Memetic Algorithmsin Discrete Optimization

Jin-Kao Hao

Appeared in F. Neri, C. Cotta, P. Moscato (Eds.) Handbook efrdtic Algorithms.
Studies in Computational Intelligence 379, Chapter 6, gag# 94, 2011

Abstract This chapter is dedicated to Memetic Algorithms for Diser@ptimiza-
tion. It begins with a general survey, and then explains ptldéhe key ingredients
of a successful MA. A particular attention is given to thddwling issues: Design
of semantic combination operators, development of deelickical search proce-
dures and management of population diversity. Severak athygortant issues are
also discussed such as design of rich evaluation functidncanstraint handling
technigues. This chapter includes two case studies withuhgose of showing how
these issues can be effectively implemented in practice.

1 Introduction

Discrete optimization concerns in essence the seacrh foest™ configuration (op-
timal solution) among a set dihite candidate configurations according to a partic-
ular criterion. There are several ways to describe a dis@ptimization problem.
In its most general form, it can be defined as a collection obf@m instances, each
being specified by a paiS, f) [53], whereSis the set of finite candidate config-
urations, defining theearch spagef is the costor objective functiongiven by a
mappingf: S— R".

Solving the instancés, f) is to find ans* € Ssuch thatf (s") < f(s) forallse S
(this minimization formulation can easily be transformetbia maximization prob-
lem). Such a configuratios' is a globally optimal solution (or simply an optimal
solution) to the given instance.

Given its generality, discrete optimization allows manplgems of practical
and theoretical importance to be conveniently formulaEecamples are the clas-
sical problems of general integer programming, permutapimblems (e.g., trav-
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eling salesman problem, bandwidth minimization, lineaaagement), and con-
straint satisfaction and optimization problems (satigfigbproblems in proposi-
tional logic, graph partitioningk-coloring). Discrete optimization naturally covers
practical problems of the environment, renewable eneigirjloution, infrastructure
design, communications and productivity in the manufastuand service sectors.

However, discrete optimization problems are known to bécdit to solve in
general. Most of them, in particular those of practical iegt, belong to the class
of NP-hard problems, and thus cannot be efficiently solvegptamality. Over the
past decades, important efforts have been made to imprevediution methods
and important progresses have been achieved in both exétteamistic strategies
in pursuit of optimal or near optimal solutions.

This chapter concerns the design of Memetic Algorithms (MPS8, 49] for
finding optimal or high quality near optimal solutions to thaiscrete optimization
problems.

2 Survey of Memetic Algorithmsfor Discrete Optimization

2.1 Rationale

From a fundamental point of view, the task of searching forest fsolution in a
combinatorial space is all about a suitable balance betegioitation” and “ex-
ploration” for an effective examination of the given seasglace. The dual concept
of exploitation and exploration covers two fundamental eoichplementary aspects
of any effective search procedure. This concept is also knander the term “in-
tensification” and “diversification” introduced within tii@bu Seacrh methodology
[23].

Exploitation emphasizes the ability of a method to examirierisively and in
depth specific search areas while exploration is the almfity method to diversify
the search in order to find promising new search areas. Coesty, if the search
focuses solely on exploitation, it will confine itself in anlited area, fails to visit
other areas of the search space, and may be trapped in pagmaofin the other
hand, a method relying heavily on exploration and overlnglaxploitation will lack
capacity to examine in depth a given area and miss out snkitibgood quality. To
be effective, a search method needs thus to appropriatetjilizie exploitation and
exploration. Memetic Algorithms constitute a very inteieg framework offering a
variety of strategies and mechanisms to achieve this geolaiective.

MAs are hybrid search methods that are based on the populagised search
framework [2] and neighborhood-based local search frame\{dS) [35]. Popu-
lar examples of population-based methods include Gendtiordhms and other
Evolutionary Algorithms while Tabu Search and Simulatech@aling (SA) are two
prominent local search representatives. The basic rdédmehnind a MA is to com-
bine these two different search methods in order to takerddga of their comple-
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mentary search strategies. Indeed, it is generally belitvat the population-based
search framework offers more facilities for explorationil@meighborhood search
provides more capabilities for exploitation. If they arerdmned in a suitable way,
the resulting hybrid method can then offer a good balanosédsi exploitation and
exploration, assuring a high search performance.

Like other metaheuristics, MAs are a general optimizatimmiework that can
potentially be applied to various discrete search or opthtidon problems. Never-
theless, it should be clear that a blind application of MAsglay other metaheuris-
tics) to a particular problem will not be able to lead to datitory solutions. To be
effective, the MA framework must be carefully adapted toglven problem and in-
tegrate problem-specific knowledge within its search dpesaand strategies. This
is the very key point of a successful MA application in preeti

2.2 Memetic algorithmsin overview

Memetic Algorithms [48, 49] are a population-based comipanal framework and
share a number of features with methods like Evolutionagofithms [2] and Scat-
ter Search [25]. MAs operate on a set of candidate solutindsiae these solutions
to create new solutions by applying variation operator$1ag combinations and
local improvements.

From a general perspective, a MA is composed of a number af basponents:
a pool of candidate solutions (also called population ofviddials) to sample the
search space, a combination operator (crossover) to areateandidate solutions
(offspring) by blending two or more existing solutions, amprovement operator to
ameliorate offspring solutions, and a population managersiategy. In addition
to these elements, the MA also needs an evaluation or fitnesidn to assess the
quality of each candidate solution as well as a selectiorhangism to determine the
candidate solutions that will survive and undergo variagio

From an operational perspective, a typical MA starts withratial population
(see§3.4) and then repeats cycles of evolution. Each cycle, @Beda generation,
consists of four sequential steps.

1. Selection of parentsSelection aims to determine the candidate solutions that
will survive in the following generations and be used to tee®ew solutions. Se-
lection for reproduction often operates in relation with finess (quality) of the
candidate solutions; high quality solutions have thus necbences to be chosen.
Well-known examples of selection strategies include ribedesheel and tourna-
ment. Selection can also be done according to other crigedh as diversity. In
such a case, only “distanced” individuals are allowed twiserand reproduce.

If the solutions of the population are sufficiently diversifj selection can also be
carried out randomly. The selection strategy influencesliversity of the popu-
lation (see als@3.3).
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2. Combination of parents for offspring generatidombination aims to create
newpromisingcandidate solutions by blending (suitably) existing dolus (par-
ents), a solution being promising if it can potentially leld optimization pro-
cess to new search areas where better solutions may be foorahieve this,
the combination operator is often designed such that ituteptthe semantics
of the targeted problem to ensure the heritage of good ptiepdrom parents
to offspring. Additionally, the design of the combinatiopevator should ideally
take care of creatindiversifiedoffspring. From a perspective of exploration and
exploitation, such a combination is intended to play a rélmtegic diversifica-
tion with a long term goal of reinforcing the intensificatignicarefully designed
combination operator constitutes a driving force of a sasftéd MA.

3. Local improvement of offspringThe goal of local improvement is to improve
the quality of an offspring as far as possible. For this pagytocal improvement
takes an offspring as its input (current solution) and theratively replaces the
current solution by another solution taken from a given hiearhood. This pro-
cess stops and returns the best solution found when a ueedistop condition
is met. Compared with the combination operator, local inapnoent plays essen-
tially the role of intensifying the search by exploiting sgapaths delimited by
the underlying neighborhood. Like combination, local imy@ment is another
key component and driving force of a MA.

4. Update of the populatiariThis step decides whether a new solution should be-
come a member of the population and which existing solutiche population
should be replaced. Often, these decisions are made acgdoderiteria related
to both quality and diversity. Such a strategy is commonlpleyed in meth-
ods like Scatter Search and many Evolutionary Algorithnos.ifstance, a basic
quality-based updating rule would replace the worst sotutif the population
while a diversity-based rule would substitute for a simdalution according to a
distance metric. Other criteria like recency (age) canladésoonsidered. The poli-
cies employed for managing the population are essentialaiotain an appro-
priate diversity of the population, to prevent the searatess from premature
convergence, and to help the algorithm to continually discsew promising
search areas.

The general MA template is described in Algorithm 1 wherecgdeattention
must be payed to the design of particular components. Thecgindition can be
a maximum number of cycles (generations), a maximum numbevaluations, a
maximum number of cycles without improving the best soluti@ solution quality
to be reached or a lower-bounded threshold for the populaiigersity.

We deliberately leave out the mutation operator within khistemplate. In some
sense, local search can be viewed as a guided macro-mudgiswator. However,
mutation can also be applied to reinforce population dit)erés a lean design
principle, only necessary components are included in a M¥, @njustified and
superficial elements must be excluded.
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Algorithm 1 Memetic Algorithm Template

: Input: |P| (size of populatiorP)

: Output: s* (records best solution found)

P = PopGeneratiofi|)

. PopEvaluatior®) (fitness evaluation of each individual)

s* = bes(P)

f* = f(s") (records the fitness of the best solution)

: while Stop Condition is not verifiedo

(p1...px) = ParentsSelectioR} (k > 2, two or more parents are selected)

s = Recombinationgs...px) (one or more offspring can be generated)

s = Offspringimprovement{) (improvement of offspring solution(s) typically by local
search)

11: P =PopulationUpdats(P) (population is updated according to a quality-diversityu

12:  (s*,f*)=BestSolutionUpdate(, f*,P) (the best solution and its fitness are always recorded)
13: end while

CooNouswNE

2.3 Performance of memetic algorithms for discrete optimization

The computational performance of a MA depends first on theesgmtation of the
solution space (solution encoding) which should preferéel problem dependent
and ease the design of efficient search operators.

The performance of a MA depends then on the design of its twoskarch
components: Combination and local improvement operaiidisir design should
integrate useful problem-specific knowledge of the giveybfgm in order to ensure
aggressive exploitation and guided exploration.

The performance of a MA is also conditioned by the way the fadn is man-
aged to promote and maintain a fertile diversity during thareh process. Indeed,
much like conventional Evolutionary Algorithms, prema&wonvergence can eas-
ily occur if the population loses its diversity. Diversityamagement is particularly
important with MAs because of the specific nature of theirraggjive and intensi-
fied search strategies. Consequently, it is crucial for a BlAgintain with rigor a
“good” population diversity as long as possible.

The interaction between the components of a MA can direnflyénce the be-
havior and the performance of the MA. A long or short locarskghase after each
combination could change the search trajectories. Silpilarvery effective local
search procedure may weaken the role of the combinatioratgyewhile a very
strong combination operator may make it less critical taehatighly efficient local
improvement procedure.

Finally, the runtime efficiency of a MA depends for a largetpar the choice
of the data structures employed to implement the differemtmonents of the MA.
A typical example concerns local improvement proceduras eikplore the candi-
date solutions of a neighborhood and represent the mostdimsuming part of a
MA. In such a situation, it is critical to devise appropridga structures to enable
and streamline a fast neighborhood evaluation {8e®.3). Otherwise, the compu-
tational overheads will jeopardize the search power of ththod.
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3 Special design consider ations

3.1 Design of dedicated local search

Local improvement is one of the most important components A and ensures

essentially the role of intensive exploitation of the shaspace. This is typically

achieved either by dedicated local search heuristics (sampmes in [39, 38, 40])

or by tailored general neighborhood search methods. Irptris we focus our dis-

cussion on adaptation of local search metaheuristics [88]a large part of the

discussion applies to the design of local improvement mhoees based on specific
heuristics.

3.1.1 Local search template

Let (S f) be our search problem wheBandf are respectively the search space and
optimization objective. A neighborhodd over Sis any function that associates to
each solutiors € Ssome other solution(s) C S Any solutions’ € N(s) is called

a neighboring solution or simply a neighbor ®fFor a given neighborhooN, a
solutionsis alocal optimumwith respect taN if sis the best in terms of among
the solutions ifN(s).

The notion of neighborhood can be explained in terms ofrtteae operator.
Typically applying a movemv to a solutions changes slightlys and leads to a
neighboring solutiors’. This transition from a solution to a neighbor is denoted
by s =s@mv. Let I (s) be the set of all possible moves which can be applies) to
then the neighborhooN (s) of scan be defined by (s) = {s&mvVmve I (s)}.

A typical local search algorithm begins with an initial capuffations in Sand
proceeds iteratively to visit a series of configuration$ofeing the neighborhood.
At each iteration, a particular neighbsre N(s) is sought to replace the current
configuration and the choice sfis determined by the underlying metaheuristic and
by referring to the quality of the neighboring solution. festance, a strict Descent
algorithm always replaces the current solutgny a betterneighbors’ while tabu
search replaces the current solution bpestneighbors even if the latter is of
inferior quality. Still with simulated annealing, the tsition fromsto a randomly
selected neighbd is conditioned by a changing probability.

3.1.2 Neighborhood design

The success of a LS algorithm depends strongly on its nerglolod. The neigh-

borhood defines the subspace of the search problem to beedidy the method.

For a given problem, the definition of the neighborhood stistiucture the search
space such that it helps the search process to find its waymtbsplutions.



Memetic Algorithms in Discrete Optimization 7

The choice of neighborhood is conditioned by the represientégenotype) used
to encode the candidate solutions of the search space (ypejolt may further
depend on the structure and constraints of the problem od. tréere we briefly
review some neighborhoods associated to three convehtaprasentations, which
have a variety of applications.

e Binary representatianiVith this representation, each solution of the searchespac
is coded by a binary string. Binary representation is vergypar in discrete
optimization due to the fact that many problems are natufalimulated with
binary variables. Typical examples include SAT/Max-SAThagsack, Uncon-
strained Quadratic Optimization, graph bi-partitioningy €or these binary prob-
lems, two basic neighborhoods are defined bykiféip and Swapmove oper-
ators. Thek-flip move changes the valueslofk >1) variables. So any neigh-
bor s € N(s) has a Hamming distance &fto solutions. A largerk induces a
larger (and stronger) neighborhood. Nevertheless, whatlaeger neighborhood
should be preferred in practice depends on the computdtiostto evaluate the
neighborhoodSwapexchanges the values of two variables that have different
values. Note thaBwapcan be simulated by two 1Hp moves.

e Permutation representatioere, each solution of the search space corresponds
to a permutatiornt : {1..n} — {1..n}. Permutation representation has a large
range of applications in discrete optimization. Promirex@mples include Trav-
eling Salesman Problem, Flow-Shop/Job-Shop schedulingak Arrangement,
Bandwidth Minimization etc. Two basic neighborhoods fosttepresentation
are available usin@wapand Rotationmoves. Given a permutation (solution)
1, The Swapmove exchanges(i) and () for somei andj (i # j). If ' is a
neighbor ofrt by swapping and j, thenrt' (k) = mi(k) for k £1i, j, (i) = m(j)
andr'(j) = ni(i). TheRotationmove rotates all the values betwes(i) andr( )
for somei < j. Thus, if 17 is a rotation neighbor oft obtained withi < j, then
(k) =mk)+1fori <k< j, m(j) = m(i), and (k) = ri(k) for all otherk.
Note thatRotatior{i, j) can be simulated by— i successiv&wapmoves start-
ing with Swagi,i+1).

e Integer representatiokVith this representation, each solution of the searchespac
corresponds to an integer vector whose values are takensioome discrete do-
mains. Integer representation is very useful and convefdemany constraint
satisfaction and optimization problems. A common neighbod is defined by
a “one-change” move that consists in replacing the curraltevof a single vari-
able by a new domain value. The set of candidate variablesrwmhsideration
for a value change can be identified with a number of rulesipéa the prob-
lem at hand. For instance, if the search algorithm dealswvifbasible solutions,
i.e. some variables are receiving conflicting values nedatib some constraints,
the set of candidate variables can be constituted of theesobsonflicting vari-
ables [13, 52, 15]. Such a neighborhood is typically empdoyelocal search
algorithms for solving Constraint Satisfaction ProbleMsre generally, candi-
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date variables for a value change can be identified as thaseuth critical for
improving the objective function or for reaching the fedgio

These neighborhoods can be applied directly to a given ernolifl the problem
fits well the required representation. A common practice iadapt a conventional
neighborhood with problem-specific knowledges of the moblMoreover, in some
situations, it is useful to investigate the possibility ofiltiple neighborhoods that
can be applied at different stages of the search proces§3skeé below).

3.1.3 Neighborhood evaluation

Another design issue that arises is the evaluation of a giegghborhood. Indeed, a
local search procedure moves iteratively from the currehit®n to a new solution
chosen within the neighborhood. To make this choice, loeatch needs to know
the cost variation (also called tmeove valug between the current solutiaand a
candidate neighbas’ € N(s). The move value indicates whether the neightias
of better, worse or equal quality relativedd_etA f = f(s) - f(s) denote this move
value.

e Incremental evaluatiarBasically, there are two ways to obtalrf for a neigh-
bor. The trivial way is to calculaté(s') from “scratch” using the objective func-
tion* f. Doing this way may be expensive fifneeds to be evaluated very often
or if the evaluation off itself involves complex calculations. A more efficient
alternative aims to derive the value ffs') from the valuef (s) by updating only
what is strictly necessary. Indeed, if a neighBds close to its initial solutiors,
which is true for many neighborhoods, then the evaluatiof(sf can be carried
out in this incremental manner. For a number of basic neididmals, like those
shown previously, such an incremental evaluation is oftessible.

e Full search of neighborhoodhe incremental evaluation can be appliecatio
the neighboref a given neighborhood relation. In this case, it is gehgredeful
to investigate dedicated data structures (call-table) to store the move values
for all the neighbors of the current solutiofi-table provides a convenient way
to know the quality of each neighbor and enables an efficieatch of the full
neighborhood. With such A-table, the local search algorithm can decide eas-
ily at each iteration which neighbor to take according tes#arch strategy. For
instance, a best-improvement descent algorithm will taketiove that is identi-
fied by the most negative value in thetable to minimize the objective function.
After each move, thé-table (often only a portion of it) is updated accordingly
using the incremental evaluation technique to propagatefiect of the move.
A-table is a very useful technique for local search algorghfiis is particularly
the case for descent-based methods like Tabu Search wheserseighbor needs

1 For the reason of simplicity, the term “objective function” isedl here. A more precise term is
“evaluation function”, se§3.4.



Memetic Algorithms in Discrete Optimization 9

to be identified (see examples in [35]).

e Approximative evaluationThe practical usefulness df-table depends on both
the complexity and the number of updates needed after each tramsition. It
may happen that, the move value can not be incrementallylesdd or theA
updates need to change a large portioAd@éble. In this case, it would be useful
to replace the initial evaluation function by a faster, bpp@ximative evalua-
tion function [36]. More generally, approximate evaluatis useful if the the
evaluation function is computationally expensive to cktaior if the function is
ill-defined.

e Order of evaluationlf the neighborhood is not completely searched, one must
decide the order in which the neighborhood is explored. fstance, the first-
improvement descent technique moves to any improving beighf there are
several improving neighbors, the descent search pickditis€ ‘one encountered
in the order the neighbors are examined. To allow such a dthancrease its
search diversity, a random order may be preferred [53].

3.1.4 Combination of neighborhoods

Very often, different neighborhoods may be available, &nglalternative ways to
explore the search space. In such a situation, it is iniagest consider combined
use of multiple neighborhoods. For illustrative purposssider two neighborhoods
Nz andN,. Then one can consider at least three ways to use them in droednizay.

First, neighborhood unioM; U N, includes all the neighbors of the two under-
lying neighborhoods, so that any membemMafandN; is a member ofN; UN,. A
local search algorithm using this combined neighborhotetsethe next neighbor-
ing solution among all the solutions in both neighborhoddss combination has
no sense if one neighborhood is fully included in the othex.on

With Probabilistic neighborhood unidxy @ Ny, a neighbor solution iftN; (resp.
N2) belongs ta\; @ N with probability p (resp. probability 1p). A local search al-
gorithm using this combined neighborhood selects at eachtibn the next neigh-
bor fromN; with probability p and fromN, with probability 1-p.

Token-ring combination N— N, is time-dependent and defined alternatively
either byN; or N, according to some pre-defined conditions [17]. A local dearc
algorithm using this combined neighborhood cycles throtigse neighborhoods.
It typically starts with one neighborhood until the seartdgsates, then changes to
the other neighborhood until the search stagnates agaimitchsback to the first
neighborhood and so on.

The advantage of combined neighborhood was already deratetsiong time
ago in [40] for solving the Traveling Salesman Problem. Mgggerally, the issue of
transitioning among alternative neighborhoods was dssdisvith the Tabu Search
framework and strategic oscillation design in [21]. Morea®rt examples of local
search methods focusing on multiple neighborhoods indiladiable Neighborhood
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Search [33], Neighborhood Portfolio Search [17] and Pregjve Neighborhood
Search [27]. Examples of studies on neighborhood combinaitan be found in
[32, 41].

3.2 Design of semantic combination operator

3.2.1 Solution combination

Combination is another key component of a MA and constitatesleading force
to explore the search space. The basic idea of combinatigerysappealing since
it provides a very general way of generating new solutionsbging existing solu-
tions. Contrary to local changes of local improvement, cioation can bring into
new solutions more useful information, that may be benéfforaa healthy evolu-
tion of the search process.

As a first step, it would be tempting to consider the applaatf a blind (ran-
dom) crossover operators for solution combinations. Dalmig has the advantage
of ease of application. However, one question should bedds&tore this approach
is attempted: Is the crossover operator meaningful witheetsto the optimization
objective? If the answer is negative, the crossover opeigpsobably not appropri-
ate and the sole role it would play in this case would be t@thice some random
diversification in the search process.

In practice, instead of applying blind crossovers, it ignfpreferable to consider
dedicated combination operators that have strong “seo&niiith respect to the
optimization objective. A semantic combination aims togasrinsic good proper-
ties from parents to offspring. The design of such a comhinatperator is far from
trivial and in fact represents a challenging issue. Althotlgere are some theoretical
guidances, the discovery of such a semantic combinatioratgrén practice relies
basically on a deep analysis and understanding of the givelnlggm. Compared
with the design of local search procedures, the design ofammgful combination
operator constitutes probably one of the most creatives pdiidin effective MA.

3.2.2 Theoretical foundations

The schemata theory [34] and the building block hypothe2® gre often men-
tioned to explain (partially) the performance of Genetig@tithms. Intuitively,

building blocks are promising patterns of solutions that ba progressively as-
sembled by crossover to get improved solutions. Given thiattheory is defined
for binary and simple Genetic Algorithm, it is not directlpgicable in the con-
text of MAs. Nevertheless, assembling building blocks toagate new solutions
remains an appealing idea. In [56, 57], the concept of foisriatroduced to gen-
eralize the schemata theory. A formal framework is even @seg to try to capture
some fundamental aspects of MA in [58]. The forma theory sstga set of gen-
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eral principles for the design of solution representatiand recombination opera-
tors. According to this theory, a suitable recombinatioaragpor is required to fulfill
two conditions calledespectand proper assortmenintuitively, the respectcondi-
tion advocates the heritage of shared characteristicsrehfmto offspring, while
proper assortmerd@nsures the heritage of desirable characteristics of eaempby
their offspring. This is in accordance with the general gipte of conserving good
features through inheritance and discarding bad featwesaped in Grouping Ge-
netic Algorithms [6].

3.2.3 Design of combination oper ator

These abstract considerations only provide us with veregdrguidances for de-

signing recombination operators. For a particular probleisstill necessary to find

out what are the building blocks (interesting patterns @arabteristics) of solutions

that can be assembled and inherited through the recomiinptbcess. Unfortu-

nately, there is no short-cut to this quest and a fine anadysileep understanding
of the given problem is indispensable to find useful clues.

First, one can analyze the samples of optimal or high qusdilytions to possibly
identify regular patterns shared by these solutions. ladésuch a pattern exists,
then the recombination operator can be constrained to ngngee pattern from the
parent solutions and to avoid breaking the pattern. Altarely, the recombination
operator can also be encouraged to promote the emergenagosélble building
blocks. For instance, such an analysis applied to the Tiray&alesman Problem
shows that high quality local optima share sub-tours [39, #Qis property has
been used by several highly successful crossover opervattich conserve common
edges or sub-tours in offspring solutions [50, 68, 12, 51, @nilarly, for the graph
k-coloring problem, an analysis of coloring solutions disels that some nodes are
always grouped to the same color class (i.e. colored withstivee color). This
characteristic has helped to devise powerful combinatiperators, as shown in
[5, 14].

3.2.4 Multi-parent combination

Combination may operate with more than two parents. Mdtgarent combination

is even a general rule for the Scatter Search metaheurikichwses, in its origi-
nal form, linear combinations of several solutions to aee@w solutions [19]. Al-
though there is no theoretical justifications, the prataclantage of multiple par-
ent recombinations was demonstrated in several occasiodsstrete optimization.
For instance, for the grapdacoloring problem, several recent and top-performing al-
gorithms integrate multiple parent combination [16, 45,54, where color classes
from different solutions are assembled to build offsprintpdngs. More generally,
when multiple solutions are used for creating a new solutiore can define spe-
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cial rules to score the solution components of each paréui@o and use strategic
voting rules to combine components from different pareakst®ons.

A guestion that arises for multi-parent combination is howlétermine the num-
ber of the parents. By using two parents, the offspring isseter to inherit 50%
material from each parent. The contribution of each pa@thé new solution de-
screases with an increasing number of parents. If the ngjldiocks from different
parents are independent from one another, taking more fgarga account would
be interesting to build good and diversified offspring. @ilise, if a building block
from a parent is epistatic with respect to the building bkokother parents, blend-
ing more parents means more disruption, and thus shoulddieeai/

3.3 Population diversity management

Population diversity is another important issue that sthdw considered in the de-
sign of an effective MA [14, 63]. If the population diversig/not properly managed,
the population will converge prematurely and the searchgs® stops with poor lo-
cal optima. This is particularly true when a small populatis used by the MA.
In what follows, we first provide some precisions about thereof diversity and
explain how fertile diversity can be promoted and maintdinéhin a population.
Note however that diversity is not interesting per se withiMA. The ultimate goal
of population diversity is to help the search process not timavoid premature con-
verge, but also to continually discover interesting newgohs in order to explore
non-visited promising search areas.

3.3.1 Diversity

Population diversity can be measured by a similarity (otagise) metric applied
to the members of the population. The metric can be definbéreiin the solution
representation level (genotype metric) or solution lepakfhotype metric) [30]. For
instance, pair-wisélamming distancean be used as a genotype metric to measure
population diversity. Diversity can also be measured imgeof entropy[18] or by
the so-callednoment of inertig47]. Genotype metric is usually problem indepen-
dent, and thus may or may not reflect the intrinsic diversfta @opulation with
respect to the given optimization objective.

Population diversity can also be measured at the phenogyet dver the solu-
tion space. For instance, for partition problems like griggoloring, the distance
between two partitions can be measured by the so-caledfer distancevhich is
the minimum number of elements that need to be moved betWasses of one par-
tition so that the resulting partition becomes the othetitiam [59, 3]. A phenotype
metric is defined over the solution space and thus is morky likemeasure the real
diversity of a population.
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In order to observe suitably the population diversity, its&ful to first determine
the most appropriate distance or similarity metric withpexs to the optimization
objective of the given problem. Moreover, if the populatiimersity needs to be
continually monitored, it becomes important to pay atmto the cost of comput-
ing the underlaying metric.

3.3.2 Promoting and maintaining useful diversity

Population diversity can be promoted and managed at seleels of a MA.
One evident possibility is to define specific selection rutegavor the selection
of distanced parent®r mating. Another possibility concerns the variation @pe
tors which can be designed in such a way that they favors therggon of divers
and varied offspring. For instance, the “Distance Presgr@rossover” introduced
in[12, 46] is constrained to generate an offspring which th@ same distance from
both parents. More generally, the path-relinking type ehbmations typically con-
struct offspring solutions by considering both the solupality and its distance to
its parent solutions [25] (see also [42] for an example).

Population diversity can also be controlled by the offspraicceptation and re-
placement strategies. Specifically, this can be done aicaptal both solution diver-
sity and quality. For instance, in [54, 55] a minimum divergjuality threshold is
imposed between the solutions of the population. The aatieptof a new offspring
is conditioned not only by its quality, but also by its distarto existing solutions.
Similarly, diversity and quality are considered to seldw victim solution to be
replaced by the offspring.

Other useful ideas for diversity preservation can be fourttié areas of Genetic
Algorithms. Well-known examples include sharing [30] amoveding [4, 44].

3.4 Other issues

In addition to the components mentioned until now, the desif an effective
Memetic Algorithm should take into account a number of otbensiderations
which are briefly discussed in this Section.

e [nitial population There are basically two ways to obtain an initial populatio
Random generation and constructive elaboration. Whileaandeneration is
easy to apply, it can hardly generate initial solutions asdjquality. To improve
the basic random generation method, a simple sampling ipohirtan be ap-
plied. LetP be the population size, then one can genekate P solutions and
then retain only th® “best” ones. Initial generation by construction can be used
if some fast greedy heuristics are available for the giveblgm. Notice that,
in this case, the greedy heuristics must be randomized katleach application
leads to a different solution. Another issue that can beidensd at the initializa-
tion stage is to take care of building a diversified popultatithis can be achieved
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by controlling the distance between each new solution a@existing solutions
of the population. Only distant new solutions are allowejbto the population.

Distance At several places, MAs may need to measure the distancebatiwo
solutions or between a solution and a group of solutions.ifgiance, parents
selection may operate in such a way that the selected panenssifficiently dis-
tant. Similarly, a population management strategy mayd#etie acceptation
or rejection of an offspring by considering its distancehe members of the
population. When an operation refers to the notion of digaitds preferable
to employ an appropriate distance metric which is meaningfth respect to
the given problem. For instance, for partition problems lgtaph coloring (see
§4.1), Hamming distance is not a suitable metric to charaet¢ne difference of
two partitions. Instead, transfer distance between partitshould be preferred.
Once again, the choice of the distance metric should idéalgorrelated with
the semantics of the problem on hand.

Rich evaluation functionEvaluation function assesses the quality of a candidate
solution with respect to the optimization objective anents the search method
to “navigate” through the search space. A good evaluatioctfon is expected
to be able to distinguish each solution from the other sohgtiand thus to ef-
fectively guide the search method to make the most appitepeizoice at each
iteration. Very often, the initial optimization objectiveis directly used as eval-
uation function. However, such a function may not be suffitjediscriminant
to distinguish different solutions. To improve the disdnating power, it is use-
ful to incorporate in the evaluation function additiondlormation, e.g. relative
to the structure of the problem instance to be solved. Exesngdn be found in
[37, 6, 60]. Moreover, when constrained optimization peoi$ are considered,
some constrains may be hard to satisfy, and thus are rel&xadng various
constraint relaxation techniques, a common practice istegrate the relaxed
constraints into the evaluation function as a (weighted)ponent or as a part of
a multi-component evaluation function (see examples in §32 66]).

ConstraintsThe constraints in the considered problem may influenceeisegn
of some MA components. For instance, suppose that the MArigigo is ex-
pected to explore only feasible solutions. Then one mustdeghether a com-
bination operator is constrained to create only feasiblatisms. If infeasible
offspring is allowed, it is necessary to consider a dedicatechanism to repair
the broken constraints. Similarly, neighborhood desigmte&e into considera-
tion the constraints to identify eligible moves. For ingianin feasibility search
problems, this is often done by identifying problem varéshinvolving violated
constraints and restricting the set of authorized movekdsd defined on these
conflicting variables. Finally, as previously stated, doaiats that are difficult to
solve can be used in the design of the evaluation function.
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e Connections with Scatter Search and Path Relinkkgydiscussed in [20] and
[23] (Chapter 9), the MA framework shares ideas with Sca&earch and Path
Relinking [24, 25]. These latter methods provide unifyimqpiples for joining
solutions based on generalized path constructions (inBotlidean and neigh-
borhood spaces) and by using strategic design. Solutiomica@tion in Scatter
Search originated historically from strategies for conmgndecision rules and
combining constraints. In Scatter Search, dispersed néwicts are created
from a set of reference solutions by weighted combinatidnsubsets of the
reference solutions that are selected as elite solutiorth. Réth Relinking, off-
spring solutions are generated by exploring, within a neéghood space, trajec-
tories that connect two or more reference solutions. Oneewthat the reference
solutions or subsets of them can be considered as paretibssléor combina-
tion while combination resorts to diverse strategies swchttibute voting and
weighting.

4 Case Studies

In this section, we show two case studies of quite differettire with the purpose
of showing how these issues can be effectively implememtgudactice. We partic-
ularly focus on the design of combination and local sear@ratprs.

4.1 Graph coloring problems

4.1.1 Problem description

Given an integek and a undirected graph = (V, E) with a setV of vertices and a
setE of edges, a legdd-coloring of G is a partition ofV into k distinct color classes
such that each color class is composed of pairwise non-aujgertices. The graph
k-coloring problemk-COLOR) aims at finding a legéitcoloring for a fixedk while
the graph coloring problem (COLOR) determines the smaktlésta given graplG
(its chromatic numbejg) such thas has a legak-coloring. Since COLOR can be
handled by solving a series kKfCOLOR with decreasingvalues, we only consider
herek-COLOR.

For a givenk-COLOR instance, i.e. an integkrand graphG = (V,E), lets=
{C1,C,...C} denote a partition of into k distinct color classes such that edgh
(i € {1,2...k}) contains all the vertices that are colored with caldret Sdenote all
such partitions. For ang e S, define its conflict numbef(s) to be the number of
pairs of adjacent verticesandy ({x,y} € E) belonging to a same color classof
Thenk-COLOR can be solved by minimiziny(s); f(s)=0 implies thatsis a legal
k-coloring, i.e. all its color classé&3 are conflict-free.
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Notice that among the large number of existing heuristio@gms for k-
COLOR, Memetic Algorithms are certainly among the most pdweones and
provide the best results on the well-known DIMACS benchniasgtances of this
well-known NP-complete problem.

4.1.2 Partition crossovers

In order to design a semantic combination operator, let®tget an idea about the
possible “building blocks” for our problem. The goallefCOLOR is to determine a
set ofk distinctconflict-free color classes. In this context, color classasbe con-
sidered our basic “building blocks”. If there are severaldd” color classes among
some candidate solutions, then these color classes caralfdydne recombined to
obtain new candidate solutions. This idea was first exployeithe Greedy Partition
Crossover (GPX) described in [14] and the Union of Indepah&ets crossover in
[5], which are also related to the design of grouping crossodescribed in [6].

Operating with two parerit-coloringss; ands,, GPX builds step by step tHe
classe<?, . ..,CP of the offspringsy. At the first step, GPX creat& by choosing
alargestclass from one parent and remove its vertices from both paseands;.
GPX repeats then the same operations for the keédteps, but alternates each time
the parent considered. If some vertices remain unassigriee end of thesk steps,
they are randomly assigned to one of klor classes. The alternation between the
parents aims at a balanced mixture of information from beattepts and avoiding
the dominance of one parent over the other one during themeioation.

Table 1 shows an example with 3 color clasdes 8) and 10 vertices represented
by capital letters A,B; -,J.

parents; —| ABC [DEFG]| HIJ | c{:={D.EFG} |[ABC HIJ
parents, CDEG| AFI BHJ |[remove D.E,FandG C Al |[BHJ
offsprings DEFG

parents; ABC HIJ Cg::{B,H.J} AC |
parents, — C Al l B HJ‘ remove BHandJ| C Al
offsprings [DEF G DEFGBHJ
parents; —| [AC| | C9:={AC} |
parents, C Al remove A and C I
offsprings [DEFG| BHJ DEFGBHJ AC

Table1 The Greedy Partition Crossover: An example from [14]

The basic idea underlying GPX was also explored with mtiphrent com-
bination operators [31, 16, 45, 43, 54]. Using multiple pésefor combination is
fertile for k-COLOR since this offers more possibilities to obtain golagige) color
classes for each step of the recombination operation. Bgrgéning two parents to
multiple parents, refined and additional strategies wese iatroduced to make the
combination process as most effective as possible. Faarinstwith the AMaPX
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operator of [43], in order to favor the creationdif/ersified offspringeach time a
color class from a parent is transmitted to the offspringg parentk-coloring will
not be considered for the next few steps of offspring bugdin [54, 55], in order to
measure the goodness of the color classes of the parening@pthe combination
operator takes into account the size of each color clasgjuh#er of conflicting
vertices as well as the degrees of the vertices in the cadsscl

A guestion that arises when multiple parents are used is badetermine the
number of parents. It is clear that by using more parentsifelasses will be trans-
mitted from each parent to the offspring and this also ingit the class blending
from each parent is also more disrupted. An analysis of tlaioas between the
number of vertices, the number of color classes and the nuaflarents permits
to identify a heuristic rule to fix the right number of parefis].

In [16], the combination operation is performed within aybklly different con-
text. The algorithm maintains a pool of conflict-free coldasses obtained dur-
ing the search process. From time to time, these color dasseused to generate
new k-colorings. Other combination operators using similaa&lare investigated
in [5, 31, 45]

4.1.3 Local improvement by Tabu Search

In memetic coloring algorithms, Tabu Search is frequenglgdifor local improve-
ment to ameliorate a new offspring created by the combinaijmerator. For illus-
tration purpose, we use the TS algorithm described in [14raexample. It uses
the constrained “one-change” move describeddri.2 such that aeighbor $ of
a given configuratiors is obtained by moving a singleonflicting vertexv from a
color clas<C; to another color clags;. When such a move v,i > is performed, the
couple< v,i > is classified tabu for the netdtiterations. Therefore;cannot be reas-
signed to the clagsduring this period, unless movingback to the color claddeads
to a configuration better than the best configuration founths¢aspiration crite-
rion). The tabu tenurd for a move is variable and depends on the nunmieg of
conflicting vertices in the current configuratidh= RandonfA) + a «nbcg . where
Aanda are two parameters and tRandonfA) function returns a random number
from {0, --- ,A—1}. To implement the tabu list, it is sufficient to usé/d x k table.
The algorithm memorizes and returns thest recentonfiguratiors, among the
best configurations found: After each iteration, the curoemfigurations replaces
s. if f(s) < f(s:) (and not only iff (s) < f(s.)). The rational to return the last best
configuration is that we want to produce a solution which ilaasway as possible
from the initial solution in order to better preserve theedsity in the population.
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4.2 Maximum parsimony phylogeny

4.2.1 Problem description

Phylogenetics is the study of evolutionary relationshipgag various groups of
organisms (for example, species or populations). Theseemions are represented
graphically through phylogenetic trees. Computationgllgdenetics aims to infer
phylogenetic trees from molecular data such as protein oA BBguences [10].
The main phylogenetic approaches include methods usingtandie-matrix, the
maximum likelihood or maximum parsimony criterion.

Maximum parsimony phylogeny generally takes as input a iplaltsequence
alignment which is a matri¥ of characters composed pflines (related to a set
S of species, wher¢S| = n) andk columns which represent the characters of the
sequences [7]. Each sequence is also called a taxon. Eactwheof the matrix
belongs to an alphabét. A phylogenetic tred of the given input is a binary tree
such that (1) the leaves df are the set oh species, and (2) each internal node
is induced by the sequence of parsimony of its two descerskqiences. Given
two sequenceS; =< Xp,---,X > and S =< y1,- -+, Yk > with Vi € {1..k}, X, Vi
belonging to the power se¥? (X = {—,A,C,G,T}), the sequence of parsimony
P(S,S) =<z, -,z > of § andS is given by ([8]) :

. . I xiUyitxiNy =0
Vilsi<kz= {x. Ny, otherwise
The score of the sequence of parsimony defines the “disteseggdrating its two
descent sequences:

k .
- _  JLitxny; =0
frss) = i;q where ¢ = {o, otherwise

Let T be a binary parsimony tree withleafs or speciesl has them— 1 se-
guences of parsimony (internal nodes). Lefenote the set of these internal nodes.
The Fitch parsimony scor(T) of T is defined as follows:

f(T):gfi(T)

The aim of the Maximum Parsimony problem (MP) is then to findashparsi-
monious phylogenetic tré€&* such thafl* minimizes the parsimony score. Since
there are[{5(2i — 3) possible binary trees with leafs, this problem is a highly
combinatorial search problem. The MP problem is computatlg difficult since
its associated decision problem is equivalent to the NPptet® Steiner problem
in a hypercube [11]. MP has been subject of many studies foymears. Among
them, neighborhood-based local search and various hylgaditams are certainly
the most popular solution methods. In what follows, we shddeanetic Algorithm
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called HYDRA, which combines a dedicated tree crossovéed&iBIP [26] and
a progressive neighborhood local search method [27].

4.2.2 Distance-based information preservation crossover

First, let us notice that conventional tree crossovers knowgenetic program-
ming are not suitable here. The Distance-Based Inform&reservation crossover
(DiBIP) is specifically designed for the MP problem. DiBIPbiased on a topolog-
ical distance between species (leafs) and aims to preseraenon properties of
parents in terms of this distance between species. Fonitestwo species that are
close (resp. far) in both parents should stay close (respardt) in the offspring.
Given two parents trees, the DiBIP crossover is realizetirieet steps: Calculate a
distance matrix for each parent tree, then combine the tauatreg matrices to get
a third matrix and finally create a child tree from this lastmixa

The general DIiBIP crossover scheme is described in AlgorzlwhereT; andT,
denote two parents tree3is a distance metric to measure the distance of each pair
of species of a tre&, A a tree-to-distance operator to obtain a distance matrix of a
tree,@ a matrix operator to combine 2 distance matrices to prodummedistance
matrix, /A a distance-to-tree operator to construct a tree from a glistance matrix.

Algorithm 2 The general DiBIP crossover scheme

Input: Ty, T2, 8, A, B, A
Output: A child treeT*

1. Apply the tree-to-distance operaibito each parent treg (i=1,2) to obtain the correspond-
ing distance matriD; = A(T);

2. Apply the matrix operatop to D1 andD> to obtainD*: D* = D1 @ Dy;

3. Apply the distance-to-tree operatbrto D* to obtain a child treeT* = A (D*).

A specific DiBIP crossover operator is obtained oce), &, andA are pro-
vided. The distance measudeshould be ideally correlated to the evolutionary
changes between species. For instance, 2 species separttiedree by a small
number of evolutionary changes should have a smaller distdran 2 species sep-
arated by a large number of changes. The distance measurig studlitionally be
tree-topology dependent. In this sense, the length of ta@ehtary path between
2 species is a possible option while Hamming distance isuitidtse here because
this metric is totally independent of tree topologies.

Moreover, since we want to preserve representative featibe parents during
the crossover operation, a valid matrix operatoshould favor such an inheritance
from parents to offspring and meet some relation presenvgtioperty. For instance,
if a pair of speciesd,b) is closer than another paic,d) in both parents, then this
relation should be conserved. Consider the operatisuch that for a pair of species
(i.), (D1&D2)(i, }) = a.min{Dx(i, j), Da(i, )} + (1— a). max{Da (i, j), D2, )}
with a € [0,1]. This defines indeed a valid operator. Furthermore, this definition
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offers in fact many possibilities and seems particularlgvant to MP. For instance,
the arithmetic averagex(= 0.5) and the max operator mag ( 0) are 2 special
cases. At last, let us mention that the arithmetic additsoanother simple valieh
operator.

We now show a concrete example. Given two speces! j, define their distance
4 to be thetopological distancei.e. the length of the elementary path between the
respective ascendantsiaind j, (minus 1 if the path contains the root of the tii€e
The matrix operatog is the additiort- such thaD(i, j) = D1(i, j) +D2(i, j), which
satisfies the relation preservation property previousiytinaed. The distance-to-
tree operator\ is a non-deterministic variant of the well-known UPGMA math
[62]. Fig. 1 shows an application of this crossover operdlore observes that the
closeness of species in both parents is conserved in trek @hils observation ap-
plies equally to distant species.

4.2.3 Progressive neighborhood search

For local improvement, HYDRA useBrogressive Neighborhood Sear¢RNS)
which operates with a variable-size neighborhoods [2AleG& parsimony tre€,

a neighboring tre@”’ is typically obtained by a move that consists in cutting asub
tree fromT and reinserting the sub-tree elsewhere in the initial tfeemeaningful
metric can be defined to measure the distance between thegcattd inserting
points, then it would be possible to define neighborhoodsadgfble sizes. In [27],
the topological distancé shown in Section 4.2.2 is used for this purpose. A dis-
tance parametat is introduced to constraint the distance between the predgd

i and the edgg receiving the insertion such thg} < d.

So, settingd = » leads to a large neighborhood where the pruned edge (with
its subtree) can be reinserted anywhere in the tree. Coastyguthe topological
change can be important. This case corresponds in fact tavéieknown Sub-
tree Pruning Regraftingeighborhood [64] whose size equal®2 3)(2n—7) [1].
Reversely, settingl = 1 gives a small neighborhood where neighboring trees are
close to the current tree. This case corresponds to anotsiékmown neighbor-
hood calledVearest Neighbor Interchanf@r] which swaps two adjacent branches
of the tree leading t62n — 6) neighbors [61]. By varying the parametrone gets
neighborhoods of intermediate sizes.

TheProgressive Neighborhood Seaiistbased on this parametric neighborhood
and its neighborhood changes during the search processrpingdhe value of
d. In the particular MP context, PNS carries out a descentchestarting with a
large neighborhood (i.e. with largh and reduces progressively the neighborhood.
Indeed, at the beginning of the search, it is possible toiotstrong quality im-
provement by important topological modifications of theetwith larged. When
the search progresses, the quality of the trees becomes aett better, only small
improvements can be expected with small tree modificatiliris.thus more judi-
cious to switch to smaller and small neighborhoods to acatlé¢he search.
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Parent1 Ty Parent 2 T,
D M
I B
A F
K L
J J
B K
L A
N E
G D
c H
M c
F G
E I
H N

D1 =A(Th) D, =A(T)

ABCDEFGHIJKLMN ABCDEFGHIJKLMN

Al- B Al- B

Bl6 - C B|8 - C

C|5 3 -D Cl|4 6 -D

D|1 5 4 -E D|1 73 -E

E|5 5 4 4 -F E(0 8 41 -F

F[55 442 -G F[9 1789 -G

G5 30444 -H G|46 0347 -H

H|554 4024 -1 H|2 621272 -1

106515555 -3 1|6 4456544-3

J|5 124442 45-K J|715672553-K

K|2 431333323-L K|4 423452223 -L

L|71 466646725 -M L|I9178907 7525 -M

M|5 54420425436 -N M|6 2 4563442123 -N

N|7 146664672506 N|6 4 45654 40325 2

D* =D;® Dy Child : T* = A(D*)

M

ABCDEFGHIJKLMN F

Al- B B

Bl14 - C L

cl9 9 - D )

D|2 12 7 - E

E|5 138 5 - F N

F|14 6 11 12 11 - G H

G|9 9 0 7 8 11 -H E

Hf7 11 6 5 2 9 6 - | o

1|6 109 6 1110 9 9 -J

J|12 2 7 1011 6 7 9 8 K A

K|6 8 5 47 855 46 -L K

L|16 2 11 14 15 6 11 13 12 4 10 M ,

M[11 7 8 9 8 3 8 6 755 9 -N

N|[13 5 8 111211 8 10 7 5 7 5 8 ¢

G

Fig. 1 Application of the DiBIP Tree Crossover [26]

One notices that PNS shares some features with VariablehBeijood Search
(VNS) [33]. However, contrary to VNS, the neighborhoodslexgd by PNS are not
systematically of increasing sizes. Within the context wf Blaximum Parsimony
problem, PNS even reduces progressively its neighborhood.

5 Conclusions

In this chapter we have presented the basic concepts of Nedigiorithms for
Discrete Optimization. Focus is given to the key designassaf an effective MA
algorithm. We have explained the usefulness of a deep studlyiaderstanding of
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the optimization problem on hand. We have insisted on theitapce of a careful
adaptation of the general search strategies offered by thé&r&inework, a suitable
incorporation of problem specific knowledge in differentqmnents of the MA
as well as a logical integration of these components. Theyitugoal is clearly to
build an effective MA algorithm that is able to ensure a bes&hexploitation and
exploration of the search space.

It should be clear that a blind MA application would havdéitthance to deliver
good results for difficult optimization problems. High parhance can only be pos-
sible by a disciplined and careful specialization of theegahMA framework to
the targeted problem. It is equally important to apply theafi design” principle in
order to avoid redundant or superficial algorithmic compse

The framework of Memetic Algorithms constitutes an intéresenrichment to
the arsenal of existing discrete optimization methods dfeda valuable alterna-
tive for tackling hard discrete optimization problems.
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