
Solution-based tabu search for the capacitated dispersion problem

Zhi Lua, Anna Mart́ınez-Gavarab,∗, Jin-Kao Haoc, Xiangjing Laid

aBusiness School, University of Shanghai for Science & Technology, 516 Jungong Rd., Shanghai 200093, China
bDpt. Estad́ıstica i Investigació Operativa, Universitat de València,

C/Doctor Moliner, 50, 46100 Burjassot, València, Spain
cLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

dInstitute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023,
China

Expert Systems with Applications 223: 119856, 2023, https://doi.org/10.1016/j.eswa.2023.119856

Abstract

Given a weighted graph with a capacity associated to each node (element), the capacitated
dispersion problem (CDP) consists in selecting a subset of elements satisfying a capacity
constraint, in such a way that the minimum distance among them is maximized. The purpose of
this work is to tackle this NP-hard problem, developing a simple, effective, and parameter-free
method based on the solution-based tabu search algorithm (SBTS). Specifically, we propose
a greedy construction heuristic to obtain high-quality initial solutions, and the use of three
specific hash functions to identify the tabu status of candidate solutions. Moreover, to enhance
the search, we propose the combination of three neighborhoods, including a new one, in which
we implemented a constrained swapping strategy. The combination of all these elements
results in a very efficient strategy. Extensible computational experiments are performed to
get insights into the influences of the algorithmic components of SBTS, and to show that our
proposal outperforms the state-of-the-art results. Finally, our solution approach is applied to
a realistic location problem.

Keywords: Combinatorial optimization, diversity maximization, dispersion, metaheuristics,
tabu search.

1. Introduction

The family of dispersion (or diversity) problems arises in a wide variety of practical
situations, including facility location, social network analysis, community mining, ecological
conservation, and quantum computing. The first discrete models appear in the late eighties
with the work of Kuby (1987), and several exact and heuristic methods have been developed
to solve them since then (Glover & Laguna, 1998; Duarte & Mart́ı, 2007; Lai et al., 2018).
An extended survey of the different mathematical models and methodologies employed for
dispersion maximization has been analyzed in Mart́ı et al. (2022). The authors also establish
the most appropriate models, and the open problems that are still a challenge.

∗Corresponding author.
Email addresses: zhilusix@gmail.com (Zhi Lu), gavara@uv.es (Anna Mart́ınez-Gavara),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), laixiangjing@gmail.com (Xiangjing Lai)

Preprint submitted to Elsevier

Dispersion maximization problems consist in finding a collection of elements from a given
set, such that the dissimilarity among them is maximized. Specifically, this dissimilarity
(or diversity among the selected elements) is defined differently depending on the practical
application example under study, giving rise to several models (Prokopyev et al., 2009; Mart́ı
et al., 2022; Mart́ı et al., 2013; Mart́ınez-Gavara et al., 2017). The two most popular diversity
models in the literature are the maximum diversity problem (MDP) and the max-min diversity
problem (MMDP). In the MDP, the sum of the distances among the selected elements is
maximized, while in the MMDP, it is maximized the minimum distance between each pair of
elements in the selected set.

The study of Parreño et al. (2021) shows the main features of the solutions obtained with
the different diversity models from a geometrical perspective. In particular for MDP and
MMDP models, their work reveals that the elements in a solution of the MDP are close to the
borders, avoiding the central region; while in the MMDP, the points are equidistant all over
the space, and it does not avoid to select points in the central region. The authors conclude
that the MMDP is thus recommended for some location problems, such as obnoxious facilities.
These models, however, usually neglect the introduction of constraints, and rely only on the
selection of a prefixed number of elements, which makes them somehow unrealistic.

This work focuses on a new model based on the MMDP that replaces the cardinality
restriction with a capacity constraint. This model, known as the capacitated dispersion
problem (CDP), is NP-hard and was first defined by Rosenkrantz et al. (2000) in the context
of locating facilities. Specifically, the CDP seeks to maximize the dispersion of the selected
elements (sites, in facility location applications) under a capacity constraint, which models a
minimum storage capacity requirement.

The mathematical model for the CDP is defined as follows. Given a graph G = (V,E),
where V is a set of n nodes (elements) and E is a set of edges, let ci be the capacity of node
i ∈ V , and let dij be the distance between nodes i and j, ∀(i, j) ∈ E (dij = 0, if (i, j) /∈ E).
The CDP consists of selecting a subset M ⊆ V , such that the sum of the selected nodes
capacities is at least a required value B, while maximizing the minimum distance between the
pairs of selected elements. The CDP can be formulated with binary variables xi (i = 1, . . . , n)
that take the value 1 if element i is selected, and 0 otherwise. Then, the mathematical
programming model (Peiró et al., 2021) is defined as follows:

Maximize min
i,j∈M

dij (1)

subject to:

n∑
i=1

cixi ≥ B (2)

M = {i ∈ V : xi = 1} (3)

xi ∈ {0, 1}, i = 1, 2, . . . , n; (4)

where constraint (2) ensures that the minimum capacity requirement (B) of the selected
elements is satisfied. A solution M can be represented by a n-dimensional array x =
(x1, x2, . . . , xn) with xi = 1 if element i ∈ M and xi = 0 otherwise (i = 1, 2, . . . , n). The
quality of any candidate solution M in the search space Ω,

Ω = {M ⊂ V, 2 ≤ |M | ≤ n}, (5)

is given by its objective function value f(M) as shown in Equation (1).

2

Some undesirable facilities applications, such as landfills or sewage plants, nuclear or
chemical plants, and hazardous wastes sites, should be dispersed enough to reduce human and
environmental harm while satisfying storage capacity limitations and cost constraints. This
problem also finds an application in retail franchises, where shops should be placed dispersed
with a minimum capacity of service to satisfy the overall demand. More examples can be found
in the work of Mart́ınez-Gavara et al. (2021), where the authors introduce other practical and
realistic applications that can be easily adapted to this problem.

The importance of the practical applications of the CDP merits further study and motivates
this work. As mentioned above, classical models such as MDP or MMDP, consider a prefixed
number of facilities without additional constraints; however, in practical problems, the capacity
of each facility depends on its location, so the number of facilities is adjusted in real time. The
CDP models these characteristics to approach real location problems in a better way than
the classical ones. In fact, one important motivation to deal with this NP-hard optimization
problem is to solve a realistic location problem proposed in Daskin (2011), and studied later
on in Lozano-Osorio et al. (2022), where an international branch company wants to open new
offices in U.S. to expand its business. This practical problem is introduced in detail and solved
in Section 5.

One of the main goals of this paper is to propose a simple but effective approach to deal
with the CDP. In particular, we propose a meta-heuristic based on Tabu Search methodology
(Glover & Laguna, 1998), which has been proven to be very efficient in diversity problems
(Mart́ı et al., 2022; Duarte & Mart́ı, 2007; Porumbel et al., 2011). The typical implementation
to avoid cycling is attribute-based memory; however, in this paper, we consider a less studied
methodology, the solution-based tabu search method, where the complete solution is recorded.
The use of specific hash functions speeds up the process of identifying the solution, obtaining a
competitive meta-heuristic (Lai et al., 2018). Specifically, each global iteration of our method
consists in applying a greedy heuristic to construct a high-quality initial solution in a very
short computational time, and then the algorithm combines a large neighborhood with the
solution-based memory to further improve the best solution found so far.

The remainder of the paper is structured as follows. We first review the related literature
and highlight the main contributions of this work in Section 2. Section 3 describes the proposed
solution-based tabu search algorithm for the CDP. Section 4 reports the computational
evaluations of the proposed SBTS algorithm, and Section 5 applies the approach to solve
a realistic location problem. Section 6 analyzes key algorithmic ingredients, and Section 7
concludes the work and provides perspectives for future research. Appendix provides detailed
instance-by-instance comparison results between SBTS and the reference algorithms.

2. Literature review

This section is limited to reviewing the related literature. We first review the literature
addressing the CDP, and then the papers that apply the solution-based tabu search methodology
in diversity problems.

To the best of our knowledge, there are only three recent studies in the literature for solving
the CDP. The first work by Rosenkrantz et al. (2000), proposes a simple greedy heuristic,
called TI, with a O(n2 log n) running time. This work is mainly theoretical and there are no
reported empirical results or experiments, though the authors demonstrate a good performance
guarantee of TI.

3

A different approach is developed in Peiró et al. (2021), who proposes a strategic oscillation
method, named SO, which combines a greedy randomized adaptive search procedure (GRASP)
and a variable neighborhood descent (VND) to tackle the CDP. The authors also present a
mathematical model to solve small-sized and medium-sized instances with optimal results. An
empirical comparison on 100 benchmark instances shows the superiority of SO compared to
the previous heuristic TI, and the mathematical model solved using CPLEX and LocalSolver

software.
Following that, Mart́ı et al. (2021b) proposes a new mathematical model and devise a

heuristic based on scatter search for the CDP, called SS. Their experimentation show that the
new mathematical model solves to optimality many more instances than the previous one,
and the SS method outperforms the previous one SO as well.

The three previous papers greatly contributed to better solving the CDP. However, two
main limitations can be identified in the existing approaches, which motivate the current work.

� First, these approaches have difficulties in robustly and consistently producing high-
quality solutions for large-sized graphs.

� Second, they may require a substantial amount of computation time to reach satisfactory
results.

We thus conclude that the research on solving the CDP is still in its early stages, and
effective algorithms, especially heuristic methods, need to be developed further to address this
challenging problem.

On the other hand, in the review paper of Mart́ı et al. (2022), the authors conclude that
Tabu Search (TS) is among the best metaheuristics to solve diversity maximization problems.
For this reason, in Section 3, we propose a procedure based on the tabu search methodology
for the CDP. In particular, we consider an interesting alternative to the classical tabu search
that focuses on solution attributes (ABTS) (Galinier & Hao, 1999; Glover & Laguna, 1998;
Lu et al., 2020, 2019; Wang et al., 2014). We propose a solution-based tabu search (SBTS)
method (Lai et al., 2019b, 2018; Wang et al., 2017; Wei & Hao, 2021) that records visited
solutions (instead of attributes) to avoid search cycling. This variant has received considerably
less attention in the literature, and as far as we know, only five works propose a solution-based
tabu search methodology to solve a diversity problem. See the timeline diagram in Figure 1.
Next, these five recent and interesting papers are briefly described.

In 2017, Wang et al. (2017) presents SBTS and memetic algorithms for the challenging
Minimum Differential Dispersion Problem (MinDiff DP), first showing the superiority of
the SBTS for tackling the diversity problems. In 2018, Lai et al. (2018) proposes an SBTS
method with a parametric swap neighborhood for the Maximum Min-sum Dispersion Problem
(MaxMinSum DP). Experiments show that their method outperforms the state-of-the-art
methods in both solution quality and computational efficiency.

Following that, in 2019, an intensification-driven tabu search algorithm is developed in Lai
et al. (2019a) for the MinDiff DP with the outstanding experimental results. Subsequently,
a SBTS method integrated with dynamic neighborhood size and two new hash functions
strategies is designed by Lai & Fu (2019) to solve the MaxMinSum DP, and experiments show
that they work very well, especially for large-scale instances.

Finally in 2021, Wang et al. (2021) proposes a two-phase intensification tabu search
algorithm for the MaxMinSum DP, for which both integrates attribute-based tabu search and
solution-based tabu search to refine the local search procedure. The above recent developments

4

2018 Wang, Lü & Su
Intensification
tabu search to

avoid visiting the
previous

encountered
solutions for
MaxMinSum

2019
2019

Lai, Hao,
Glover & Yue

Intensification-
driven TS for

the MinDiff

2021

2017
Lai & Fu

TS approach,
dynamical

neighborhood
size for solving

MaxMinSum

Wang, Wu &
Glover

Solution-based
tabu search

procedure to
solve the

MinDiff

Lai, Yue, Hao &
Glover

Solution-based
tabu search for

the
MaxMinSum

Figure 1: Timeline of the SBTS method in diversity maximization problems.

support the use of the SBTS method to deal with diversity problems, and in particular, with
the CDP.

However, as far as we know, this methodology has not yet been tested, and therefore,
has not been adapted to max-min or min-max problems. It is well-known that max-min
(min-max) problems are a challenge for heuristic search since there exists many solutions with
the same objective function value. Part of the difficulty is that changes in the solutions cannot
be identified by changes in the objective function. To overcome this issue, (i) we devise a
tabu search meta-heuristic which can identify the already visited solutions using three hash
functions, and on the other hand, (ii) in the improvement phase a new constrained swap
neighborhood is proposed. This neighborhood only involves swap moves between elements in
two specifically subsets, which guarantee the improvement of the current objective function
value, under feasibility conditions.

We had a twofold goal for this work: to experiment with the implementation of solution-
based tabu search on a max-min problem and, in the process, to develop a state-of-the-art
procedure for the CDP. The following contributions have allowed the achievement of both
goals:

(i) to propose a simple and effective solution-based tabu search algorithm (SBTS) for the
CDP. Our proposal is simple in design and parameter-free, relieving users of the time-
consuming task of parameter calibration;

(ii) to incorporate a hash-based mechanism to the SBTS algorithm to quickly identify the
tabu status of neighboring solutions in the flat landscape presented by the max-min
problem;

(iii) to propose a greedy construction heuristic (GreedyIS) to create a high-quality initial
solution;

(iv) to propose a new neighborhood, the constrained Swap (CSwap). The union of Add,
Drop, and constrained Swaps moves promote a more complete neighborhood exploration

5

in a given time frame;

(v) to present a streamline calculation strategy (O(n)) to quickly determine the changed of
the objective function value;

(vi) to assess our proposal on the 100 benchmark instances commonly used in the literature.
Our SBTS algorithm outperforms the state-of-the-art algorithms for most of the bench-
mark instances. Specifically, SBTS finds the optimal results for 73 out of 80 instances for
which it is known, and it improves the best-known results for the remaining 20 instances
with unknown optimal solutions.

This work demonstrates the benefit of the solution-based tabu search method for tackling
this challenging dispersion (or diversity) problem. The code of the SBTS algorithm will be
publicly available, allowing researchers to better solve various practical problems that can be
formulated as the CDP and the related dispersion (or diversity) problems.

3. Solution-based tabu search for the capacitated dispersion problem

Many metaheuristics can be used to tackle this hard optimization problem. Techniques
based on artificial intelligence, social behavior or bio-inspired have demonstrated to efficiently
solve many optimization problems (Glover & Laguna, 1998; Neri & Cotta, 2012; Ruiz & Stützle,
2007; Mart́ı et al., 2006; Wang et al., 2014). As mentioned in Section 2, in Mart́ı et al. (2022),
the authors review the literature on diversity maximization problems from an OR perspective
and perform an empirical review and comparison of the best and more recently proposed
algorithms to solve them. Based on their experimentation, Tabu Search (TS) emerges the
best metaheuristic to solve diversity maximization problems, where the simple TS proposed
by Porumbel et al. (2011) solves the best one for the MaxMin dispersion problem. It is clear,
though, that the use of memory is a key point in the ability of a metaheuristic in search for a
global optimum in diversity maximization problems. Therefore, it is quite natural to use TS
as the methodology to solve the CDP.

Tabu search (Glover & Laguna, 1998) is a metaheuristic that has been successfully applied
in many combinatorial optimization problems, not only in diversity maximization problems.
Although most studies use attribute-based adaptive memory for guiding purposes, the recent
works of Lai et al. (2019b) and Wei & Hao (2021) highlight the effectiveness of the solution-
based tabu search procedure to solve binary optimization problems.

In this work, following the principle of solution-based tabu search presented in Lai et al.
(2019b, 2018); Wang et al. (2017); Wei & Hao (2021), we devise an effective solution-based tabu
search algorithm (SBTS) for the CDP. This is the first time that this strategy has been adapted
to the CDP. The next sections go through the major components of our SBTS algorithm.

3.1. General procedure

In general terms, the SBTS algorithm starts with an initial solution (M) obtained by a
greedy heuristic procedure, and then it applies a tabu search strategy that operates as follows.
It scans the neighborhood of the current solution and evaluates all possible solutions that can
be obtained by one of the following moves: insertion of a new element (Add(·)), extraction of
an element (Drop(·)), or the exchange between a selected element with an non-selected one
(CSwap(·)). Then, the algorithm performs the move that produces the best new solution M ′.
As it is customary in the TS methodology, the algorithm always performs the best available

6

Algorithm 1: Solution-based tabu search for the CDP (SBTS).

Input: Graph G = (V,E), hash tables H1, H2, H3, hash functions h1, h2, h3, length of hash
tables l, cutoff time tmax

Output: Best solution M∗ found during the search
1 begin

/* Initialize the hash tables, Section 3.5 */

2 for i = 0 to l − 1 do
3 H1[i]← 0
4 H2[i]← 0
5 H3[i]← 0

/* Initial solution with greedy construction heuristic, Section 3.2 */

6 M ← GreedyIS() /* Algorithm 2 */

7 M∗ ←M /* M∗ records the best solution found so far */

8 repeat
/* Explore the neighborhood of the current solution M */

9 N(M) = NAdd ∪NDrop ∪NCSwap /* Section 3.3 */

10 M ′ ← best nontabu solution(N(M))
11 M ←M ′ /* Update the current solution M */

/* Update the best solution found so far */

12 if f(M) > f(M∗) then
13 M∗ ←M
14 f(M∗)← f(M)

/* Update the hash tables with M, Section 3.5 */

15 H1[h1(M)]← 1
16 H2[h2(M)]← 1
17 H3[h3(M)]← 1

18 until time() ≥ tmax;

19 return M∗

move, even if it is a non-improving move. The new solution is declared visited, i.e., tabu in
TS terminology, by using the hash functions and hash tables. This mechanism avoids search
cycling. The algorithm finishes when a time limit is reached, and the best visited solution is
returned as its output.

Algorithm 1 shows the general procedure of our method.To reduce the CPU time of
determining the tabu status of a candidate solution, SBTS uses three hash tables associated
with three hash functions, respectively, where Hk (k = 1, 2, 3) represents the hash tables, hk
(k = 1, 2, 3) identifies the corresponding hash functions, and l is the length of the hash tables.
These hash functions help the search to avoid previously-visited solutions (Lai & Fu, 2019;
Lai et al., 2018; Wei & Hao, 2021).

First, SBTS initializes the hash tables (Alg. 1: lines 2-5, and described in Section 3.5) and
generates an initial solution M by a greedy construction heuristic (GreedyIS) (Alg. 1: line 6,
detailed in Section 3.2). A greedy construction is preferred rather than a randomized one,
since the quality of the initial solution favors the algorithm to convergence faster and better
(Laguna et al., 1999; Mart́ınez-Gavara et al., 2021). M∗ records the best solution found so far
(Alg. 1: line 7).

SBTS then performs moves as it is customary in tabu search, until the given stopping
condition is met, which is typically a cutoff time limit (Alg. 1: lines 8-18). At each iteration,

7

Algorithm 2: Greedy construction heuristic for initial solution (GreedyIS).

Input: Graph G = (V,E), total required capacity B
Output: Initial solution M

1 begin
2 M ← ∅, c(M)← 0 /* Initial M and the total weight c(M) */

3 M ←M ∪ {v0} /* Start with a random seeding node v0 ∈ V */

4 c(M)← c(M) + cv0
5 repeat

6 Choose v at random from V̂ = arg maxv∈V \M de(v), where de(v) = minu∈M duv
7 M ←M ∪ {v}
8 c(M)← c(M) + cv
9 until c(M) ≥ B;

10 return M

SBTS first identifies the best non-tabu neighboring solution M ′ from the union of NAdd, NDrop,
and NCSwap neighborhoods (Alg. 1: lines 9-10), and then moves from M to M ′ (Alg. 1: line
11), see Section 3.3 for more details. The main motivation of this phase of the algorithm
is twofold. On the one hand, to diversify the search by iteratively transitioning from the
current solution M to a nearby solution M ′ in its neighborhood (N(M)), and on the other
hand, to enhance the search by selecting the best admissible candidate among neighboring
solutions within the neighborhood. The current solution M is replaced by M ′ although the
best admissible neighboring solution M ′ is not better than M . The algorithm is then able to
explore new regions of the solution space, without getting trapped in a local optima (Wei &
Hao, 2021).

Subsequently, the hash tables are updated according to the new solution M (Alg. 1:
lines 15-17, described in Section 3.5). This prevents the search from visiting the encountered
solution M again. The loop is repeated until the cutoff time (tmax) is reached (Alg. 1: line
18). Finally, the best solution M∗ found during the search process is returned as the final
result (Alg. 1: line 19).

In the following sections, we describe each of the main components of the SBTS algorithm
(Algorithm 1). Section 3.2 presents the greedy construction heuristic. Then, Section 3.3
explains how the three neighborhoods used in this work are built. In addition, Section 3.4 gives
details about the streamline calculations that quickly evaluate the weight of each neighboring
solution. Finally, Section 3.5 describes the hash functions and hash tables, which determine
the tabu status of a neighboring solution.

3.2. Initial solution with greedy construction heuristic

To generate an initial solution of good quality, the proposed SBTS algorithm applies a simple
greedy construction heuristic (GreedyIS, Algorithm 2). Let c(M) be the total capacity of the
current solution M , computed as the sum of the capacities ci of the elements i in M . M and
c(M) are initially set to ∅ and 0, respectively (line 2). GreedyIS begins with a random seeding
element v0 (lines 3-4) and then, in the subsequent steps, the procedure constructs an initial
solution by iteratively adding one element at a time to the partial solution. At each iteration,
an element v is chosen at random from those with the largest minimum distance between the
unselected elements (v ∈ V \M) and the selected ones (u ∈ M). Specifically, 1) GreedyIS

first calculates the minimum distance de(v) = minu∈M,v∈V \M duv, for each unselected element

8

(v ∈ V \M) to the selected elements (u ∈M); and then 2) chooses an unselected element v
with the largest de(v) value (ties break at random) to insert into M , and increase c(M) by
the capacity of element v, cv. The two steps are repeated until M meets the total required
capacity B (lines 5-9). Since the CDP consists in maximizing the interdistance value within
M , the larger a de(v) value, the better a candidate element v. The time complexity of the
GreedyIS procedure is bounded by O(m× n), where m is the number of selected elements
(m = |M |).

3.3. Neighborhood structures

To effectively explore the search space Ω (5), SBTS explores the neighborhood defined
by a joint use of three move operators Add(·), Drop(·), and Constrained Swap (CSwap(·, ·)).
Among them, Add(·) and Drop(·) are the basic move operators that have been successfully
applied in previous works (Mart́ı et al., 2021b; Peiró et al., 2021) for local improvement, while
CSwap(·, ·) is first introduced in this work.

Given a solution M , an element u ∈ M , and v ∈ V \M , the basic move operators are
briefly described as follows,

� Add(v) adds an element v ∈ V \M to the set M to generate a neighboring solution
M ′. Formally, the neighborhood defined by this operator is given below:

NAdd(M) = {M ′ : M ′ = M ⊕Add(v), v ∈ V \M}. (6)

� Drop(u) removes an element u ∈M to generate a neighboring solution M ′, such that
the capacity constraint is respected, i.e., c(M)− cu ≥ B. Formally, the neighborhood
defined by this operator is given below:

NDrop(M) = {M ′ : M ′ = M ⊕Drop(u), u ∈M, c(M)− cu ≥ B}. (7)

One observes that Add(v) and Drop(u) operators lead to a neighborhood of size O(n−m)
and O(m), respectively. Drop(u) can either improve or have no effect on the quality of the
current solution, while Add(v) always decreases or has no effect on the objective function
value.

The Swap(u, v) operator (Peiró et al., 2021) often exchanges an element u ∈M with an
element v ∈ V \M to generate a neighboring solution M ′, resulting in a neighborhood of
size O(m× (n−m)), which is very large and computationally expensive. To improve on the
computational efficiency of SBTS, we devise a new constrained swap neighborhood that limits
the swap moves to be examined in two specifically identified subsets X ⊆M and Y ⊆ V \M .
The induced move operator CSwap(u, v) is defined as follows:

� CSwap(u, v) limits the swapped elements to two high-quality subsets u ∈ X ⊆M and
v ∈ Y ⊆ V \M to generate a neighboring solution M ′. Formally, the neighborhood
induced by this operator is given below:

NCSwap(M) = {M ′ : M ′ = M ⊕ CSwap(u, v), u ∈ X, v ∈ Y }. (8)

The subsets X and Y can be identified by developing the idea introduced in Mart́ı et al.
(2021b) to remove or replace those elements in the solution in which the objective function
matches its value. For all u ∈M , let di(u) be the minimum distance between a selected element

9

u ∈M and the rest of the elements in the solution, M , i.e., di(u) = minx∈M dux. Note that the
objective function value f(M) is to maximize the di(u) value. So, it is clear that to improve
a current solution M , the element (or elements) u ∈ M for which di(u) = f(M) must be
removed or replaced; this is why they are called critical elements. The subset X then includes
all possible elements u ∈M for which di(u) = f(M), i.e., X = {u ∈M : di(u) = f(M)}. The
set V \M is much larger than the set M , we thus implement an efficient way to identify a
good exchange v ∈ Y ⊆ V \M for the elements u ∈ X. Specifically, we compute for v ∈ V \M ,
de(v) = minx∈M dxv as in Section 3.2. Since f(M) consists in maximizing pairwise distances
within M , the larger de(v) the better the insertion of element v. We thus collect all possible
elements v with the largest (max) and the second largest (secmax) de(v) values to build the
subset Y , i.e., Y = arg maxv∈V \M de(v) ∪ arg secmaxv∈V \M de(v). The constrained swap
neighborhood is more efficient since the subsets X and Y are much smaller than the sets M
and V \M . In practical terms, the worst-case complexity is O(m× n), however, this is not
reached for most iterations. The average complexity only requires O(1) time (as observed in
our experiments, |X| ∈ [1, 10] and |Y | ∈ [1, 10] in most iterations).

It is well documented in the tabu search literature (Glover & Laguna, 1998) that it is
usually better to define a large neighborhood that is constrained or filtered according to
problem information, than to consider a small neighborhood that limits the exploration by
definition.

The neighborhood explored by SBTS covers the above three neighborhoods, i.e., N(M) =
NAdd ∪NDrop ∪NCSwap. At each iteration, SBTS scans the current neighborhood N(M) and
applies a streamline calculation strategy (Section 3.4) to quickly evaluate each neighboring
solution. A best non-tabu candidate solution M ′ is then selected to replace the current solution
M . Once all candidate solutions in N(M) have been prohibited by the tabu list, the best
candidate solution M ′, regardless of its tabu status, is selected to replace the current solution
M (aspiration criterion).

3.4. Streamline calculations

To quickly determine the objective function value change and, in order to reduce the
computational complexity, we present here the streamline calculation strategy for the CDP.
Let M be the current solution and M ′ be a neighboring solution after applying the Add(·),
Drop(·), or CSwap(·, ·) move operators to the current solution M . It is worthy noting that the
objective function value f(M) is calculated by maximizing the minimum distance between the
pairs of selected elements in M . We thus maintain and update the following two n-dimensional
arrays:

md(v) = min
u∈M

duv, ∀v ∈ V. (9)

mdc(v) = |{u ∈M,duv = md(v)}|, ∀v ∈ V. (10)

where md(v) records the distance between each element v ∈ V and the selected elements
u ∈ M , and mdc(v) counts the number of neighbors of element v, whose distance to v are
equal to md(v). Note that md(v) = de(v) if v ∈ V \M and, md(v) = di(v) if v ∈M .

For a given solution M , the objective function value of a neighboring solution M ′ after an
Add(v) move to M can be quickly determined as:

f(M ′) =

{
f(M) , if md(v) ≥ f(M)
md(v) , if md(v) < f(M).

(11)

10

Similarly, the objective function value of a new solution M ′ after a Drop(u) move to M
can be conveniently calculated as:

f(M ′) =

{
f(M) , if md(u) > f(M) ∨ (md(u) = f(M) ∧mdc(u) > 1)
Recalculate f(M) , if md(u) = f(M) ∧mdc(u) = 1.

(12)

After each add operation (i.e., adding an element v from set V \M to set M), it is necessary
to examine all elements x ∈ V \ {v} and update the two arrays md(x) and mdc(x) as follows:

Case 1 if dxv < md(x), then md(x) = dxv ∧mdc(x) = 1
Case 2 if dxv = md(x), then mdc(x) = mdc(x) + 1
Case 3 if dxv > md(x), then keep md(x) and mdc(x) unchanged
After each drop operation (i.e., dropping an element u from set M to set V \M), it is

required to examine all elements x ∈ V \ {u} and update the two arrays md(x) and mdc(x)
as follows:

Case 1 if dux = md(x) ∧mdc(x) = 1, then recalculate md(x)
Case 2 if dux = md(x) ∧mdc(x) > 1, then mdc(x) = mdc(x)− 1
Case 3 if dux > md(x), then keep md(x) and mdc(x) unchanged
The records for elements u and v do not require any modification. Note that the constrained

swap operation does not require the streamline calculation strategy here since its neighborhood
size is relatively small and limited by O(1). The swap can also be separated into the add
and drop operations, we may achieve quick updating for the constrained swap operation by
employing the above streamline calculation strategy.

We now discuss the time complexity of the streamline calculation strategy. The objective
function value f(M ′) (Equation (11) and Equation (12)) can be quickly calculated in O(1)
time for most cases. However, if md(u) = f(M) ∧mdc(u) = 1 (Equation (12)), recalculating
f(M) takes O(n) time. In most situations, updating md(x) and mdc(x) after the add or drop
operations takes O(n) time but the drop operation (Case 1), recalculating md(x) is required
with O(m× n) time. In fact, the above recalculations are not required at each iteration, thus
the streamline calculation strategy requires a total of O(n) time.

3.5. Solution-based tabu strategy using hash functions

Tabu search typically uses an attribute-based definition of tabu status to identify moves
that cannot be considered during a specific period of time (tabu tenure). To avoid the search
from revisiting previously encountered solutions, solution attributes (such as a node, edge,
value of a variable, etc.) are recorded in short-term memory (tabu list). Attribute-based tabu
search (ABTS) is a general and powerful metaheuristic that has been utilized to tackle many
combinatorial optimization problems (Galinier & Hao, 1999; Glover & Laguna, 1998; Lu et al.,
2020, 2019; Wang et al., 2014). Recently, solution-based tabu search (SBTS) has emerged as
an interesting alternative that avoids search cycling by recording visited solutions rather than
attributes, making use of hash functions to determine tabu status of distinct solutions (Lai
et al., 2019b, 2018; Wei & Hao, 2021). SBTS has gradually gained some research attention
because of its ability to free up tuning tabu tenure; however, the high running time associated
with recording complete solutions needs to be addressed.

Generally, given a hash function h and a hash table H of size l, h can be used to map a
candidate solution M ′ ∈ Ω to an index of H, i.e., h : M ′ ∈ Ω → {0, 1, 2, . . . , l − 1}, with a
binary value of H[h(M ′)] to identify the tabu status of solution M ′. Specifically, H[h(M ′)] = 1
indicates that the solution M ′ has been visited previously and is classified as tabu (thus M ′ is

11

not eligible for consideration at the current iteration unless the aspiration criterion is met),
while H[h(M ′)] = 0 indicates that M ′ has not been visited and is thus eligible for consideration
at the current iteration. Our tabu list management strategy employs multiple hash tables and
hash functions to greatly reduce the probability of wrong identification of the tabu status.
Particularly, we use three hash tables Hk (k = 1, 2, 3) of length l, where each position takes a
binary value that contributes to the definition of the tabu status of candidate solutions. The
hash tables are all initialized to 0, indicating that no candidate solutions are classified as tabu.
Once a candidate solution M ′ is selected to replace the current solution M , the corresponding
positions in the three hash tables will be set to 1, i.e., Hk[hk(M

′)]← 1 (k = 1, 2, 3).
Given a solution x = {x1, x2, . . . , xn} (also called M) where xi = 1 if element i ∈M and

xi = 0 otherwise (i = 1, 2, . . . , n), the three hash functions hk(M) (k = 1, 2, 3) (Lai & Fu,
2019) are defined as follows,

hk(M) = (
n∑
i=1

wk(i)× xi) mod l. (13)

where wk(i) = wk(i − 1) + βk + rand(βk/2), wk(0) = βk, βk (k = 1, 2, 3) is a parameter
which takes different values (set to 300, 400, and 500 respectively in this work) for three hash
functions (Table 2, Section 4.2), rand(βk/2) takes a random integer value between 0 and βk/2,
and l is the length of hash tables (empirically set to 108 in this work).

For a solution M and its hash function hk(M) (k = 1, 2, 3), we can quickly calculate the
hash function values of its neighboring solution M ′ resulting from the Add(v) or Drop(u) or
CSwap(u, v) move operators as follows,

hk(M
′) =

hk(M) + wk(v) , if v ∈ V \M for the add operation
hk(M)− wk(u) , if u ∈M for the drop operation
hk(M)− wk(u) + wk(v) , if u ∈M, v ∈ V \M for the swap operation.

(14)

The following is how the hash-based tabu list management strategy works. Each hash
function is initially associated with a hash table of length l (|l| = 108), and each hash table is
initialized to 0. For a solution M , we calculate the three hash function values hk(M) (k = 1, 2, 3)
to identify the index of the three hash tables. The tabu status of a solution M is determined
according to the values of the three hash tables Hk[hk(M)] (k = 1, 2, 3). Specifically, M
is classified as a prohibited solution (i.e., already visited) when H1[h1(M)] ∧ H2[h2(M)] ∧
H3[h3(M)] = 1. Otherwise, M is determined as an unprohibited solution that has not been
visited by the current round of SBTS and is eligible for solution transition. Finally, for each
visited solution during the search process, we fill up the corresponding positions in the three
hash tables with 1. Figure 2 shows an illustrative example of a solution M being classified as
tabu and hence being excluded for solution transition.

The main benefit of utilizing hash functions to maintain the tabu list is that we can quickly
identify the tabu status of a neighboring solution in O(1) time. Furthermore, they eliminate
the requirements to confine tabu status to a specific time period, relieving the algorithm
designers of the time-consuming task of calibrating tabu tenure.

4. Experimental results

To evaluate the performance of the proposed SBTS algorithm, we show in this section the
computational results in comparison with the best performing algorithms in the literature
based on 100 well-known benchmark instances.

12

h3(M) = 3

H3

0 1 2 3 4 5 ... l - 1

1 1 0 1 1 0 0 1 H3[h3(M)] = 1

h2(M) = 4

H2

0 1 2 3 4 5 ... l - 1

0 1 0 1 1 0 1 0 H2[h2(M)] = 1

h1(M) = 2

H1

0 1 2 3 4 5 ... l - 1

0 0 1 0 0 1 1 0 H1[h1(M)] = 1

Figure 2: Illustrative example of the solution-based tabu strategy using three hash functions and the associated
hash tables.

4.1. Benchmark sets

The computational assessments are based on four sets of 100 benchmark instances, which
were previously used in various studies on dispersion (or diversity) problems (Lai et al., 2018;
Mart́ı et al., 2021a; Parreño et al., 2021; Wang et al., 2017; Zhou et al., 2017) and first adapted
to the CDP in Mart́ı et al. (2021b); Peiró et al. (2021). For each original instance, the capacity
value of each node is generated at random in the range [1, 1000]. The total required capacity
B is then calculated as the sum of all node’s capacities multiplied by a factor ϕ of 0.2 and 0.3,
obtaining two instances for each original one. The detailed information of these instances is
described below.

� GKD-b2 & GDK-b3 (40 instances): The data set GKD-b was initially generated by
Mart́ı et al. Mart́ı et al. (2010) for the MDP, in which the distance dij between any
two elements i and j is calculated as the Euclidean distances from randomly generated
points with coordinates in [0, 10]. Then, 20 instances (n = 50, 100) are adapted by Peiró
et al. (2021) for CDP then, as previously stated, two sets of instances with different
node capacities and required capacity B is obtained for each original one.

� GKD-c2 & GKD-c3 (20 instances): The data set GKD-c was first introduced by
Duarte & Mart́ı Duarte & Mart́ı (2007) that contained large instances (n = 500) for
MDP. In Peiró et al. (2021), the authors choose 10 instances and create two sets for each
of them as previously mentioned.

� SOM-a2 & SOM-a3 (20 instances): This data set was originally created by Mart́ı et al.
Mart́ı et al. (2010), where the distances between any two elements were calculated using
random values from an integer uniform distribution in [0, 9]. As in the previous sets, 10
suitable instances (n = 50) are selected and two sets of new instances are generated as
before.

� MDG-b2 & MDG-b3 (20 instances): This data set was first presented by Duarte
& Mart́ı Duarte & Mart́ı (2007) and utilized in Gallego et al. Gallego et al. (2009),
in which the distances between any two elements were real values in [0, 1000]. It is
considered 10 large instances (n = 500) of the original MDG-b set obtaining two sets of
new instances as before by Peiró et al. (2021).

13

ϕ = 0.2 ϕ = 0.3
Benchmark set Size n Benchmark set Size n

GKD-b2 20 50, 150 GKD-b3 20 50, 150
GKD-c2 10 500 GKD-c3 10 500
SOM-a2 10 50 SOM-a3 10 50
MDG-b2 10 500 MDG-b3 10 500

Table 1: List of benchmark sets.

Table 1 summarizes the main characteristics of the benchmarks listed above. Column
‘Benchmark set’ indicates the name of each set of instances, column ‘Size’ shows the number
of instances of each benchmark set, and column ‘n’ refers to the number of nodes (elements).
All of the benchmark instances are divided into two parts based on their capacity factors (ϕ),
and are available for download1.

4.2. Experimental settings

The proposed SBTS algorithm was programmed in C++1 and complied using GNU g++
8.3.0 with the ‘-O3’ option. All experiments were carried out on a computer with an Intel
Xeon E5-2695 v4 processor (2.10 GHz and 2GB RAM) running the Linux operating system.

For the comparative assessments, we adopt the best performing algorithms as our references:
1) the strategic oscillation method SO (Peiró et al., 2021), 2) the short-term scatter search SS1

(Mart́ı et al., 2021b), and 3) the long-term scatter search SS2 (Mart́ı et al., 2021b). These
reference algorithms were run on an Intel Core i7 processor (2.80 GHz and 8GB RAM). Since
the compared algorithms were tested on different computing platforms, we thus use CPU
frequency (Chen et al., 2016; Zhou et al., 2022) to compare the speeds of the processors that
were employed to test SBTS and the reference algorithms. Using our processor (Intel Xeon
E5-2695 v4, 2.10 GHz) as a basis, the scaling factor of the processor (Intel Core i7, 2.80 GHz)
used by the reference algorithms is 1.33, indicating that the processor used in our study is
slightly slower. This time conversion is only made for indicative purposes, since the computing
time of each algorithm is not only influenced by the processor, but also by some inaccessible
factors such as the operating systems, compilers, and coding skills of the programmers. The
authors of Peiró et al. (2021) and Mart́ı et al. (2021b) generously shared the results of their
algorithms, allowing us to conduct a direct and meaningful comparison. These algorithms also
represent the state-of-the-art for tackling the CDP and together hold the best-known results
for the available benchmark instances.

Considering the stochastic nature of our SBTS algorithm, each of the 100 benchmark
instances was independently solved 40 times with different random seeds. The cutoff times
of each run depend on two different stop criteria: 1) 10 seconds, and 2) 300 seconds. For
convenience of presenting, we denote SBTS with 10 seconds as SBTSshort, and SBTS with 300
seconds as SBTSlong. Studying the outcomes of these two termination criteria reveal how SBTS

performs when more computation time is available.

1The benchmark instances and the source code of the proposed SBTS algorithm will be made public at:
https://github.com/hellozhilu/SBTS_CDP.

14

https://github.com/hellozhilu/SBTS_CDP

Parameter Section Description Considered values Final value

β1 §3.5 In the first hash function h1(M) [100, 200, 300, . . . , 1000] 300
β2 §3.5 In the second hash function h2(M) [100, 200, 300, . . . , 1000] 400
β3 §3.5 In the third hash function h3(M) [100, 200, 300, . . . , 1000] 500

Table 2: Setting of parameters.

4.3. Parameter tuning

The proposed SBTS algorithm requires three parameters β1, β2, and β3 in each of the
three hash functions (Section 3.5). To construct a suitable parameter calibration, we employ
the IRACE package López-Ibáñez et al. (2016), which implements the Iterated F-race (IFR)
method Birattari et al. (2010) and allows automatic parameter configuration. For the tuning
experiment, we selected 40 hard instances from the benchmark sets GDK-c2, GDK-c3, MDG-
b2, and MDG-b3. The tuning budget of IRACE was set to 1000 runs, and the cutoff times of
each run was limited to 300 seconds. Table 2 shows the range of possible parameter values and
final values provided by the IRACE package. The final values can be considered the default
parameter setting of SBTS, which were consistently used in all of the experiments reported in
this work. As shown in Section 4.4, SBTS achieves highly competitive results with this unique
parameter setting. Generally, these parameters can be fine-tuned to obtain improved results,
and such a practice is useful when one seeks the best possible solution for a given graph.

4.4. Computational results and comparisons with state-of-the-art algorithms

This section presents the computational results of the proposed SBTS algorithm (SBTSshort
and SBTSlong), in comparison with the three state-of-the-art algorithms SO (Peiró et al., 2021),
SS1 (Mart́ı et al., 2021b), and SS2 (Mart́ı et al., 2021b) on the 100 benchmark instances.

Note that the results of the reference algorithms (SO, SS1, and SS2) were obtained from a
single-run whereas our SBTS algorithms (SBTSshort and SBTSlong) came from multiple-run (40
runs). Clearly, the best results favor multiple-run results. To make a fair comparison, we refer
to average statistics when we compare single-run results with multiple-run results.

Table 3 summarizes the overall computational results while the detailed results are presented
in Appendix A (Table A.1 and Table A.2). In Table 3, column ‘Benchmark set’ refers to the
name of each set of instances while column ‘n’ indicates the number of nodes (elements). For
each algorithm, the remaining columns show the average among all the results obtained in
each set of the following statistics values:

− The best objective function value fbest found during 40 runs for SBTSshort and SBTSlong.
Then, column f̄best contains the average of the best objective function values in each
benchmark set.

− The average objective function value favg among the 40 runs for SBTSshort and SBTSlong
(similarly as above, we denote as column f̄avg the average of these values for each
benchmark set).

− The worst objective function value fwst found during 40 runs for SBTSshort and SBTSlong
(column f̄wst).

In the case of a single-run, i.e., SO, SS1, and SS2 algorithms, these measures are identical,
then for the sake of simplicity, we denote as f̄avg the average of the best objective
function values obtained in each benchmark set.

15

SO Peiró et al. (2021)
(1 run)

SS1 Mart́ı et al. (2021b)
(1 run)

SS2 Mart́ı et al. (2021b)
(1 run)

Benchmark set n f̄avg DevB DevO f̄avg DevB DevO f̄avg DevB DevO

GKD-b2 50 112.33 0.0% 0.0% 111.72 0.5% 0.5% 111.72 0.5% 0.5%
150 115.15 2.9% 3.0% 117.46 1.0% 1.1% 117.62 0.8% 0.9%

GKD-c2 500 7.46 20.6% 20.6% 9.17 2.3% 2.4% 9.17 2.3% 2.4%
SOM-a2 50 4.10 0.0% 0.0% 4.10 0.0% 0.0% 4.10 0.0% 0.0%
MDG-b2 500 41.15 31.9% - 43.51 28.0% - 48.10 20.4% -

GKD-b3 50 96.95 0.9% 0.9% 97.58 0.2% 0.2% 97.62 0.2% 0.2%
150 103.42 4.2% 4.3% 107.03 0.9% 1.0% 106.87 1.1% 1.1%

GKD-c3 500 6.49 22.4% 22.5% 8.20 1.9% 2.0% 8.20 1.9% 2.0%
SOM-a3 50 1.50 28.6% 28.6% 1.90 9.5% 9.5% 2.00 4.8% 4.8%
MDG-b3 500 11.09 61.4% - 21.80 24.1% - 22.21 22.7% -

Average 49.96 17.3% 10.0% 52.25 6.9% 2.1% 52.76 5.5% 1.5%

SBTSshort
(40 runs)

SBTSlong
(40 runs)

Benchmark set n f̄best f̄avg f̄wst DevB DevO f̄best f̄avg f̄wst DevB DevO

GKD-b2 50 112.33 112.33 112.33 0.0% 0.0% 112.33 112.33 112.33 0.0% 0.0%
150 118.56 118.39 117.94 0.2% 0.3% 118.60 118.46 118.39 0.1% 0.2%

GKD-c2 500 9.28 9.19 8.99 2.1% 2.2% 9.39 9.34 9.30 0.5% 0.6%
SOM-a2 50 4.10 4.10 4.10 0.0% 0.0% 4.10 4.10 4.10 0.0% 0.0%
MDG-b2 500 55.41 47.04 38.34 22.2% - 60.46 57.07 50.81 5.6% -

GKD-b3 50 97.79 97.79 97.79 0.0% 0.0% 97.79 97.79 97.79 0.0% 0.0%
150 108.01 107.59 107.37 0.4% 0.5% 108.01 107.76 107.57 0.2% 0.3%

GKD-c3 500 8.32 8.23 8.15 1.6% 1.7% 8.36 8.34 8.29 0.3% 0.4%
SOM-a3 50 2.10 2.08 1.80 0.8% 0.8% 2.10 2.10 2.10 0.0% 0.0%
MDG-b3 500 26.06 22.66 18.89 21.1% - 28.72 26.12 22.20 9.1% -

Average 54.20 52.94 51.57 4.8% 0.7% 54.99 54.34 53.29 1.6% 0.2%

*0.0 means less than 0.0001

Table 3: Summary results reported by the proposed SBTS algorithm (SBTSshort and SBTSlong) and the three
reference algorithms SO (Peiró et al., 2021), SS1 (Mart́ı et al., 2021b), and SS2 (Mart́ı et al., 2021b), over each
benchmark set.

− The percent deviation of the average objective function value with respect the best
solution found in the experiment (column DevB).

− The average deviation of the average solution from the optimal solution (when available)
(column DevO).

The average results of each indicator provided by each compared algorithm are reported in
the last row (‘Average’). For each benchmark set, the best of each indicator value among all
compared algorithms is highlighted in boldface.

From Table 3, we observe that our SBTSshort algorithm performs very well on all 100
benchmark instances and shows its superiority over the reference algorithms. In terms of the
average solution quality (f̄avg), SBTSshort achieves a lower average deviation of 0.7% from the
optimal solution, which is 2.14 times, 3.00 times, and 14.29 times less than the 1.5% of SS2,
the 2.1% of SS1, and the 10.0% of SO, respectively. The average result of SBTSshort is 52.94,
which is marginally (1.00, 1.01, and 1.06 times) higher than the 52.76 of SS2, the 52.25 of SS1,
and the 49.96 of SO. By increasing the SBTSshort termination criterion of 10 seconds to 300
seconds, SBTSlong achieves a still better performance, always obtaining equal or better results

16

SO

(1 run)
SS1

(1 run)
SS2

(1 run)
SBTSshort
(40 runs)

SBTSlong
(40 runs)

Benchmark set n #Best #Best #Best #Best #Avg. #Best #Avg.

GKD-b2 50 10 8 8 10 10 10 10
150 0 0 0 7 2 7 5

GKD-c2 500 0 0 0 0 0 9 2
SOM-a2 50 10 10 10 10 10 10 10
MDG-b2 500 0 0 0 0 0 10 0
GKD-b3 50 6 7 8 10 10 10 10

150 0 0 0 8 2 8 4
GKD-c3 500 0 0 0 5 0 9 2
SOM-a3 50 5 8 9 10 7 10 10
MDG-b3 500 0 0 0 0 0 10 0

Total 31 33 35 60 41 93 53

Table 4: Statistical results for each compared algorithms (SO (Peiró et al., 2021), SS1 (Mart́ı et al., 2021b),
SS2 (Mart́ı et al., 2021b), SBTSshort, and SBTSlong) over each benchmark set, the number of best and average
solutions that match or improve on the best-known solutions (#Best and #Avg.).

in terms of the average solution quality (f̄avg). Particularly, SBTSlong achieves the smallest
deviation of 0.2% from the optimal solution, 7.50 times, 10.50 times, and 50.00 times less than
SS2, SS1, and SO, respectively. The average results of SBTSlong is 54.34, which is 1.03, 1.04,
and 1.09 times higher than SS2, SS1, and SO, respectively.

The computation time of our SBTS algorithm is fairly competitive. Recall that the indicated
time for the reference algorithms are scaled for our computer, and that the average time of a
multiple-run algorithm can be compared to the time of a single-run algorithm. On average
the CPU time of SO, SS1, and SS2 is 17.07, 1.55, and 2.30 seconds, respectively. The average
running time per run in seconds to reach the final solution is 3.28 and 50.59 for SBTSshort and
SBTSlong, respectively. These results shows that SBTSshort is not significantly slower than any
of the reference algorithms, and generally requires comparable computing time. By extending
the stop condition to 300 seconds, SBTSlong, which finds better solutions, consumes more
computing time than SBTSshort as expected.

Table 4 counts for each compared algorithm over each benchmark set, the number of best
solutions fbest or average values favg that match or improve the best-known solutions (#Best
and #Avg., respectively). Both values match for the single-run algorithms. As shown in
Table 4, our SBTSshort algorithm matches or improves the best-known solutions for 60 out
of 100 instances, while SBTSlong performs better in 93 out of 100 instances. As previously
stated, we should look at average statistics when comparing multiple-run algorithms to single-
run algorithms. According to the average indicator #Avg., our SBTS algorithms (SBTSshort
and SBTSlong) are still the best-performing algorithms among all three reference algorithms,
matching or improving 41 and 53 out of 100 instances.

To validate the above findings, Table 5 shows the p-values from the Wilcoxon signed-rank
test with a confidence level of 99% of SBTS versus all reference algorithms (SO, SS1, and
SS2) in terms of the average solution quality. A p-value smaller than 0.01 indicates that
the two compared algorithms are significantly different. As indicated in Table 5, SBTSshort
performs significantly better than the reference algorithms on all 100 benchmark instances.
This conclusion remains valid for SBTSlong since it always performs better than SBTSshort.

To test the robustness of SBTS, Figure 3 depicts the box plots of SBTSshort and SBTSlong
on 8 representative hard instances randomly selected from the large benchmark sets MDG-b2

17

SBTS vs. SO SBTS vs. SS1 SBTS vs. SS2
Benchmark set SBTSshort SBTSlong SBTSshort SBTSlong SBTSshort SBTSlong

50 instances with
ϕ = 0.2

5.96e-06 1.73e-06 2.69e-05 7.71e-07 4.65e-01 7.71e-07

50 instances with
ϕ = 0.3

5.21e-08 5.20e-08 3.15e-05 5.85e-07 1.70e-03 1.24e-06

Table 5: Statistical results (p-values) from the Wilcoxon signed-rank test with a confidence level of 99% of the
proposed SBTS algorithms (SBTSshort and SBTSlong) versus the three reference algorithms SO (Peiró et al., 2021),
SS1 (Mart́ı et al., 2021b), and SS2 (Mart́ı et al., 2021b) over total benchmark sets.

MDG-b2 01 MDG-b2 05 MDG-b2 07 MDG-b2 08
Instance

40

45

50

55

60

65

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

MDG-b3 01 MDG-b3 05 MDG-b3 07 MDG-b3 08
Instance

18

20

22

24

26

28

30

32

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(a) The box-plots of SBTSshort on 8 instances from sets MDG-b2 and MDG-b3.

MDG-b2 01 MDG-b2 05 MDG-b2 07 MDG-b2 08
Instance

40

45

50

55

60

65

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

MDG-b3 01 MDG-b3 05 MDG-b3 07 MDG-b3 08
Instance

18

20

22

24

26

28

30

32

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(b) The box-plots of SBTSlong on 8 instances from sets MDG-b2 and MDG-b3.

Figure 3: The box-plots of the proposed SBTS algorithms (SBTSshort and SBTSlong) on 8 representative hard
instances from benchmark sets MDG-b2 and MDG-b3.

18

100 100.2 100.4 100.6 100.8 101 101.2 101.4
0

0.2

0.4

0.6

0.8

1

Performance ratio

Pe
rc
en
ta
ge

of
pr
ob

lem
ss

ol
ve
d
(f

av
g
)

Performance Profile

SBTSlong
SBTSshort

SO
SS1
SS2

100 100.2 100.4 100.6 100.8 101 101.2 101.4
0

0.2

0.4

0.6

0.8

1

Performance ratio

Pe
rc
en
ta
ge

of
pr
ob

lem
ss

ol
ve
d
(f

av
g
)

Performance Profile

SBTSlong
SBTSshort

SO
SS1
SS2

Figure 4: Performance profiles (favg) of the proposed SBTS algorithms (SBTSshort and SBTSlong) and the three
reference algorithms SO (Peiró et al., 2021), SS1 (Mart́ı et al., 2021b), and SS2 (Mart́ı et al., 2021b) on the 100
benchmark instances (left: 50 instances with ϕ = 0.2, right: 50 instances with ϕ = 0.3).

and MDG-b3. From Figure 3, we observe that even in short termination criterion (10 seconds),
SBTSshort obtains similar solutions when replicated. As expected, when given more computing
time (300 seconds), SBTSlong becomes more stable, and is able to further improve its results.

To complement the above findings, we provide a global performance evaluation of all
compared algorithms in a visual way with performance profiles (Dolan & Moré, 2002). Since the
performance profile is defined for minimization problems, when dealing with a maximization
problem, the normalization to the minimization problem was done by f

′
a,i = max{fa,i :

a ∈ A, i ∈ I} − fa,i + 1, where fa,i is the (average) objective function value obtained
after solving problem i by algorithm a. In particular, we define the performance ratio by
ra,i = f

′
a,i/min{f ′a,i : a ∈ A, i ∈ I}, to compare a set of algorithms A over a set of instances I.

We just set ra,i = +∞ if an algorithm a fails to solve an instance i. The performance function
of an algorithm a is thus given by ρa(τ) = |{i ∈ I : ra,i ≤ τ}|/|I|, which computes the fraction
of instances that an algorithm a can solve with at most τ many times the objective function
value of the best algorithm. ρa(1) denotes the percentage of instances that an algorithm a
solved better than, or as better as the other algorithms in A do. For a large enough τ value
(τ = rf), ρa(rf) corresponds to the maximum percentage of instances that an algorithm a can
solve. The efficiency and robustness of a are measured by the quantities ρa(1) and ρa(rf),
respectively. Figure 4 depicts the performance profiles in terms of the average solution (by
using the software perprof-py by Siqueira et al. (2016)) of SBTS (SBTSshort and SBTSlong) and
the three reference algorithms (SO, SS1, and SS2) on the 100 benchmark instances.

From Figure 4, we find that SBTS has an excellent performance, surpassing all reference
algorithms in terms of the average solution for all 100 benchmark instances. Specifically,
SBTSlong reports the highest ρa(1) value, indicating that it can quickly find the highest objective
function values for the tested instances. SBTSlong has strong robustness since it is the first to
reach ρa(rf), which means it can consistently solve all the instances.

19

Sacramento (CA)

Austin (TX)

Boston (MA)

Figure 5: A map of the U.S. with 49 potential sites (black points) considered by the company to establish new
branch office. Our SBTS algorithm provides the company with the decision of opening new offices (red points)
in Sacramento (CA), Austin (TX), and Boston (MA) .

5. A real-world application

This section considers a real case on the 49-node data set first described in Daskin (2011),
and later studied in Lozano-Osorio et al. (2022), consisting of the capitals of the continental
United States plus Washington, DC, where an international branch company wants to expand
its operations by opening new offices in the continental U.S.. Here, we adapt it to obtain a
real-world application for the capacitated dispersion problem.

In this application, a company that provides a specific service through a network of sites
aims to expand internationally by opening new branch offices in some of the 49 U.S. cities to
launch novel product lines in this competitive market. Specifically, each city i has a capacity
of service ci that is determined by the customer demands in each city, i.e., the number of
customers that can be attended in the potential site at city i, which is proportional to their
population. The distance between sites i and j is known as dij . The company wants to provide
service for at least 5000 customers in all their new offices. Thus, our goal is to select the sites
as disperse as possible in the U.S. while meets the constraint of minimum customer demands
to increase visibility for the new affiliates and create new market opportunities in the U.S..

Figure 5 shows a map of the U.S. with 49 potential sites (black points) considered by the
company to establish new branch office. Our SBTS algorithm helps the company make the best
strategical decision to increase their global influence by opening new offices in Sacramento
(CA), Austin (TX), and Boston (MA) (the corresponding states are depicted with blue colors
while the cities are with red points in the figure). From Figure 5, we observe that opening
branch offices in Sacramento (CA), Austin (TX), and Boston (MA) can meet the needs of
customers in the western, central, and eastern regions of the U.S., respectively. In a word,

20

Random construction procedure Greedy construction heuristic

Benchmark set n f̄best DevB DevO t(s) f̄best DevB DevO t(s)

GKD-b2 50 81.37 22.6% 27.6% 0.00 105.09 0.0% 6.4% 0.00
150 80.02 29.5% 32.6% 0.00 113.53 0.0% 4.4% 0.00

GKD-c2 500 5.06 41.8% 46.2% 0.00 8.69 0.0% 7.6% 0.14
SOM-a2 50 0.40 88.6% 90.2% 0.00 3.50 0.0% 14.6% 0.00
MDG-b2 500 0.92 97.1% - 0.00 32.24 0.0% - 0.09

GKD-b3 50 70.50 23.8% 27.9% 0.00 92.47 0.0% 5.4% 0.00
150 72.42 29.7% 33.0% 0.00 103.06 0.0% 4.7% 0.00

GKD-c3 500 4.69 39.8% 44.0% 0.00 7.79 0.0% 6.9% 0.24
SOM-a3 50 0.00 100.0% 100.0% 0.00 1.70 0.0% 19.0% 0.00
MDG-b3 500 0.31 98.1% - 0.00 16.33 0.0% - 0.21

Average 31.57 57.1% 50.2% 0.00 48.44 0.00% 8.6% 0.07

*0.00 means less than 0.001

Table 6: Summary results of our proposed greedy construction heuristic against the random construction
procedure over each benchmark set.

these results perfectly match the company interests in expanding their global market and
gaining a large number of customers.

6. Analysis

In this section, we focus on two key components of the proposed SBTS algorithm: 1) the
initial solution procedure utilizing a greedy construction heuristic, and 2) the solution-based
tabu search strategy that uses three hash functions to determine the tabu status of neighboring
solutions. We will analyze and discuss the effect of these two important components to the
performance of SBTS.

6.1. Computational results of the greedy construction heuristic

To evaluate the performance of the initial solution procedure of SBTS, this section compares
our greedy construction heuristic against a random construction procedure based on the 100
benchmark instances. Each construction procedure was independently executed 40 times per
instance, with a cutoff time as indicated in Section 4.2 per run. It is worth mentioning that
these construction procedures stop once the total required capacity B is met, and reports
the same information as Section 4.4. Table 6 summarizes the computational results of our
proposed greedy construction heuristic versus the random construction procedure over each
benchmark set.

From Table 6, we observe that our greedy construction heuristic outperforms the random
construction procedure for all 100 benchmark instances. In terms of the best solution quality,
the greedy construction heuristic obtains a lower average deviation of 8.6% from the optimal
solution, which is 5.84 times less than the 50.2% of the random construction procedure. The
average results of the greedy construction heuristic is 48.44, which is 1.53 times higher than
the 31.57 of the random construction procedure. This experiment shows that our greedy
construction heuristic provide an initial solution of good quality for SBTS.

6.2. Computational results of the solution-based tabu search strategy

The solution-based tabu search strategy uses hash tables and hash functions to implement
the tabu list. To assess the importance of this strategy, we create an attribute-based tabu

21

Attribute-based tabu search
(ABTS)

Solution-based tabu search
(SBTS)

Benchmark set n f̄best DevB DevO t(s) f̄best DevB DevO t(s)

GKD-b2 50 112.33 0.0% 0.0% 0.41 112.33 0.0% 0.0% 0.54
150 115.73 2.4% 2.5% 0.01 118.61 0.0% 0.1% 3.34

GKD-c2 500 9.07 2.8% 3.5% 11.11 9.33 0.0% 0.7% 13.38
SOM-a2 50 4.00 2.4% 2.4% 8.77 4.10 0.0% 0.0% 1.21
MDG-b2 500 48.07 19.9% - 128.23 60.04 0.0% - 183.77

GKD-b3 50 97.79 0.0% 0.0% 0.68 97.79 0.0% 0.0% 1.04
150 105.17 2.6% 2.7% 0.96 107.98 0.0% 0.1% 7.31

GKD-c3 500 8.15 1.8% 2.6% 13.86 8.30 0.0% 0.8% 17.52
SOM-a3 50 1.90 9.5% 9.5% 6.75 2.10 0.0% 0.0% 3.21
MDG-b3 500 25.60 10.5% - 126.44 28.61 0.0% - 204.17

Average 52.78 5.2% 2.9% 29.72 54.92 0.0% 0.2% 43.55

*0.0 means less than 0.01

Table 7: Summary results of our proposed solution-based tabu search procedure against the attribute-based
tabu search procedure over each benchmark set.

search procedure where the tabu list only records the performed moves. This experiment
follows the same experimental protocol and reports the same information as Section 6.1. Table
7 summarizes the computational results of our proposed solution-based tabu search (SBTS)
procedure versus the attribute-based tabu search (ABTS) procedure over each benchmark set.

As observed in Table 7, SBTS achieves a lower average deviation of 0.2% from the optimal
solution, which is 14.50 times less than the 2.9% of ABTS in terms of the best solution. The
average result of SBTS is 54.92, which is slightly (1.04 times) higher than the 52.78 of ABTS.
This experiment confirms the usefulness of the solution-based tabu search strategy, which
positively contributes to the high performance of our SBTS algorithm.

7. Conclusions and future work

We had two main objectives for this work, a methodological and a practical objective.
In the former one, we experiment in the implementation of the less studied solution-based
tabu search (SBTS) methodology on a max-min problem, the capacitated dispersion problem
(CDP). To the latter objective, we tested our procedure to a realistic case, and we developed
a state-of-the-art procedure for the CDP.

In the methodological framework, our SBTS method features a greedy construction heuristic
to generate an initial solution of good quality. Moreover, the joint use of three hash functions
speeds up the process of identifying the tabu status of candidate solutions. Finally, the
definition of a large neighborhood by the combination of three neighborhoods enhances
the solution quality and the computational efficiency. Furthermore, to shed light on the
impacts of the initial greedy construction heuristic and the solution-based tabu strategy on the
performance of our SBTS proposal, we presented additional experiments to investigate these
two key components. In particular, the comparison between the ABTS and SBTS procedures
confirms that the solution-based strategy is a key feature in our heuristic.

Finally, the computational results on four sets of 100 well-known benchmark instances
indicate that SBTS competes very favorably with the state-of-the-art algorithms in the literature.
Specifically, SBTS finds the optimal results for 73 out of the 80 instances for which it is known,

22

and it improves the best-known results for the remaining 20 instances with unknown optimal
solutions.

Regarding the applicability, we additionally presented an application of our approach to
deal with the realistic location problem, where an international branch company wants to
open new offices in the U.S. to expand its business. We also make the source code of our SBTS
algorithm publicly available, which can be used by researchers and practitioners to solve a
variety of practical applications that can be formulated as the CDP and the related dispersion
(or diversity) problems.

For future research, several promising areas deserve attention of researchers. First, as
inspired by a recent review of Mart́ı et al. (2022), many heuristics have been proposed for
dispersion (or diversity) problems, but only a few exact methods have been investigated. We
may focus on these exact methods in the future to solve the CDP to optimality on more
hard instances. As a complement to exact methods, another idea is to design more powerful
metaheuristics that can find already known optimal solutions in a short running time, for
example, trajectory-based metaheuristics like iterated greedy or variable neighborhood search
(Ruiz & Stützle, 2007; Mladenović et al., 2016), or population-based algorithms like memetic
or genetic algorithms (Neri & Cotta, 2012; Tan et al., 2014). Second, the ideas of solution-
based tabu search are rather general, and they may be usefully applied to solve other related
dispersion (or diversity) problems as well as similar combinatorial optimization problems.

Acknowledgments. We are grateful to the reviewers for their helpful comments and
suggestions. This research was partially supported by the National Natural Science Foundation
of China (Grant no. 72101149, Grant no. 71871144, and Grant no. 61703213), the Shanghai
Pujiang Program (Grant no. 22PJC080), the Spanish Ministerio de Ciencia e Innovación
with grant ref. PID2021-125709OB-C21 funded by MCIN /AEI /10.13039/501100011033 /
FEDER, UE, the Generalitat Valenciana (CIAICO/2021/224), and the six talent peaks project
in Jiangsu Province of China (Grant no. RJFW-011).

References

Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-Race and iterated F-Race: An
overview. Experimental methods for the analysis of optimization algorithms, (pp. 311–336).

Chen, Y., Hao, J.-K., & Glover, F. (2016). A hybrid metaheuristic approach for the capacitated
arc routing problem. European Journal of Operational Research, 253 , 25–39.

Daskin, M. S. (2011). Network and discrete location: models, algorithms, and applications.
John Wiley & Sons.

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming , 91 , 201–213.

Duarte, A., & Mart́ı, R. (2007). Tabu search and GRASP for the maximum diversity problem.
European Journal of Operational Research, 178 , 71–84.

Galinier, P., & Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3 , 379–397.

23

Gallego, M., Duarte, A., Laguna, M., & Mart́ı, R. (2009). Hybrid heuristics for the maximum
diversity problem. Computational Optimization and Applications, 44 , 411.

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization
(pp. 2093–2229). Springer.

Kuby, M. J. (1987). Programming models for facility dispersion: The p-dispersion and maxisum
dispersion problems. Geographical Analysis, 19 , 315–329.

Laguna, M., Marti, R., & Campos, V. (1999). Intensification and diversification with elite
tabu search solutions for the linear ordering problem. Computers & Operations Research,
26 , 1217–1230.

Lai, X., & Fu, Z.-H. (2019). A tabu search approach with dynamical neighborhood size for
solving the maximum min-sum dispersion problem. IEEE Access, 7 , 181357–181368.

Lai, X., Hao, J.-K., Glover, F., & Yue, D. (2019a). Intensification-driven tabu search for the
minimum differential dispersion problem. Knowledge-Based Systems, 167 , 68–86.

Lai, X., Hao, J.-K., & Yue, D. (2019b). Two-stage solution-based tabu search for the multide-
mand multidimensional knapsack problem. European Journal of Operational Research, 274 ,
35–48.

Lai, X., Yue, D., Hao, J.-K., & Glover, F. (2018). Solution-based tabu search for the maximum
min-sum dispersion problem. Information Sciences, 441 , 79–94.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3 , 43–58.

Lozano-Osorio, I., Mart́ınez-Gavara, A., Mart́ı, R., & Duarte, A. (2022). Max–min dispersion
with capacity and cost for a practical location problem. Expert Systems with Applications,
200 , 116899.

Lu, Z., Hao, J.-K., & Wu, Q. (2020). A hybrid evolutionary algorithm for finding low
conductance of large graphs. Future Generation Computer Systems, 106 , 105–120.

Lu, Z., Hao, J.-K., & Zhou, Y. (2019). Stagnation-aware breakout tabu search for the minimum
conductance graph partitioning problem. Computers & Operations Research, 111 , 43–57.

Mart́ı, R., Mart́ınez-Gavara, A., Pérez-Peló, S., & Sánchez-Oro, J. (2022). A review on
discrete diversity and dispersion maximization from an OR perspective. European Journal
of Operational Research, 299 , 795–813.

Mart́ı, R., Duarte, A., Mart́ınez-Gavara, A., & Sánchez-Oro, J. (2021a). The MDPLIB 2.0
Library of benchmark instances for diversity problems. URL: https://www.uv.es/rmarti/
paper/mdp.html.

Mart́ı, R., Gallego, M., & Duarte, A. (2010). A branch and bound algorithm for the maximum
diversity problem. European Journal of Operational Research, 200 , 36–44.

Mart́ı, R., Gallego, M., Duarte, A., & Pardo, E. G. (2013). Heuristics and metaheuristics for
the maximum diversity problem. Journal of Heuristics, 19 , 591–615.

24

https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html

Mart́ı, R., Laguna, M., & Glover, F. (2006). Principles of scatter search. european Journal of
operational Research, 169 , 359–372.

Mart́ı, R., Mart́ınez-Gavara, A., & Sánchez-Oro, J. (2021b). The capacitated dispersion
problem: an optimization model and a memetic algorithm. Memetic Computing , 13 ,
131–146.

Mart́ınez-Gavara, A., Campos, V., Laguna, M., & Mart́ı, R. (2017). Heuristic solution
approaches for the maximum minsum dispersion problem. Journal of Global Optimization,
67 , 671–686.

Mart́ınez-Gavara, A., Corberán, T., & Mart́ı, R. (2021). Grasp and tabu search for the
generalized dispersion problem. Expert Systems with Applications, 173 , 114703.

Mladenović, N., Todosijević, R., & Urošević, D. (2016). Less is more: basic variable neigh-
borhood search for minimum differential dispersion problem. Information Sciences, 326 ,
160–171.

Neri, F., & Cotta, C. (2012). Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation, 2 , 1–14.

Parreño, F., Álvarez-Valdés, R., & Mart́ı, R. (2021). Measuring diversity. A review and an
empirical analysis. European Journal of Operational Research, 289 , 515–532.

Peiró, J., Jiménez, I., Laguardia, J., & Mart́ı, R. (2021). Heuristics for the capacitated
dispersion problem. International Transactions in Operational Research, 28 , 119–141.

Porumbel, D. C., Hao, J. K., & Glover, F. (2011). A simple and effective algorithm for the
MaxMin diversity problem. Annals of Operations Research, 186 , 275–293.

Prokopyev, O. A., Kong, N., & Martinez-Torres, D. L. (2009). The equitable dispersion
problem. European Journal of Operational Research, 197 , 59–67.

Rosenkrantz, D. J., Tayi, G. K., & Ravi, S. (2000). Facility dispersion problems under capacity
and cost constraints. Journal of Combinatorial Optimization, 4 , 7–33.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research, 177 ,
2033–2049.

Siqueira, A. S., da Silva, R. C., & Santos, L.-R. (2016). Perprof-py: A python package
for performance profile of mathematical optimization software. Journal of Open Research
Software, 4 .

Tan, G. W.-H., Ooi, K.-B., Leong, L.-Y., & Lin, B. (2014). Predicting the drivers of behavioral
intention to use mobile learning: A hybrid sem-neural networks approach. Computers in
Human Behavior , 36 , 198–213.

Wang, Y., Hao, J.-K., Glover, F., & Lü, Z. (2014). A tabu search based memetic algorithm
for the maximum diversity problem. Engineering Applications of Artificial Intelligence, 27 ,
103–114.

25

Wang, Y., Lü, Z., & Su, Z. (2021). A two-phase intensification tabu search algorithm for the
maximum min-sum dispersion problem. Computers & Operations Research, 135 , 105427.

Wang, Y., Wu, Q., & Glover, F. (2017). Effective metaheuristic algorithms for the minimum
differential dispersion problem. European Journal of Operational Research, 258 , 829–843.

Wei, Z., & Hao, J.-K. (2021). Multistart solution-based tabu search for the set-union knapsack
problem. Applied Soft Computing , 105 , 107260.

Zhou, Q., Hao, J.-K., & Wu, Q. (2022). A hybrid evolutionary search for the generalized
quadratic multiple knapsack problem. European Journal of Operational Research, 296 ,
788–803.

Zhou, Y., Hao, J.-K., & Duval, B. (2017). Opposition-based memetic search for the maximum
diversity problem. IEEE Transactions on Evolutionary Computation, 21 , 731–745.

A. Appendix

The appendix presents instance-by-instance results of the proposed SBTS algorithms
(SBTSshort and SBTSlong) and the three reference algorithms SO (Peiró et al., 2021), SS1 (Mart́ı
et al., 2021b), and SS2 (Mart́ı et al., 2021b) on the 100 benchmark instances. The detailed
results are summarized in Table A.1 (50 instances with ϕ = 0.2) and Table A.2 (50 instances
with ϕ = 0.3).

In Table A.1 and Table A.2, column ‘Instance (ϕ = 0.2)’ and ‘n’ indicate the name
(capacity factor) and the number of nodes (elements) for each instance. Column ‘fopt’ gives the
optimal solution obtained by Gurobi from the literature Mart́ı et al. (2021b). The remaining
columns show the results reached by each compared algorithm (SO, SS1, SS2, SBTSshort, and
SBTSlong): the best objective function value (column ‘fbest’), the average objective function
value (column ‘favg’), the worst objective function value (column ‘fwst’), and the average
computation time per run in seconds to reach the final solution, and a time less than 0.01
seconds is indicated as 0 (column ‘t(s)’). Note that SBTS (SBTSshort and SBTSlong) conducts
multiple-run (40 runs) per instance and reports all of the above indicators while the three
reference algorithms perform single-run and report fbest and t(s). A boldface denotes an
optimal solution reached by the algorithm.

26

SO

(1 run)
SS1

(1 run)
SS2

(1 run)
SBTSshort
(40 runs)

SBTSlong
(40 runs)Instance

(ϕ = 0.2)
n fopt

fbest t(s) fbest t(s) fbest t(s) fbest favg fwst t(s) fbest favg fwst t(s)

GKD-b 11 n50 m5 50 147.2 147.2 0 147.2 0 147.2 0 147.2 147.2 147.2 0.7 147.2 147.2 147.2 0.4
GKD-b 12 n50 m5 50 178.1 178.1 0 178.1 0 178.1 0 178.1 178.1 178.1 0.7 178.1 178.1 178.1 0.6
GKD-b 13 n50 m5 50 96.1 96.1 0 93.6 0 93.6 0 96.1 96.1 96.1 0.8 96.1 96.1 96.1 0.6
GKD-b 14 n50 m5 50 84.6 84.6 0 84.6 0 84.6 0 84.6 84.6 84.6 0.7 84.6 84.6 84.6 0.6
GKD-b 15 n50 m5 50 154.9 154.9 0 154.9 0 154.9 0 154.9 154.9 154.9 0.7 154.9 154.9 154.9 0.6
GKD-b 16 n50 m15 50 77.7 77.7 0 77.7 0 77.7 0 77.7 77.7 77.7 0.6 77.7 77.7 77.7 0.6
GKD-b 17 n50 m15 50 41.8 41.8 0 38.2 0 38.2 0 41.8 41.8 41.8 0.8 41.8 41.8 41.8 0.6
GKD-b 18 n50 m15 50 108.5 108.5 0 108.5 0 108.5 0 108.5 108.5 108.5 0.8 108.5 108.5 108.5 0.5
GKD-b 19 n50 m15 50 119.1 119.1 0 119.1 0 119.1 0 119.1 119.1 119.1 0.8 119.1 119.1 119.1 0.2
GKD-b 20 n50 m15 50 115.3 115.3 0 115.3 0 115.3 0 115.3 115.3 115.3 0.5 115.3 115.3 115.3 0.3

GKD-b 41 n150 m15 150 164.2 158.8 0 161.8 0.2 161.8 0.1 163.9 163.7 162.6 3.1 164.1 163.8 163.8 2.9
GKD-b 42 n150 m15 150 84.3 83.3 1.0 84.1 0.1 84.1 0.1 84.3 84.3 84.3 1.6 84.3 84.3 84.3 1.0
GKD-b 43 n150 m15 150 63.3 58.9 0 62.0 0.1 62.0 0.1 63.3 63.3 63.1 2.5 63.3 63.3 63.3 2.0
GKD-b 44 n150 m15 150 103.3 99.0 1.0 101.6 0.1 101.6 0.1 102.2 102.2 102.2 1.3 102.2 102.2 102.2 0.5
GKD-b 45 n150 m15 150 106.6 104.3 0 104.4 0.1 105.8 0.2 106.6 106.5 105.2 2.4 106.6 106.6 106.6 2.0
GKD-b 46 n150 m45 150 124.5 118.7 0 123.8 0.1 123.8 0.1 124.5 124.4 123.2 1.4 124.5 124.5 124.5 1.2
GKD-b 47 n150 m45 150 163.4 158.2 0 162.4 0.1 162.6 0.2 163.1 162.9 162.7 3.3 163.3 163.1 162.8 13.2
GKD-b 48 n150 m45 150 100.2 98.1 1.0 98.7 0.1 98.7 0.1 100.2 100.0 99.7 4.5 100.2 100.1 99.8 8.0
GKD-b 49 n150 m45 150 166.3 164.5 0 165.5 0.1 165.5 0.1 166.3 166.3 166.3 0.6 166.3 166.3 166.3 0.3
GKD-b 50 n150 m45 150 111.2 107.7 1.0 110.3 0.1 110.3 0.1 111.2 110.3 110.1 2.8 111.2 110.4 100.3 1.2

GKD-c 01 n500 m50 500 9.4 7.2 18.0 9.2 3.0 9.2 3.4 9.3 9.2 9.0 4.3 9.3 9.3 9.3 14.2
GKD-c 02 n500 m50 500 9.5 7.6 15.0 9.3 3.2 9.3 3.3 9.4 9.3 9.1 5.6 9.5 9.5 9.5 51.4
GKD-c 03 n500 m50 500 9.4 7.2 22.0 9.2 2.9 9.2 4.2 9.3 9.2 9.1 4.7 9.4 9.4 9.4 43.5
GKD-c 04 n500 m50 500 9.3 7.5 15.0 9.1 2.6 9.1 3.0 9.2 9.1 9.0 3.7 9.3 9.2 9.2 35.4
GKD-c 05 n500 m50 500 9.3 7.7 21.0 9.1 2.9 9.1 3.7 9.2 9.1 8.9 5.3 9.3 9.2 9.2 42.3
GKD-c 06 n500 m50 500 9.4 7.2 19.0 9.0 2.7 9.0 3.5 9.1 9.0 8.9 4.2 9.4 9.3 9.1 87.8
GKD-c 07 n500 m50 500 9.3 7.6 18.0 9.1 2.6 9.1 3.8 9.2 9.1 8.8 4.9 9.3 9.3 9.2 44.1
GKD-c 08 n500 m50 500 9.6 7.8 14.0 9.3 2.6 9.3 3.4 9.5 9.4 9.1 6.2 9.6 9.5 9.5 30.3
GKD-c 09 n500 m50 500 9.3 7.4 23.0 9.1 3.4 9.1 4.0 9.2 9.1 8.9 5.2 9.3 9.2 9.2 44.5
GKD-c 10 n500 m50 500 9.5 7.4 20.0 9.3 2.7 9.3 3.7 9.4 9.3 9.1 5.0 9.5 9.4 9.4 46.5

SOM-a 11 n50 m5 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.3 4.0 4.0 4.0 0.3
SOM-a 12 n50 m5 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.5 4.0 4.0 4.0 0.4
SOM-a 13 n50 m5 50 5.0 5.0 0 5.0 0 5.0 0 5.0 5.0 5.0 0.8 5.0 5.0 5.0 0.4
SOM-a 14 n50 m5 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.7 4.0 4.0 4.0 0.3
SOM-a 15 n50 m5 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.7 4.0 4.0 4.0 0.4
SOM-a 16 n50 m15 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.7 4.0 4.0 4.0 0.4
SOM-a 17 n50 m15 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.8 4.0 4.0 4.0 0.4
SOM-a 18 n50 m15 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.7 4.0 4.0 4.0 0.4
SOM-a 19 n50 m15 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.8 4.0 4.0 4.0 0.5
SOM-a 20 n50 m15 50 4.0 4.0 0 4.0 0 4.0 0 4.0 4.0 4.0 0.7 4.0 4.0 4.0 0.5

MDG-b 01 n500 m50 500 - 46.0 45.0 50.6 2.2 50.6 4.4 61.0 52.5 37.7 7.6 64.6 61.5 50.8 163.0
MDG-b 02 n500 m50 500 - 35.8 36.0 40.8 2.4 46.0 6.0 52.0 45.9 39.3 7.2 60.8 56.3 51.6 204.2
MDG-b 03 n500 m50 500 - 38.0 61.0 41.0 2.4 45.8 5.6 56.3 46.8 39.4 7.8 60.9 59.8 54.8 177.7
MDG-b 04 n500 m50 500 - 46.7 113.0 41.4 2.5 47.6 5.6 53.0 44.7 38.1 7.7 56.6 54.4 48.8 150.6
MDG-b 05 n500 m50 500 - 47.7 25.0 43.9 2.4 49.1 4.8 54.6 47.3 40.9 7.5 58.2 54.0 51.0 210.7
MDG-b 06 n500 m50 500 - 41.3 65.0 41.5 2.5 46.6 5.5 54.1 45.8 33.6 7.5 60.6 55.7 49.4 190.6
MDG-b 07 n500 m50 500 - 39.2 84.0 43.9 2.3 47.3 5.1 52.0 45.1 39.6 8.1 59.3 54.0 47.9 195.2
MDG-b 08 n500 m50 500 - 36.1 39.0 44.5 2.3 48.7 4.0 55.4 46.6 40.0 7.7 60.4 56.2 48.5 185.5
MDG-b 09 n500 m50 500 - 40.4 31.0 43.4 2.3 48.8 6.0 56.0 48.3 38.0 7.6 60.2 57.5 52.6 179.0
MDG-b 10 n500 m50 500 - 40.3 148.0 44.1 2.3 50.5 5.2 59.7 47.4 36.8 8.1 63.0 61.3 52.7 156.5

*0 means less than 0.01

Table A.1: Detailed results (instance-by-instance results) reported by the proposed SBTS algorithms (SBTSshort
and SBTSlong) and the three reference algorithms SO (Peiró et al., 2021), SS1 (Mart́ı et al., 2021b), and SS2

(Mart́ı et al., 2021b) on the four sets of 50 benchmark instances with a capacity factor of 0.2.

27

SO

(1 run)
SS1

(1 run)
SS2

(1 run)
SBTSshort
(40 runs)

SBTSlong

(40 runs)Instance
(ϕ = 0.3)

n fopt
fbest t(s) fbest t(s) fbest t(s) fbest favg fwst t(s) fbest favg fwst t(s)

GKD-b 11 n50 m5 50 132.8 132.8 0 132.8 0.1 132.8 0 132.8 132.8 132.8 0.8 132.8 132.8 132.8 0.2
GKD-b 12 n50 m5 50 159.4 154.7 0 158.1 0 158.1 0 159.4 159.4 159.4 0.8 159.4 159.4 159.4 0.2
GKD-b 13 n50 m5 50 78.4 77.5 0 78.4 0 78.4 0 78.4 78.4 78.4 0.8 78.4 78.4 78.4 0.4
GKD-b 14 n50 m5 50 73.6 71.2 1.0 73.6 0 73.6 0 73.6 73.6 73.6 0.9 73.6 73.6 73.6 0.5
GKD-b 15 n50 m5 50 134.0 133.6 0 133.6 0 134.0 0 134.0 134.0 134.0 1.0 134.0 134.0 134.0 0.5
GKD-b 16 n50 m15 50 63.1 63.1 0 63.1 0 63.1 0 63.1 63.1 63.1 0.7 63.1 63.1 63.1 0.3
GKD-b 17 n50 m15 50 27.9 27.9 0 27.5 0 27.5 0 27.9 27.9 27.9 0.9 27.9 27.9 27.9 0.4
GKD-b 18 n50 m15 50 104.4 104.4 0 104.4 0 104.4 0 104.4 104.4 104.4 0.8 104.4 104.4 104.4 0.4
GKD-b 19 n50 m15 50 102.5 102.5 0 102.5 0 102.5 0 102.5 102.5 102.5 0.8 102.5 102.5 102.5 0.4
GKD-b 20 n50 m15 50 101.8 101.8 0 101.8 0 101.8 0 101.8 101.8 101.8 0.2 101.8 101.8 101.8 0.4

GKD-b 41 n150 m15 150 155.9 151.3 0 154.9 0.2 154.9 0.2 155.9 154.2 153.5 3.3 155.9 154.7 154.2 16.9
GKD-b 42 n150 m15 150 71.1 67.9 1.0 70.7 0.1 70.7 0.2 71.1 71.0 70.7 3.6 71.1 71.1 72.2 10.5
GKD-b 43 n150 m15 150 54.3 52.6 2.0 53.9 0.1 53.9 0.2 54.3 54.1 54.0 1.8 54.3 54.3 54.3 21.1
GKD-b 44 n150 m15 150 90.0 83.1 0 89.2 0.2 87.6 0.2 90.0 89.3 89.3 1.2 90.0 89.3 89.3 1.1
GKD-b 45 n150 m15 150 97.4 92.7 1.0 95.0 0.2 95.0 0.2 97.4 96.5 95.9 3.7 97.4 97.1 96.2 15.2
GKD-b 46 n150 m45 150 111.9 105.5 0 110.9 0.2 110.9 0.2 111.6 111.2 110.9 3.8 111.6 111.5 111.2 11.4
GKD-b 47 n150 m45 150 154.8 146.8 2.0 152.9 0.2 152.9 0.2 154.1 154.1 154.1 1.2 154.1 154.1 154.1 0.9
GKD-b 48 n150 m45 150 86.6 82.3 1.0 86.3 0.1 86.3 0.2 86.6 86.4 86.2 4.3 86.6 86.4 86.3 12.8
GKD-b 49 n150 m45 150 158.5 153.9 0 157.0 0.2 157.0 0.2 158.5 158.5 158.5 0.6 158.5 158.5 158.5 0.6
GKD-b 50 n150 m45 150 100.6 98.1 1.0 99.5 0.1 99.5 0.1 100.6 100.6 100.6 3.1 100.6 100.6 100.6 2.1

GKD-c 01 n500 m50 500 8.4 6.8 45.0 8.2 5.3 8.2 5.7 8.3 8.3 8.2 4.1 8.4 8.4 8.3 100.6
GKD-c 02 n500 m50 500 8.4 6.3 41.0 8.2 6.0 8.2 6.3 8.3 8.3 8.2 5.2 8.4 8.4 8.3 76.3
GKD-c 03 n500 m50 500 8.3 6.5 37.0 8.2 4.7 8.2 5.8 8.2 8.2 8.1 5.0 8.3 8.3 8.2 80.2
GKD-c 04 n500 m50 500 8.3 6.5 35.0 8.1 4.8 8.1 5.6 8.3 8.2 8.0 6.1 8.3 8.3 8.2 89.5
GKD-c 05 n500 m50 500 8.4 6.4 45.0 8.2 4.5 8.2 4.6 8.3 8.2 8.1 6.5 8.4 8.3 8.3 17.4
GKD-c 06 n500 m50 500 8.3 6.5 45.0 8.1 5.3 8.1 7.2 8.3 8.1 8.1 5.6 8.3 8.3 8.2 93.7
GKD-c 07 n500 m50 500 8.4 6.5 43.0 8.2 5.6 8.2 5.9 8.3 8.2 8.1 4.6 8.3 8.3 8.3 24.8
GKD-c 08 n500 m50 500 8.4 6.5 44.0 8.3 5.4 8.3 6.3 8.4 8.3 8.3 3.7 8.4 8.4 8.4 16.1
GKD-c 09 n500 m50 500 8.3 6.4 42.0 8.2 4.9 8.2 5.3 8.3 8.2 8.2 3.8 8.3 8.3 8.3 15.8
GKD-c 10 n500 m50 500 8.5 6.5 32.0 8.3 4.5 8.3 5.3 8.5 8.3 8.2 5.8 8.5 8.5 8.4 66.7

SOM-a 11 n50 m5 50 2.0 2.0 0 2.0 0 2.0 0 2.0 2.0 2.0 0.4 2.0 2.0 2.0 0.4
SOM-a 12 n50 m5 50 3.0 1.0 0 2.0 0 2.0 0 3.0 2.9 2.0 2.6 3.0 3.0 3.0 4.1
SOM-a 13 n50 m5 50 1.0 1.0 0 1.0 0 1.0 0 1.0 1.0 0.0 0.3 1.0 1.0 1.0 0.4
SOM-a 14 n50 m5 50 2.0 2.0 0 2.0 0 2.0 0 2.0 2.0 2.0 0.4 2.0 2.0 2.0 0.4
SOM-a 15 n50 m5 50 2.0 2.0 0 2.0 0 2.0 0 2.0 2.0 2.0 0.6 2.0 2.0 2.0 0.8
SOM-a 16 n50 m15 50 2.0 1.0 0 2.0 0 2.0 0 2.0 2.0 2.0 0.8 2.0 2.0 2.0 0.7
SOM-a 17 n50 m15 50 3.0 2.0 0 2.0 0 3.0 0 3.0 3.0 3.0 0.9 3.0 3.0 3.0 1.2
SOM-a 18 n50 m15 50 2.0 1.0 0 2.0 0 2.0 0 2.0 2.0 1.0 2.5 2.0 2.0 2.0 3.6
SOM-a 19 n50 m15 50 2.0 2.0 0 2.0 0 2.0 0 2.0 2.0 2.0 0.6 2.0 2.0 2.0 0.4
SOM-a 20 n50 m15 50 2.0 1.0 0 2.0 0 2.0 0 2.0 2.0 2.0 0.6 2.0 2.0 2.0 0.5

MDG-b 01 n500 m50 500 - 8.2 34.0 20.2 5.0 20.2 7.0 24.5 21.5 17.4 7.2 27.2 24.2 19.6 201.7
MDG-b 02 n500 m50 500 - 12.4 47.0 21.1 4.9 22.2 8.7 25.2 22.1 18.8 6.6 27.6 25.5 21.5 190.9
MDG-b 03 n500 m50 500 - 7.2 39.0 22.2 5.0 22.2 7.8 25.8 22.8 18.9 6.9 30.0 28.0 24.9 208.2
MDG-b 04 n500 m50 500 - 13.4 38.0 22.3 4.8 22.3 7.9 25.9 22.5 17.0 6.8 28.0 25.3 23.2 211.0
MDG-b 05 n500 m50 500 - 10.3 39.0 22.9 5.0 22.9 6.8 27.3 23.4 20.1 6.9 27.9 25.3 23.0 189.8
MDG-b 06 n500 m50 500 - 10.8 57.0 21.0 4.9 21.0 7.5 26.1 23.1 19.7 7.5 28.2 26.0 22.8 223.1
MDG-b 07 n500 m50 500 - 13.3 56.0 22.9 4.9 22.9 8.4 26.1 22.9 19.8 7.6 28.4 26.0 20.3 212.6
MDG-b 08 n500 m50 500 - 11.6 55.0 21.6 4.6 22.2 7.4 28.2 23.8 19.9 7.1 31.1 28.3 24.2 209.1
MDG-b 09 n500 m50 500 - 13.2 61.0 22.1 4.8 23.2 10.3 25.1 22.2 18.9 6.6 29.7 25.9 20.8 208.4
MDG-b 10 n500 m50 500 - 10.5 27.0 21.7 4.8 23.0 8.6 26.4 22.2 18.4 6.7 29.1 26.7 21.7 219.8

*0 means less than 0.01

Table A.2: Detailed results (instance-by-instance results) reported by the proposed SBTS algorithms (SBTSshort
and SBTSlong) and the three reference algorithms SO (Peiró et al., 2021), SS1 (Mart́ı et al., 2021b), and SS2

(Mart́ı et al., 2021b) on the four sets of 50 benchmark instances with a capacity factor of 0.3.

28

	Introduction
	Literature review
	Solution-based tabu search for the capacitated dispersion problem
	General procedure
	Initial solution with greedy construction heuristic
	Neighborhood structures
	Streamline calculations
	Solution-based tabu strategy using hash functions

	Experimental results
	Benchmark sets
	Experimental settings
	Parameter tuning
	Computational results and comparisons with state-of-the-art algorithms

	A real-world application
	Analysis
	Computational results of the greedy construction heuristic
	Computational results of the solution-based tabu search strategy

	Conclusions and future work
	Appendix

