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Abstract

Given an undirected connected graph G = (V,E) with vertex set V and edge set
E, the minimum conductance graph partitioning problem is to partition V into two
disjoint subsets such that the conductance, i.e., the ratio of the number of cut edges
to the smallest volume of two partition subsets is minimized. This problem has
a number of practical applications in various areas such as community detection,
bioinformatics, and computer vision. However, the problem is computationally chal-
lenging, especially for large problem instances. This work presents the first iterated
multilevel simulated annealing algorithm for large-scale graph conductance mini-
mization. The algorithm features a novel solution-guided coarsening method and
an effective solution refinement procedure based on simulated annealing. Computa-
tional experiments demonstrate the high performance of the algorithm on 66 very
large real-world sparse graphs with up to 23 million vertices. Additional experiments
are presented to get insights into the influences of its algorithmic components. The
source code of the proposed algorithm is publicly available, which can be used to
solve various real world problems.
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1 Introduction

Graph partitioning problems are popular and general models that are fre-
quently used to formulate numerous practical applications in various domains.
Given an undirected graph with a vertex set and an edge set, graph partition-
ing is to divide the vertex set into two or more disjoint subsets while meet-
ing a defined objective. For example, the popular NP-hard (non-deterministic
polynomial-time hardness) 2-way graph partitioning problem is to minimize
the number of edges crossing the two partition subsets [12].

The minimum conductance graph partitioning problem (MC-GPP) studied in
this work is another typical graph partitioning problem stated as follows. Let
G = (V,E) be an undirected connected graph with vertex set V and edge set
E. A cut in G is a partition of its vertex set V into two disjoint subsets S and
S = V \S, while the cut-set is the set of edges that have one endpoint in each
subset of the partition. By convention, a cut is denoted by s = (S, S) and its
cut-set is denoted by cut(s).

Given a cut s = (S, S) from the search space Ω composed of all the possible
cuts of a graph G, its conductance Φ(s) is the ratio between the number of
cut edges and the smallest volume of the two partition subsets, i.e.,

Φ(s) =
|cut(s)|

min{vol(S), vol(S)}
(1)

where vol(S) =
∑
v∈S

deg(v) and vol(S) =
∑
v∈S

deg(v) are the volume of S and

S, respectively, and deg(v) is the number of vertices incident to v in G. The
conductance of a graph G is the minimum conductance over all the cuts of
the graph: Φ(G) = mins∈ΩΦ(s). In mathematics and statistical physics, the
conductance is also called the Cheeger constant, Cheeger number or isoperi-
metric number [9] with a different denominator that depends upon the number
of vertices in S and S.

The minimum conductance graph partitioning problem (MC-GPP) is then to
determine the conductance of an arbitrary graph G, i.e., find the cut s∗ in G
such that Φ(s∗) ≤ Φ(s) for any s in Ω.

(MC-GPP) s∗ = arg mins∈ΩΦ(s) (2)

In terms of the computational complexity theory, MC-GPP is known to be an
NP-hard problem [34], and thus computationally challenging. From a practical
perspective, MC-GPP has a number of relevant applications in different fields
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such as clustering [10], community detection [11], bioinformatics [39], com-
puter vision [33], and large graph size estimation [28]. As the result, designing
effective solution methods for MC-GPP is both challenging and important.

Given the relevance of MC-GPP, considerable efforts have been dedicated to
developing various algorithms for solving the problem, which mainly fall into
three families: exact, approximation, and heuristic algorithms. Time-efficient
exact algorithms were introduced in [18] to solve a variant of the conductance
problem and other ratio region problems in the context of image segmentation.
Later, a polynomial time algorithm for the Rayleigh ratio minimization prob-
lem on discrete variables was presented in [19]. The first (and considered weak)
approximation algorithm for MC-GPP was presented in [9]. Improved approx-
imation algorithms were studied including an O(log(|V |))-approximation al-

gorithm [25], and an O(
√
log(|V |))-approximation algorithm [3].

Several algorithms with performance guarantees for conductance minimization
were also proposed for large-scale graph clustering in social and information
networks. For instance, local algorithms were presented in [35] for clustering
massive graphs based on the conductance criterion. Another local algorithm
was introduced in [42] that is able to find well-connected clusters for large
graphs in terms of the clustering accuracy and the conductance of the output
set. The conductance measure was used to characterize the “best” possible
community in [26] where approximation algorithms with performance guar-
antee were proposed for the related graph partitioning problem over a wide
range of size scales. Although these algorithms can theoretically provide prov-
able performance guarantees on the quality of the obtained solutions, they are
either designed for specific cases or require large computation time for large
graphs due to the intrinsic intractability of MC-GPP.

To handle large problems that cannot be solved by exact methods, heuristic
methods provide an interesting alternative approach to produce high-quality
(not necessarily optimal) solutions within a reasonable amount of computation
time. In particular, a number of generic metaheuristics (see e.g., [7]) are avail-
able including single-solution based methods (e.g., simulated annealing and
tabu search) and population-based methods (e.g., evolutionary algorithms and
particle swarm optimization). These methods have been used to tackle vari-
ous large and computationally complex problems [13]. However, the success of
these methods depends strongly on a careful design and dedicated adaptations
of the methods to the problem at hand [6]. For MC-GPP, several heuristic and
metaheuristic algorithms have been proposed, which are reviewed as follows.
A max-flow quotient-cut improvement algorithm (MQI) was introduced in [24]
to refine an initial cut of the Metis graph partitioning heuristic [22]. This work
was extended in [2], which solves a sequence of minimum cut problems to find
a larger-than-expected intersection with lower conductance. In [27], a minus
top-k partition (MTP) method was studied for discovering a global balanced
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partition with low conductance. In [38], a continuous optimization approach
was proposed for conductance minimization in the context of local network
community detection. The first metaheuristic algorithms for MC-GPP includ-
ing simple local search and basic memetic algorithms were studied in [8], which
were used for finding bottlenecks in complex networks. A stagnation-aware
breakout tabu search algorithm (SaBTS) was presented in [30], which com-
bines a dedicated tabu search procedure to discover high-quality solutions and
a self-adaptive perturbation procedure to overcome hard-to-escape local op-
timum traps. Computational results were reported on real world graphs with
up to 500,000 vertices. Recently, a hybrid evolutionary algorithm (MAMC)
with a powerful local search and a quality-and-diversity based pool manage-
ment was introduced in [29], which reported new results on large graphs with
up to 23 million vertices. These studies greatly contributed to better solving
the given problem. However, two main limitations can be identified in the ex-
isting approaches, which motivate the current work. First, these approaches
have difficulties in robustly and consistently producing high-quality solutions
for large-scale graphs with more than several million vertices. Second, they
may require a substantial amount of computation time to reach satisfactory
solutions.

On the other hand, the multilevel approach [40] is known to be a power-
ful framework for large graph partitioning in various domains (e.g., complex
network analysis [37]). However, this approach has not been investigated for
solving MC-GPP. This work aims to fill in the gap by presenting an effective
multilevel algorithm for MC-GPP that is able to produce high-quality solu-
tions within a reasonable time frame for large-scale sparse graphs arising from
real world applications. The contributions can be summarized as follows.

First, an iterated multilevel simulated annealing algorithm (IMSA) is intro-
duced for MC-GPP. The algorithm consists of a novel solution-guided coars-
ening method and a powerful local refinement procedure to effectively sample
the search space of the problem.

Second, extensive computational assessments are presented on three sets of
66 very large real-world benchmark instances (including 56 graphs from the
10th DIMACS Implementation Challenge and 10 graphs from the Network
Data Repository online, with up to 23 million vertices). The computational
experiments indicate a high competitiveness of the proposed IMSA algorithm
compared to the existing state-of-the-art algorithms.

Third, the code of the IMSA algorithm will be publicly available, which can
help researchers and practitioners to better solve various practical problems
that can be formulated as MC-GPP.

The remainder of the paper is structured as follows. Section 2 presents the
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IMSA algorithm. Section 3 shows the computational studies and comparisons
between the proposed IMSA algorithm and state-of-the-art algorithms. Section
4 provides analyses of the key algorithmic components. Section 5 presents
concluding remarks and perspectives for future research.

2 Iterated multilevel simulated annealing

This section presents the proposed iterated multilevel simulated annealing
algorithm for MC-GPP. After illustrating its general algorithmic framework,
the key algorithmic components are described.

2.1 General framework

The multilevel approach is a general framework that has shown to be very
successful in tackling the classic graph partitioning problem. Generally, this
approach consists of three basic phases (coarsening, initial partitioning, and
uncoarsening) [17]. During the coarsening phase, the given graph is succes-
sively reduced to obtain a series of coarsened graphs with a decreasing num-
ber of vertices. An initial partition is then generated for the coarsest graph.
Finally, during the uncoarsening phase, the coarsened graphs are successively
unfolded in the reverse order of the coarsening phase. For each uncoarsened
graph, the partition of the underlying coarsened graph is projected back to
the uncoarsened graph and then improved by a refinement procedure. This
process stops when the input graph is recovered and its partition is refined.
In [40], Walshaw introduced iterated multilevel partitioning (analogous to the
use of V-cycles in multigrid methods [36]) where the coarsening-uncoarsening
process is iterated and the partition of the current iteration is used for the
whole coarsening phase of the next iteration.

The proposed IMSA algorithm for MC-GPP is based on the ideas described
above and includes two original features: 1) a solution-guided coarsening method,
and 2) a powerful refinement procedure which is applied during both the coars-
ening and the uncoarsening phase. Fig. 1 illustrates the iterated multilevel
framework adopted by the proposed IMSA algorithm, while the entire algo-
rithmic framework is presented in Algorithm 1. Informally, IMSA performs
a series of V-cycles, where each V-cycle is composed of a coarsening phase
and an uncoarsening phase, mixed with local refinement for each intermediate
(coarsened and uncoarsened) graph.

It is worth noting that IMSA requires a seeding partition s0 of the input
graph to initiate its first iteration (the first V-cycle). Generally, the seeding
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Fig. 1. An illustration of the iterated multilevel framework for the proposed algo-
rithm.

partition can be provided by any means. For instance, for the experimental
studies reported in Section 3, the (fast) MQI algorithm [24] was adopted. For
each subsequent iteration, the best partition found during the previous V-
cycle then serves as the new seeding partition. The whole process terminates
when a given stopping condition (e.g., cutoff time limit, maximum number of
V-cycles) is reached and the global best partition found during the search is
returned.

2.2 Solution-guided coarsening procedure

Given a graph G = (V,E) (renamed as G0 = (V0, E0)) and the seeding
partition s0, the solution-guided coarsening phase progressively transforms
G0 into smaller intermediate graphs Gi = (Vi, Ei) such that |Vi| > |Vi+1|
(i = 0, . . . ,m − 1), until the last coarsened graph Gm becomes sufficiently
small (i.e., the number of vertices in Vm is below a given threshold ct). During
the coarsening process, all intermediate graphs are recorded for the purpose
of uncoarsening.

Generally, to generate a coarsened graph Gi+1 from Gi, the coarsening process
performs two consecutive steps: an edge matching step and an edge contraction

6



Algorithm 1 Iterated multilevel simulated annealing (IMSA) for MC-GPP.

Require: Graph G = (V,E), seeding partition s0, coarsening threshold ct.
Ensure: The best partition s∗ found during the search.

1: s∗ ← s0

2: i← 0
3: repeat
4: while |Vi| > ct do
5: (Gi+1, si+1)← Solution Guided Coarsening(Gi, si) /∗ Section 2.2 ∗/
6: si+1 ← Local Refinement(si+1) /∗ Sections 2.4 and 2.5 ∗/
7: i← i+ 1
8: end while
9: while i > 0 do

10: i← i− 1
11: (Gi, si)← Uncoarsening(Gi+1, si+1) /∗ Section 2.3 ∗/
12: si ← Local Refinement(si)
13: end while
14: if Φ(si) < Φ(s∗) then
15: s∗ ← si
16: end if
17: until Stopping condition is met
18: return s∗

step. For each V-cycle, the initial graph G0 = (V0, E0) is supposed to have a
“unit weight” for all the vertices and edges.

The edge matching step aims to find an independent set of edges M ⊂ Ei such
that the endpoints of any two edges in M are not adjacent. For this purpose,
IMSA adopts the fast Heavy-Edge Matching (HEM) heuristic [21] with a time
complexity of O(|E|). HEM considers vertices in a random order, and matches
each unmatched vertex v with its unmatched neighbor vertex u such that 1) v
and u are in the same subset of the current partition si; and 2) edge {v, u} has
the maximum weight over all edges incident to v (ties are broken randomly).
In this work, edge matching is guided by the current partition si of Gi in the
sense that the cut edges in the cut-set cut(si) are ignored and only vertices of
the same partition subset are considered for matching.

The edge contraction step collapses the endpoints of each edge {va, vb} in M
to form a new vertex va+vb in the coarsened graph Gi+1, while vertices which
are not endpoints of any edge of M are simply copied over to Gi+1. For the
new vertex va + vb ∈ Vi+1, its weight is set to be the sum of the weights of va
and vb. The edge between va and vb is removed, and the edges incident to va
and vb are merged to form a new edge in Ei+1 with a weight that is set to be
the sum of the weights of the merged edges.

Once the coarsened graph Gi+1 is created, the partition si of Gi is projected
onto Gi+1, followed by improvement with the local refinement procedure. The
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Fig. 2. An example of the solution-guided coarsening process to create a coarsened
graph.

improved partition is then used to create the next coarsened graph.

Fig. 2 illustrates how the first coarsened graph is created from an initial graph
G0 with 8 vertices (unit weight for both vertices and edges) and the partition
s0 = ({a, b, h}, {c, d, e, f, g}) (indicated by the red dashed line). The edge
matching step first uses the HEM heuristic to identify the set of independent
edges M = ({a, b}, {c, d}, {e, f}) guided by s0. Then for each edge in M , say
{a, b}, its endpoints are merged to form a new vertex a+ b in G1 with vertex
weight w(a + b) = w(a) + w(b). The edge {a, b} is removed, while the edges
{a, h} and {b, h} that are incident to both a and b are merged to form a new
edge {a+b, h} inG1 with edge weight w({a+b, h}) = w({a, h})+w({b, h}) = 2.
The same operations are performed to merge vertices c and d, e and f . After
merging all the vertices involved in the edges of M , the remaining vertices
h and g which are not incident to any edge of M are simply copied to G1,
completing the new coarsened graph G1.

2.3 Uncoarsening procedure

In principle, the uncoarsening phase performs the opposite operations of the
coarsening phase and successively recovers the intermediate graphs Gi (i =
m,m−1, . . . , 0) in the reverse order of their creations. To recover Gi from Gi+1,
each merged vertex of Gi+1 is unfolded to obtain the original vertices and the
associated edges of Gi. For an illustrative example, the same process applies as
presented in Fig. 2 but with the reversed direction of each transition arrow. In
practice, each corresponding intermediate graph recorded during coarsening
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is just restored.

For each recovered graph Gi, the partition of Gi+1 is projected back to Gi

and is further improved by the local refinement procedure. The uncoarsen-
ing process continues until the initial graph G0 is recovered. At this point,
IMSA terminates the current V-cycle and is ready to start the next V-cycle.
Generally, the partition quality is progressively improved throughout the un-
coarsening process. Precisely, the partition quality of Gi is usually better than
that of Gi+1 since there are more degrees of freedom for the local refinement
procedure of an uncoarsened graph.

2.4 Local refinement with simulated annealing

For local refinement, IMSA mainly uses a dedicated simulated annealing pro-
cedure, which is complemented by an existing tabu search procedure.

2.4.1 Simulated annealing refinement procedure

Multilevel algorithms typically use pure descent algorithms for solution re-
finement at each level. This ensures fast convergence towards a local optimum
that may be of mediocre quality compared to a global optimum. To reinforce
the search capacity of the IMSA algorithm, the powerful simulated annealing
method [23] is used, which has shown its effectiveness on the popular 2-way
graph partitioning problem [20]. Moreover, a solution sampling strategy spe-
cially designed for MC-GPP (Section 2.4.2) is adopted to further ensure an
effective examination of candidate solutions. To avoid search stagnation in a
local optimum, the SA based refinement is complemented with a tabu search
procedure (see Section 2.5).

The main scheme of the SA procedure is presented in Algorithm 2. Specifically,
SA performs a number of search rounds (lines 3-21) with different temperature
values to improve the current solution s (i.e., a cut (S, S)). At the start of each
search round, the move counter mv is initialized to 0 (line 4). The procedure
enters the ‘for’ loop to carry out saIter iterations (saIter is a parameter) with
the current temperature T (initially set to T0). At each iteration, SA randomly
samples a neighbor solution s′ of s from a set of constrained candidates (lines 5-
19). Given a set of critical vertices CV (s) (see Section 2.4.2), this is achieved
by displacing a random vertex v ∈ CV (s) from its current subset to the
opposite subset (lines 6-7, where s′ ← s ⊕ Relocate(v) denotes this move
operation). The new solution s′ then replaces the current solution s according
to the following probability (lines 8-15),
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Algorithm 2 Simulated annealing based local refinement.
Require: Graph G = (V,E), input solution s, initial temperature T0, move counter
mv, maximum number of iterations per temperatures saIter, cooling ratio θ, frozen
state parameter ar.
Ensure: Best partition sbest found during the search.

1: T ← T0

2: sbest ← s
3: repeat
4: mv ← 0
5: for iter = 1 to saIter do
6: v ← a random vertex from CV (s)
7: s′ ← s⊕Relocate(v) /∗ Section 2.4.2 ∗/
8: if δ(v) < 0 then
9: s← s′

10: mv ← mv + 1
11: else
12: With probability defined in Equation (3) /∗ Section 2.4.1 ∗/
13: s← s′

14: mv ← mv + 1
15: end if
16: if Φ(s) < Φ(sbest) then
17: sbest ← s
18: end if
19: end for
20: T ← T ∗ θ /∗ Cooling down the temperature ∗/
21: until Acceptance rate (mv/saIter) is below ar for 5 consecutive rounds
22: return sbest

Pr{s← s′} =

 1 , if δ < 0

e−δ/T , if δ ≥ 0
(3)

where δ = Φ(s′) − Φ(s) is the conductance variation (also called the move
gain) of transitioning from s to s′.

A better neighbor solution s′ in terms of the conductance (δ < 0) is always
accepted as the new current solution s. Otherwise (δ ≥ 0), the transition from
s to s′ takes place with probability e−δ/T . After each solution transition, the
move counter mv is incremented. The best solution sbest is updated each time
a better solution is found (lines 16-18). Once the number of sampled solutions
reaches saIter, the temperature T is cooled down by a constant factor θ ∈ [0, 1]
(θ is a parameter, line 20), and SA proceeds to the next search round with
this lowered new temperature. The termination criterion (the frozen state) of
SA is met when the acceptance rate becomes smaller than a threshold ar (ar
is a parameter) for 5 consecutive search rounds, where the acceptance rate is
defined as mv/saIter (line 21). Upon the termination of the SA procedure,
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the procedure returns the best recorded solution sbest (line 22).

One critical issue for the SA procedure concerns the initial temperature T0.
While a high T0 leads to acceptance of many deteriorating uphill moves, a
low initial temperature will have the same impact as a pure descent procedure
resulting in the search to easily become trapped in a local optimum. To identify
a suitable initial temperature, a simple binary search is used to provide a
tradeoff between these two extremes. Starting from an initial temperature
range T ∈ [1.0e-20, 1.0], T0 is initialized with the median value from this
range, i.e., T0 = (1.0 + 1.0e-20)/2. If the last round of the search using the
current value of T0 resulted in an acceptance rate of 50%, the value of T0 is left
unchanged. Otherwise, the value for T0 used in next round of the search is set
to be the median value of the lower or the upper temperature range depending
on whether the acceptance rate is higher or lower than 50%. This process
continues until a suitable initial temperature T0 is found for a given problem
instance. The other parameters (saIter, θ, and ar) of SA are investigated in
Section 4.4.

2.4.2 Solution sampling with critical vertices

To generate a new candidate solution s′ from the current solution s, the pop-
ular Relocate operator is applied that displaces a vertex from its current set
to the opposite set. To avoid the generation of non-promising candidate so-
lutions, the set of critical vertices are identified with respect to the current
solution s. Specifically, let s = (S, S) be the current solution. Vertex v ∈ V
is called a critical vertex if v is the endpoint of an edge in the cut-set cut(s)
[29]. Let CV (s) denote the set of all the critical vertices in the cut-set cut(s).
Then, Relocate only operates on the vertices of CV (s). By constraining the
Relocate operation to the critical vertices, the algorithm avoids sampling many
non-promising candidate solutions, as demonstrated in [30].

To ensure a fast computation of the conductance variation of a neighbor so-
lution generated by Relocate, a streamlined incremental evaluation technique
[30] is adopted. Let s = {S, S) be the current solution, s′ = {S ′, S ′} be the
neighbor solution after relocating a vertex v of s from S to S. The conduc-
tance of s′ can be evaluated in O(1) time by simply updating |cut(s′)|, vol(S ′),
vol(S ′) by |cut(s′)| = |cut(s)|+ degS(v)− degS(v), vol(S ′) = vol(S)− deg(v),
and vol(S ′) = vol(S) + deg(v), where degS(v) (resp. degS(v)) is the num-
ber of vertices adjacent to v in S (resp. in S). Moreover, for each vertex
w adjacent to v, degS′(w) and degS′(w) can be updated in O(1) time by
degS′(w) = degS(w)− 1 and degS′(w) = degS(w) + 1.
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2.5 Additional solution refinement with tabu search

To further reinforce the solution refinement and go beyond the local opti-
mum attained by the SA procedure, the constrained neighborhood tabu search
(CNTS) procedure of [30] is additionally applied. CNTS relies on the same con-
strained neighborhood defined by the critical vertices and employs a dynamic
tabu list to explore additional local optima. CNTS requires two parameters:
the maximum number of consecutive non-improving iterations of tabu search
D, and the tabu tenure management factor α. Section 4.4 explains the pro-
cedure used to tune these parameters and analyzes their sensitivity. More
details about CNTS can be found in [30]. The use of CNTS is based on the
preliminary observation that it can provide performance gains especially for
the class of relatively small-sized instances with vertices less than one million
(such as ‘ok2010’, ‘va2010’, ‘nc2010’, etc. See Appendix A, Tables A.2–A.4).
Generally, the CNTS component can be safely disabled for large graphs with-
out impacting the performance of the IMSA algorithm. In terms of solution
refinement, CNTS is more focused on search intensification, as opposed to
the more stochastic and diversified SA procedure. In practice, CNTS plays
a complementary and secondary role by performing a much shorter search
(determined by the parameter D) than SA during a round of IMSA.

2.6 Complexity of the proposed algorithm

The time complexity of the local refinement procedure is first considered. The
SA procedure (Section 2.4) performs saIter iterations. At each iteration, SA
first identifies the set of critical vertices CV (s), which can be achieved in
O(|V | × degmax) time where degmax is the maximum degree of the graph. A
candidate solution is then sampled in O(1) time. When a neighboring solution
s′ = {S ′, S ′} is obtained, the conductance variation is calculated in O(1) time.
Moreover, degS′(w) and degS′(w) are updated in O(deg(v)) time. Thus, SA
requires O(saIter × |V | × degmax) time. For the CNTS procedure (Section
2.5), it can be achieved in O(D×|V |×degmax) time [30]. Since the dominating
part of the local refinement is the SA procedure, the time complexity of local
refinement is O(saIter × |V | × degmax).

The whole IMSA algorithm (Algorithm 1) is composed of a series of V-cycles.
For each V-cycle, the solution-guided coarsening procedure with the HEM
heuristic requires O(m × |E|) time, where m is the number of levels of each
V-cycle. At each level, the partition of the intermediate graph is improved by
the local refinement procedure with a time complexity of O(saIter × |V | ×
degmax). The uncoarsening procedure requires O(1) time, because it simply
restores each corresponding intermediate graph recorded during the coarsening
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process, followed by the local refinement procedure. Consequently, the total
time complexity of one V-cycle of the IMSA algorithm is bounded by O(m×
saIter × |V | × degmax).

The space complexity of IMSA can be evaluated as follows. First, IMSA rep-
resents a graph with an adjacency list whose space complexity is O(|V |+ |E|).
For each level, IMSA keeps an auxiliary graph, requiring O(m × |E|) space
for a V-cycle. Moreover, IMSA uses a table to maintain the sum of degrees of
each vertex of G with O(m×|V |) space. Therefore, the total space complexity
of the IMSA algorithm for each V-cycle is given by O(m× (|V |+ |E|)).

In practice, as long as the graph has a low or very low density, the space
requirement is approximately linear in |V |. On the contrary, for dense and
very dense (near-complete) graphs, the space requirement becomes quadratic
in |V |.

3 Computational studies

This section is dedicated to a computational assessment of the proposed IMSA
algorithm based on various benchmark instances.

3.1 Benchmark instances

The assessment was based on 66 very large benchmark instances with 54,870 to
23,947,347 vertices. The first 56 instances are very large graphs from The 10th
DIMACS Implementation Challenge Benchmark 1 , which were introduced for
graph partitioning and graph clustering [4]. The remaining 10 instances are
large real-world network graphs [32] from The Network Data Repository on-
line 2 . These 66 instances are divided into three sets: Small set (24 instances,
|V | < 500, 000), Medium set (25 instances, |V | ∈ [500, 000, 5, 000, 000], and
Large set (17 instances, |V | > 5, 000, 000). Among these 66 instances, 29 DI-
MACS graphs and 10 massive network graphs have previously been used for
experimental evaluations in [29]. Additional 27 large-scale DIMACS bench-
mark graphs (with 114,599 to 21,198,119 vertices) were considered to better
assess the scalability of the multilevel algorithm.

1 https://www.cc.gatech.edu/dimacs10/downloads.shtml
2 http://networkrepository.com/index.php
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3.2 Experimental setting and reference algorithms

The proposed IMSA algorithm was implemented in C++ 3 and compiled using
the g++ compiler with the “-O3” option. All the experiments were conducted
on a computer with an AMD Opteron 4184 processor (2.8GHz) and 32GB
RAM under Linux operating system. This computer was previously used to
perform experimental evaluations reported in [29]. IMSA being a sequential
algorithm, it was run on a single core of the AMD Opteron processor, as in
[29].

Table 1 shows the setting of the IMSA parameters, which can be considered as
the default setting of the algorithm. The procedure to tune these parameters
is explained in Section 4.4. For meaningful assessments, this default setting
was consistently used throughout all the experiments presented in this work.
As shown in Section 3.3, IMSA achieves highly competitive results with this
unique setting. Generally, the parameters can be fined-tuned to obtain im-
proved results. Such a practice is useful when one seeks the best possible
solution for a given graph.

To evaluate the performance of IMSA, comparisons are performed against
three best performing MC-GPP algorithms from the literature: the two most
recent metaheuristic algorithms (i.e., the hybrid evolutionary algorithm MAMC
[29] and the breakout local search algorithm SaBTS [30]), as well as the pop-
ular and powerful max-flow algorithm MQI [24]. To ensure a fair compari-
son, all the compared algorithms were run on the same computing platform
mentioned above with their default parameters setting. Each algorithm was
independently executed 20 times per instance with a cutoff time of 60 minutes
per run. Exactly like SaBTS and MAMC, each run of IMSA was initialized
with a seeding solution provided by the MQI algorithm.

Out of the 66 benchmark instances tested in this work, the results for 39 in-
stances (29 DIMACS graphs and the 10 massive network graphs) for the three
reference algorithms are available in [29]. Since these results were obtained
following the same experimental protocol as in the current work, they are di-
rectly used for the comparative studies. The compared algorithms were only
ran on the 27 remaining instances.

3 The code of the IMSA algorithm will be made publicly available at: http://www.
info.univ-angers.fr/pub/hao/IMSA.html

14

http://www.info.univ-angers.fr/pub/hao/IMSA.html
http://www.info.univ-angers.fr/pub/hao/IMSA.html


Table 1
The parameters setting of the IMSA algorithm.

Parameter Section Description Value

ct §2.2 Coarsening threshold 60,000

saIter §2.4 Maximum number of iterations per temperature of SA search 200,000

θ §2.4 Cooling ratio of SA search 0.98

ar §2.4 Frozen state parameter of SA search 5%

D §2.5 Maximum number of consecutive non-improving iterations of tabu search 10,000

α §2.5 Tabu tenure management factor of tabu search 80

Table 2
Summary results reported by the IMSA algorithm and the three reference algo-
rithms (MAMC [29], SaBTS [30], and MQI [24]) on the three sets of 66 benchmark
instances.

Benchmark set (size) Algorithm pair Indicator #Wins #Ties #Losses p-value

Small set (24) IMSA vs. MAMC [29] Φbest 9 11 4 6.35e-01

Φavg 12 8 4 1.63e-01

IMSA vs. SaBTS [30] Φbest 13 9 2 5.54e-02

Φavg 23 0 1 2.55e-04

IMSA vs. MQI [24] Φbest 14 10 0 1.22e-04

Φavg 24 0 0 1.82e-05

Medium set (25) IMSA vs. MAMC [29] Φbest 17 7 1 1.18e-03

Φavg 21 3 1 1.55e-04

IMSA vs. SaBTS [30] Φbest 17 8 0 2.93e-04

Φavg 25 0 0 1.23e-05

IMSA vs. MQI [24] Φbest 18 7 0 1.96e-04

Φavg 25 0 0 1.23e-05

Large set (17) IMSA vs. MAMC [29] Φbest 16 1 0 4.37e-04

Φavg 17 0 0 2.93e-04

IMSA vs. SaBTS [30] Φbest 16 1 0 4.38e-04

Φavg 16 0 1 3.84e-04

IMSA vs. MQI [24] Φbest 16 1 0 4.38e-04

Φavg 17 0 0 2.93e-04

∗Benchmark total (66) IMSA vs. MAMC [29] Φbest 42 19 5 3.85e-05

Φavg 50 11 5 3.07e-07

IMSA vs. SaBTS [30] Φbest 46 18 2 3.26e-07

Φavg 64 0 2 2.81e-11

IMSA vs. MQI [24] Φbest 48 18 0 1.63e-09

Φavg 66 0 0 1.64e-12
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Table 3
The geometric means of the best and the average conductance values (Gbest and
Gavg) reported by the IMSA algorithm, and the three reference algorithms (MAMC
[29], SaBTS [30], and MQI [24]) on the three sets of 66 instances.

Algorithm Indicator
Benchmark set

∗Benchmark total
Small set Medium set Large set

IMSA Gbest 0.00102027 0.00034119 0.00002953 0.00027054

Gavg 0.00102543 0.00037545 0.00003197 0.00028685

MAMC [29] Gbest 0.00101896 0.00034970 0.00003359 0.00028216

Gavg 0.00103098 0.00045095 0.00010023 0.00041351

SaBTS [30] Gbest 0.00104022 0.00035199 0.00003360 0.00028502

Gavg 0.00124996 0.00044828 0.00003888 0.00034674

MQI [24] Gbest 0.00103574 0.00035305 0.00003368 0.00028507

Gavg 0.00125648 0.00044982 0.00003906 0.00034826

3.3 Computational results and comparisons with state-of-the-art algorithms

This section presents the computational results of the proposed IMSA algo-
rithm, together with the results of the three reference algorithms (MAMC,
SaBTS, and MQI) on the three sets of 66 benchmark instances.

Table 2 summarizes the overall comparison while the detailed results are listed
in Appendix A (Tables A.2–A.4). Additionally, a global comparison is provided
using the geometric mean metric [16] in Table 3 (the smaller the better).
Section 4.1 shows a time-to-target analysis to investigate the computational
efficiency of the compared algorithms.

In Table 2, column 1 shows the benchmark sets with the number of instances
in parenthesis (Benchmark set (size)). Column 2 indicates the pair of the com-
pared algorithms (Algorithm pair). Column 3 provides the quality indicators
(Indicator) in terms of the best and the average conductance values (Φbest and
Φavg). Columns 4-6 show the number of instances on which IMSA reached a
better (#Wins), worse (#Losses), or equal results (#Ties) in terms of each
quality indicator. Furthermore, the last column provides the p-value of the
Wilcoxon signed-rank test with a confidence level of 99% to assess whether
there exists a statistically significant difference between IMSA and each refer-
ence algorithm in terms of the best and the average performances.

Table 3 shows the geometric means of each algorithm using the best and the
average conductance values for the three sets of 66 instances (Gbest and Gavg).
The first two columns show the algorithms and the quality indicators (Gbest

and Gavg). Columns 3-5 present the Gbest (or Gavg) results for each benchmark
set, while the last column reports the overall Gbest (or Gavg) results for all the
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66 instances. The best values of Gbest (or Gavg) across all the algorithms (the
smaller the better) are highlighted in boldface.

From Tables 2, 3 and Tables A.2–A.4, the following observations can be made.

1) IMSA competes very favorably with the best existing MC-GPP algo-
rithms in terms of solution quality, by reaching better results for more
than 63% cases compared to all the reference algorithms considered jointly.
Remarkably, even IMSA’s average results are much better than the best
results of the reference algorithms in most cases. The dominance of IMSA
over the reference algorithms is better shown on medium and large in-
stances, by reporting the best results for all but one or two instances
in terms of Φbest and Φavg. The small geometric means of IMSA further
confirm its superiority over the reference algorithms.

2) IMSA is computational effective compared to the reference algorithms.
Thanks to its multilevel strategy, IMSA requires similar or shorter time
to find equal or better solutions for a number of medium and large graphs.
The time-to-target analysis of Section 4.1 provides more evidences.

3) Relating the results of Tables A.2–A.4 and the main features of the tested
graphs shown in Table A.1, it can be concluded that IMSA is particularly
suitable for massive and sparse graphs, while its performance decreases
on dense graphs. This behavior is consistent with the general multilevel
optimization methods for graph partitioning.

This comparative study shows that the IMSA algorithm is a valuable tool for
partitioning large and sparse graphs in complement with existing methods. To
understand its behavior and functioning. Section 4 shows experiments to shed
light on the contributions of the key algorithmic components.

4 Analysis

This section presents experiments to get insights into the influences of the
components of the IMSA algorithm: iterated multilevel framework, simulated
annealing local refinement, and parameters.

4.1 A time-to-target analysis of the compared algorithms

To investigate the computational efficiency of the compared algorithms: IMSA,
MAMC [29], SaBTS [30], and MQI [24], a time-to-target (TTT) analysis [1]
is performed. This study uses visual TTT plots to illustrate the running time
distributions of the compared algorithms. Specifically, the Y-axis of the TTT
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plots displays the probability that an algorithm will find a solution that is at
least as good as a given target value within a given run time, shown on the
X-axis. The TTT plots are produced as follows. Each compared algorithm is
independently run Ex times on each instance. For each of the Ex runs, the
run time to reach a given target objective value is recorded. For each instance,
the run times are then sorted in an ascending order. The i-th sorted run time
ti is associated with a probability pi = i/Ex, and plotted as point (ti, pi), for
i = 1, . . . , Ex. This TTT experiment was based on 4 representative instances:
sc-pkustk13 (|V | = 94, 893), ga2010 (|V | = 291, 086), NLR (|V | = 4, 163, 763),
delaunay n24 (|V | = 16, 777, 216) with 200 independent runs per algorithm
and per instance (i.e., Ex = 200). To make sure that the compared algorithms
are able to reach the target objective value in each run, the target value was
set to be 1% larger than the best objective value found by MQI. The results
of this experiment are shown in Fig. 3.

Fig. 3 clearly indicates that the proposed IMSA algorithm is always faster in
attaining the given target value than the reference algorithms. The probabil-
ity for IMSA to reach the target objective value within the first 100 to 200
seconds is around 90%, while MAMC, SaBTS, and MQI require much more
times to attain the same result (at least 2500 seconds for the two large NLR
and delaunay n24 graphs). One notices from Tables A.2–A.4 that MAMC
and SaBTS show a shorter computation time for a number of instances, but
they report typically worse results (especially on the medium and the large
instances) than the IMSA algorithm. This indicates that IMSA can take full
advantage of the allotted time budget to find solutions of better quality and
avoid premature convergence. This is particularly true for large graphs. This
experiment demonstrates that the IMSA algorithm is much more time efficient
than the reference algorithms.

4.2 Usefulness of the iterated multilevel framework

This section assesses the usefulness of the iterated multilevel framework. For
this purpose, an IMSA variant called (SA+TS)restart was created where the
multilevel component was removed while keeping only the refinement proce-
dure. To ensure a fair comparison, (SA+TS)restart was performed in a multi-
start way, until the cutoff time tmax (60 minutes) was reached. This experiment
was conducted on 20 representative instances of a reasonable size and diffi-
culty: preferentialAttachment, smallworld, delaunay n16, delaunay n17, delau-
nay n18, delaunay n19, ga2010, oh2010, tx2010, wing, 144, ecology2, ecology1,
thermal2, kkt power, NACA0015, M6, AS365, luxembourg, belgium. Each al-
gorithm was independently run 20 times per instance with a cutoff time of
60 minutes per run. As a supplement, the p-values were also computed from
the Wilcoxon signed-rank test in terms of the best and the average results.
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(d) delaunay n24 (|V | = 16, 777, 216)

Fig. 3. Probability distributions of the run time (in seconds) needed to attain a
given target objective value by each algorithm on the 4 representative instances.

Fig. 4 shows the best/average conductance gap between the two algorithms
on these instances. The X-axis indicates the instance label (numbered from 1
to 20), while the Y-axis shows the best/average conductance gap in percent-
age, calculated as (ΦA −ΦIMSA)/ΦIMSA × 100%, where ΦA and ΦIMSA are the
best/average conductance values of (SA+TS)restart and IMSA, respectively.

As observed in Fig. 4, IMSA clearly dominates (SA+TS)restart in terms of
the best (p-value = 1.32e-04) and the average (p-value = 1.03e-04) conduc-
tance values for the 20 instances. This experiment confirms the usefulness of
the iterated multilevel framework, which positively contributes to the high
performance of the algorithm.

4.3 Benefit of the SA-based local refinement

To evaluate the benefit of the SA local refinement procedure to the perfor-
mance of the IMSA algorithm, an IMSA variant (denoted by IMSAdescent) was
created where the SA procedure was replaced by a pure descent procedure
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Fig. 4. Comparisons of the IMSA algorithm with a multi-start simulated annealing
plus tabu search (denoted by (SA+TS)restart) on the 20 representative instances.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instance label

0

2

4

6

8

B
es

t
co

n
d

u
ct

an
ce

ga
p

(%
)

IMSAdescent

IMSA

(a) Best results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instance label

0

2

4

6

8

10

12

A
ve

ra
ge

co
n

d
u

ct
an

ce
ga

p
(%

)

IMSAdescent

IMSA

(b) Average results

Fig. 5. Comparisons of the IMSA algorithm with an IMSA variant where the
SA-based local refinement is replaced by a descent search (denoted by IMSAdescent)
on the 20 representative instances.

using the best-improvement strategy. This experiment relies on the same 20
instances used in Section 4.2 and reports the same information. Fig. 5 plots
the best/average conductance gap between the two algorithms on these in-
stances. The X-axis indicates the instance label, while the Y-axis shows the
best/average conductance gap in percentage.

Fig. 5 shows that IMSAdescent reports significantly worse results in terms of
both the best (p-value = 1.32e-04) and the average (p-value = 8.86e-05) con-
ductance values for all the instances. This indicates that the SA procedure is
the key element that ensures the high performance of IMSA and disabling it
greatly deteriorates the performance.
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Fig. 6. Analysis of the parameters (ct, saIter, θ, ar, D, α) on its performance of
the proposed IMSA algorithm.

4.4 Analysis of the parameters

The proposed IMSA algorithm requires six parameters: ct, saIter, θ, ar, D,
and α. ct denotes the coarsening threshold in the solution-guided coarsening
phase. saIter, θ, and ar are the three parameters related to the SA local re-
finement, where saIter is the maximum number of iterations per temperature,
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θ is the cooling ratio, and ar is the frozen state parameter. D and α are the
maximum number of consecutive non-improving iterations of tabu search and
the tabu tenure management factor, respectively.

To study the effect of these parameters on the performance of IMSA and
to determine the most suitable setting for these parameters, a one-at-a-time
sensitivity analysis [15] was performed as follows. For each parameter, a range
of possible values were tested, while fixing the other parameters to their default
values from Table 1. Specifically, the following values were used: ct ∈ [20000,
30000, 40000, 50000, 60000], saIter ∈ [50000, 100000, 150000, 200000, 250000],
θ ∈ [0.90, 0.92, 0.94, 0.96, 0.98], ar ∈ [1%, 3%, 5%, 7%, 9%], D ∈ [5000,
10000, 15000, 20000, 25000], and α ∈ [40, 60, 80, 100, 120]. This experiment
was conducted on 9 representative instances from the set of instances used in
Sections 4.2 and 4.3, and based on 20 independent runs per parameter value
with a cutoff time of 60 minutes per run. Fig. 6 shows the average values of
Φbest and Φavg obtained for the 9 instances, where the X-axis indicates the
values of each parameter and the Y-axis shows the best/average conductance
values over the 9 representative instances: preferentialAttachment, smallworld,
delaunay n18, delaunay n19, ga2010, oh2010, wing, 144, thermal2.

Fig. 6 shows the impact of each parameter on the performance of IMSA.
Specifically, for the parameter ct, ct = 60000 yields the best results for both
Φbest and Φavg. The default value of ct was set to 60000 in this study. For
saIter, the value of 200000 is the best choice while a larger or a smaller
value weakens the performance of IMSA. For the parameter θ, IMSA obtains
the best performance with the value of 0.98 while smaller values decrease
its performance. Furthermore, ar = 5% appears to be the best choice for
IMSA. For the parameters D and α, the value 10000 and 80 were adopted
respectively as their default values according to Fig. 6. The default values of
all the parameters are summarized in Table 1.

5 Conclusion and future work

The iterated multilevel simulated annealing algorithm presented in this work
is the first multilevel algorithm for the challenging NP-hard minimum conduc-
tance graph partitioning problem. Based on the general (iterated) multilevel
framework, IMSA integrates a novel solution-guided coarsening method to
construct a hierarchy of reduced graphs and a powerful simulated annealing
local refinement procedure that makes full use of a constrained neighborhood
to rapidly and effectively improve the quality of sampled solutions.

The performance of IMSA was assessed on three sets of 66 benchmark in-
stances from the literature, including 56 graphs from the 10th DIMACS Im-
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plementation Challenge and 10 graphs from the Network Data Repository on-
line, with up to 23 million vertices. Computational results demonstrated the
competitiveness of the algorithm in finding high-quality partitions for large-
scale sparse graphs. This work proves for the first time the value of the general
multilevel approach for conductance graph partitioning.

From the application perspective, MC-GPP is a general and powerful graph
model able to formulate a variety of real problems related to community detec-
tion, clustering, bioinformatics, computer vision, and large graph size estima-
tion. Consequently, researchers and practitioners working on these real world
problems can benefit from the proposed approach to find improved solutions.
The availability of the source code of the algorithm will further facilitate such
applications.

For future research, several directions could be followed. First, parallel com-
putations are known to be quite useful for large graph partitioning (e.g.,
parallel graph partitioning for complex networks [31], distributed evolution-
ary partitioning [41] and distributed local search for partitioning large social
networks [41]). Parallel algorithms were also integrated in popular partition
packages such as ParMETIS (http://glaros.dtc.umn.edu/gkhome/views/
metis) and KaHIP (https://kahip.github.io/). It would be highly relevant
to create parallel versions of the IMSA algorithm to further increase its power.
Second, population-based evolutionary algorithms have been successfully em-
ployed for solution refinement under the multilevel framework [5]. It would
be interesting to study this approach for conductance partition. Third, the
current IMSA implementation is more suitable for partitioning large sparse
graphs than for dense graphs. It would be useful to investigate additional
strategies to be able to handle both types of graphs. In particular, other graph
representations using compact structure [14] may be considered to reduce the
space complexity of the algorithm. Fourth, in addition to the studied memetic
and local search methods in the literature, it is worthy investigating other
metaheuristic-based algorithms to better handle various types of graphs and
further enrich the MC-GPP toolkit. Finally, given the scarcity of exact ap-
proaches to MC-GPP in the existing literature, there is clearly a lot room for
research in this direction.
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A Appendix

This appendix reports the detailed results of the proposed IMSA algorithm
and the three reference algorithms (MAMC [29], SaBTS [30], and MQI [24])
on the three sets of 66 benchmark instances whose main features are shown
in Table A.1.

According to the experimental protocol of Section 3.2, each algorithm was run
with its default parameters setting and executed 20 times per instance with
a cutoff time of 60 minutes per run. The results of 39 small and medium in-
stances (29 DIMACS graphs and the 10 massive network graphs) for the three
reference algorithms were extracted from [29]. The results of the compared
algorithms on the remaining instances were obtained with the above protocol.
Tables A.2–A.4 show the computational results of the compared algorithms.

In Tables A.2–A.4, columns 1 and 2 indicate the name and the number of
vertices |V | for each instance. The remaining columns show the results reached
by IMSA and the reference algorithms (MAMC, SaBTS, and MQI): the best
conductance (Φbest), the average conductance (Φavg), the number of times Φbest

was reached across 20 independent runs (hit), and the average computation
time per run in seconds to reach the final solution (t(s)). The best of the
Φbest (or Φavg) values among all the compared algorithms for each instance
is highlighted in boldface. An asterisk (∗) indicates a strictly best solution
among all the results. Bold and asterisked values thus correspond to the best
upper bounds for the associated graphs.

Note that it is meaningful to compare the computation times of two algo-
rithms on a graph only if they report the same objective value. Given that
IMSA reached better results on many instances, the timing information is
provided for indicative purposes. For a meaningful comparison of computa-
tional efficiency of the algorithms, the reader is referred to the time-to-target
analysis shown in Section 4.1.
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Table A.1
Main features of the 66 benchmark instances from “The 10th DIMACS Implemen-
tation Challenge Benchmark” and “The Network Data Repository online”.

Instance |V | |E| Density Instance |V | |E| Density

Small set (24) delaunay n20 1,048,576 3,145,686 5.72e-06

sc-nasasrb 54,870 1,311,227 8.71e-04 inf-roadNet-PA 1,087,562 1,541,514 2.61e-06

wing 62,032 121,544 6.32e-05 thermal2 1,227,087 3,676,134 4.88e-06

delaunay n16 65,536 196,575 9.15e-05 belgium 1,441,295 1,549,970 1.49e-06

sc-pkustk13 94,893 3,260,967 7.24e-04 G3 circuit 1,585,478 3,037,674 2.42e-06

preferentialAttachment 100,000 499,985 1.00e-04 kkt power 2,063,494 6,482,320 3.04e-06

smallworld 100,000 499,998 1.00e-04 delaunay n21 2,097,152 6,291,408 2.86e-06

luxembourg 114,599 119,666 1.82e-05 netherlands 2,216,688 2,441,238 9.94e-07

delaunay n17 131,072 393,176 4.58e-05 M6 3,501,776 10,501,936 1.71e-06

144 144,649 1,074,393 1.03e-04 333SP 3,712,815 11,108,633 1.61e-06

web-arabic-2005 163,598 1,747,269 1.31e-04 AS365 3,799,275 11,368,076 1.58e-06

soc-gowalla 196,591 950,327 4.92e-05 venturiLevel3 4,026,819 8,054,237 9.93e-07

delaunay n18 262,144 786,396 2.29e-05 NLR 4,163,763 12,487,976 1.44e-06

ok2010 269,118 637,074 1.76e-05 delaunay n22 4,194,304 12,582,869 1.43e-06

va2010 285,762 701,064 1.72e-05 hugetrace00 4,588,484 6,879,133 6.53e-07

nc2010 288,987 708,310 1.70e-05 channel 4,802,000 42,681,372 3.70e-06

ga2010 291,086 709,028 1.67e-05 Large set (17)

cnr-2000 325,557 2,738,969 5.17e-05 hugetric00 5,824,554 8,733,523 5.15e-07

mi2010 329,885 789,045 1.45e-05 hugetric10 6,592,765 9,885,854 4.55e-07

mo2010 343,565 828,284 1.40e-05 italy 6,686,493 7,013,978 3.14e-07

oh2010 365,344 884,120 1.32e-05 adaptive 6,815,744 13,624,320 5.87e-07

soc-twitter-follows 404,719 713,319 8.71e-06 hugetric20 7,122,792 10,680,777 4.21e-07

pa2010 421,545 1,029,231 1.16e-05 great-britain 7,733,822 8,156,517 2.73e-07

il2010 451,554 1,082,232 1.06e-05 delaunay n23 8,388,608 25,165,784 7.15e-07

soc-youtube 495,957 1,936,748 1.57e-05 germany 11,548,845 12,369,181 1.85e-07

Medium set (25) asia 11,950,757 12,711,603 1.78e-07

soc-flickr 513,969 3,190,452 2.42e-05 hugetrace10 12,057,441 18,082,179 2.49e-07

delaunay n19 524,288 1,572,823 1.14e-05 road central 14,081,816 16,933,413 1.71e-07

ca-coauthors-dblp 540,486 15,245,729 1.04e-04 hugetrace20 16,002,413 23,998,813 1.87e-07

soc-FourSquare 639,014 3,214,986 1.57e-05 delaunay n24 16,777,216 50,331,601 3.58e-07

eu-2005 862,664 16,138,468 4.34e-05 hugebubbles00 18,318,143 27,470,081 1.64e-07

tx2010 914,231 2,228,136 5.33e-06 hugebubbles10 19,458,087 29,179,764 1.54e-07

ecology2 999,999 1,997,996 4.00e-06 hugebubbles20 21,198,119 31,790,179 1.41e-07

ecology1 1,000,000 1,998,000 4.00e-06 road usa 23,947,347 28,854,312 1.01e-07

NACA0015 1,039,183 3,114,818 5.77e-06
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