to this quest and a fine analysisand deep understanding
of the given problem is indispensable to find useful clues.

First, one can analyze the samples of optimal or high qualitysolutions to possibly
identify regular patterns shared by these solutions. Indeed, if such a pattern exists,
then the recombination operator can be constrained to conserve the pattern from the
parent solutions and to avoid breaking the pattern. Alternatively, the recombination
operator can also be encouraged to promote the emergence of favorable building
blocks. For instance, such an analysis applied to the Traveling Salesman Problem
shows that high quality local optima share sub-tours [39, 40]. This property has
been used by several highly successful crossover operatorswhich conserve common
edges or sub-tours in offspring solutions [50, 68, 12, 51, 46]. Similarly, for the graph
k-coloring problem, an analysis of coloring solutions discloses that some nodes are
always grouped to the same color class (i.e. colored with thesame color). This
characteristic has helped to devise powerful combination operators, as shown in
[5, 14].

3.2.4 Multi-parent combination

Combination may operate with more than two parents. Multiple parent combination
is even a general rule for the Scatter Search metaheuristic which uses, in its origi-
nal form, linear combinations of several solutions to create new solutions [19]. Al-
though there is no theoretical justifications, the practical advantage of multiple par-
ent recombinations was demonstrated in several occasions for discrete optimization.
For instance, for the graphk-coloring problem, several recent and top-performing al-
gorithms integrate multiple parent combination [16, 45, 43, 54], where color classes
from different solutions are assembled to build offspring colorings. More generally,
when multiple solutions are used for creating a new solution, one can define spe-
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cial rules to score the solution components of each parent solution and use strategic
voting rules to combine components from different parents solutions.

A question that arises for multi-parent combination is how to determine the num-
ber of the parents. By using two parents, the offspring is expected to inherit 50%
material from each parent. The contribution of each parent to the new solution de-
screases with an increasing number of parents. If the building blocks from different
parents are independent from one another, taking more parents into account would
be interesting to build good and diversified offspring. Otherwise, if a building block
from a parent is epistatic with respect to the building blocks of other parents, blend-
ing more parents means more disruption, and thus should be avoided.

3.3 Population diversity management

Population diversity is another important issue that should be considered in the de-
sign of an effective MA [14, 63]. If the population diversityis not properly managed,
the population will converge prematurely and the search process stops with poor lo-
cal optima. This is particularly true when a small population is used by the MA.
In what follows, we first provide some precisions about the nature of diversity and
explain how fertile diversity can be promoted and maintained within a population.
Note however that diversity is not interesting per se withina MA. The ultimate goal
of population diversity is to help the search process not only to avoid premature con-
verge, but also to continually discover interesting new solutions in order to explore
non-visited promising search areas.

3.3.1 Diversity

Population diversity can be measured by a similarity (or distance) metric applied
to the members of the population. The metric can be defined either on the solution
representation level (genotype metric) or solution level (phenotype metric) [30]. For
instance, pair-wiseHamming distancecan be used as a genotype metric to measure
population diversity. Diversity can also be measured in terms ofentropy[18] or by
the so-calledmoment of inertia[47]. Genotype metric is usually problem indepen-
dent, and thus may or may not reflect the intrinsic diversity of a population with
respect to the given optimization objective.

Population diversity can also be measured at the phenotype level over the solu-
tion space. For instance, for partition problems like graphk-coloring, the distance
between two partitions can be measured by the so-calledtransfer distancewhich is
the minimum number of elements that need to be moved between classes of one par-
tition so that the resulting partition becomes the other partition [59, 3]. A phenotype
metric is defined over the solution space and thus is more likely to measure the real
diversity of a population.
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In order to observe suitably the population diversity, it isuseful to first determine
the most appropriate distance or similarity metric with respect to the optimization
objective of the given problem. Moreover, if the populationdiversity needs to be
continually monitored, it becomes important to pay attention to the cost of comput-
ing the underlaying metric.

3.3.2 Promoting and maintaining useful diversity

Population diversity can be promoted and managed at severallevels of a MA.
One evident possibility is to define specific selection rulesto favor the selection
of distanced parentsfor mating. Another possibility concerns the variation opera-
tors which can be designed in such a way that they favors the generation of divers
and varied offspring. For instance, the “Distance Preserving Crossover” introduced
in [12, 46] is constrained to generate an offspring which is at the same distance from
both parents. More generally, the path-relinking type of combinations typically con-
struct offspring solutions by considering both the solution quality and its distance to
its parent solutions [25] (see also [42] for an example).

Population diversity can also be controlled by the offspring acceptation and re-
placement strategies. Specifically, this can be done according to both solution diver-
sity and quality. For instance, in [54, 55] a minimum diversity-quality threshold is
imposed between the solutions of the population. The acceptation of a new offspring
is conditioned not only by its quality, but also by its distance to existing solutions.
Similarly, diversity and quality are considered to select the victim solution to be
replaced by the offspring.

Other useful ideas for diversity preservation can be found in the areas of Genetic
Algorithms. Well-known examples include sharing [30] and crowding [4, 44].

3.4 Other issues

In addition to the components mentioned until now, the design of an effective
Memetic Algorithm should take into account a number of otherconsiderations
which are briefly discussed in this Section.

• Initial population: There are basically two ways to obtain an initial population:
Random generation and constructive elaboration. While random generation is
easy to apply, it can hardly generate initial solutions of good quality. To improve
the basic random generation method, a simple sampling technique can be ap-
plied. LetP be the population size, then one can generateK > P solutions and
then retain only theP “best” ones. Initial generation by construction can be used
if some fast greedy heuristics are available for the given problem. Notice that,
in this case, the greedy heuristics must be randomized such that each application
leads to a different solution. Another issue that can be considered at the initializa-
tion stage is to take care of building a diversified population. This can be achieved
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by controlling the distance between each new solution and the existing solutions
of the population. Only distant new solutions are allowed tojoin the population.

• Distance: At several places, MAs may need to measure the distance between two
solutions or between a solution and a group of solutions. Forinstance, parents
selection may operate in such a way that the selected parentsare sufficiently dis-
tant. Similarly, a population management strategy may decide the acceptation
or rejection of an offspring by considering its distance to the members of the
population. When an operation refers to the notion of distance, it is preferable
to employ an appropriate distance metric which is meaningful with respect to
the given problem. For instance, for partition problems like graph coloring (see
§4.1), Hamming distance is not a suitable metric to characterize the difference of
two partitions. Instead, transfer distance between partitions should be preferred.
Once again, the choice of the distance metric should ideallybe correlated with
the semantics of the problem on hand.

• Rich evaluation function: Evaluation function assesses the quality of a candidate
solution with respect to the optimization objective and orients the search method
to “navigate” through the search space. A good evaluation function is expected
to be able to distinguish each solution from the other solutions and thus to ef-
fectively guide the search method to make the most appropriate choice at each
iteration. Very often, the initial optimization objectivef is directly used as eval-
uation function. However, such a function may not be sufficiently discriminant
to distinguish different solutions. To improve the discriminating power, it is use-
ful to incorporate in the evaluation function additional information, e.g. relative
to the structure of the problem instance to be solved. Examples can be found in
[37, 6, 60]. Moreover, when constrained optimization problems are considered,
some constrains may be hard to satisfy, and thus are relaxed.Among various
constraint relaxation techniques, a common practice is to integrate the relaxed
constraints into the evaluation function as a (weighted) component or as a part of
a multi-component evaluation function (see examples in [22, 65, 66]).

• Constraints: The constraints in the considered problem may influence thedesign
of some MA components. For instance, suppose that the MA algorithm is ex-
pected to explore only feasible solutions. Then one must decide whether a com-
bination operator is constrained to create only feasible solutions. If infeasible
offspring is allowed, it is necessary to consider a dedicated mechanism to repair
the broken constraints. Similarly, neighborhood design can take into considera-
tion the constraints to identify eligible moves. For instance, in feasibility search
problems, this is often done by identifying problem variables involving violated
constraints and restricting the set of authorized moves to those defined on these
conflicting variables. Finally, as previously stated, constraints that are difficult to
solve can be used in the design of the evaluation function.
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• Connections with Scatter Search and Path Relinking: As discussed in [20] and
[23] (Chapter 9), the MA framework shares ideas with ScatterSearch and Path
Relinking [24, 25]. These latter methods provide unifying principles for joining
solutions based on generalized path constructions (in bothEuclidean and neigh-
borhood spaces) and by using strategic design. Solution combination in Scatter
Search originated historically from strategies for combining decision rules and
combining constraints. In Scatter Search, dispersed new solutions are created
from a set of reference solutions by weighted combinations of subsets of the
reference solutions that are selected as elite solutions. With Path Relinking, off-
spring solutions are generated by exploring, within a neighborhood space, trajec-
tories that connect two or more reference solutions. One notices that the reference
solutions or subsets of them can be considered as parent solutions for combina-
tion while combination resorts to diverse strategies such as attribute voting and
weighting.

4 Case Studies

In this section, we show two case studies of quite different nature with the purpose
of showing how these issues can be effectively implemented in practice. We partic-
ularly focus on the design of combination and local search operators.

4.1 Graph coloring problems

4.1.1 Problem description

Given an integerk and a undirected graphG = (V,E) with a setV of vertices and a
setE of edges, a legalk-coloring ofG is a partition ofV into k distinct color classes
such that each color class is composed of pairwise non-adjacent vertices. The graph
k-coloring problem (k-COLOR) aims at finding a legalk-coloring for a fixedk while
the graph coloring problem (COLOR) determines the smallestk for a given graphG
(its chromatic numberχG) such thatG has a legalk-coloring. Since COLOR can be
handled by solving a series ofk-COLOR with decreasingk values, we only consider
herek-COLOR.

For a givenk-COLOR instance, i.e. an integerk and graphG = (V,E), let s=
{C1,C2...Ck} denote a partition ofV into k distinct color classes such that eachCi

(i ∈ {1,2...k}) contains all the vertices that are colored with colori. Let Sdenote all
such partitions. For anys∈ S, define its conflict numberf (s) to be the number of
pairs of adjacent verticesx andy ({x,y} ∈ E) belonging to a same color class ofs.
Thenk-COLOR can be solved by minimizingf (s); f (s)=0 implies thats is a legal
k-coloring, i.e. all its color classesCi are conflict-free.
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Notice that among the large number of existing heuristic algorithms for k-
COLOR, Memetic Algorithms are certainly among the most powerful ones and
provide the best results on the well-known DIMACS benchmarkinstances of this
well-known NP-complete problem.

4.1.2 Partition crossovers

In order to design a semantic combination operator, let us try to get an idea about the
possible “building blocks” for our problem. The goal ofk-COLOR is to determine a
set ofk distinctconflict-free color classes. In this context, color classescan be con-
sidered our basic “building blocks”. If there are several “good” color classes among
some candidate solutions, then these color classes can favorably be recombined to
obtain new candidate solutions. This idea was first exploredby the Greedy Partition
Crossover (GPX) described in [14] and the Union of Independent Sets crossover in
[5], which are also related to the design of grouping crossovers described in [6].

Operating with two parentk-coloringss1 ands2, GPX builds step by step thek
classesC0

1, . . . ,C
0
k of the offsprings0. At the first step, GPX createsC0

1 by choosing
a largestclass from one parent and remove its vertices from both parents s1 ands2.
GPX repeats then the same operations for the nextk-1 steps, but alternates each time
the parent considered. If some vertices remain unassigned at the end of thesek steps,
they are randomly assigned to one of thek color classes. The alternation between the
parents aims at a balanced mixture of information from both parents and avoiding
the dominance of one parent over the other one during the recombination.

Table 1 shows an example with 3 color classes (k= 3) and 10 vertices represented
by capital letters A,B,· · · ,J.

parents1 → A B C D E F G H I J C0
1 := {D,E,F,G} A B C H I J

parents2 C D E G A F I B H J remove D,E,F and G C A I B H J
offsprings D E F G

parents1 A B C H I J C0
2 := {B,H,J} A C I

parents2 → C A I B H J remove B,H and J C A I
offsprings D E F G D E F G B H J

parents1 → A C I C0
3 := {A,C} I

parents2 C A I remove A and C I
offsprings D E F G B H J D E F G B H J A C

Table 1 The Greedy Partition Crossover: An example from [14]

The basic idea underlying GPX was also explored with multiple parent com-
bination operators [31, 16, 45, 43, 54]. Using multiple parents for combination is
fertile for k-COLOR since this offers more possibilities to obtain good (large) color
classes for each step of the recombination operation. By generalizing two parents to
multiple parents, refined and additional strategies were also introduced to make the
combination process as most effective as possible. For instance with the AMaPX
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operator of [43], in order to favor the creation ofdiversified offspring, each time a
color class from a parent is transmitted to the offspring, this parentk-coloring will
not be considered for the next few steps of offspring building. In [54, 55], in order to
measure the goodness of the color classes of the parent colorings, the combination
operator takes into account the size of each color class, thenumber of conflicting
vertices as well as the degrees of the vertices in the color class.

A question that arises when multiple parents are used is how to determine the
number of parents. It is clear that by using more parents, fewer classes will be trans-
mitted from each parent to the offspring and this also implies that the class blending
from each parent is also more disrupted. An analysis of the relations between the
number of vertices, the number of color classes and the number of parents permits
to identify a heuristic rule to fix the right number of parents[55].

In [16], the combination operation is performed within a slightly different con-
text. The algorithm maintains a pool of conflict-free color classes obtained dur-
ing the search process. From time to time, these color classes are used to generate
new k-colorings. Other combination operators using similar ideas are investigated
in [5, 31, 45]

4.1.3 Local improvement by Tabu Search

In memetic coloring algorithms, Tabu Search is frequently used for local improve-
ment to ameliorate a new offspring created by the combination operator. For illus-
tration purpose, we use the TS algorithm described in [14] asan example. It uses
the constrained “one-change” move described in§3.1.2 such that aneighbor s′ of
a given configurations is obtained by moving a singleconflictingvertexv from a
color classCi to another color classCj . When such a move< v, i > is performed, the
couple< v, i > is classified tabu for the nexttl iterations. Therefore,vcannot be reas-
signed to the classi during this period, unless movingv back to the color classi leads
to a configuration better than the best configuration found sofar (aspiration crite-
rion). The tabu tenuretl for a move is variable and depends on the numbernbCFL of
conflicting vertices in the current configuration:tl = Random(A)+α ∗nbCFL where
A andα are two parameters and theRandom(A) function returns a random number
from {0, · · · ,A−1}. To implement the tabu list, it is sufficient to use a|V|×k table.

The algorithm memorizes and returns themost recentconfigurations∗ among the
best configurations found: After each iteration, the current configurations replaces
s∗ if f (s) ≤ f (s∗) (and not only if f (s) < f (s∗)). The rational to return the last best
configuration is that we want to produce a solution which is asfar away as possible
from the initial solution in order to better preserve the diversity in the population.



18 Authors Suppressed Due to Excessive Length

4.2 Maximum parsimony phylogeny

4.2.1 Problem description

Phylogenetics is the study of evolutionary relationships among various groups of
organisms (for example, species or populations). These connections are represented
graphically through phylogenetic trees. Computational phylogenetics aims to infer
phylogenetic trees from molecular data such as protein or DNA sequences [10].
The main phylogenetic approaches include methods using a distance-matrix, the
maximum likelihood or maximum parsimony criterion.

Maximum parsimony phylogeny generally takes as input a multiple sequence
alignment which is a matrixM of characters composed ofn lines (related to a set
S of species, where|S| = n) andk columns which represent the characters of the
sequences [7]. Each sequence is also called a taxon. Each character of the matrix
belongs to an alphabetΣ . A phylogenetic treeT of the given input is a binary tree
such that (1) the leaves ofT are the set ofn species, and (2) each internal node
is induced by the sequence of parsimony of its two descendantsequences. Given
two sequencesS1 =< x1, · · · ,xk > andS2 =< y1, · · · ,yk > with ∀i ∈ {1..k},xi ,yi

belonging to the power setP(Σ = {−,A,C,G,T}), the sequence of parsimony
P(S1,S2) =< z1, · · · ,zk > of S1 andS2 is given by ([8]) :

∀i,1≤ i ≤ k,zi =

{

xi ∪yi , if xi ∩yi = /0
xi ∩yi ,otherwise

The score of the sequence of parsimony defines the “distance”separating its two
descent sequences:

fP(S1,S2) =
k

∑
i=1

ci where ci =

{

1, if xi ∩yi = /0
0,otherwise

Let T be a binary parsimony tree withn leafs or species.T has thenn− 1 se-
quences of parsimony (internal nodes). LetI denote the set of these internal nodes.
The Fitch parsimony scoref (T) of T is defined as follows:

f (T) = ∑
i∈I

fi(T)

The aim of the Maximum Parsimony problem (MP) is then to find a most parsi-
monious phylogenetic treeT∗ such thatT∗ minimizes the parsimony score. Since
there are∏n

i=3(2i − 3) possible binary trees withn leafs, this problem is a highly
combinatorial search problem. The MP problem is computationally difficult since
its associated decision problem is equivalent to the NP-complete Steiner problem
in a hypercube [11]. MP has been subject of many studies for many years. Among
them, neighborhood-based local search and various hybrid algorithms are certainly
the most popular solution methods. In what follows, we show aMemetic Algorithm
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called HYDRA, which combines a dedicated tree crossover called DiBIP [26] and
a progressive neighborhood local search method [27].

4.2.2 Distance-based information preservation crossover

First, let us notice that conventional tree crossovers known in genetic program-
ming are not suitable here. The Distance-Based InformationPreservation crossover
(DiBIP) is specifically designed for the MP problem. DiBIP isbased on a topolog-
ical distance between species (leafs) and aims to preserve common properties of
parents in terms of this distance between species. For instance, two species that are
close (resp. far) in both parents should stay close (resp. distant) in the offspring.
Given two parents trees, the DiBIP crossover is realized in three steps: Calculate a
distance matrix for each parent tree, then combine the two resulting matrices to get
a third matrix and finally create a child tree from this last matrix.

The general DiBIP crossover scheme is described in Algorithm 2 whereT1 andT2

denote two parents trees.δ is a distance metric to measure the distance of each pair
of species of a treeT, ∆ a tree-to-distance operator to obtain a distance matrix of a
tree,⊕ a matrix operator to combine 2 distance matrices to produce anew distance
matrix,Λ a distance-to-tree operator to construct a tree from a givendistance matrix.

Algorithm 2 The general DiBIP crossover scheme
Input: T1, T2, δ , ∆ , ⊕, Λ
Output: A child treeT∗

1. Apply the tree-to-distance operator∆ to each parent treeTi (i=1,2) to obtain the correspond-
ing distance matrixDi = ∆(Ti);

2. Apply the matrix operator⊕ to D1 andD2 to obtainD∗: D∗ = D1⊕D2;
3. Apply the distance-to-tree operatorΛ to D∗ to obtain a child tree:T∗ = Λ(D∗).

A specific DiBIP crossover operator is obtained onceδ , ∆ , ⊕, andΛ are pro-
vided. The distance measureδ should be ideally correlated to the evolutionary
changes between species. For instance, 2 species separatedin the tree by a small
number of evolutionary changes should have a smaller distance than 2 species sep-
arated by a large number of changes. The distance measure should additionally be
tree-topology dependent. In this sense, the length of the elementary path between
2 species is a possible option while Hamming distance is not suitable here because
this metric is totally independent of tree topologies.

Moreover, since we want to preserve representative features of the parents during
the crossover operation, a valid matrix operator⊕ should favor such an inheritance
from parents to offspring and meet some relation preservation property. For instance,
if a pair of species (a,b) is closer than another pair (c,d) in both parents, then this
relation should be conserved. Consider the operation⊕ such that for a pair of species
(i, j), (D1⊕D2)(i, j) = α.min{D1(i, j),D2(i, j)}+(1−α).max{D1(i, j),D2(i, j)}
with α ∈ [0,1]. This defines indeed a valid⊕ operator. Furthermore, this definition
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offers in fact many possibilities and seems particularly relevant to MP. For instance,
the arithmetic average (α = 0.5) and the max operator max (α = 0) are 2 special
cases. At last, let us mention that the arithmetic addition is another simple valid⊕
operator.

We now show a concrete example. Given two speciesi and j, define their distance
δi j to be thetopological distance, i.e. the length of the elementary path between the
respective ascendants ofi and j, (minus 1 if the path contains the root of the treeT).
The matrix operator⊕ is the addition+ such thatD(i, j) = D1(i, j)+D2(i, j), which
satisfies the relation preservation property previously mentioned. The distance-to-
tree operatorΛ is a non-deterministic variant of the well-known UPGMA method
[62]. Fig. 1 shows an application of this crossover operator. One observes that the
closeness of species in both parents is conserved in the child. This observation ap-
plies equally to distant species.

4.2.3 Progressive neighborhood search

For local improvement, HYDRA usesProgressive Neighborhood Search(PNS)
which operates with a variable-size neighborhoods [27]. Given a parsimony treeT,
a neighboring treeT ′ is typically obtained by a move that consists in cutting a sub-
tree fromT and reinserting the sub-tree elsewhere in the initial tree.If a meaningful
metric can be defined to measure the distance between the cutting and inserting
points, then it would be possible to define neighborhoods of variable sizes. In [27],
the topological distanceδ shown in Section 4.2.2 is used for this purpose. A dis-
tance parameterd is introduced to constraint the distance between the prunededge
i and the edgej receiving the insertion such thatδi j ≤ d.

So, settingd = ∞ leads to a large neighborhood where the pruned edge (with
its subtree) can be reinserted anywhere in the tree. Consequently, the topological
change can be important. This case corresponds in fact to thewell-known Sub-
tree Pruning Regraftingneighborhood [64] whose size equals 2(n−3)(2n−7) [1].
Reversely, settingd = 1 gives a small neighborhood where neighboring trees are
close to the current tree. This case corresponds to another well-known neighbor-
hood calledNearest Neighbor Interchange[67] which swaps two adjacent branches
of the tree leading to(2n−6) neighbors [61]. By varying the parameterd, one gets
neighborhoods of intermediate sizes.

TheProgressive Neighborhood Searchis based on this parametric neighborhood
and its neighborhood changes during the search process by varying the value of
d. In the particular MP context, PNS carries out a descent search starting with a
large neighborhood (i.e. with larged) and reduces progressively the neighborhood.
Indeed, at the beginning of the search, it is possible to obtain strong quality im-
provement by important topological modifications of the tree with larged. When
the search progresses, the quality of the trees becomes better and better, only small
improvements can be expected with small tree modifications.It is thus more judi-
cious to switch to smaller and small neighborhoods to accelerate the search.
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Parent 1 :T1 Parent 2 :T2
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D1 = ∆(T1) D2 = ∆(T2)

A B C D E F G H I J K L M N
A - B
B 6 - C
C 5 3 - D
D 1 5 4 - E
E 5 5 4 4 - F
F 5 5 4 4 2 - G
G 5 3 0 4 4 4 - H
H 5 5 4 4 0 2 4 - I
I 0 6 5 1 5 5 5 5 - J
J 5 1 2 4 4 4 2 4 5 - K
K 2 4 3 1 3 3 3 3 2 3 - L
L 7 1 4 6 6 6 4 6 7 2 5 - M
M 5 5 4 4 2 0 4 2 5 4 3 6 - N
N 7 1 4 6 6 6 4 6 7 2 5 0 6 -

A B C D E F G H I J K L M N
A - B
B 8 - C
C 4 6 - D
D 1 7 3 - E
E 0 8 4 1 - F
F 9 1 7 8 9 - G
G 4 6 0 3 4 7 - H
H 2 6 2 1 2 7 2 - I
I 6 4 4 5 6 5 4 4 - J
J 7 1 5 6 7 2 5 5 3 - K
K 4 4 2 3 4 5 2 2 2 3 - L
L 9 1 7 8 9 0 7 7 5 2 5 - M
M 6 2 4 5 6 3 4 4 2 1 2 3 - N
N 6 4 4 5 6 5 4 4 0 3 2 5 2 -

D∗ = D1⊕D2 Child : T∗ = Λ(D∗)

A B C D E F G H I J K L M N
A - B
B 14 - C
C 9 9 - D
D 2 12 7 - E
E 5 13 8 5 - F
F 14 6 11 12 11 - G
G 9 9 0 7 8 11 - H
H 7 11 6 5 2 9 6 - I
I 6 10 9 6 11 10 9 9 - J
J 12 2 7 10 11 6 7 9 8 -K
K 6 8 5 4 7 8 5 5 4 6 - L
L 16 2 11 14 15 6 11 13 12 4 10 -M
M 11 7 8 9 8 3 8 6 7 5 5 9 - N
N 13 5 8 11 12 11 8 10 7 5 7 5 8 -
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Fig. 1 Application of the DiBIP Tree Crossover [26]

One notices that PNS shares some features with Variable Neighborhood Search
(VNS) [33]. However, contrary to VNS, the neighborhoods explored by PNS are not
systematically of increasing sizes. Within the context of our Maximum Parsimony
problem, PNS even reduces progressively its neighborhood.

5 Conclusions

In this chapter we have presented the basic concepts of Memetic Algorithms for
Discrete Optimization. Focus is given to the key design issues of an effective MA
algorithm. We have explained the usefulness of a deep study and understanding of
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the optimization problem on hand. We have insisted on the importance of a careful
adaptation of the general search strategies offered by the MA framework, a suitable
incorporation of problem specific knowledge in different components of the MA
as well as a logical integration of these components. The pursuit goal is clearly to
build an effective MA algorithm that is able to ensure a balanced exploitation and
exploration of the search space.

It should be clear that a blind MA application would have little chance to deliver
good results for difficult optimization problems. High performance can only be pos-
sible by a disciplined and careful specialization of the general MA framework to
the targeted problem. It is equally important to apply the “lean design” principle in
order to avoid redundant or superficial algorithmic components.

The framework of Memetic Algorithms constitutes an interesting enrichment to
the arsenal of existing discrete optimization methods and offers a valuable alterna-
tive for tackling hard discrete optimization problems.
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