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Abstract

Given a simple and undirected graph, the maximum independent union of
cliques (IUC) problem aims to identify a subset of vertices with maximum
cardinality, such that each connected component of the induced subgraph is
a complete graph. As a generalization of the popular NP-hard maximum
clique problem, the maximum IUC problem is of great practical importance
for social network analysis and network-based data mining. In this work, we
present the first learning driven three-phase search algorithm for this relevant
problem. The proposed algorithm incorporates a constrained swap-based
tabu search to effectively examine candidate solutions and a frequency-based
perturbation to diversify the search. It additionally integrates a probability
learning mechanism to learn useful information during the search, which
helps to build promising new starting solutions. Computational results on
83 benchmark graphs from the well-known 2nd DIMACS Challenge indicate
that the algorithm competes very favorably with the current best-performing
algorithms. We also present a practical application of the algorithm to social
network analysis. Key algorithmic components are analyzed to understand
their influences on the algorithm.
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1. Introduction

A clique of an undirected graph is a subset of vertices that induces a
complete subgraph, i.e., the vertices are pairwise adjacent. The NP-hard
maximum clique problem is one of the most popular and general clique models,
which involves finding in a graph the clique with maximum cardinality
(i.e., the clique number) [35]. The maximum clique problem has many
practical applications in areas like telecommunications [1], bioinformatics
[26], economics [5], social network analysis [27], etc. However, the rigorous
pairwise connectivity requirement of a clique becomes too rigid to formulate
some real-world problems. As a result, a number of generalized or relaxed
clique models have been proposed in the literature.

In this work, we are interested in the following relaxed clique model. Given
a simple and undirected graph G = (V,E) with a vertex set V = {1, . . . , n}
and an edge set E ⊂ V × V . An independent union of cliques (IUC) is a
subset of vertices S ⊆ V such that each connected component of the induced
subgraph is a complete graph. The maximum IUC problem is then to find
the maximum IUC with the largest cardinality (called the IUC number and
denoted by ωα(G)) [6].

Let S ⊆ V be an IUC of G, we define a binary variable xi where xi = 1
if vertex i belongs to S, and xi = 0 otherwise. Let A[n, n] be the adjacency
matrix of G such that aij = 1 if {i, j} ∈ E, and aij = 0 otherwise. Then,
the maximum IUC problem can be formally stated by the following linear
integer programming model [6],

αω(G) = max
∑
i∈V

xi (1)

s.t. xi + xj + xl ≤ 2 ∀i, j, l ∈ V such that aij + ajl + ail = 2 (2)

xi ∈ {0, 1}, i ∈ V. (3)

where constraint (2) ensures that a subset of vertices S ⊆ V is an IUC if
and only if it contains no set of three vertices inducing an open triangle (an
open triangle is a graph with three vertices and two edges). Constraint (3)
indicates the binary nature of the variables xi. This model is based on the
property that S ⊆ V is an IUC if and only if no set of three vertices from S
induces an open triangle in G [6].
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Similar to the maximum clique problem, the maximum IUC problem
arises naturally in several real-world applications. For example, it is a useful
tool for analyzing cohesive subgraphs and community structures in network-
based data mining [6, 15]. In fact, solving the maximum IUC problem results
in a structure with multiple connected components, each of which is a clique.
These cliques, also known as cohesive subgraphs, help us understand social
communication within the networks. In addition, these cliques can also serve
as seeds for network clustering algorithms that partition the network nodes
into different clusters. We will discuss one such application of this work to
social network analysis in Section 3.5.

The maximum IUC problem is strongly related to the maximum α-cluster
problem [7, 33], which is a relevant model for community detection in social
network analysis. The maximum α-cluster problem is to find the maximum
number of vertices inducing a subgraph in which each vertex has a local
clustering coefficient of at least α. The maximum IUC problem is equivalent to
the maximum 1-cluster problem when α = 1 and the connectivity constraint
of the α-cluster is relaxed to allow multiple connected components. In [7],
several mathematical models (cubic and quadratic models, and triangle
model) were proposed, which were solved by using the FICO Xpress-IVE
solver to compute the maximum α-clusters of social networks with up to
115 vertices. A simple network clustering algorithm was also presented to
compute disjoint unions of α-clusters. Based on their computational results,
the authors of [7] recognized that heuristic approaches need to be developed
to deal with large social networks. The maximum IUC problem is also
closely related to several other clustering problems, such as the cluster vertex
deletion problem [16], the s-plex cluster vertex deletion problem (when s = 1)
[30], and the maximum induced cluster subgraph problem (also known as
the maximum induced P3-free subgraph problem) [8].

The maximum IUC problem is NP-hard in general, and this remains
true even for some special cases such as planar graphs, claw-free graphs, and
bipartite graphs [6]. A number of theoretical studies have been performed to
uncover the properties of the problem. Recent theoretical analyses mainly
concern the upper (or lower) bounds and time complexity of the IUC and
related problems. Given that the IUC problem is a generalization of clique,
cliques are feasible solutions for the maximum IUC problem and the clique
number provides a lower bound of the maximum IUC [29, 6]. Besides,
parametrized algorithms with guaranteed run-time bounds were studied for
the related cluster vertex deletion problem [16] and the related maximum
induced cluster subgraph problem [8].
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Although interesting progresses have been made in theoretical studies on
the maximum IUC problem, research on practical IUC algorithms is still in
its early stages. Unlike the maximum clique problem for which many exact
algorithms and heuristic algorithms exist [35, 34, 20, 19], we are aware of
only two exact algorithms for the maximum IUC problem in the literature
[6]. The first is based on a linear and integer programming formulation
of the problem where the open triangle property (a subgraph with three
vertices and two edges) is formulated by linear constraints. Another one
is a branch-and-bound (B&B) approach following the Russian doll search
(RDS) method [31]. Given the computational challenge of the maximum IUC
problem, these exact algorithms can only be used to solve problem instances
of limited sizes with up to 1,024 vertices. For large instances, heuristic and
metaheuristic algorithms provide a relevant alternative approach for finding
good-enough solutions within an acceptable time frame. Unfortunately, such
practical algorithms for the maximum IUC problem are still missing in the
literature.

We fill the gap by proposing an effective heuristic algorithm to enrich
the toolkit for solving the maximum IUC problem. The main contributions
of this work are listed as follows.

� We propose a learning driven three-phase search (LDTPS) algorithm
for the maximum IUC problem. Specifically, the algorithm uses a
descent-based local search and a constrained swap-based tabu search
to effectively examine the search space. It applies a frequency-based
perturbation mechanism to diversify the search. It additionally relies
on a probability learning strategy to collect helpful information during
the search and guide solution construction.

� We carry out extensive experiments to evaluate LDTPS on the 83 2nd
DIMACS benchmark graphs in the literature, and compare our results
with two representative heuristic algorithms, a heuristic-based commer-
cial solver (LocalSolver), and two best-performing exact algorithms.
Computational results indicate that LDTPS performs significantly
better than the reference algorithms on the benchmark instances. Fol-
lowing that, we present the applications of the LDTPS algorithm to
the analysis of social networks. We also perform additional studies to
investigate the important search strategies used in our algorithm.

� The code of the algorithm will be made publicly available, thus allowing
researchers and practitioners to solve real-world problems that can be
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formulated by the maximum IUC model.

The rest of the paper is organized as follows. In the next section, we
introduce the proposed LDTPS algorithm. Computational experiments and
analyses are presented in Section 3 and Section 4, respectively. Conclusions
and future works are discussed in the last section.

2. Learning driven three-phase search for the maximum IUC

In this section, we introduce our learning driven three-phase search
(LDTPS) algorithm for the maximum IUC problem, which follows the general
three-phase search framework [23, 10, 39, 14] enhanced with a probability
learning strategy from reinforcement learning [38, 2, 32, 28].

2.1. Search space and evaluation function

The maximum IUC problem can be approximated by finding a series of
k-IUC for increasing values of k (a k-IUC is an IUC of size k), just like for
the maximum clique problem (in fact, the equivalent maximum independent
set problem) [9]. Our LDTPS algorithm is designed to determine a k-IUC
with a given size of k. Each time such a k-IUC is found, k is incremented
by 1, and a new (larger) k-IUC is sought. This process is repeated until no
k-IUC can be found. The final k-IUC is an approximation of the maximum
IUC of the input graph G.

Given a graph G = (V,E), the search space Ω explored by our LDTPS
algorithm is composed of all subsets S ⊆ V of size k (k-IUC) including both
legal and illegal IUC as follows,

Ω = {S ⊆ V : |S| = k} (4)

To assess the quality of any candidate solution S ∈ Ω, we use the following
evaluation (fitness) function f(S) (to be minimized) that counts the number
of open triangles induced by S,

f(S) =
∑
i,j,l∈S

tijl (5)

where tijl = 1 if vertices i, j, l form an open triangle, and tijl = 0 otherwise.

5



Since S ⊆ V is an IUC if and only if no set of three vertices from S
induces an open triangle in G [6], we use Eq. (5) to compare candidate
solutions. For two candidate solutions S1 and S2, S1 is better than S2 if
f(S1) < f(S2) (S1 contains fewer open triangles than S2). If f(S) = 0, there
are no open triangles in S, and the candidate solution S is a legal k-IUC. If
f(S) > 0, there are at least one open triangle in S; consequently, S is not a
legal k-IUC. The LDTPS algorithm uses the evaluation function f to guide
its search to find a legal k-IUC for a given k value.

2.2. Main scheme

The proposed LDTPS algorithm is presented in Algorithm 1, which
includes two main features: 1) a three-phase search consisting of a descent-
based local search, a constrained swap-based tabu search, and a frequency-
based perturbation, and 2) a probability learning strategy consisting of a
hybrid subset selection and a probability updating rule. Probability learning
is based on two probability vectors P0 and P1, which indicate the probability
for a vertex i ∈ V to be part of the candidate solution S or to stay in the
subset V \ S, respectively.

The algorithm first determines an initial IUC number k by a greedy clique
procedure (line 2) and initializes the probability vectors P0 and P1. Based
on P0 and P1 (lines 5,6), a starting IUC solution S is built by the hybrid
subset selection strategy (line 7), which is then improved during the main
‘while’ loop. For each ‘while’ loop, the input IUC S, which is not necessarily
a legal IUC, is first improved by the descent-based local search (line 10), and
the new solution is used to update P0 and P1 (line 11). If S is not a legal
k-IUC (i.e., f(S) > 0), S is further improved by the constrained swap-based
tabu search (line 14, Algorithm 2) followed by the update of P0 and P1 (line
15). If S is a legal k-IUC (i.e., f(S) = 0), the best IUC S∗ found so far and
the IUC number k∗ are updated (line 17). Then a larger (and not necessarily
legal) IUC S size of k+1 is created, which serves as the new starting solution
of the next round of LDTPS. Otherwise, the frequency-based perturbation
procedure (line 21, Algorithm 3 and Section 2.6) is activated to create a new
starting solution of the next LDTPS search.

2.3. Initialization and hybrid subset selection

Initialization. Our LDTPS algorithm requires an initial IUC number
k, and the clique number provides a lower bound on the cardinality of a
maximum IUC [6]. In general, the initial IUC number can be generated
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Algorithm 1: Learning driven three-phase search for the maximum
IUC problem (LDTPS).

Input: Graph G = (V,E), cutoff time tmax, parametric constrained
neighborhood coefficient τ , maximum non-improving iterations of
TS td, tabu tenure tt, reward factor for the correct group α,
penalization factor for the incorrect group β, compensation factor
for the expected group γ

Output: Best k∗-IUC found during the search S∗, k∗

1 begin
2 (S, k)← Greedy initialization(S, k) /* Section 2.3 */

3 S∗ ← S, k∗ ← k
4 k ← k + 1
5 for i = 1 to n do
6 p0(i) = p1(i) = 1/2 /* Init. probability vectors P0, P1 */

7 S ← Hybrid subset select(S, P0, P1) /* Section 2.3 */

8 while time() ≤ tmax do

9 S′ ← S
10 S ← Descent-based local search(S) /* Section 2.4 */

11 (P0, P1)← Probability update(S, S′, α, β, γ) /* Section 2.7 */

12 if S is not a legal k-IUC then
13 S′ ← S
14 S ← Constrained swap-based tabu search(S, τ , td, tt)

/* Algorithm 2, Section 2.5 */

15 (P0, P1)← Probability update(S, S′, α, β, γ)

16 if S is a legal k-IUC then
17 S∗ ← S, k∗ ← k
18 k ← k + 1
19 S ← Hybrid subset select(S, P0, P1)

20 else
21 S ← Frequency-based perturb(S) /* Algorithm 3, Section

2.6 */

22 return S∗, k∗
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by any method that does not exceed the lower bounds. In our method, we
greedily construct a clique and return its size as the initial IUC number k.
Starting with an empty set S, a random vertex i ∈ V is added to S in a step-
by-step way, ensuring that vertex i is adjacent to all the vertices of S (ties
are broken randomly). This process is repeated until no more such vertices
can be added to S. We use the final clique S and its cardinality to initialize
the starting IUC solution and the IUC number. The time complexity of the
procedure is bounded by O(n).

Hybrid subset selection. The hybrid subset selection strategy is
invoked to initialize each round of LDTPS with a new (larger) IUC. This
strategy equiprobably combines the random selection and the greedy selection
method. The random method selects k vertices to form S at random,
regardless of the probability vectors P0 and P1. The greedy method allocates
k vertices to the subset S such that P1 is greater than P0. The hybrid subset
selection strategy has the advantage of flexibility by switching back and forth
between greediness and randomness with a time complexity of O(k).

2.4. Descent-based local search

The descent-based local search (DLS) in our LDTPS algorithm aims at
finding, from a given initial solution, new solutions of better quality in terms
of the evaluation function f(S) given by Eq. (5). DLS iteratively makes
transitions from the current solution to a neighboring solution according to
a given neighborhood and terminates when no better neighboring solution
exists, i.e., when a local optimum is reached. At each iteration, DLS explores
the complete swap-based neighborhood Nswap (see Eq. (6), Section 2.5.1 for
details) and selects the best neighboring solution S′ to replace the current
solution S (i.e., f(S′) < f(S)). This process is repeated until no better
solutions can be found in the neighborhood, then DLS stops and returns the
last solution (a local optimum), which is used as the starting solution for
the next search procedure (CNTS, Section 2.5). DLS also terminates when a
legal k-IUC is found, i.e., when f(S′) = 0, and returns the IUC found S and
the IUC number k. The time complexity of each iteration of DLS is bounded
by O(n2).

2.5. Constrained swap-based tabu search

The constrained swap-based tabu search (CSTS, Algorithm 2) is the key
local optimization procedure used in our LDTPS algorithm. Tabu search
[12] is a well-known metaheuristic that has been successfully applied to many
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Algorithm 2: Constrained swap-based tabu search (CSTS).

Input: G = (V,E), parametric constrained neighborhood coefficient τ ,
maximum non-improving iterations of TS td, tabu tenure tt

Output: Best IUC found Sbest

1 begin
2 iter ← 0 /* Counter of consecutive non-improving iterations

*/

3 Sbest ← S /* Best IUC found so far */

4 for i = 1 to n do
5 tl0(i)← 0, tl1(i)← 0 /* Initialize tabu lists tl0 and tl1 */

6 for i = 1 to n do
7 Initial δ0(i) and δ1(i)

8 while iter < td do
9 //Construct the parametric constrained swap-based

neighborhood, Section 2.5.1

10 for ∀u ∈ S do
11 dS(u)← δ0(u) + δ1(u)/2

12 for ∀v ∈ V \ S do

13 dV \S(v)← δ0(v) + δ1(v)/2

14 dmax ← the i-th element in d′S , where i = (1− τ)× k and d′S
represents dS in an ascending order

15 dmin ← the j-th element in d′V \S , where j = τ × (n− k) and d′V \S
represents dV \S in an ascending order

16 A = {u|u ∈ S, dS(u) ≥ dmax}
17 B = {v|v ∈ V \ S, dV \S(v) ≤ dmin}
18 //Make a transition (move), Section 2.5.1

19 Select the best admissible swap(u, v) move from the neighborhood
CNswap with the smallest move gain value 4f (u, v)

20 S ← S \ {u} ∪ {v}
21 Update tabu lists tl0 and tl1 with tabu tenure tt
22 for i = 1 to n do
23 Update δ0(i) and δ1(i)

24 if S is a legal k-IUC then
25 return S

26 //Update the best solution found so far

27 if f(S) < f(Sbest) then

28 Sbest ← S
29 iter ← 0

30 else
31 iter ← iter + 1

32 return Sbest
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difficult combinatorial optimization problems [39, 25, 24, 37]. Our CSTS
procedure iteratively replaces the current solution with a neighboring solution
from the parametric constrained swap-based neighborhood CNswap defined
in Section 2.5.1. The procedure terminates when a legal k-IUC is found or if
the maximum non-improving iterations td is reached.

2.5.1. Parametric constrained swap-based neighborhood and explorations

To explore the search space Ω of k-IUC, CSTS iteratively transforms
the current solution to a neighboring solution by swapping a vertex of S
with another vertex of V \ S. Clearly, such an unconstrained swap move
generates a large neighborhood of size k × (n − k). This unconstrained
(complete) neighborhood is not sufficiently focused because it includes many
unpromising neighboring solutions of bad quality. For this reason, we in-
troduce a parametric constrained swap-based neighborhood, which is both
more focused and smaller in size.

Let S be the current IUC, and the swap move swap(u, v) applied to
solution S creates a new IUC S′ by exchanging vertices u ∈ S and v ∈ V \ S.
Let S⊕swap(u, v) designate the neighboring solution S′ obtained by applying
swap(u, v) to S, the complete swap-based neighborhood Nswap (i.e., the set
of neighboring solutions) induced by swap(u, v) is given by,

Nswap(S) = {S′ : S′ = S⊕ swap(u, v) = S \{u}∪{v}, u ∈ S, v ∈ V \S} (6)

The key concept related to a swap move is the move gain, which indicates
the variation of the value of the evaluation function f(S) (Eq. (5)). To quickly
determine the move gain of a swap move, we devise the first incremental
neighborhood evaluation technique for the maximum IUC problem that
considerably speeds up our CSTS procedure. This technique relies on two
n-dimensional integer vectors δ0 and δ1, where element δ0(i) represents
the number of open triangles formed by a vertex i ∈ V with any two
vertices j, l ∈ S, where j and l are adjacent, i.e.,

∑
i∈V tijl, ∀j, l ∈ S, {j, l} ∈

E, i, j, l = 1, . . . , n, i 6= j 6= l. Similarly, element δ1(i) denotes the number
of open triangles constructed by i ∈ V with j, l ∈ S, where j and l are
not adjacent, i.e.,

∑
i∈V tijl, ∀j, l ∈ S, {j, l} /∈ E, i, j, l = 1, . . . , n, i 6= j 6= l.

With vectors δ0 and δ1, for each candidate neighboring solution S′ obtained
after applying a swap(u, v) to S, the change in the evaluation function value
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(move gain) can be quickly computed in O(1) as below,

4f (u, v) = (δ0(v) + δ1(v)/2)− (δ0(u) + δ1(u)/2)−
∑
i∈S

tiuv (7)

where
∑

i∈S tiuv denotes the total number of open triangles formed by u ∈ S
and v ∈ V \ S with a vertex i ∈ S. Let dV (i) = δ0(i) + δ1(i)/2, i ∈ V , Eq.
(7) can be conveniently rewritten as follows,

4f (u, v) = dV \S(v)− dS(u)−
∑
i∈S

tiuv (8)

Thus, a negative (positive) move gain indicates a better (worse) neigh-
boring solution S′ compared to S, while a zero move gain corresponds to a
neighboring solution of equal quality.

From Eq. (8), we note that the evaluation function value of the resulting
solution, i.e., f(S′) = f(S) +4f (u, v), depends on the values of dV \S(v),
dS(u), and

∑
i∈S tiuv, respectively. To minimize f(S′), we prefer to replace a

vertex u ∈ S of a large dS(u) value with a vertex v ∈ V \S of a small dV \S(v)
value. Thus, we select swapped vertices from a subset A ⊆ S containing
vertices with large dS(u) values and a subset B ⊆ V \S consisting of vertices
with small dV \S(v) values. Let d′S (d′V \S) denote the vectors dS (dV \S) in an

ascending order, dmax be the i-th element in d′S , and dmin be the j-th element
in d′V \S , where i = (1− τ)×k and j = τ × (n−k) where τ (0 < τ ≤ 1) is the
parametric constrained neighborhood coefficient that dynamically scales the
size of the neighborhood (τ = 1 corresponds to the complete neighborhood).
The two subsets A and B are then defined by,

A = {u|u ∈ S, dS(u) ≥ dmax} (9)

B = {v|v ∈ V \ S, dV \S(v) ≤ dmin} (10)

Our constrained swap neighborhood CNswap(S) is thus composed of the
specific swap moves induced by subsets A and B as follows,

CNswap(S) = {S′ : S′ = S⊕ swap(u, v) = S \ {u}∪ {v}, u ∈ A, v ∈ B} (11)

This constrained swap-based neighborhood is clearly much smaller than
the complete swap neighborhood Nswap defined by Eq. (6). It is also more
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focused because neighboring solutions of bad quality are excluded. We will
compare the performance of the two neighborhoods in Section 4.1.

As shown in Algorithm 2, at each iteration, CSTS constructs a parametric
constrained swap-based neighborhood CNswap by identifying two subsets A
and B with regard to S (lines 9-17). The best admissible swap(u, v) (u ∈ A,
v ∈ B, u and v are not prohibited by the tabu list) (ties are broken randomly)
is then selected from CNswap with the smallest move gain 4f (u, v) (line 19).
The tabu list, which is defined as two n-dimensional integer vectors tl0 and
tl1, is used to prevent the search from short-term cycling. It is first set to 0
for each i ∈ V to ensure that no vertex is forbidden by the tabu list (lines
4-5). Once a swap(u, v) is performed (line 20), vertices u and v are added to
the tabu list so as to prevent them from being selected again for the next
tt iterations (line 21). If the new solution is a legal k-IUC (i.e., f(S) = 0),
the procedure returns the k-IUC found and stops (lines 24-25). Otherwise,
the best IUC found is updated whenever a better solution is achieved and
the search continues to its next iteration (lines 26-31). The tabu status of a
move is overridden if it leads to a solution better than all visited solutions
(aspiration criterion). A swap(u, v) is thus considered admissible if neither
u nor v is marked as tabu or if the aspiration criterion is met. The time
complexity of CSTS is bounded by O(n× k).

Once a swap(u, v) move is performed, for each vertex i ∈ V where the
open triangle formed by i with u or v, the values of its vectors δ0(i) and δ1(i)
are updated in O(1) as follows,

δ0(i) =


δ0(i)− 1, tiuw = 1, u, w ∈ S, i 6= w, {u,w} ∈ E
δ0(i) + 1, tivw = 1, v ∈ V \ S,w ∈ S, i 6= w 6= u, {v, w} ∈ E
δ0(i), otherwise.

(12)

δ1(i) =


δ1(i)− 1, tiuw = 1, u, w ∈ S, i 6= w, {u,w} /∈ E
δ1(i) + 1, tivw = 1, v ∈ V \ S,w ∈ S, i 6= w 6= u, {v, w} /∈ E
δ1(i), otherwise.

(13)

where tiuw = 1 (or tivw = 1) denotes the open triangle formed by vertices i,
u, w (or vertices i, v, w).

Fig. 1 shows a simple example on a graph with five vertices. In Fig. 1(a),
S = {B,C,D,E} is an IUC with δ0 = {2, 0, 2, 0, 2} and δ1 = {0, 2, 0, 2, 0},
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(a) An illegal IUC
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Figure 1: An example shows that from an IUC S = {B,C,D,E}, a legal IUC S′ =
{A,B,D,E} is obtained by swapping vertices A ∈ S and C ∈ V \ S through a swap move.

which is not a legal IUC (f(S) = 2). We see that swapping C and A
(4f (C,A) = −2) leads to a legal IUC S′ = {A,B,D,E} (f(S′) = f(S) +
4f (C,A) = 0) in Fig. 1(b), which is better than other swaps, i.e., B and A
(4f (B,A) = 0), D and A (4f (D,A) = 0), or E and A (4f (E,A) = 0). After
swapping C and A, the vectors δ0 and δ1 are updated as δ′0 = {0, 0, 4, 0, 0}
and δ′1 = {0, 0, 0, 0, 0}.

2.6. Frequency-based perturbation

To encourage our LDTPS algorithm to explore distant new regions in the
search space Ω when it is unable to find a legal k-IUC during the search, we
perturb the current solution S to start a new search from a different initial
point. To make an informed perturbation, we use a long-term frequency
memory. In this memory, we keep track of how many times a vertex has
been relocated during the search. To maintain the frequency freq(i) of
each vertex i ∈ V , we use the following rules, 1) we first set for each vertex
i ∈ V , freq(i) = 0, 2) during the search, each time a vertex i is removed
from or added to the current solution S, freq(i) is incremented by 1, i.e.,
freq(i) = freq(i) + 1, and 3) at the end of each round of LDTPS, if for
i ∈ V, freq(i) > k, we reset freq(i) = 0.

We create a perturbed (new) solution S by the frequency information
(Algorithm 3). First, we calculate the average frequency freqavg (i.e.,
freqavg =

∑
i∈S freq(i)/k) from the best solution obtained in the current

search round (line 3). The solution destruction process (lines 4-8) is triggered
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Algorithm 3: Frequency-based perturbation procedure.

Input: G = (V,E)
Output: Perturbed IUC S

1 begin
2 l← k
3 Calculate the average frequency freqavg =

∑
i∈S freq(i)/k

4 //Solution destruction process

5 for i = 1 to n do
6 if freq(i) < freqavg then

7 S ← S \ {i}
8 l← l − 1

9 //Solution expansion process

10 while l < k do
11 Assign a random vertex i to S
12 l← l + 1

13 return S

to remove from S the vertices i whose frequency freq(i) is less than freqavg.
The solution repair process (lines 9-12) is then used to extend the current
partial solution S by adding vertices at random until S contains exactly k
vertices. The time complexity of the procedure is bounded by O(n+ k).

2.7. Probability updating rule

After each descent local search and tabu search (lines 11 and 15, Algorithm
1), the LDTPS algorithm performs a probability learning mechanism to
update the probability vectors P0 and P1, following the idea of [38] for
grouping problems. We compare the improved solution and the starting
solution, and update P0 and P1 by observing whether a vertex is moved from
its original subset to another subset.

For each vertex i ∈ V , we compare its located subset in S or in S′. If a
vertex i stays in its original subset s, then we reward this subset (the correct
subset) and update the probability vector pj(i) as follows,

pj(i) =

{
α+ (1− α) · pj(i), j = s
(1− α) · pj(i), j = 1− s. (14)

where α (0 < α < 1) is a reward factor for the correct subset, and s = 0 (or
s = 1) denotes subset V \ S (or S).
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When a vertex i moves from a subset s of the input solution to a new
subset 1− s of the improved solution, we penalize the original subset s (the
incorrect subset), compensate the new subset 1− s (the expected subset),
and finally update the probability vector pj(i) as follows,

pj(i) =

{
(1− γ) · (1− β) · pj(i), j = s
γ + (1− γ) · β + (1− γ) · (1− β) · pj(i), j = 1− s. (15)

where β (0 < β < 1) is a penalization factor for the incorrect subset, and
γ (0 < γ < 1) is a compensation factor for the expected subset. The time
complexity of the probability updating rule is bounded by O(n).

3. Computational experiments

In this section, we carry out extensive experiments to evaluate the pro-
posed LDTPS algorithm with respect to the best-performing exact and
heuristic algorithms in the literature.

3.1. Benchmark graphs

We use 83 benchmark graphs1 from the well-known 2nd DIMACS Im-
plementation Challenge for clique problems [17]. These graphs have 28 to
4,000 vertices and 210 to 4,619,898 edges that encompass various real-world
problems (e.g., coding theory, fault diagnosis, Keller’s conjecture on tilings
using hypercubes, and the Steiner triple problem) as well as random graphs.
Then, we divide these graphs into three categories: Training Set, which con-
tains 15 graphs for parameter calibration, Test Set I (45 small and medium
graphs) and Test Set II (23 large graphs) for algorithm evaluation. Table 1
shows the main features of all the training and tested graphs.

3.2. Parameter setting

The proposed LDTPS algorithm requires six parameters (τ , td, tt, α,
β, and γ), which are calibrated by the automatic parameter configuration
package IRACE [4, 22]. The parameter calibration process was conducted
on the 15 graphs from the Training set. The training budget was set to 1000

1http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
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Table 1: Main features of the 86 benchmark graphs from the well-known 2nd DIMACS
Implementation Challenge.

Graph |V | |E| Graph |V | |E|
Training Set (15)

brock400 4 400 59,765 hamming10-4 1,024 434,176
brock800 1 800 207,505 johnson16-2-4 120 5,460
brock800 2 800 208,166 san200 0.7 1 200 13,930
brock800 3 800 207,333 san400 0.5 1 400 39,900
c-fat200-2 200 3,235 san400 0.7 2 400 55,860
c-fat500-5 500 23,191 san400 0.7 3 400 55,860
gen400 p0.9 55 400 71,820 san400 0.9 1 400 71,820
hamming10-2 1,024 518,656

Test Set I (45)
brock200 1 200 14,834 johnson32-2-4 496 107,880
brock200 2 200 9,876 keller4 171 9,435
brock200 3 200 12,048 MANN a9 45 918
brock200 4 200 13,089 MANN a27 378 70,551
brock400 1 400 59,723 p hat300-1 300 10,933
brock400 2 400 59,786 p hat300-2 300 21,928
brock400 3 400 59,681 p hat300-3 300 33,390
c-fat200-1 200 1,534 p hat500-1 500 31,569
c-fat200-5 200 8,473 p hat500-2 500 62,946
c-fat500-1 500 4,459 p hat500-3 500 93,800
c-fat500-2 500 9,139 p hat700-1 700 60,999
c-fat500-10 500 46,627 p hat700-2 700 121,728
DSJC500.5 500 62,624 p hat700-3 700 183,010
gen200 p0.9 44 200 17,910 san200 0.7 2 200 13,930
gen200 p0.9 55 200 17,910 san200 0.9 1 200 17,910
gen400 p0.9 65 400 71,820 san200 0.9 2 200 17,910
gen400 p0.9 75 400 71,820 san200 0.9 3 200 17,910
hamming6-2 64 1,824 san400 0.7 1 400 55,860
hamming6-4 64 704 sanr200 0.7 200 13,868
hamming8-2 256 31,616 sanr200 0.9 200 17,863
hamming8-4 256 20,864 sanr400 0.5 400 39,984
johnson8-2-4 28 210 sanr400 0.7 400 55,869
johnson8-4-4 70 1,855

Test Set II (23)
brock800 4 800 207,643 flat1000 76 0 1,000 246,708
C1000.9 1,000 450,079 keller5 776 225,990
C2000.5 2,000 999,836 keller6 3,361 4,619,898
C2000.9 2,000 1,799,532 p hat1000-1 1,000 122,253
C4000.5 4,000 4,000,268 p hat1000-2 1,000 244,799
DSJC500.1 500 12,458 p hat1000-3 1,000 371,746
DSJC500.9 500 112,437 p hat1500-1 1,500 284,923
DSJC1000.1 1,000 49,629 p hat1500-2 1,500 568,960
DSJC1000.5 1,000 249,826 p hat1500-3 1,500 847,244
DSJC1000.9 1,000 449,449 r1000.1c 1,000 485,090
flat1000 50 0 1,000 245,000 r1000.5 1,000 238,267
flat1000 60 0 1,000 245,830
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Table 2: Parameter setting of the LDTPS algorithm.

Parameter Section Description Calibrated values Final value

τ §2.5 parametric constrained neighborhood coefficient [0.1, . . . , 0.7, 0.9] 0.1
td §2.5 maximum non-improving iterations of TS [0.5, . . . , 2.0, 2.5]×104 5000
tt §2.5 tabu tenure [25, . . . , 185, 205] 85
α §2.7 reward factor for the correct subset [0.1, . . . , 0.8, 0.9] 0.4
β §2.7 penalization factor for the incorrect subset [0.1, . . . , 0.8, 0.9] 0.1
γ §2.7 compensation factor for the expected subset [0.1, . . . , 0.8, 0.9] 0.5

runs, and the cutoff time of each run was limited to 600 seconds. Table
2 shows the range of the calibrated parameter values and the final values
provided by IRACE. The final parameter values define the default setting of
LDTPS, which was consistently used for all the experiments. We will discuss
the impact of the parameters on the performance of LDTPS in Section 4.3.

3.3. Experimental setting

The LDTPS algorithm was programmed in C++2 and compiled by g++
10.2.1 with the optimization option ‘-O3’. All the experiments were conducted
on a Linux operating system with an Intel Xeon E5-2695 v4 processor (2.10
GHz and 12GB RAM). When we solved the DIMACS machine benchmarking
program dfmax.c3 without the compilation optimization flag, the runtime on
our machine was 0.05, 0.39, 2.42, and 9.19 seconds for graphs r200.5, r300.5,
r400.5, and r500.5, respectively.

To evaluate our algorithm, we compare it with the following state-of-
the-art reference methods from the literature. First, we implemented the
maximum IUC model (see Section 1) and solved it with a commercial heuristic
solver called LocalSolver 10.5 [3, 21] in one run with a time limit of 60 minutes.
Second, we used the two most recent exact methods in the literature [6]: 1)
IP, an integer programming based approach, and 2) RDS, a Russian doll
search (an effective combinatorial branch-and-bound algorithm). For IP, we
follow [6] and solve the maximum IUC model using the newest CPLEX solver
22.1 with a cutoff time of 600 minutes.

To further enhance the comparative study, we implemented two other
metaheuristic algorithms: a restart simulated annealing algorithm (denoted

2The code of our LDTPS algorithm will be made publicly available at: https://github.
com/hellozhilu/LDTPS, upon publication of the paper.

3http://archive.dimacs.rutgers.edu/pub/dsj/clique/.
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by RSA) and a genetic algorithm (denoted by GA). For both algorithms, we
reused as many search components as possible from our LDTPS algorithm
(fast evaluation function technique, constrained swap neighborhood, key data
structures, etc.). The implementation details of RSA and GA are provided
in Appendix A. Given the stochastic nature of RSA, GA, and LDTPS, we
performed 20 independent runs per graph with a cutoff time of 60 minutes
per run.

To ensure a fair comparison, RSA, GA, LocalSolver heuristic, IP with
CPLEX, and our LDTPS algorithm were run on the same computing platform
mentioned above with their default parameter settings. The numerical results
of the RDS algorithm were taken directly from [6].

In addition to the maximum IUC problem, we also report results on
the equivalent maximum multi-partite clique problem (MPC). A subset of
vertices S is a multi-partite clique if S can be partitioned into 1 ≤ k ≤ |S|
independent sets S1, . . . , Sk such that any two vertices from two different
subsets are adjacent. The maximum MPC problem is to find an MPC of
maximum cardinality. Note that an MPC is an independent set if k = 1 and
is a clique if k = |S|. It is obvious that S is a maximum IUC of G if and
only if S is a maximum MPC of the complement graph G.

Hence, RSA, GA, LocalSolver heuristic, IP with CPLEX, and our LDTPS
algorithm were also used to solve the maximum MPC problem by computing
the IUC number of the complement graph G.

3.4. Performance assessments

We present the computational results of the proposed LDTPS algorithm
along with those of the reference methods for both the maximum IUC
problem and the maximum MPC problem on the 83 DIMACS2 benchmark
graphs (including the 45 graphs from Test Set I and the 23 large graphs from
Test Set II).

Note that 1) the results of the IP-based approach and the RDS algorithm
are missing on Test Set II because the CPLEX solver did not find feasible
solutions on these large graphs within the limit of 10 hours, and the RDS
algorithm did not report results on these graphs in [6], and 2) the results of
the LocalSolver heuristic, the IP-based approach, and the RDS algorithm
were obtained from a single run, while the other algorithms were run 20
times. To make a fair comparison, we use our average results (instead of the
best results) to compare with the results of the single-run algorithms (IP,
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Table 3: Summary results for the maximum IUC problem and the maximum MPC problem
on Test Set I (45 graphs) and Test Set II (23 large graphs) of our LDTPS algorithm, the
restart simulated annealing RSA, the genetic algorithm GA, the LocalSolver heuristic [21],
the IP-based approach [6], and the RDS algorithm [6].

Benchmark set Algorithm pair Indicator #Better #Equal #Worse p-value

The maximum IUC problem

Test Set I LDTPS vs. IP [6] sol 24 20 1 1.76e-05
(45 graphs) LDTPS vs. RDS [6] sol 23 19 3 1.07e-04

LDTPS vs. LocalSolver [21] sol 26 19 0 8.24e-06
LDTPS vs. RSA solbest 6 37 2 7.78e-02

solavg 16 25 4 6.57e-03
LDTPS vs. GA solbest 39 6 0 5.17e-08

solavg 40 5 0 3.57e-08

Test Set II LDTPS vs. LocalSolver [21] sol 23 0 0 2.38e-07
(23 graphs) LDTPS vs. RSA solbest 19 2 2 1.80e-04

solavg 19 0 4 6.03e-05
LDTPS vs. GA solbest 23 0 0 2.38e-07

solavg 23 0 0 2.38e-07

The maximum MPC problem

Test Set I LDTPS vs. IP [6] sol 24 21 0 1.79e-05
(45 graphs) LDTPS vs. RDS [6] sol 18 27 0 1.96e-04

LDTPS vs. LocalSolver [21] sol 22 23 0 3.72e-05
LDTPS vs. RSA solbest 7 38 0 1.58e-02

solavg 13 32 0 2.18e-03
LDTPS vs. GA solbest 38 7 0 7.71e-08

solavg 42 3 0 1.65e-08

Test Set II LDTPS vs. LocalSolver [21] sol 23 0 0 2.38e-07
(23 graphs) LDTPS vs. RSA solbest 23 0 0 2.38e-07

solavg 23 0 0 2.38e-07
LDTPS vs. GA solbest 23 0 0 2.38e-07

solavg 23 0 0 2.38e-07

RDS, LocalSolver) while for multi-run algorithms (RSA, GA, LDTPS), we
compare them using both the best and average results.

Table 3 summarizes the overall comparison while the detailed results
are reported in Tables B.2 to B.5 of Appendix B. In Table 3, column 1
shows the names of the benchmark sets. Column 2 indicates the pairs of
compared algorithms. Column 3 provides the quality indicator in terms of
the best and average statistics. Columns 4-6 show the number of instances
on which LDTPS reached a better (#Better), equal (#Equal), or worse
(#Worse) results in terms of each quality indicator. Furthermore, the last
column provides the p-values from the Wilcoxon signed-rank tests with a
confidence level of 95% to assess whether there exists a statistically significant
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performance difference between LDTPS and each reference algorithm.

According to the summarized results of Table 3, LDTPS outperforms
all the reference algorithms. With respect to the exact algorithms, LDTPS
dominates the IP-based approach and the RDS algorithm by achieving better
or equal results in all but 4 cases. Compared to the heuristic algorithms,
LDTPS dominates all of them, always achieving better or equal results in
terms of the best and average results, with only a few exceptions. The small
p-values (far less than 0.05) confirm that the performance differences are
statistically significant between LDTPS and each compared method, except
for one case (LDTPS vs. RSA concerning solbest for the maximum IUC
problem) where the p-value slightly exceeds 0.05.

Specifically, on Test Set I (45 graphs), Tables B.2 and B.3 of Appendix
B show that our LDTPS algorithm achieves the best-known results for all
graphs, except 4 instances for the maximum IUC problem. The average
results obtained by LDTPS also equal or surpass the best-known results in
the literature in most cases. In particular, for the maximum IUC problem,
LDTPS attains 19 out of 20 instances with known optimal solutions, while
improving the best-known results (new lower bounds) in 14 out of 25 instances.
For the maximum MPC problem, LDTPS reaches all 20 known optimal
solutions, and improves the best-known results for 13 out of 25 instances with
unknown optimal solutions. Regarding stability, LDTPS can consistently
achieve its best results for each run (100% success rate) for 42 instances for
the maximum IUC problem (93.3%), and all 45 instances for the maximum
MPC problem (100.0%). In terms of computational time, LDTPS achieves its
best results rather quickly by requiring a similar or shorter time to find equal
or better solutions. The LocalSolver heuristic fails to find feasible solutions
over 1 hour for 10 (7) instances for the maximum IUC (MPC) problem. The
IP-based approach fails to find feasible solutions over 10 hours for 11 (8)
instances, while the RDS algorithm fails to optimally solve 26 (26) instances
over 10 hours for both problems. On Test Set II (23 large graphs), Tables B.4
and B.5 of Appendix B show that our LDTPS algorithm outperforms the
reference algorithms. Particularly, LDTPS finds new lower bounds for 21 (23)
out of 23 (23) instances for the maximum IUC (MPC) problem, and even its
average results surpass the best results of the compared algorithms in most
cases. In terms of stability and computational time, LDTPS achieves highly
success rates and requires shorter time to find the best solutions than the
compared algorithms. The LocalSolver heuristic can only find 3 (6) feasible
solutions for the maximum IUC (MPC) problem.
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Algorithm 4: Greedy clustering algorithm.

Input: G = (V,E)
Output: Clustering C = {C1, ..., Ck∗}

1 begin
2 S∗, k∗ ← the best k∗-IUC found by the LDTPS algorithm

/* Algorithm 1 */

3 Let C1, ..., Ck∗ be the sets of vertices corresponding to the different
connected components of the best k∗-IUC

4 while V \ ∪k∗

i=1Ci 6= ∅ do
5 Find v ∈ V \ ∪k∗

i=1Ci and Ci with the largest size of NG(v) ∩ Ci

/* NG(v) is the set of neighbors of v */

6 Ci = Ci ∪ v

7 return C = {C1, ..., Ck∗}

3.5. Application to real-life social network analysis

In this section, the proposed LDTPS algorithm is applied to the analysis
of real-world social networks. The result of LDTPS (i.e., the independent
unions of cliques) is used as a seed for a network clustering method that
partitions the nodes of the network into clusters. Following [7], we use a
greedy clustering algorithm and evaluate its performance on the three popular
networks: Zachary’s karate club, Terrorist network compiled by Krebs, and
College football network.

The greedy clustering algorithm is outlined in Algorithm 4. We first
compute an IUC by our LDTPS algorithm, which typically results in several
cliques C1, . . . , Ck∗ corresponding to different connected components in the
graph G. Each clique Ci (i = 1, ..., k∗), then forms an initial seed. For
each iteration of the ‘while’ loop, we select an unassigned node v with the
largest number of neighbors in one of the cliques Ci and assign v to Ci. The
procedure is repeated until all nodes are assigned to a cluster.

3.5.1. Zachary’s karate club

Zachary’s karate club is the social network of the well-known karate club
investigated by Zachary over three years [36]. The network has 34 members
(nodes) and 78 edges that represent the friendships between the club members
(see Fig. 2). During the study period, a political conflict arose between
the club president (node 34, John), and the instructor (node 1, Mr. Hi).
Later, as a result of the conflict, the club split into two parts (with 16 and
18 members). Zachary recorded a network of friendships among the club
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Figure 2: Application to the Zachary’s karate club network.

members just before the split, so this real-life example is often used as a
benchmark for network clustering algorithms.

Fig. 2 shows the results of our network clustering algorithm on the karate
club network. The black edges constitute the cliques provided by LDTPS,
and the gray edges indicate the other links. Our clustering algorithm finds 4
clusters, one corresponding to John’s faction (dark-gray nodes) and the other
three coinciding with Mr. Hi’s faction (light-gray nodes). Mr. Hi’s faction
contains a group of 5 students nodes 5, 6, 7, 11, 17) who only interact with
themselves and Mr. Hi (the corresponding nodes are indicated in dashed
circles), and the other cluster contains the remaining light-gray nodes. Our
clustering can be considered as an improvement over the results reported
in [36] because it accurately identifies the two factions and distinguishes a
distinct subgroup within one faction. Additionally, it is comparable to the
findings of [7].

3.5.2. Terrorist network compiled by Krebs

Created by Krebs, the terrorist interaction network [18] used the available
data about the terrible events of September 11, 2001. The network consists
of 62 nodes representing terrorists involved in the attacks, and the edges
correspond to pairs of individuals known to have interacted in the past. A
total of 153 interactions were observed. The resulting clusters are shown
in Fig. 3. The algorithm finds 5 clusters, three of which correspond to the
actual hijackers and roughly to the WTC North, Pentagon, Pennsylvania,
and WTC South attacks. The remaining two consist of the other association
of hijackers. Our results successfully identified the actual hijackers, and the
rest of the clusters are comparable to the results of [7].
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Figure 3: Application to the Terrorist network compiled by Krebs.

3.5.3. College football network

Finally, we consider a more complex real-world network with established
community structures. The network shows the schedule of United States
football games between Division IA colleges for the regular season in the
fall of 2000 [11]. The known communities are defined by conferences, each
containing about 8 to 12 teams. In general, teams from the same conference
are more likely to play each other than teams from other conferences. There
are also some independent teams that do not belong to any conference.

Fig. 4 shows the clustering results with our method on the football
network. Nodes represent teams, colored differently to indicate different
conferences, and links show regular season games between the two connected
teams. The black nodes and edges constitute the cliques provided by LDTPS.
Our method finds 12 clusters that almost match the actual conferences. The
five independent teams are placed in the conferences where they have played
the most because they rarely play against each other. In addition, the Sun
Belt conference is divided into two groups: one with a Western Athletic
team, the other with a Western Athletic team and an independent team.
This makes sense because the teams from both parts played only one game.
Then, a Conference USA team is assigned to the Western Athletic teams
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Figure 4: Application to the College football network.
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because that team has played with every Western Athletic team but with
no Conference USA team. In summary, our method perfectly identified
the community structures established in regular-season-game associations.
Furthermore, it identified the intra-conference association not reflected by
the established community structures.

4. Analysis

In this section, we examine two key components of our LDTPS algo-
rithm: the parametric constrained neighborhood and the probability learning
mechanism, and then provide insights into the impact of the parameters.

4.1. Effectiveness of the parametric constrained neighborhood

As mentioned in Section 2.5, LDTPS employs a parametric constrained
neighborhood in its CSTS procedure. The constrained neighborhood is con-
trolled by the parameter 0 ≤ τ ≤ 1, where a small (large) value of τ leads to a
small (large) neighborhood (τ = 1 corresponds to the complete neighborhood).
To assess the effectiveness of the parametric constrained neighborhood, we
study the running profiles of the algorithm with different values of τ based on
6 different types of hard graphs (brock800 1, gen400 p0.9 55, hamming10-2,
johnson16-2-4, san400 0.9 1, sanr400 0.5). We compare LDTPS (τ = 0.1)
with two LDTPS variants: LDTPS′ (τ = 0.5) and LDTPS′′ (τ = 1) under
the same experimental protocol as described in Section 3.3. The running
profiles for the 6 graphs are shown in Fig. 5. We observe that thanks
to the parametric constrained neighborhood, LDTPS has a better conver-
gence throughout the search. This experiment confirms the relevance of the
parametric constrained neighborhood for the tabu search procedure.

4.2. Effectiveness of the probability learning mechanism

We evaluate the impact of the probability learning mechanism used in
LDTPS, by comparing LDTPS and its variant TPS, where the probability
learning mechanism is removed while keeping only the local search procedure.
To ensure a fair comparison, TPS was performed in a multi-start way, until
the cutoff time (60 minutes) was reached. The experiment was conducted on
Test Set I (45 graphs) and used the same experimental protocol as described
in Section 3.3. Table 4 reports the same information as in Section 3.4.

From Table 4, we observe that in terms of solbest (solavg), LDTPS performs
better on 3 (10) instances, equally well on 42 (35) instances. The average

25



0 500 1000 1500 2000 2500
running time in seconds for brock800 1

15

16

17

18

19

20

ob
je

ct
iv

e
va

lu
e

LDTPS (τ = 0.1)

LDTPS′ (τ = 0.5)

LDTPS′′ (τ = 1)

(a) brock800 1

0 250 500 750 1000 1250 1500 1750 2000
running time in seconds for gen400 p0.9 55

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

ob
je

ct
iv

e
va

lu
e

LDTPS (τ = 0.1)

LDTPS′ (τ = 0.5)

LDTPS′′ (τ = 1)

(b) gen400 p0.9 55

0 500 1000 1500 2000 2500 3000 3500
running time in seconds for hamming10-2

250

300

350

400

450

500

ob
je

ct
iv

e
va

lu
e

LDTPS (τ = 0.1)

LDTPS′ (τ = 0.5)

LDTPS′′ (τ = 1)

(c) hamming10-2

0 250 500 750 1000 1250 1500 1750
running time in seconds for johnson16-2-4

8

9

10

11

12

13

14

ob
je

ct
iv

e
va

lu
e

LDTPS (τ = 0.1)

LDTPS′ (τ = 0.5)

LDTPS′′ (τ = 1)

(d) johnson16-2-4

0 500 1000 1500 2000 2500
running time in seconds for san400 0.9 1

45

50

55

60

65

70

ob
je

ct
iv

e
va

lu
e

LDTPS (τ = 0.1)

LDTPS′ (τ = 0.5)

LDTPS′′ (τ = 1)

(e) san400 0.9 1

0 20 40 60 80 100 120
running time in seconds for sanr400 0.5

10

12

14

16

ob
je

ct
iv

e
va

lu
e

LDTPS (τ = 0.1)

LDTPS′ (τ = 0.5)

LDTPS′′ (τ = 1)

(f) sanr400 0.5

Figure 5: Running profiles of LDTPS (τ = 0.1), LDTPS′ (τ = 0.5), and LDTPS′′ (τ = 1)
on 6 different types of hard graphs.
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Table 4: Comparison results on Test Set I (45 graphs) between the LDTPS algorithm
(with the probability learning mechanism) and its variant TPS algorithm (without the
probability learning mechanism).

TPS LDTPS
Graph |V | αω(G) solbest solavg hit t(s) solbest solavg hit t(s)

brock200 1 200 21∗ 21 21.0 20 24.5 21 21.0 20 31.5
brock200 2 200 15∗ 15 15.0 20 18.7 15 15.0 20 3.0
brock200 3 200 15∗ 14 13.8 15 1242.1 14 14.0 20 199.4
brock200 4 200 17∗ 16 16.0 20 16.2 17 16.1 1 73.5
brock400 1 400 23 25 25.0 20 93.0 25 25.0 20 150.8
brock400 2 400 23 25 25.0 20 112.3 25 25.0 20 35.4
brock400 3 400 23 25 25.0 20 144.2 25 25.0 20 35.8
c-fat200-1 200 130∗ 130 130.0 20 6.8 130 130.0 20 8.3
c-fat200-5 200 115∗ 115 115.0 20 4.8 115 115.0 20 59.4
c-fat500-1 500 332∗ 332 332.0 20 555.7 332 332.0 20 287.8
c-fat500-2 500 326∗ 326 326.0 20 447.3 326 326.0 20 521.5
c-fat500-10 500 313∗ 313 313.0 20 264.4 313 313.0 20 754.4
DSJC500.5 500 17 17 17.0 20 1024.8 17 17.0 20 158.3
gen200 p0.9 44 200 44 44 44.0 20 108.0 44 44.0 20 59.1
gen200 p0.9 55 200 55 55 55.0 20 38.6 55 55.0 20 11.4
gen400 p0.9 65 400 42 65 65.0 20 357.2 65 65.0 20 109.9
gen400 p0.9 75 400 39 75 73.4 3 2635.5 75 75.0 20 101.2
hamming6-2 64 32∗ 32 32.0 20 <0.1 32 32.0 20 <0.1
hamming6-4 64 16∗ 16 16.0 20 <0.1 16 16.0 20 <0.1
hamming8-2 256 128∗ 128 128.0 20 8.5 128 128.0 20 8.4
hamming8-4 256 16∗ 16 16.0 20 0.4 16 16.0 20 0.3
johnson8-2-4 28 7∗ 7 7.0 20 <0.1 7 7.0 20 0.1
johnson8-4-4 70 14∗ 14 14.0 20 0.1 14 14.0 20 <0.1
johnson32-2-4 496 31 16 16.0 20 <0.1 16 16.0 20 <0.1
keller4 171 15∗ 15 15.0 20 107.0 15 15.0 20 93.4
MANN a9 45 16∗ 16 16.0 20 <0.1 16 16.0 20 <0.1
MANN a27 378 126 126 125.6 12 987.1 126 125.7 14 1175.8
p hat300-1 300 46 48 48.0 20 4.9 48 48.0 20 1.6
p hat300-2 300 32 33 33.0 20 1.2 33 33.0 20 0.6
p hat300-3 300 31 36 36.0 20 9.0 36 36.0 20 3.0
p hat500-1 500 34 62 61.4 8 1206.6 62 62.0 20 28.9
p hat500-2 500 35 45 45.0 20 13.7 45 45.0 20 3.8
p hat500-3 500 36 50 50.0 20 125.1 50 50.0 20 16.5
p hat700-1 700 33 82 80.9 1 1378.3 82 82.0 20 730.4
p hat700-2 700 37 60 59.3 6 967.1 60 60.0 20 72.1
p hat700-3 700 35 62 62.0 20 938.8 62 62.0 20 255.0
san200 0.7 2 200 17 17 17.0 20 3.9 18 17.2 3 366.3
san200 0.9 1 200 70∗ 57 55.8 6 2375.1 70 70.0 20 1675.3
san200 0.9 2 200 60 60 59.9 18 1942.6 60 60.0 20 62.7
san200 0.9 3 200 44 44 44.0 20 165.3 44 44.0 20 34.8
san400 0.7 1 400 22 25 25.0 20 155.0 25 25.0 20 626.3
sanr200 0.7 200 18∗ 18 18.0 20 4.3 18 18.0 20 2.3
sanr200 0.9 200 42 42 42.0 20 23.9 42 42.0 20 6.6
sanr400 0.5 400 17∗ 17 17.0 20 131.2 17 17.0 20 23.6
sanr400 0.7 400 21 21 21.0 20 50.6 21 21.0 20 8.8

Average 57.4 61.7 61.6 18.0 393.2 62.1 62.0 19.1 173.3

Notes. The ∗ symbol indicates an optimal value. An underlined value indicates an improved best
result, i.e., a new lower bound. A bold value corresponds to the best value among the solutions
found by the compared algorithms.
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result in terms of solbest (solavg) for LDTPS is 62.1 (62.0), which is marginally
higher ((62.1− 61.7)/62.1× 100% = 0.64% and (62.0− 61.6)/62.0× 100% =
0.65%) than 61.7 (61.6) of TPS. Furthermore, LDTPS generally requires a
shorter average computing time 173.3 seconds vs. 393.2 seconds for TPS)
to reach its final solution in one run, and achieves a much higher average
successful rate (19.1/20 × 100% = 95.50% vs. 18.0/20 × 100% = 90.00%
for TPS). The small p-value = 5.01e-03 confirms a statistically average
performance difference between TPS and LDTPS. But the differences for the
best performance are not statistically significant (p-value = 1.02e-01). This
experiment confirms our observation that the probability learning mechanism
positively contributes to the high performance of LDTPS.

4.3. Analysis of the parameters

The LDTPS algorithm requires six parameters: τ , td, tt, α, β, and γ.
Specifically, τ is the parametric constrained neighborhood coefficient, td and
tt are the two parameters related to tabu search, where td is the maximum
non-improving iterations of tabu search and tt is the tabu tenure, respectively.
And α, β, and γ are the three parameters related to a probability learning
mechanism, where α is the reward factor for the correct subset, β is the
penalization factor for the incorrect subset, and γ is the compensation factor
for the expected subset, respectively.

To analyze the effect of these parameters on the performance of LDTPS
and the sensitivity of each parameter, a one-at-a-time sensitivity analysis
[13] was performed as follows. We tested for each parameter the calibrated
values, while fixing the other parameters to their default values from Table
2. The experiment relied on the same 15 graphs from the Training set and
experimental protocol as before. Fig. 6 shows the box and whisker plots of
the results, where the X-axis and the Y-axis indicate the parameter values
and the accumulated best objective values (the IUC numbers) over the 15
graphs, respectively. The Friedman rank sum test with a confidence level
of 95% is applied to assess whether there exists a statistically significant
difference in solution samples for different values of a given parameter.

From Fig. 6, we observe that the performance of LDTPS varies according
to the tested values of these parameters. The Friedman rand sum test
indicates a significant difference in performance for the parameters τ (p-
value=6.13e-06), td (p-value=3.71e-05), tt (p-value=1.26e-08), and γ (p-
value=1.30e-02), while it does not exhibit any sensitivity for the parameters
α and β (p-values > 0.05).
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Figure 6: Analysis of the parameters τ , td, tt, α, β, and γ (by using the box and whisker
plot) on the performance of the proposed LDTPS algorithm.
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5. Conclusions and future work

In this work, we proposed the first learning driven three-phase search
(LDTPS) algorithm for the NP-hard maximum independent union of cliques
(IUC) problem. Specifically, we developed a parametric constrained swap-
based tabu search that enables an effective examination of promising candi-
date solutions. We devised a frequency-based perturbation mechanism to
enhance search diversification and explore new promising areas. Notably,
we introduced a hybrid subset selection strategy and a probability updating
rule derived from reinforcement learning, which collects useful information
during the search to guide new solution construction.

We carried out extensive experiments to evaluate the proposed algorithm
on the 83 challenging 2nd DIMACS graphs in the literature, and made
comparisons with the state-of-the-art algorithms. The computational results
indicated that our algorithm outperforms the reference algorithms on the
benchmarks. Specifically, it reports 35 and 36 new lower bounds for the
maximum IUC problem and the maximum MPC problem, respectively. We
then presented an application of the proposed LDTPS algorithm to the
analysis of three real-life social networks. Since we will make the code
of our algorithm publicly available, we can expect other practical social
network problems to benefit from this work. We also performed additional
experiments to assess the effectiveness of the important ingredients of the
algorithm.

The proposed algorithm follows basically the single trajectory local search
framework. One possible future work would be to investigate the population-
based hybrid approaches such as memetic algorithms where the LDTPS
algorithm or its variants can beneficially be used as the local optimization
component. Furthermore, the current work focuses on the design of an
effective algorithm for the general IUC problem. It would be interesting to
investigate its usefulness on practical applications. This is facilitated by the
source code that we will make publicly available.
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Appendix A. Implemented RSA and GA algorithms

The restart simulated annealing (RSA) algorithm and the genetic algo-
rithm (GA) follow the general simulated annealing and genetic algorithm
frameworks. They integrate as many search components as possible from our
LDTPS algorithm. They use the same general solution approach as LDTPS.
That is, they seek a legal k-IUC for a fixed k, and each time a legal k-IUC is
found, they continue the search process by setting k ← k+ 1, until the given
time limit (60 minutes as for LDTPS) is reached. At termination, the best
IUC S∗ and the IUC number k∗ are returned. The codes of the RSA and
GA algorithms are available at https://github.com/hellozhilu/LDTPS.

The RSA algorithm begins with an initial solution S generated by the
method of Section 2.3, and performs its search in a multi-start way until the
cutoff time is met. At each round of search, RSA starts with an initial tem-
perature T (set to 1). It explores the constrained swap-based neighborhood
CNswap (see Section 2.5.1) and randomly swaps two vertices from subsets
A and B to generate a neighboring solution S′. Then, if the acceptance

probability Pr{S ← S′} = min(1, e
f(S′)−f(S)

T ) is verified, the neighboring
solution S′ becomes the new current solution S; otherwise, it is ignored
without changing the current solution during the current iteration. Once
the number of evaluated solutions reaches a threshold (set to 16× |V |), the
temperature T is cooled down by a constant factor 0.96, and SA proceeds to
the next search round with this lowered temperature. The frozen state of
SA is reached when the acceptance rate, defined as move/(16× |V |) (move
is the move counter), becomes smaller than 0.01 for 5 consecutive search
rounds.

The GA algorithm starts with an initial population of solutions, where
each solution is constructed using the method described in Section 2.3. The
population of size 50 is then evolved through several generations using three
search operators, including crossover, mutation, and pool updating. For each
generation, two parent solutions are randomly selected from the population
and combined by the uniform crossover. In the uniform crossover, each
offspring bit is randomly selected from either parent with equal probability.
If the offspring solution is infeasible, it is repaired by adding vertices to the
solution or removing vertices from the solution. Finally, the new solution is
inserted into the population, replacing the worst solution, if the offspring
is better than the worst solution and different from all solutions in the
population. The algorithm terminates when the cutoff time is reached.
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Appendix B. Detailed Computational results

We present the computational results of the proposed LDTPS algorithm,
the restart simulated annealing RSA, the genetic algorithm GA, the Local-
Solver heuristic [21], the IP-based approach [6], and the RDS algorithm [6]
for both the maximum IUC problem and the maximum MPC problem on
the DIMACS2 benchmark graphs (including the 15 graphs of Training Set,
the 45 graphs of Test Set I and the 23 large graphs of Test Set II).

The results of the IP-based approach and the RDS algorithm are missing
on Test Set II because the CPLEX solver did not find feasible solutions on
these large graphs, and the source code of the RDS algorithm is not available.
The results of the LocalSolver heuristic, the IP-based approach, and the RDS
algorithm were obtained from a single run, while the other algorithms (RSA,
GA, LDTPS) were run 20 times per instance under the condition given in
Section 3.3.

Table B.1: Computational results for the maximum IUC problem and the maximum MPC
problem on Training Set (15 graphs) of our LDTPS algorithm.

IUC MPC
Graph |V | αω(G) solbest solavg hit t(s) ωα(G) solbest solavg hit t(s)

brock400 4 400 33∗ 25 25.0 20 92.6 25 31 31.0 20 46.8
brock800 1 800 20 21 20.2 4 943.5 20 26 26.0 20 219.0
brock800 2 800 20 21 20.9 17 1601.1 21 26 26.0 20 620.5
brock800 3 800 20 21 20.6 11 1116.0 20 26 26.0 19 1104.0
c-fat200-2 200 134∗ 134 134.0 20 16.0 24∗ 11 10.5 10 1649.2
c-fat500-5 500 313∗ 313 313.0 20 265.0 64∗ 12 10.9 5 2343.7
gen400 p0.9 55 400 44 55 55.0 20 183.6 124 126 115.2 1 1090.1
hamming10-2 1024 512∗ 512 512.0 20 3041.7 512∗ 512 512.0 20 2109.6
hamming10-4 1024 18 40 40.0 20 99.5 32 75 74.3 5 790.6
johnson16-2-4 120 15∗ 15 14.1 5 1459.0 15∗ 15 15.0 20 <0.1
san200 0.7 1 200 30∗ 23 21.0 3 1772.9 105∗ 105 105.0 20 16.1
san400 0.5 1 400 29 22 20.0 1 2332.0 214∗ 214 208.4 13 178.3
san400 0.7 2 400 18 24 22.0 1 1386.0 205∗ 205 201.7 9 131.8
san400 0.7 3 400 16 22 20.0 1 1039.0 216∗ 216 205.6 13 155.4
san400 0.9 1 400 51 75 73.1 3 2804.5 200∗ 200 200.0 20 78.0

Average 84.9 88.2 87.4 11.1 1210.2 119.8 120.0 117.8 14.3 702.2

Notes. The ∗ symbol indicates an optimal value. An underlined value indicates an improved best
result, i.e., a new lower bound. A bold value corresponds to the best-known value in the literature.

Table B.1 shows the results of LDTPS for both problems on Training Set
(15 graphs), which were used for parameter calibration. Tables B.2 to B.5
show the detailed comparative results on Test Set I (45 graphs) and Test
Set II (23 large graphs). Columns 1 and 2 indicate for each instance, the
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instance name (Graph) and the number of vertices (|V |). Column 3 (ωα(G)
and αω(G)) shows the largest known IUC and MPC numbers ever reported
in the literature, while an asterisk (∗) indicates a proven maximum IUC and
MPC number. For the single-run approaches IP, RDS, and LocalSolver, we
report the IUC (MPC) number or the best lower bound (indicated by sol)
and the run time in seconds (t(s)). For the multi-run algorithms RSA, GA,
and LDTPS, we report the best IUC (MPC) number (solbest), the average
IUC (MPC) number over 20 independent runs (solavg), the number of times
solbest was reached across the 20 runs (hit), and the average run time in
seconds required to reach the final solution in each run (t(s)). The ‘-’ symbol
indicates that the corresponding result is not available (e.g., no feasible
solution was found, the time limit was reached, or the memory limit was
exceeded). An underlined value indicates an improved best result (new lower
bound). A bold value corresponds to the best-known value in the literature.

38



T
a
b

le
B

.2
:

C
o
m

p
a
ri

so
n

re
su

lt
s

fo
r

th
e

m
a
x
im

u
m

IU
C

p
ro

b
le

m
o
n

T
es

t
S

et
I

(4
5

g
ra

p
h

s)
o
f

o
u

r
L

D
T

P
S

a
lg

o
ri

th
m

,
th

e
re

st
a
rt

si
m

u
la

te
d

a
n
n
ea

li
n
g

R
S
A

,
th

e
g
en

et
ic

a
lg

o
ri

th
m

G
A

,
th

e
L

o
ca

lS
o
lv

er
h
eu

ri
st

ic
[2

1
],

th
e

IP
-b

a
se

d
a
p
p
ro

a
ch

[6
],

a
n
d

th
e

R
D

S
a
lg

o
ri

th
m

[6
].

IP [6
]

R
D

S
[6

]
L

o
ca

lS
o
lv

er
[2

1
]

R
S

A
G

A
L
D
T
P
S

G
ra

p
h

|V
|α

ω
(G

)
so

l
t(

s)
so

l
t(

s)
so

l
t(

s)
so

l b
e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

b
ro

ck
2
0
0

1
2
0
0

2
1
∗

2
1

3
5
9
7
8
.6

2
1

2
0
1
.5

1
8

7
0
7
.0

2
1

2
1
.0

2
0

7
.5

1
8

1
4
.5

1
2
5
8
.6

2
1

2
1
.0

2
0

3
1
.5

b
ro

ck
2
0
0

2
2
0
0

1
5
∗

1
3

-
1
5

2
9
.7

1
3

1
6
6
.0

1
5

1
5
.0

2
0

1
4
.0

1
1

1
0
.3

5
8
2
5
.7

1
5

1
5
.0

2
0

3
.0

b
ro

ck
2
0
0

3
2
0
0

1
5
∗

1
3

-
1
5

4
.2

1
3

1
3
9
.0

1
4

1
4
.0

2
0

8
4
.7

1
1

9
.5

1
5
2
0
.5

1
4

1
4
.0

2
0

1
9
9
.4

b
ro

ck
2
0
0

4
2
0
0

1
7
∗

1
6

-
1
7

5
.5

1
4

4
4
4
.0

1
7

1
7
.0

2
0

6
9
9
.7

1
4

1
1
.4

1
7
6
9
.3

1
7

1
6
.1

1
7
3
.5

b
ro

ck
4
0
0

1
4
0
0

2
3

-
-

2
3

-
2
3

3
3
5
9
.0

2
5

2
5
.0

2
0

2
0
1
.8

1
9

1
6
.4

1
<

0
.1

2
5

2
5
.0

2
0

1
5
0
.8

b
ro

ck
4
0
0

2
4
0
0

2
3

-
-

2
3

-
2
2

6
9
3
.0

2
6

2
5
.1

1
2
7
2
.3

1
9

1
6
.7

1
<

0
.1

2
5

2
5
.0

2
0

3
5
.4

b
ro

ck
4
0
0

3
4
0
0

2
3

-
-

2
3

-
2
1

3
2
2
2
.0

2
7

2
5
.7

2
7
5
8
.8

2
3

1
6
.8

1
<

0
.1

2
5

2
5
.0

2
0

3
5
.8

c-
fa

t2
0
0
-1

2
0
0

1
3
0
∗
1
3
0

0
.4

1
3
0

0
.9

1
3
0

4
.0

1
3
0

1
3
0
.0

2
0

9
.0

6
9

6
7
.2

2
3
2
8
8
.0

1
3
0

1
3
0
.0

2
0

8
.3

c-
fa

t2
0
0
-5

2
0
0

1
1
5
∗
1
1
5

5
0
.4

1
1
5

0
.5

1
1
5

3
4
6
.0

1
1
5

1
1
5
.0

2
0

6
.6

6
2

5
9
.2

1
2
2
4
2
.3

1
1
5

1
1
5
.0

2
0

5
9
.4

c-
fa

t5
0
0
-1

5
0
0

3
3
2
∗
3
3
2

2
.9

3
3
2

9
0
.3

3
3
2

5
.0

3
2
9

3
2
7
.9

3
2
1
6
7
.9

7
3

7
0
.6

2
2
9
5
3
.9

3
3
2

3
3
2
.0

2
0

2
8
7
.8

c-
fa

t5
0
0
-2

5
0
0

3
2
6
∗
3
2
6

4
3
.8

3
2
6

8
3
.7

3
2
6

6
5
6
.0

3
2
6

3
2
4
.8

1
1
8
2
2
.7

5
8

5
6
.6

5
2
8
8
7
.1

3
2
6

3
2
6
.0

2
0

5
2
1
.5

c-
fa

t5
0
0
-1

0
5
0
0

3
1
3
∗
3
1
3

3
7
1
2
.5

3
1
3

6
7
.4

2
9
7

2
8
8
2
.0

3
1
3

2
8
6
.8

5
4
9
1
.0

1
2
6

1
2
5
.0

7
<

0
.1

3
1
3

3
1
3
.0

2
0

7
5
4
.4

D
S

J
C

5
0
0
.5

5
0
0

1
7

-
-

1
7

-
-

-
1
7

1
6
.1

1
4
7
3
.3

1
0

9
.9

1
9

1
0
6
2
.1

1
7

1
7
.0

2
0

1
5
8
.3

g
en

2
0
0

p
0
.9

4
4

2
0
0

4
4

4
4

-
3
4

-
3
9

7
4
7
.0

4
4

4
4
.0

2
0

9
.2

3
3

2
9
.4

1
<

0
.1

4
4

4
4
.0

2
0

5
9
.1

g
en

2
0
0

p
0
.9

5
5

2
0
0

5
5

5
5

-
4
2

-
5
5

2
0
1
.0

5
5

5
5
.0

2
0

6
.9

3
4

3
0
.4

2
<

0
.1

5
5

5
5
.0

2
0

1
1
.4

g
en

4
0
0

p
0
.9

6
5

4
0
0

4
2

4
2

-
3
3

-
4
7

3
3
0
8
.0

6
5

6
5
.0

2
0

2
1
0
.2

4
0

3
6
.5

1
<

0
.1

6
5

6
5
.0

2
0

1
0
9
.9

g
en

4
0
0

p
0
.9

7
5

4
0
0

3
9

3
9

-
3
6

-
5
3

3
4
7
9
.0

7
5

7
5
.0

2
0

6
2
4
.1

4
2

3
8
.9

2
<

0
.1

7
5

7
5
.0

2
0

1
0
1
.2

h
a
m

m
in

g
6
-2

6
4

3
2
∗

3
2

6
.8

3
2

<
0
.1

3
2

3
.0

3
2

3
2
.0

2
0

<
0
.1

3
2

3
2
.0

2
0

<
0
.1

3
2

3
2
.0

2
0

<
0
.1

h
a
m

m
in

g
6
-4

6
4

1
6
∗

1
6

1
1
.2

1
6

0
.1

1
6

3
.0

1
6

1
6
.0

2
0

<
0
.1

1
6

1
6
.0

2
0

8
4
.4

1
6

1
6
.0

2
0

<
0
.1

h
a
m

m
in

g
8
-2

2
5
6

1
2
8
∗
1
2
8

3
4
1
.7

1
2
8

1
.0

1
2
8

1
4
0
.0

1
2
8

1
2
7
.3

1
7

1
2
.7

9
7

6
8
.8

1
<

0
.1

1
2
8

1
2
8
.0

2
0

8
.4

h
a
m

m
in

g
8
-4

2
5
6

1
6
∗

1
6

1
6
4
2
5
.2

1
6

6
0
.2

1
6

2
6
2
.0

1
6

1
6
.0

2
0

0
.2

1
1

1
0
.1

4
1
1
0
4
.4

1
6

1
6
.0

2
0

0
.3

jo
h

n
so

n
8
-2

-4
2
8

7
∗

7
0
.1

7
<

0
.1

7
1
.0

7
7
.0

2
0

<
0
.1

7
7
.0

2
0

0
.1

7
7
.0

2
0

0
.1

jo
h

n
so

n
8
-4

-4
7
0

1
4
∗

1
4

2
.7

1
4

<
0
.1

1
4

4
.0

1
4

1
4
.0

2
0

<
0
.1

1
4

1
4
.0

2
0

<
0
.1

1
4

1
4
.0

2
0

<
0
.1

jo
h

n
so

n
3
2
-2

-4
4
9
6

3
1

-
-

3
1

-
-

-
1
6

1
6
.0

2
0

<
0
.1

1
6

1
6
.0

2
0

<
0
.1

1
6

1
6
.0

2
0

<
0
.1

k
el

le
r4

1
7
1

1
5
∗

1
5

9
5
3
9
.7

1
5

3
.0

1
1

5
6
.0

1
5

1
5
.0

2
0

0
.4

1
1

1
0
.6

1
2

1
0
9
9
.7

1
5

1
5
.0

2
0

9
3
.4

M
A

N
N

a
9

4
5

1
6
∗

1
6

1
.2

1
6

<
0
.1

1
6

2
.0

1
6

1
6
.0

2
0

<
0
.1

1
6

1
5
.6

1
2

0
.4

1
6

1
6
.0

2
0

<
0
.1

M
A

N
N

a
2
7

3
7
8

1
2
6

1
2
6

-
1
1
9

-
1
2
5

1
3
1
2
.0

1
2
6

1
2
5
.9

1
8

1
3
7
2
.2

1
2
1

1
1
9
.3

4
<

0
.1

1
2
6

1
2
5
.7

1
4

1
1
7
5
.8

p
h

a
t3

0
0
-1

3
0
0

4
6

4
6

-
3
3

-
4
8

5
7
3
.0

4
8

4
7
.9

1
8

9
3
7
.8

2
1

2
0
.2

5
1
7
2
3
.1

4
8

4
8
.0

2
0

1
.6

39



T
a
b
le

B
.2

:
C

o
n
ti

n
u
ed

IP [6
]

R
D

S
[6

]
L

o
ca

lS
o
lv

er
[2

1
]

R
S

A
G

A
L
D
T
P
S

G
ra

p
h

|V
|α

ω
(G

)
so

l
t(

s)
so

l
t(

s)
so

l
t(

s)
so

l b
e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

p
h

a
t3

0
0
-2

3
0
0

3
2

2
8

-
3
2

-
3
3

1
5
1
7
.0

3
3

3
3
.0

2
0

9
.2

1
8

1
5
.2

1
8
5
2
.7

3
3

3
3
.0

2
0

0
.6

p
h

a
t3

0
0
-3

3
0
0

3
1

2
9

-
3
1

-
3
4

1
5
6
3
.0

3
6

3
6
.0

2
0

5
.9

2
8

2
2
.1

1
<

0
.1

3
6

3
6
.0

2
0

3
.0

p
h

a
t5

0
0
-1

5
0
0

3
4

3
2

-
3
4

-
6
2

2
1
8
9
.0

6
0

5
9
.8

1
5

1
3
2
2
.8

1
9

1
8
.7

1
4

1
9
0
5
.4

6
2

6
2
.0

2
0

2
8
.9

p
h

a
t5

0
0
-2

5
0
0

3
5

-
-

3
5

-
-

-
4
5

4
4
.5

9
8
8
8
.8

2
3

1
7
.3

1
4
3
2
.1

4
5

4
5
.0

2
0

3
.8

p
h

a
t5

0
0
-3

5
0
0

3
6

-
-

3
6

-
-

-
5
0

5
0
.0

2
0

4
8
2
.4

3
3

2
7
.8

2
<

0
.1

5
0

5
0
.0

2
0

1
6
.5

p
h

a
t7

0
0
-1

7
0
0

3
3

-
-

3
3

-
-

-
7
9

7
7
.7

1
1
4
7
9
.4

1
9

1
8
.6

1
2

1
7
3
3
.6

8
2

8
2
.0

2
0

7
3
0
.4

p
h

a
t7

0
0
-2

7
0
0

3
7

-
-

3
7

-
-

-
5
8

5
7
.5

9
1
3
1
9
.7

2
9

2
0
.8

1
2
.5

6
0

6
0
.0

2
0

7
2
.1

p
h

a
t7

0
0
-3

7
0
0

3
5

-
-

3
5

-
-

-
6
2

6
1
.9

1
7

1
5
3
4
.1

4
1

3
3
.4

1
<

0
.1

6
2

6
2
.0

2
0

2
5
5
.0

sa
n

2
0
0

0
.7

2
2
0
0

1
7

1
7

-
1
7

-
1
6

1
1
5
.0

1
7

1
7
.0

2
0

1
0
.2

1
4

1
3
.2

4
6
2
5
.3

1
8

1
7
.2

3
3
6
6
.3

sa
n

2
0
0

0
.9

1
2
0
0

7
0
∗

7
0

2
1
4
9
7
.1

3
7

-
7
0

1
6
5
7
.0

6
5

5
7
.4

1
6
8
9
.7

4
8

4
1
.3

2
2
2
9
.5

7
0

7
0
.0

2
0

1
6
7
5
.3

sa
n

2
0
0

0
.9

2
2
0
0

6
0

6
0

-
3
6

-
6
0

2
8
1
.0

6
0

5
9
.6

1
5

1
9
0
0
.8

3
8

3
2
.2

3
9
1
.4

6
0

6
0
.0

2
0

6
2
.7

sa
n

2
0
0

0
.9

3
2
0
0

4
4

4
4

-
3
3

-
4
4

2
6
5
.0

4
4

4
4
.0

2
0

1
8
.3

3
1

2
7
.4

1
<

0
.1

4
4

4
4
.0

2
0

3
4
.8

sa
n

4
0
0

0
.7

1
4
0
0

2
2

2
0

-
2
2

-
-

-
2
5

2
4
.5

9
9
4
4
.6

2
1

1
9
.6

5
1
9
2
.5

2
5

2
5
.0

2
0

6
2
6
.3

sa
n

r2
0
0

0
.7

2
0
0

1
8
∗

1
7

-
1
8

2
1
.6

1
7

3
5
9
.0

1
8

1
8
.0

2
0

0
.4

1
4

1
2
.2

1
1
7
9
.9

1
8

1
8
.0

2
0

2
.3

sa
n

r2
0
0

0
.9

2
0
0

4
2

4
2

-
3
5

-
4
2

2
1
3
.0

4
2

4
2
.0

2
0

5
.9

3
4

2
9
.0

1
<

0
.1

4
2

4
2
.0

2
0

6
.6

sa
n

r4
0
0

0
.5

4
0
0

1
7
∗

1
0

-
1
7

1
2
6
2
2
.9

-
-

1
7

1
6
.9

1
9

8
7
4
.1

1
1

9
.9

3
9
9
0
.9

1
7

1
7
.0

2
0

2
3
.6

sa
n

r4
0
0

0
.7

4
0
0

2
1

-
-

2
1

-
-

-
2
1

2
1
.0

2
0

1
2
.5

1
8

1
3
.6

1
<

0
.1

2
1

2
1
.0

2
0

8
.8

N
o
te
s.

T
h

e
∗

sy
m

b
o
l

in
d

ic
a
te

s
a
n

o
p

ti
m

a
l

v
a
lu

e.
A

n
u

n
d

er
li
n

ed
v
a
lu

e
in

d
ic

a
te

s
a
n

im
p

ro
v
ed

b
es

t
re

su
lt

,
i.

e.
,

a
n

ew
lo

w
er

b
o
u

n
d

.
A

b
o
ld

v
a
lu

e
co

rr
es

p
o
n

d
s

to
th

e
b

es
t-

k
n

o
w

n
v
a
lu

e
in

th
e

li
te

ra
tu

re
.

40



T
a
b

le
B

.3
:

C
o
m

p
a
ri

so
n

re
su

lt
s

fo
r

th
e

m
a
x
im

u
m

M
P

C
p

ro
b

le
m

o
n

T
es

t
S

et
I

(4
5

g
ra

p
h

s)
o
f

o
u

r
L

D
T

P
S

a
lg

o
ri

th
m

,
th

e
re

st
a
rt

si
m

u
la

te
d

a
n
n
ea

li
n
g

R
S
A

,
th

e
g
en

et
ic

a
lg

o
ri

th
m

G
A

,
th

e
L

o
ca

lS
o
lv

er
h
eu

ri
st

ic
[2

1
],

th
e

IP
-b

a
se

d
a
p
p
ro

a
ch

[6
],

a
n
d

th
e

R
D

S
a
lg

o
ri

th
m

[6
].

IP [6
]

R
D

S
[6

]
L

o
ca

lS
o
lv

er
[2

1
]

R
S

A
G

A
L
D
T
P
S

G
ra

p
h

|V
|
ω
α

(G
)

so
l

t(
s)

so
l

t(
s)

so
l

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

b
ro

ck
2
0
0

1
2
0
0

2
4

2
3

-
2
4

-
2
5

7
9
.0

2
8

2
8
.0

2
0

3
1
.8

1
7

1
5
.7

2
9
9
4
.1

2
8

2
8
.0

2
0

1
.2

b
ro

ck
2
0
0

2
2
0
0

1
4
∗

1
2

-
1
4

3
7
.3

1
3

1
9
7
.0

1
4

1
4
.0

2
0

4
.1

1
0

9
.9

1
8

4
5
8
.9

1
4

1
4
.0

2
0

0
.9

b
ro

ck
2
0
0

3
2
0
0

1
8
∗

1
8

-
1
8

7
7
5
.6

1
7

1
0
5
8
.0

1
8

1
8
.0

2
0

2
1
.6

1
3

1
1
.8

1
6
0
8
.5

1
8

1
8
.0

2
0

3
.4

b
ro

ck
2
0
0

4
2
0
0

2
0
∗

1
7

-
2
0

5
6
5
2
.8

1
9

3
4
6
1
.0

2
0

2
0
.0

2
0

6
3
.5

1
4

1
3
.0

2
8
5
1
.4

2
0

2
0
.0

2
0

4
.7

b
ro

ck
4
0
0

1
4
0
0

2
5

2
3

-
2
5

-
2
8

3
4
8
9
.0

3
0

2
9
.3

6
1
1
1
6
.3

1
6

1
5
.3

7
1
1
3
1
.3

3
1

3
1
.0

2
0

3
1
.8

b
ro

ck
4
0
0

2
4
0
0

2
7

2
4

-
2
7

-
2
7

1
3
7
1
.0

3
0

2
9
.3

6
1
1
5
1
.8

1
6

1
5
.1

2
7
4
3
.8

3
1

3
1
.0

2
0

2
8
.1

b
ro

ck
4
0
0

3
4
0
0

2
6

2
4

-
2
6

-
2
8

1
7
0
4
.0

3
0

2
9
.3

5
1
0
1
2
.8

1
6

1
5
.2

5
1
1
9
3
.5

3
1

3
1
.0

2
0

2
3
.6

c-
fa

t2
0
0
-1

2
0
0

1
8

1
8

-
1
8

-
1
8

1
2
.0

1
8

1
8
.0

2
0

<
0
.1

1
8

1
7
.4

7
9
0
2
.2

1
8

1
8
.0

2
0
<

0
.1

c-
fa

t2
0
0
-5

2
0
0

5
8
∗

5
8

1
0
3
6
.2

5
8

<
0
.1

5
8

3
5
1
.0

5
8

5
8
.0

2
0

2
.1

2
2

2
0
.0

2
1
8
1
7
.8

5
8

5
8
.0

2
0

6
.5

c-
fa

t5
0
0
-1

5
0
0

4
0

3
7

-
4
0

-
4
0

7
8
6
.0

4
0

4
0
.0

2
0

1
1
.9

3
6

3
4
.6

6
<

0
.1

4
0

4
0
.0

2
0

2
5
.2

c-
fa

t5
0
0
-2

5
0
0

2
0

-
-

2
0

-
2
0

8
3
.0

2
0

2
0
.0

2
0

0
.4

1
9

1
7
.9

1
6
3
4
.3

2
0

2
0
.0

2
0

0
.4

c-
fa

t5
0
0
-1

0
5
0
0

1
2
6
∗

-
-

1
2
6

0
.9

-
-

1
2
6

1
2
6
.0

2
0

5
1
.8

1
6

1
5
.3

9
1
3
6
8
.2

1
2
6

1
2
6
.0

2
0

2
2
9
.8

D
S

J
C

5
0
0
.5

5
0
0

1
7

-
-

1
7

-
-

-
1
7

1
6
.2

3
6
9
0
.4

1
0

9
.9

1
7

4
3
2
.2

1
7

1
7
.0

2
0

7
2
.1

g
en

2
0
0

p
0
.9

4
4

2
0
0

7
2

7
2

-
3
7

-
7
2

1
4
.0

7
2

7
2
.0

2
0

3
.3

3
2

3
1
.1

6
2
5
0
6
.2

7
2

7
2
.0

2
0

1
.2

g
en

2
0
0

p
0
.9

5
5

2
0
0

5
6

5
6

-
3
7

-
5
8

2
6
.0

5
8

5
8
.0

2
0

9
0
.2

3
1

2
9
.3

1
1
3
3
5
.7

5
8

5
8
.0

2
0

1
.6

g
en

4
0
0

p
0
.9

6
5

4
0
0

1
3
8

1
3
8

-
4
0

-
1
3
8

2
5
6
.0

1
3
8

1
3
7
.8

1
5

1
0
8
8
.1

2
9

2
7
.2

1
1
7
9
9
.6

1
3
8

1
3
8
.0

2
0

2
4
.7

g
en

4
0
0

p
0
.9

7
5

4
0
0

1
3
6

1
3
6

-
3
7

-
1
3
6

1
8
3
.0

1
3
6

1
3
5
.7

1
3

1
3
4
8
.7

2
9

2
6
.9

1
1
2
5
6
.4

1
3
6

1
3
6
.0

2
0

1
5
.8

h
a
m

m
in

g
6
-2

6
4

3
2
∗

3
2

1
.2

3
2

<
0
.1

3
2

2
.0

3
2

3
2
.0

2
0

0
.1

3
2

3
0
.4

6
5
3
4
.7

3
2

3
2
.0

2
0
<

0
.1

h
a
m

m
in

g
6
-4

6
4

1
4
∗

1
4

1
9
.2

1
4

<
0
.1

1
4

3
.0

1
4

1
4
.0

2
0

<
0
.1

1
4

1
4
.0

2
0

2
.6

1
4

1
4
.0

2
0
<

0
.1

h
a
m

m
in

g
8
-2

2
5
6

1
2
8
∗
1
2
8

3
1
9
8
.4

1
2
8

2
.3

1
2
8

3
.0

1
2
8

1
2
8
.0

2
0

3
6
4
.5

5
0

4
8
.3

3
2
1
2
9
.2

1
2
8

1
2
8
.0

2
0

6
.7

h
a
m

m
in

g
8
-4

2
5
6

3
2

3
2

-
3
2

-
2
8

2
5
2
.0

3
2

3
2
.0

2
0

7
7
.6

1
6

1
4
.9

1
0

6
2
6
.8

3
2

3
2
.0

2
0

1
7
.4

jo
h

n
so

n
8
-2

-4
2
8

7
∗

7
0
.2

7
<

0
.1

7
1
.0

7
7
.0

2
0

<
0
.1

7
7
.0

2
0

<
0
.1

7
7
.0

2
0
<

0
.1

jo
h

n
so

n
8
-4

-4
7
0

1
6
∗

1
6

1
6
.9

1
6

0
.7

1
6

2
.0

1
6

1
6
.0

2
0

<
0
.1

1
6

1
5
.2

7
1
4
7
.9

1
6

1
6
.0

2
0

0
.2

jo
h

n
so

n
3
2
-2

-4
4
9
6

3
1

3
1

-
3
1

-
3
1

1
6
4
.0

3
1

3
1
.0

2
0

<
0
.1

3
1

3
0
.6

1
9

1
4
0
.2

3
1

3
1
.0

2
0
<

0
.1

k
el

le
r4

1
7
1

2
6
∗

2
6

-
2
6

6
5
.9

2
4

1
0
7
2
.0

2
6

2
6
.0

2
0

2
.4

1
6

1
5
.0

3
9
0
9
.3

2
6

2
6
.0

2
0

1
.6

M
A

N
N

a
9

4
5

3
6
∗

3
6

<
0
.1

3
6

<
0
.1

3
6

<
0
.1

3
6

3
6
.0

2
0

<
0
.1

3
6

3
6
.0

2
0

0
.7

3
6

3
6
.0

2
0
<

0
.1

M
A

N
N

a
2
7

3
7
8

3
5
1
∗
3
5
1

<
0
.1

3
5
1

-
3
5
1

<
0
.1

3
5
1

3
5
1
.0

2
0

1
4
0
.6

2
4
2

2
3
9
.1

1
3
4
9
8
.9

3
5
1

3
5
1
.0

2
0

8
0
.3

p
h

a
t3

0
0
-1

3
0
0

3
7

3
6

-
3
7

-
3
9

2
5
9
9
.0

3
9

3
9
.0

2
0

2
.3

2
7

2
3
.7

2
<

0
.1

3
9

3
9
.0

2
0

0
.6

41



T
a
b
le

B
.3

:
C

o
n
ti

n
u
ed

IP [6
]

R
D

S
[6

]
L

o
ca

lS
o
lv

er
[2

1
]

R
S

A
G

A
L
D
T
P
S

G
ra

p
h

|V
|
ω
α

(G
)

so
l

t(
s)

so
l

t(
s)

so
l

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

p
h

a
t3

0
0
-2

3
0
0

3
1
∗

2
8

-
3
1

2
3
4
5
2
.4

3
1

1
3
8
6
.0

3
1

3
1
.0

2
0

5
2
.0

1
8

1
4
.8

1
2
9
4
.5

3
1

3
1
.0

2
0

1
.5

p
h

a
t3

0
0
-3

3
0
0

4
3

4
3

-
3
6

-
4
4

6
2
5
.0

4
4

4
4
.0

2
0

4
4
9
.2

1
9

1
8
.6

1
3

1
6
7
2
.7

4
4

4
4
.0

2
0

1
.7

p
h

a
t5

0
0
-1

5
0
0

3
6

-
-

3
6

-
-

-
5
0

5
0
.0

2
0

7
3
.2

3
3

2
7
.5

1
<

0
.1

5
0

5
0
.0

2
0

7
.5

p
h

a
t5

0
0
-2

5
0
0

3
6

-
-

3
6

-
-

-
4
2

4
1
.8

1
5

1
4
0
7
.4

2
5

1
7
.6

1
2
1
8
.9

4
3

4
3
.0

2
0

1
1
.8

p
h

a
t5

0
0
-3

5
0
0

4
2

4
2

-
3
6

-
6
2

2
7
4
7
.0

6
1

6
0
.7

1
4

1
2
4
4
.2

2
0

1
8
.8

4
1
7
3
4
.5

6
3

6
3
.0

2
0

2
6
4
.1

p
h

a
t7

0
0
-1

7
0
0

3
9

-
-

3
9

-
-

-
6
5

6
4
.7

1
3

1
6
3
7
.7

4
0

3
1
.7

1
<

0
.1

6
5

6
5
.0

2
0

3
6
8
.7

p
h

a
t7

0
0
-2

7
0
0

3
5

-
-

3
5

-
-

-
5
1

5
0
.2

3
1
1
6
6
.6

3
1

2
4
.3

2
<

0
.1

5
3

5
3
.0

2
0

4
7
.7

p
h

a
t7

0
0
-3

7
0
0

3
4

-
-

3
4

-
-

-
7
3

7
1
.8

3
1
4
4
9
.0

2
0

1
8
.2

1
1
1
7
1
.2

7
6

7
6
.0

2
0

3
7
2
.1

sa
n

2
0
0

0
.7

2
2
0
0

1
3
4
∗
1
3
4

3
.8

1
3
4

1
.1

1
3
4

7
8
.0

1
3
4

1
3
4
.0

2
0

5
.7

8
5

8
1
.3

1
3
3
9
1
.1

1
3
4

1
3
4
.0

2
0

1
1
.8

sa
n

2
0
0

0
.9

1
2
0
0

1
2
5
∗
1
2
5

1
0
.8

1
2
5

7
.3

1
2
5

1
8
.0

1
2
5

1
2
5
.0

2
0

4
.5

6
7

6
3
.8

2
3
3
4
4
.5

1
2
5

1
2
5
.0

2
0

6
.0

sa
n

2
0
0

0
.9

2
2
0
0

1
0
5
∗
1
0
5

3
3
2
.1

1
0
5

8
1
5
5
.6

1
0
5

1
4
.0

1
0
5

1
0
5
.0

2
0

4
.0

4
3

4
1
.0

5
2
8
6
3
.9

1
0
5

1
0
5
.0

2
0

3
.3

sa
n

2
0
0

0
.9

3
2
0
0

1
0
0
∗
1
0
0

6
9
7
.1

1
0
0

8
4
8
.6

1
0
0

2
2
.0

1
0
0

1
0
0
.0

2
0

3
.4

4
0

3
7
.1

1
2
9
8
0
.0

1
0
0

1
0
0
.0

2
0

3
.4

sa
n

4
0
0

0
.7

1
4
0
0

2
0
0
∗
2
0
0

-
2
0
0

7
.4

1
8
8

3
5
9
4
.0

2
0
0

2
0
0
.0

2
0

5
3
.6

3
4

3
0
.8

1
1
9
0
5
.4

2
0
0

2
0
0
.0

2
0

1
3
5
.3

sa
n

r2
0
0

0
.7

2
0
0

2
2

2
1

-
2
2

-
2
1

1
7
7
.0

2
2

2
2
.0

2
0

2
.4

1
4

1
3
.9

1
7

5
8
7
.9

2
2

2
2
.0

2
0

0
.3

sa
n

r2
0
0

0
.9

2
0
0

4
9

4
9

-
3
6

-
5
0

1
9
.0

5
1

5
0
.9

1
9

1
0
7
6
.1

2
9

2
7
.4

1
1
5
6
2
.8

5
1

5
1
.0

2
0

5
.4

sa
n

r4
0
0

0
.5

4
0
0

1
6
∗

1
1

-
1
6

1
7
0
0
0
.4

1
5

2
1
7
8
.0

1
6

1
6
.0

2
0

1
2
2
.8

1
1

1
0
.0

1
9
4
6
.9

1
6

1
6
.0

2
0

4
.7

sa
n

r4
0
0

0
.7

4
0
0

2
2

1
9

-
2
2

-
2
3

6
5
2
.0

2
7

2
5
.6

1
1
3
2
4
.8

1
4

1
3
.8

1
5

1
1
5
1
.6

2
7

2
7
.0

2
0

2
1
.0

N
o
te
s.

T
h

e
∗

sy
m

b
o
l

in
d

ic
a
te

s
a
n

o
p

ti
m

a
l

v
a
lu

e.
A

n
u

n
d

er
li
n

ed
v
a
lu

e
in

d
ic

a
te

s
a
n

im
p

ro
v
ed

b
es

t
re

su
lt

,
i.

e.
,

a
n

ew
lo

w
er

b
o
u

n
d

.
A

b
o
ld

v
a
lu

e
co

rr
es

p
o
n

d
s

to
th

e
b

es
t-

k
n

o
w

n
v
a
lu

e
in

th
e

li
te

ra
tu

re
.

42



T
a
b

le
B

.4
:

C
o
m

p
a
ri

so
n

re
su

lt
s

fo
r

th
e

m
a
x
im

u
m

IU
C

p
ro

b
le

m
o
n

T
es

t
S

et
II

(2
3

la
rg

e
g
ra

p
h

s)
o
f

o
u

r
L

D
T

P
S

a
lg

o
ri

th
m

,
th

e
re

st
a
rt

si
m

u
la

te
d

a
n
n
ea

li
n
g

R
S
A

,
th

e
g
en

et
ic

a
lg

o
ri

th
m

G
A

,
a
n
d

th
e

L
o
ca

lS
o
lv

er
h
eu

ri
st

ic
[2

1
].

L
o
ca

lS
o
lv

er
[2

1
]

R
S

A
G

A
L
D
T
P
S

G
ra

p
h

|V
|
α
ω

(G
)

so
l

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

b
ro

ck
8
0
0

4
8
0
0

-
-

-
2
1

2
0
.0

2
1
3
2
9
.6

1
6

1
4
.0

1
<

0
.1

2
1

2
0
.7

1
3

1
3
1
4
.5

C
1
0
0
0
.9

1
0
0
0

-
-

-
6
1

5
9
.8

2
2
1
0
9
.2

5
1

4
5
.3

2
<

0
.1

6
7

6
6
.2

6
1
7
6
4
.7

C
2
0
0
0
.5

2
0
0
0

-
-

-
1
7

1
6
.0

1
1
0
0
0
.9

1
3

1
0
.7

2
3
1
.9

2
0

1
9
.5

1
0

8
1
8
.4

C
2
0
0
0
.9

2
0
0
0

-
-

-
6
1

5
9
.3

1
1
8
8
8
.7

5
5

5
1
.6

2
<

0
.1

7
3

7
1
.8

3
2
7
3
8
.7

C
4
0
0
0
.5

4
0
0
0

-
-

-
1
6

1
5
.8

1
5

1
3
5
7
.5

1
3

1
1
.6

2
<

0
.1

2
1

2
0
.7

1
3

1
0
3
5
.7

D
S

J
C

5
0
0
.1

5
0
0

-
6
7

3
6
0
5
.0

6
4

6
3
.6

1
1

1
6
9
7
.0

2
7

2
5
.5

1
1
6
9
0
.8

6
9

6
8
.9

1
9

1
1
0
0
.9

D
S

J
C

5
0
0
.9

5
0
0

-
4
9

3
6
0
0
.0

5
6

5
4
.6

1
1
2
8
6
.4

4
4

3
9
.0

1
<

0
.1

5
5

5
3
.6

1
1
1
.8

D
S

J
C

1
0
0
0
.1

1
0
0
0

-
7
0

3
6
0
0
.0

6
8

6
6
.6

2
1
9
1
9
.8

2
6

2
4
.8

4
1
6
9
2
.2

7
9

7
8
.8

1
5

1
4
8
4
.4

D
S

J
C

1
0
0
0
.5

1
0
0
0

-
-

-
1
7

1
6
.1

1
6
1
6
.9

1
2

9
.9

1
2
0
0
.2

1
9

1
8
.5

9
4
9
0
.9

D
S

J
C

1
0
0
0
.9

1
0
0
0

-
-

-
6
0

5
9
.5

1
0

1
7
2
3
.3

4
8

4
4
.3

1
<

0
.1

6
7

6
5
.7

2
1
6
2
5
.6

fl
a
t1

0
0
0

5
0

0
1
0
0
0

-
-

-
1
7

1
6
.2

4
1
0
0
4
.9

1
1

1
0
.2

6
2
4
1
.7

2
0

1
9
.2

8
1
3
5
1
.5

fl
a
t1

0
0
0

6
0

0
1
0
0
0

-
-

-
1
7

1
6
.1

1
4
7
9
.9

1
2

1
0
.2

1
6
7
5
.0

1
9

1
8
.6

1
1

7
6
2
.9

fl
a
t1

0
0
0

7
6

0
1
0
0
0

-
-

-
1
7

1
6
.2

3
6
1
8
.2

1
1

1
0
.0

2
6
9
5
.5

1
9

1
8
.4

8
4
3
0
.3

k
el

le
r5

7
7
6

-
-

-
2
7

2
6
.9

1
7

1
0
1
0
.6

2
1

1
6
.8

1
<

0
.1

2
7

2
6
.3

8
1
5
2
2
.8

k
el

le
r6

3
3
6
1

-
-

-
4
2

4
0
.9

4
2
2
0
0
.7

4
2

3
4
.2

1
<

0
.1

5
3

5
1
.8

2
1
7
1
1
.0

p
h

a
t1

0
0
0
-1

1
0
0
0

-
-

-
8
5

8
3
.5

2
2
4
9
4
.7

1
9

1
8
.4

8
1
6
2
1
.0

9
2

9
1
.2

4
1
2
6
6
.3

p
h

a
t1

0
0
0
-2

1
0
0
0

-
-

-
6
2

6
1
.5

9
1
9
3
4
.0

2
8

2
1
.6

1
<

0
.1

6
7

6
7
.0

2
0

2
7
9
.7

p
h

a
t1

0
0
0
-3

1
0
0
0

-
-

-
6
6

6
5
.0

2
1
9
6
7
.8

4
2

3
3
.4

1
<

0
.1

6
8

6
8
.0

2
0

4
7
0
.2

p
h

a
t1

5
0
0
-1

1
5
0
0

-
-

-
9
2

9
1
.0

3
3
1
9
7
.2

1
9

1
7
.9

3
2
3
7
0
.7

1
0
5

1
0
4
.7

1
4

1
8
8
8
.2

p
h

a
t1

5
0
0
-2

1
5
0
0

-
-

-
6
8

6
6
.4

1
2
4
7
5
.4

4
2

2
8
.5

1
<

0
.1

7
7

7
6
.9

1
9

1
2
0
1
.2

p
h

a
t1

5
0
0
-3

1
5
0
0

-
-

-
9
3

9
2
.1

3
2
2
3
1
.9

5
2

4
2
.1

1
<

0
.1

9
4

9
3
.0

1
2
1
1
7
.2

r1
0
0
0
.1

c
1
0
0
0

-
-

-
8
7

8
6
.7

1
3

2
2
5
5
.6

7
1

6
6
.0

1
<

0
.1

8
5

8
3
.7

2
2
1
2
6
.5

r1
0
0
0
.5

1
0
0
0

-
-

-
3
7
1

3
6
9
.5

3
2
8
9
5
.6

2
2
5

1
9
5
.1

1
0
.1

3
7
2

3
6
9
.0

2
3
5
5
6
.5

N
o
te
s.

A
n

u
n

d
er

li
n

ed
v
a
lu

e
in

d
ic

a
te

s
a
n

im
p

ro
v
ed

b
es

t
re

su
lt

,
i.
e.

,
a

n
ew

lo
w

er
b

o
u

n
d

.
A

b
o
ld

v
a
lu

e
co

rr
es

p
o
n

d
s

to
th

e
b

es
t-

k
n

o
w

n
v
a
lu

e
in

th
e

li
te

ra
tu

re
.

43



T
a
b

le
B

.5
:

C
o
m

p
a
ri

so
n

re
su

lt
s

fo
r

th
e

m
a
x
im

u
m

M
P

C
p

ro
b

le
m

o
n

T
es

t
S

et
II

(2
3

la
rg

e
g
ra

p
h

s)
o
f

o
u

r
L

D
T

P
S

a
lg

o
ri

th
m

,
th

e
re

st
a
rt

si
m

u
la

te
d

a
n
n
ea

li
n
g

R
S
A

,
th

e
g
en

et
ic

a
lg

o
ri

th
m

G
A

,
a
n
d

th
e

L
o
ca

lS
o
lv

er
h
eu

ri
st

ic
[2

1
].

L
o
ca

lS
o
lv

er
[2

1
]

R
S

A
G

A
L
D
T
P
S

G
ra

p
h

|V
|
ω
α

(G
)

so
l

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

so
l b

e
st

so
l a
v
g

h
it

t(
s)

b
ro

ck
8
0
0

4
8
0
0

-
-

-
2
3

2
2
.2

3
9
1
3
.7

1
3

1
2
.1

3
1
0
6
3
.3

2
6

2
5
.8

1
5

6
7
4
.4

C
1
0
0
0
.9

1
0
0
0

-
7
1

3
6
0
0
.0

6
7

6
6
.1

4
1
8
7
1
.8

2
5

2
4
.8

1
5

1
3
9
6
.5

7
9

7
8
.0

2
1
9
0
3
.4

C
2
0
0
0
.5

2
0
0
0

-
-

-
1
7

1
6
.1

1
9
9
2
.7

1
2

1
0
.6

2
<

0
.1

2
0

1
9
.5

9
6
9
1
.1

C
2
0
0
0
.9

2
0
0
0

-
-

-
6
7

6
5
.6

3
3
0
3
3
.9

2
5

2
4
.1

4
1
6
1
6
.6

8
6

8
4
.8

2
2
2
3
4
.2

C
4
0
0
0
.5

4
0
0
0

-
-

-
1
6

1
5
.7

1
3

6
5
8
.8

1
3

1
1
.9

4
<

0
.1

2
1

2
0
.6

1
2

1
0
8
5
.1

D
S

J
C

5
0
0
.1

5
0
0

-
5
0

3
6
0
0
.0

5
6

5
5
.7

1
4

1
8
1
0
.8

4
2

3
8
.4

2
<

0
.1

5
7

5
7
.0

2
0

2
8
5
.2

D
S

J
C

5
0
0
.9

5
0
0

-
6
3

3
6
0
5
.0

6
4

6
2
.7

2
1
7
6
1
.1

2
6

2
5
.7

1
4

1
5
2
7
.0

6
9

6
8
.2

3
6
0
6
.5

D
S

J
C

1
0
0
0
.1

1
0
0
0

-
-

-
6
1

6
0
.3

6
2
0
9
1
.7

5
0

4
4
.8

1
<

0
.1

6
7

6
6
.1

7
2
1
2
4
.7

D
S

J
C

1
0
0
0
.5

1
0
0
0

-
-

-
1
7

1
6
.2

3
7
8
9
.4

1
1

1
0
.0

2
5
1
4
.9

1
9

1
8
.1

2
2
0
0
.5

D
S

J
C

1
0
0
0
.9

1
0
0
0

-
7
5

3
6
0
0
.0

6
7

6
5
.6

3
1
9
4
0
.8

2
6

2
4
.6

2
1
3
6
7
.2

7
8

7
7
.2

4
1
3
5
5
.4

fl
a
t1

0
0
0

5
0

0
1
0
0
0

-
-

-
1
6

1
5
.9

1
7

1
3
2
4
.2

1
1

9
.9

2
3
9
1
.1

1
8

1
8
.0

2
0

8
5
6
.4

fl
a
t1

0
0
0

6
0

0
1
0
0
0

-
-

-
1
6

1
5
.9

1
8

1
4
9
6
.2

1
1

1
0
.1

6
4
0
1
.7

1
8

1
8
.0

2
0

3
0
8
.4

fl
a
t1

0
0
0

7
6

0
1
0
0
0

-
-

-
1
6

1
6
.0

2
0

1
2
7
4
.3

1
1

1
0
.0

3
3
4
3
.5

1
9

1
8
.1

1
3
0
1
.0

k
el

le
r5

7
7
6

-
4
6

3
6
0
0
.0

5
1

5
0
.2

7
1
7
2
9
.9

3
0

2
3
.5

2
2
9
1
.7

5
7

5
7
.0

2
0

7
5
5
.1

k
el

le
r6

3
3
6
1

-
-

-
7
3

7
1
.3

3
3
3
2
9
.8

6
2

4
7
.7

1
<

0
.1

1
1
5

1
1
4
.5

1
0

2
2
8
0
.7

p
h

a
t1

0
0
0
-1

1
0
0
0

-
-

-
7
4

7
2
.2

1
1
7
3
2
.2

4
3

3
6
.9

1
<

0
.1

7
5

7
4
.7

1
4

2
1
2
1
.2

p
h

a
t1

0
0
0
-2

1
0
0
0

-
-

-
5
2

5
1
.7

1
3

1
7
0
9
.3

3
1

2
6
.4

3
<

0
.1

5
6

5
6
.0

2
0

6
2
.1

p
h

a
t1

0
0
0
-3

1
0
0
0

-
-

-
7
6

7
4
.7

1
1
7
6
6
.8

1
8

1
7
.3

8
1
0
9
4
.2

8
2

8
2
.0

2
0

1
2
4
3
.7

p
h

a
t1

5
0
0
-1

1
5
0
0

-
-

-
8
5

8
3
.5

1
1
9
3
0
.7

5
0

3
9
.5

1
<

0
.1

8
7

8
6
.3

5
2
0
1
5
.9

p
h

a
t1

5
0
0
-2

1
5
0
0

-
-

-
7
0

6
8
.6

1
2
7
3
9
.1

4
0

2
6
.4

1
<

0
.1

8
0

7
9
.7

1
5

1
5
3
4
.1

p
h

a
t1

5
0
0
-3

1
5
0
0

-
-

-
9
7

9
5
.1

1
3
4
6
3
.6

1
9

1
7
.7

2
1
3
9
5
.5

1
1
3

1
1
1
.5

1
1
9
4
9
.6

r1
0
0
0
.1

c
1
0
0
0

-
4
0
1

3
6
2
2
.0

3
7
7

3
7
3
.9

1
3
5
4
5
.3

6
4

6
2
.1

1
2
7
2
5
.2

4
1
1

4
0
8
.9

1
3
2
5
0
.1

r1
0
0
0
.5

1
0
0
0

-
-

-
2
1
2

2
1
0
.9

3
2
7
3
7
.8

1
8

1
6
.4

2
1
5
3
7
.7

2
3
6

2
3
6
.0

2
0

1
3
5
0
.5

N
o
te
s.

A
n

u
n

d
er

li
n

ed
v
a
lu

e
in

d
ic

a
te

s
a
n

im
p

ro
v
ed

b
es

t
re

su
lt

,
i.
e.

,
a

n
ew

lo
w

er
b

o
u

n
d

.
A

b
o
ld

v
a
lu

e
co

rr
es

p
o
n

d
s

to
th

e
b

es
t-

k
n

o
w

n
v
a
lu

e
in

th
e

li
te

ra
tu

re
.

44


	Introduction
	Learning driven three-phase search for the maximum IUC
	Search space and evaluation function
	Main scheme
	Initialization and hybrid subset selection
	Descent-based local search
	Constrained swap-based tabu search
	Parametric constrained swap-based neighborhood and explorations

	Frequency-based perturbation
	Probability updating rule

	Computational experiments
	Benchmark graphs
	Parameter setting
	Experimental setting
	Performance assessments
	Application to real-life social network analysis
	Zachary’s karate club
	Terrorist network compiled by Krebs
	College football network


	Analysis
	Effectiveness of the parametric constrained neighborhood
	Effectiveness of the probability learning mechanism
	Analysis of the parameters

	Conclusions and future work
	Implemented RSA and GA algorithms
	Detailed Computational results

