
Hybrid evolutionary search for the traveling
repairman problem with profits

Yongliang Lu a, Jin-Kao Hao b,c, Qinghua Wu a,∗
aSchool of Management, Huazhong University of Science and Technology, No.

1037, Luoyu Road, Wuhan, China
bLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

cInstitut Universitaire de France, 1 Rue Descartes, 75231 Paris, France

Information Sciences, June 2019
https://doi.org/10.1016/j.ins.2019.05.075

Abstract

The Traveling Repairman Problem with Profits is a node routing problem, where
a repairman visits a subset of nodes of a weighted graph in order to maximize
the collected time-dependent profits. In this work, we present the first population-
based hybrid evolutionary search algorithm for solving the problem that combines:
(i) a randomized greedy construction method for initial solution generation, (ii) a
dedicated variable neighborhood search for local optimization, (iii) two crossover
operators for solution recombination with an adaptive rule for crossover selection.
Computational results on six sets of 120 benchmark instances from the literature
demonstrate that the proposed algorithm achieves a high performance - it improves
the best-known results (new lower bounds) for 39 instances, while matching the
best-known results for the remaining cases. We investigate several main algorithmic
ingredients to understand their impacts on the performance of the algorithm.

Keywords: Heuristics; Traveling repairman problem; Hybrid evolutionary search;
Variable neighborhood search

1 Introduction1

The classic Traveling Repairman Problem (TRP) can be defined as follows2

[5]. Let G = (V,E) be a complete undirected graph, where V = {0, 1, ...n}3

∗ Corresponding author.
Email addresses: luyongliang@hust.edu.cn (Yongliang Lu),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), qinghuawu1005@gmail.com
(Qinghua Wu).

Preprint submitted to Elsevier 5 June 2019

is the set of nodes (i.e., locations) and E = {(i, j) : i, j ∈ V, i ̸= j} is the 1

set of edges. Each edge (i, j) ∈ E has a weight (travel cost) tij representing 2

the travel time between two corresponding locations, which is symmetric, i.e., 3

tij = tji, and satisfies the triangle inequality rule. TRP is to determine a 4

Hamiltonian circuit over all the nodes that minimizes the sum of the waiting 5

times ∑n
i=0 l(i), where l(i) denotes the arrival time at node i. In particular, 6

the circuit must start and end at node 0, and l(0) = 0. TRP is also known in 7

the literature as the Minimum Latency Problem (MLP) [22]. 8

The Traveling Repairman Problem with Profits (TRPP), which was recently 9

proposed in [14], is an extension of TRP. In TRPP, each node i ∈ V is as- 10

sociated with a non-negative profit pi, and node 0 is the depot (p0 = 0). A 11

repairman starts traveling from the depot and collects a revenue pi − l(i) at 12

each visited location i. In this problem, each node can be visited at most once, 13

and the repairman does not need to return to the depot (not all nodes need to 14

be visited). When l(i) becomes equal to or larger than pi for some unvisited 15

node i, node i will not be visited. The objective of TRPP is to visit a set of 16

nodes such that the total collected revenue is maximized. One notices that if 17

the profits of the problem instance are set to be extremely high relative to the 18

travel costs, all nodes of the graph will be visited like in TRP. 19

From the perspective of computational complexity, TRPP is known to be NP- 20

hard [14]. As a result, TRPP is an extremely challenging problem in terms 21

of solution methods. In addition to its significance as a typical optimization 22

problem, TRPP is notable for its ability to formulate a number of real-life ap- 23

plications. A simple application arises from the humanitarian and emergency 24

relief logistics [1,14]. For example, after an earthquake hits a region, there are 25

a number of villages that experience an urgent need for relief. The sooner the 26

rescue team gets to a village, the more lives can be saved. Assume that pi 27

persons need to be rescued at village i, and at each time instance, a person 28

could die. Consequently, the primary goal of the rescue team is to maximize 29

the number of persons that will be rescued, ∑i[pi− li]
+, where li is the arrival 30

time of the rescue team at village i. 31

Our literature review given in Section 2 indicates that unlike the popular TRP 32

(MLP) for which numerous solution methods are available (see the reviews 33

[6,3,22,40,41,43]), research on algorithms for TRPP is still in its infancy with 34

very few advanced methods. The purpose of this work is to enrich the arsenal 35

of solution methods for TRPP by presenting an effective hybrid evolutionary 36

search algorithm (HESA) that integrates several complementary key com- 37

ponents, including a randomized greedy construction procedure, a dedicated 38

variable neighborhood search procedure, and two specific crossover operators 39

with an adaptive rule for crossover selection. For an effective exploration of 40

the search space, the variable neighborhood search procedure relies on a vari- 41

able neighborhood descent with a random neighborhood ordering. Additional 42

2

exploration capacity is ensured by a combined use of two different crossover1

operators. Computational results on 120 benchmark instances from the lit-2

erature reveal that HESA competes very favorably with the state-of-the-art3

algorithms [1,14]. Specifically, it reports improved best-known solutions (new4

lower bounds) for 39 instances, while reaching the best-known solutions for5

the remaining cases.6

The remainder of the paper is organized as follows. Section 2 presents a re-7

view of the related literature. Section 3 shows a mathematical model of TRPP,8

followed by a detailed description of the proposed algorithm in Section 4. Com-9

putational results and comparisons with state-of-the-art approaches are given10

in Section 5. In Section 6, we examine several key elements of the algorithm11

to show their impacts on the algorithm, followed by concluding comments in12

Section 7.13

2 Literature review14

This section provides a brief overview of related node routing problems and a15

summary of the most recent advances in solution methods for TRPP.16

Several related variants of TRPP have been considered in the literature. In [7],17

the authors introduced a stochastic variant of TRPP under uncertain travel18

times, which is then formulated as a nonlinear integer model and heuristically19

solved by means of a beam search heuristic. The only difference with TRPP is20

the consideration of uncertainty in travel times, which is constant in TRPP.21

Recently, in [8], the stochastic variant was extended to the case where a fleet22

of vehicles with unlimited capacity is available for the post-disaster humani-23

tarian relief logistics. To approximately solve the problem, the authors further24

provided an iterated greedy heuristic algorithm.25

TRPP is strongly related to TRP which has been extensively studied. Exist-26

ing solution approaches for TRP include an approximation algorithm [22], a27

branch and bound algorithm [6], a dynamic programming algorithm [43], a28

greedy randomized adaptive search procedure/variable neighborhood search29

(GRASP/VNS) algorithm [40], a genetic algorithm [3], and a hybrid algo-30

rithm mixing GRASP, iterated local search (ILS) and VNS [41]. Furthermore,31

several TRP variants which are also related to TRPP have been studied in32

[2,12,20,32].33

Among the routing problems with profits, the profitable tour problem (PTP)34

[21] and the orienteering problem (OP) [42] share similarities with TRPP. In35

PTP, the objective is to find a circuit that maximizes the difference between36

the total collected profit and the total travel time. The main difference between37

3

TRPP and PTP is the arrival time in the objective function instead of the 1

travel time. In [9], the authors provided a risk-averse formulation for PTP 2

assuming that the route cost is uncertain and proposed a genetic algorithm 3

and a tabu search to solve it. 4

In OP, the goal is to determine a path, limited in length, that visits some 5

locations and maximizes the sum of the collected scores (profits). TRPP dif- 6

fers from OP in the sense that revenues are time-dependent, and no distance 7

constraint exists on the path. Approaches for OP include a branch-and-cut 8

algorithm [19], a GRASP algorithm with path relinking [10], a memetic al- 9

gorithm [31], and a particle swarm optimization algorithm [15]. Recently, an 10

extension of OP was presented in [18] by considering that the profit collection 11

at each location requires either a number of discrete passes or a continuous 12

amount of time to be spent at the location. This problem exhibits more simi- 13

larities with TRPP due to its time-dependent profits. However, unlike TRPP, 14

profits in that problem do not depend on arrival times. 15

Another closely related problem is known as the maximum collection prob- 16

lem with time-dependent rewards (MCPTDR) [17]. In this problem, node 17

rewards are decreasing linear functions of time and the objective is to max- 18

imize the sum of the rewards collected at the nodes visited during the tour. 19

The main difference between MCPTDR and TRPP is the decreasing rates. In 20

TRPP, it is assumed that the decreasing rate is 1 for every node. In [17], a 21

branch-and-bound procedure was presented for finding optimal solutions for 22

small instances and a penalty-based greedy heuristic algorithm was developed 23

to handle large-sized instances. Recently, MCPTDR was extended in [16] by 24

considering the use of multiple agents to collect linearly decreasing rewards 25

over time and proposing a two-phase heuristic algorithm to find good-enough 26

solutions in a reasonable timeframe. 27

To the best of our knowledge, TRPP has only been studied in [1,14]. As the 28

first study on the problem, the pioneer work of [14] introduced a mathematical 29

model for TRPP (see Section 3) and a set of 120 benchmark instances with 30

n ∈ {10, 20, 50, 100, 200, 500} (see Section 5.1). Computational results were 31

reported including optimal solutions for small instances (n ≤ 20) achieved 32

by solving the mathematical model with CPLEX (version 10.1), and sub- 33

optimal solutions (lower bounds) for larger instances (n ≥ 50) obtained with 34

a tabu search (TS) algorithm with multiple neighborhoods. Recently, a new 35

mixed-integer linear formulation was introduced in [1]. Unlike the model of [14] 36

where the number of nodes to be visited is a parameter, the new model does 37

not require such an input. As solution method, a powerful hybrid algorithm 38

(called GRASP-ILS) combining GRASP and ILS was investigated in [1], which 39

achieved remarkable computational outcomes by improving 46 previous best- 40

known results out of the 120 benchmark instances. 41

4

In this work, we enrich the TRPP literature by proposing an effective al-1

gorithm for TRPP based on the hybrid evolutionary search framework and2

report improved new lower bounds on 39 large benchmark instances with3

n ∈ {100, 200, 500}. For our the comparative study (Section 5), we will use4

the above TRPP approaches (CPLEX, TS, GRASP-ILS) of [1,14] as our ref-5

erences.6

3 Mathematical model7

To formally state the TRPP problem, we recall the mathematical model pro-8

posed in [14], which assumes the number of nodes to be visited is known9

in advance. The model is based on the following notations as well as those10

presented in the introduction section.11

Sets12

N0 : set of all demand nodes and the depot, {0, 1, ..., n}13

N : set of all demand nodes, {1, ..., n}14

Parameters15

tij : travel time from node i to j, (i, j) ∈ E16

pi : profit associated with node i, i ∈ N17

k : number of nodes to be visited, 1 ≤ k ≤ n18

Decision Variables19

yijl =

1, if edge (i, j) is used as the lth edge
0, otherwise

(1)

Model20

max f =
n∑

i=0

n∑
j=1

k∑
l=1

(pj − (k + 1− l)tij)yijl (2)

subject to
n∑

i=0

k∑
l=1

yijl ≤ 1 ∀j ∈ N (3)

5

n∑
i=0

n∑
j=1

yijl = 1 ∀l ∈ {1, 2, ..., k} (4)

n∑
i=0

yijl =
n∑

i=1

yjil+1 ∀j ∈ N,∀l ∈ {1, 2, ..., k − 1} (5)

n∑
j=1

y0j1 = 1 (6)

yijl ∈ {0, 1} ∀i ∈ N0,∀j ∈ N, ∀l ∈ {1, 2, ..., k} (7)

The objective function (2) seeks to maximize the total collected revenue by 1

summing the difference between the profit of a node and the number of times 2

the edge preceding that node is counted in the total latency. Constraints (3) 3

ensure that each node can be visited at most once. Constraints (4) require that 4

k nodes must be visited. The connectivity restriction is imposed by constraints 5

(5), and constraints (6) impose the departure of the repairman from the depot. 6

Constraints (7) define the nature of the decision variables. Notice that k is a 7

parameter and needs to be set before solving the model. The optimal solution 8

of TRPP is ensured by executing the model for each value of 1 ≤ k ≤ n and 9

then selecting the best solution with the highest revenue. 10

4 Hybrid evolutionary search for TRPP 11

4.1 Main scheme 12

The proposed hybrid evolutionary search algorithm (HESA) follows the gen- 13

eral memetic framework [24,36,37], which combines the exploration power of 14

population-based search and the exploitation capacity of local optimization. 15

Memetic algorithms have been successfully used to tackle a number of node 16

routing problems including vehicle routing, capacitated arc routing and gen- 17

eral routing with nodes, edges and arcs [39]. 18

The general architecture of our HESA algorithm for TRPP is summarized in 19

Algorithm 1. The algorithm starts with a population of initial solutions which 20

are first generated by a randomized greedy construction procedure (Section 21

4.2) and further improved with a variable neighborhood search (VNS) pro- 22

cedure (Section 4.3). Then it iteratively improves the initial solutions by ap- 23

plying a crossover operator and a local optimization procedure. Precisely, the 24

crossover operator combines (mates) two randomly selected parent solutions 25

to generate an offspring solution. The local optimization procedure, that is a 26

variable neighborhood search algorithm, is then applied to improve the off- 27

spring, followed by a population updating procedure to bring up to date the 28

population with the offspring solution (Section 4.5). The algorithm terminates 29

6

Algorithm 1 Hybrid evolutionary search algorithm for TRPP
Require: G = (V,E): a TRPP instance; p: population size; γ: number of runs of

the randomized greedy construction procedure
Ensure: best solution S∗ found so far

// Population initialization, Section 4.2
1: Pool← ∅
2: for i = 1, 2, ..., γ do
3: S ← Randomized_Greedy_Procedure(G) /* Section 4.2 */
4: if S /∈ Pool then
5: Add S into Pool
6: end if
7: if |Pool| > p then
8: Delete the worst solution from Pool
9: end if
10: end for
11: for each solution S ∈ Pool do
12: S ← VNS(S) /* Section 4.3 */
13: end for

// Main search procedure
14: while stopping condition is not met do
15: Randomly select S1 and S2 from Pool
16: o← Crossover(S1, S2) /* Section 4.4 */
17: S ← VNS(o) /* Section 4.3 */
18: Pool← Population_Update(Pool, S) /* Section 4.5 */
19: end while
20: S∗ ← Best(Pool)
21: Return S∗

when a time limit is reached. A detailed description of the algorithmic com-1

ponents is provided in the following sections.2

4.2 Population initialization3

To generate an initial solution S (i.e., a path composed of a sequence of nodes),4

we propose a randomized greedy construction procedure based on the near-5

est neighbor heuristic for routing problems that operates according to the6

following steps:7

(1) Initialize S by including the predefined starting node and another ran-8

domly selected node that is connected to the starting node;9

(2) Randomly select a node among the three nearest nodes relative to the10

last node of the path S and insert it at the end of the path S. This process11

is repeated until all the nodes are included in S;12

(3) Use the RVND procedure (Section 4.3.2) to improve S until a local opti-13

mum is reached.14

7

A particular feature of this initial construction procedure is that the travel
cost tij is modified aiming to favor a route going from a node to another node
with large profit. The modified travel cost dij is given as

dij = tij + C × T × P − pj
P

,

where C is a parameter, the constant T =

∑
(i,j)∈E

tij

|E| is used to normalize 1

each edge and P =
∑

i∈V pi. Similar ideas are presented in [25] for the multi- 2

commodity pickup-and-delivery traveling salesman problem. 3

The construction procedure is run γ times (γ ≥ p, p is the population size) 4

to obtain a set of locally optimal solutions. The best p solutions are then 5

improved by a VNS procedure (Section 4.3) and form the initial population. 6

This initialization procedure produces an initial population of relatively high 7

quality. 8

Note that a solution generated with the construction procedure includes all the 9

nodes with the aim of employing them in the neighborhood structures (Section 10

4.3.1) effectively. Nodes that do not need to be visited in the solution are easily 11

identified, and are not considered when calculating the objective value of the 12

solution in the HESA algorithm. These unvisited nodes are ignored in the final 13

output of the algorithm. 14

4.3 Variable neighborhood search 15

Algorithm 2 Variable neighborhood search
Require: S0: an initial solution; kmax: max allowed iterations without improvement
Ensure: the best solution S∗ found
1: k ← 0
2: S∗ ← S0

3: S ← S0

4: while k < kmax do
5: S ← RV ND(S) /* Section 4.3.2 */
6: if f(S) > f(S∗) then
7: S∗ ← S
8: k ← 0
9: else
10: k ← k + 1
11: end if
12: S ← Shake(S, S∗) /* Section 4.3.3 */
13: end while
14: return S∗

The general variable neighborhood search (VNS) method [34] has been used to 16

8

solve several routing problems [26,28,35,40]. The HESA algorithm proposed in1

this work for TRPP includes a VNS procedure for improving initial solutions2

and offspring solutions generated by the crossover operators. Following [34,41],3

our VNS procedure combines the variable neighborhood descent with random4

neighborhood ordering (RVND) to find local optima (Section 4.3.2) and a5

shaking procedure to escape from local optimality traps (Section 4.3.3).6

As outlined in Algorithm 2, our VNS procedure repeats the RVND procedure7

and the shaking procedure to explore new candidate solutions. The best-found8

solution S∗ is updated each time a still better solution is found. If no improve-9

ment with respect to S∗ is achieved during kmax consecutive iterations, the10

best-found solution S∗ is returned as the final output of the VNS procedure.11

4.3.1 Move operators12

Our VNS procedure adopts the following five move operators, which are com-13

monly used for solving the classical traveling salesman problem:14

• Insertion (N1): remove one node and insert it at the best possible position15

in the route;16

• Swap (N2): exchange two nodes;17

• Or-opt (N3): remove n consecutive nodes and insert them at the best18

possible position in the tour (where n = {2, 3});19

• Two-opt (N4): remove two non-adjacent edges in the tour, and reconnect20

the two sub-tours (see Figure 1(a));21

• Double-bridge (N5): delete four edges in the tour, reconnect the four22

sub-tours keeping the orientation of the four sub-tours (see Figure 1(b)).23

(a) (b)

Fig. 1. (a) 2-opt move; (b) Double-bridge move

We use N1 − N5 to denote the five neighborhoods induced by these move24

operators. Considering an instance with n nodes (except the depot node),25

there are n − 1 possible positions for the insertion of each node. Therefore,26

the size of the neighborhood N1 is clearly bounded by O(n2). Similarly, the27

number of pairs of nodes is n(n− 1)/2, so the size of the neighborhood N2 is28

9

bounded by O(n2). As described in [38,13], both Or-opt and Two-opt operators 1

also yield O(n2) neighboring solutions. 2

To evaluate the objective value of a neighboring solution, a full computation 3

from scratch requires O(n) time. However, it can be done in a more efficient 4

way using the binary indexed tree data structures, which allows to reduce the 5

complexity to O(log n). Therefore, examining each of the four neighborhoods 6

N1 −N4 requires a time of O(n2log n). 7

The double-bridge operator is only used to perturb solutions (see Section 8

4.3.3), which constructs a new tour in constant time by changing a constant 9

number of edges. However, the objective function evaluation for the new tour 10

increases the complexity of the operator to O(log n). 11

According to the analysis, since no fast and incremental evaluation of neigh- 12

boring solutions is known, the objective function evaluation becomes expensive 13

when many local search iterations are performed (which is usually the case). 14

The following subsections explain how these neighborhoods are used in the 15

RVND procedure and the shaking procedure. 16

4.3.2 RVND procedure 17

Algorithm 3 RVND procedure
Require: S: current solution
Ensure: updated S
1: NL = {N1, N2, N3, N4}
2: while NL ̸= ∅ do
3: Choose a neighborhood N ∈ NL at random
4: (S, improve_tag)← LocalSearch(S,N) /* See Algorithm 4 */
5: if improve_tag = true then
6: NL = {N1, N2, N3, N4}
7: else
8: Remove N from the NL
9: end if
10: end while
11: return S

The RVND procedure explores the neighborhoods N1 − N4 to attain a local 18

optimum (see Algorithm 3). After initializing the neighborhood list (NL = 19

{N1, N2, N3, N4}), RVND enters into its main loop. At each iteration, a neigh- 20

borhood N is chosen at random from NL and then explored by the RVND 21

procedure. For this, the neighboring solutions in N are visited in a random 22

order according to the first improvement strategy to make solution transi- 23

tions. If an improving solution is found in the current neighborhood, NL is 24

re-populated with the four neighborhoods N1 − N4. Otherwise, the current 25

10

Algorithm 4 Local Search procedure
Require: S: current solution; N : current neighborhood
Ensure: updated S
1: improve_tag ← false
2: Randomly shuffle all moves in neighborhood N
3: for each move mv ∈ N do
4: S

′ ← S ⊕mv
5: if f(S

′
) > f(S) then

6: S ← S
′

7: improve_tag ← true
8: end if
9: end for
10: return (S, improve_tag)

neighborhood N is removed from NL. If none of the neighboring solutions in1

N1 ∪ · · · ∪ N4 improves on the quality of the current solution S, S is a local2

optimum with respect to N1 −N4 and is returned as the final solution of the3

RVND procedure.4

4.3.3 Shaking procedure5

Algorithm 5 Shaking procedure
Require: S: current solution; S∗: best-found solution; η: strength of shake; Ir:

interval of threshold ratio
Ensure: S: perturbed solution
1: w ← 0
2: while w < η do
3: Randomly pick a neighboring solution S

′ ∈ N5(S)
4: r ← random_select(Ir)
5: if f(S

′
) > (1− r)× f(S∗) then

6: S ← S
′

7: w ← w + 1
8: end if
9: end while
10: return S

To escape from local optima, we call for a shaking procedure, in which the6

double-bridge operator, introduced in [30] for TSP, is used to perturb solu-7

tions. A good property of the double-bridge operator is that it is not easy8

for the other operators to undo the changes it performs on the tour, which9

means there is little chance of going back to the last local optimum. In or-10

der to control the degree of solution degradation, we use a threshold function11

to accept non-improving double-bridge moves. As outlined in Algorithm 5,12

a neighboring solution S
′ is picked at random from the neighborhood N513

defined by the double-bridge operator and replaces the current solution S if14

f(S
′
) > (1−r)×f(S∗), where S∗ is the best-found solution and r is a threshold15

11

ratio randomly chosen among the values of a given interval Ir between suit- 1

ably chosen upper limits and lower limits. The shaking procedure performs η 2

double-bridge moves, where η is a parameter called the shake strength. 3

4.4 Crossover operators 4

At each generation of our HESA algorithm, a crossover operator is applied 5

to create a new offspring solution by recombining two parent solutions ran- 6

domly selected from the population. It has been commonly recognized that 7

the success of a population-based memetic approach crucially depends on the 8

recombination operator [24], which should not only generate diversified solu- 9

tions but also transfer meaningful components from parents to offspring. Our 10

HESA algorithm employs two crossover operators, which are applied according 11

to a probabilistic mechanism. As the analysis presented in Section 6.3 shows, 12

the combined use of the two crossovers constitutes an important ingredient of 13

the proposed algorithm. 14

The adopted crossover operators are inspired by those presented in [27] for a 15

job scheduling problem and are described as follows. 16

S1 2 3 48 6 7 5 1

5 8 2 3 4 6 7 1

3 4 18 6 7 5 2O

S2

8 6 7 5 1 2 3 4

5 8 2 3 4 6 7 1

8 3 4 5 1 2 6 7

(a) (b)

Fig. 2. (a)An example of one-point crossover; (b) An example of two-point crossover

One-point Crossover: In this operator, one cutting point is randomly se- 17

lected at first. The node sub-sequence on one side of the cutting point is 18

inherited from one parent to the offspring. The other nodes are copied to the 19

offspring in the order they appeared in the other parent. Figure 2(a) shows an 20

example of the one-point operation on two parent solutions S1 and S2 where 21

the selected crossing point is between positions 5 and 1. The offspring o is 22

generated by first copying the left sub-sequence of S1, and then copying in the 23

same order the remaining nodes from S2. 24

Two-point Crossover: In this operator, instead of one cutting point, two 25

cutting points are randomly selected to divide the parent solutions S1 and 26

S2. The offspring o is obtained by first transferring the sub-sequence between 27

12

the two cutting points from S1 to o, and then copying in the same order1

the remaining nodes from S2. Figure 2(b) gives an example of the two-point2

crossover operator.3

At each generation, HESA selects one of the two crossover operators with4

an adaptive probabilistic mechanism inspired by a technique from [33]. The5

probability of selecting any of the two crossovers is proportional to the number6

of times the solution produced with the given crossover is introduced into the7

population during the population update phase. For each of the two crossovers8

i, we thus maintain an counter qi that indicates the number of times a solution9

created with crossover i has been introduced into the population pool. The10

probability of selecting a crossover i is then determined with the following11

formula:12

P (i) =
50 + qi

100 + q1 + q2

One observes that the higher the value of qi, the more probable the corre-13

sponding crossover is selected. Note that at the beginning of the search, the14

two crossovers have the same probability of being selected, and the probability15

calculation assumes that 100 high-quality solutions have been generated and16

that each crossover method has contributed to exactly 1/2 of them.17

4.5 Population updating rule18

For each new solution S generated by the VNS procedure, we decide whether19

S should be introduced into the population and which member from the pop-20

ulation should be replaced according to the following rule. If S is distinct from21

any existing solution in the population and is better than the worst solution22

in the population, then S replaces this worst member from the population.23

Otherwise, the population is kept unchanged.24

5 Computational experiments25

In this section, we assess the performance of the proposed HESA algorithm26

on well-known benchmark instances, and show comparisons with the existing27

state-of-the-art heuristic approaches for TRPP.28

13

5.1 Benchmark and experimental protocol 1

For performance assessments, we use six sets of 120 benchmark instances which 2

were introduced in [14]. These data sets were derived from the TRP bench- 3

mark [40]. Each data set consists of 20 problem instances with 10, 20, 50, 4

100, 200 and 500 nodes, apart from the depot node, respectively. Besides, 5

for each of these instances, a non-negative profit pi was allocated to each 6

node i ∈ V \ {0} using the uniform distribution in the interval (L,U], where 7

L = mini∈V \{0}{t0i}, U = n
2
×maxi∈V \{0}{t0i}, and n is the number of nodes. 8

Our HESA algorithm was programmed in C++ and compiled with a g++ com- 9

piler. All experiments were performed on a computer with an Intel Xeon(R) 10

CPU E5-2695 v4 processor (2.1 GHz CPU and 2 GB RAM) running under 11

Linux operating system. To evaluate the performance of HESA, we perform 12

comparisons with two state-of-the-art TRPP heuristics from the literature: 13

- The GRASP with iterated local search (GRASP-ILS) algorithm from [1]. 14

To our knowledge, GRASP-ILS is the current best-performing heuristic for 15

TRPP. The results reported by GRASP-ILS were obtained after five exe- 16

cutions per instance on a 2.20 GHz Intel core duo 2 T 7500 computer. 17

- The tabu search (TS) algorithm presented in [14]. The tests were carried 18

out on a DELL Optiplex 760, Intel(R) Core(TM) 2 Duo 3.00 GHz, 4.00 GB 19

RAM, 64-bit Operating System, but the number of runs per test instance 20

is not specified in [14]. 21

It should be noted that a fully fair comparative analysis with the existing 22

TRPP algorithms from the literature is not a straight-forward task because of 23

the differences in computing hardware, programming language, termination 24

criterion, etc. To make the comparison as fair as possible, we use a procedure 25

described in [11] to scale the CPU times reported for the two heuristics in 26

the corresponding papers. The procedure is based on the assumption that 27

the CPU speed is approximately linearly proportional to the CPU frequency. 28

Then we adopt the scaled times used by the current best-performing GRASP- 29

ILS algorithm [1] as the cutoff times of our HESA algorithm. Like [1], we 30

perform five independent runs of HESA per test case using the above stopping 31

condition. 32

5.2 Parameter tuning 33

The setting of parameters is given in Table 1. As suggested in [1], we set 34

kmax = 30. According to our experimental experience, as the general local 35

search algorithms (TS, ILS and VNS) are very costly for large instances with 36

500 nodes, we set kmax = 5 for instances with 500 nodes to save time. The 37

14

threshold ratio r is randomly chosen among the values in the given intervals1

Ir during the search process.2

The rest of the parameters (C, p, γ, η) were tuned with Iterated F-race (IFR)3

[4], an automatic configuration method that is part of the IRACE package4

[29]. The tuning was performed on the 20 instances with 200 nodes. For each5

parameter, IFR requires a limited set of values as input to choose from (col-6

umn “Considered values”). The total time budget for IRACE was set to 10007

executions, with the time limit per HESA execution set to the scaled CPU8

times used by GRASP-ILS [1]. The suggested setting of parameters by IFR is9

presented in Column “Final value”.10

Table 1
Parameter tuning results

Parameter Section Description Considered values Final value
C 4.2 a variable in the initialization phase {1,10,20} 10
p 4.2 population size {5,10,20} 5
γ 4.2 number of runs of the randomized construction procedure {10,30,50} 50
kmax 4.3 max allowed iterations without improvement - {5,30}
η 4.3.3 strength of shake {5,10,15} 10
Ir 4.3.3 interval of threshold ratio values - [0.1,0.3]

5.3 Computational results and comparisons with existing heuristics11

We next provide computational comparisons with the two state-of-the-art12

TRPP heuristics (TS and GRASP-ILS) on each instance from the TRPP13

benchmark set.14

Table 2
Results for problem instances with 10 and 20 nodes.

n=10 n=20
Instance Exact TS GRASP-ILS HESA Exact TS GRASP-ILS HESA

1 2520 2520 2520 2520 8772 8772 8772 8772
2 1770 1770 1770 1770 10174 10174 10174 10174
3 1737 1737 1737 1737 7917 7917 7917 7917
4 2247 2247 2247 2247 7967 7967 7967 7967
5 2396 2396 2396 2396 7985 7985 7985 7985
6 1872 1872 1872 1872 7500 7500 7500 7500
7 1360 1360 1360 1360 9439 9439 9439 9439
8 1696 1696 1696 1696 7999 7999 7999 7999
9 1465 1465 1465 1465 6952 6952 6952 6952

10 1014 1014 1014 1014 8582 8582 8582 8582
11 1355 1355 1355 1355 7257 7257 7257 7257
12 1817 1817 1817 1817 6857 6857 6857 6857
13 1585 1585 1585 1585 7043 7043 7043 7043
14 2122 2122 2122 2122 6964 6964 6964 6964
15 1747 1747 1747 1747 6270 6270 6270 6270
16 1635 1635 1635 1635 8143 8143 8143 8143
17 2025 2025 2025 2025 10226 10226 10226 10226
18 1783 1783 1783 1783 7625 7625 7625 7625
19 1797 1797 1797 1797 7982 7982 7982 7982
20 1771 1771 1771 1771 7662 7662 7662 7662

Table 2 presents the results for the two sets of 40 small instances with 10 and 2015

nodes. For each instance, we indicate the known-optimal value reported in [14]16

(Columns 2 and 6) and the best objective values of the reference algorithms17

TS (Columns 3 and 7) and GRASP-ILS (Columns 4 and 8). The results of18

our HESA algorithm are shown in columns 5 and 9. We observe from the19

15

table that HESA attains the same performance as TS and GRASP-ILS, by 1

achieving the optimal solutions for all these small instances. Computational 2

times are not reported, since they are very low (generally under one second) 3

for these (easy) instances. 4

Table 3
Results for problem instances with 50 nodes.

TS GRASP-ILS HESA
Instance fbest t(s) fbest t(s) fbest favg t(s) Gap(%)

1 50921 14.1 50921 11.5 50921 50921.0 11.5 0.00
2 52594 12.6 52594 8.4 52594 52594.0 8.4 0.00
3 52144 12.5 52144 9.4 52144 52144.0 9.4 0.00
4 45465 12.4 45465 7.3 45465 45465.0 7.3 0.00
5 45489 11.2 45489 8.4 45489 45489.0 8.4 0.00
6 55630 12.8 55630 7.3 55630 55630.0 7.3 0.00
7 44300 9.2 44302 9.4 44302 44302.0 9.4 0.00
8 55753 12.3 55801 10.5 55801 55801.0 10.5 0.00
9 44964 11.3 44964 10.5 44964 44964.0 10.5 0.00

10 47071 9.8 47071 9.4 47071 47071.0 9.4 0.00
11 51912 10.3 51912 9.4 51912 51912.0 9.4 0.00
12 53567 14.5 53567 8.4 53567 53567.0 8.4 0.00
13 46830 12.6 46830 9.4 46830 46830.0 9.4 0.00
14 52665 53.1 52665 8.4 52665 52665.0 8.4 0.00
15 58856 14.0 58856 10.5 58856 58856.0 10.5 0.00
16 49754 12.1 49754 12.6 49754 49754.0 12.6 0.00
17 42525 9.6 42525 8.4 42525 42525.0 8.4 0.00
18 40536 11.9 40536 9.4 40536 40536.0 9.4 0.00
19 55346 15.0 55346 10.5 55346 55346.0 10.5 0.00
20 61286 13.4 61286 9.4 61286 61286.0 9.4 0.00

Table 4
Results for problem instances with 100 nodes.

TS GRASP-ILS HESA
Instance fbest t(s) fbest t(s) fbest favg t(s) Gap(%)

1 209952 119.7 209952 92.2 209952 209952.0 92.2 0.00
2 196318 101.3 196318 135.1 196318 196311.2 135.2 0.00
3 211937 126.7 211937 107.9 211937 211937.0 108.0 0.00
4 217685 112.1 217685 89.0 217685 217685.0 89.1 0.00
5 215119 169.2 215119 131.0 215119 215119.0 131.0 0.00
6 228687 144.0 228687 102.7 228687 228687.0 102.8 0.00
7 200060 347.3 200064 128.9 200064 200056.0 129.0 0.00
8 205760 117.8 205760 119.4 205760 205760.0 119.5 0.00
9 226240 93.7 226240 112.1 226240 226240.0 112.1 0.00

10 218202 162.5 218202 88.0 218202 218202.0 88.0 0.00
11 212503 126.8 212503 125.7 212503 212503.0 125.8 0.00
12 222249 148.0 222249 98.5 222249 222249.0 98.6 0.00
13 206878 145.2 206957 89.0 206957 206957.0 89.1 0.00
14 215690 126.8 215690 85.9 215690 215690.0 86.0 0.00
15 213758 157.7 213811 89.0 214041 214041.0 89.1 -0.11
16 214036 152.0 214036 89.0 214036 214036.0 89.0 0.00
17 223636 136.6 223636 118.4 223636 223636.0 118.5 0.00
18 192849 122.5 192849 97.4 192849 192849.0 97.4 0.00
19 206755 174.9 206755 128.9 206755 206755.0 128.9 0.00
20 198842 213.4 198908 104.8 198908 198908.0 104.8 0.00

Tables 3-6 present the results for the four other sets of benchmark instances 5

involving 50, 100, 200 and 500 nodes. For each instance and approach, we show 6

the best objective value (fbest) and the average computation time in seconds 7

(ts). Column ‘Gap(%)’ denotes the percentage gap between the best-known 8

objective value (fbk) compiled from columns 2 and 4 and the best objective 9

value obtained with HESA, computed as 100× (fbk−fbest)/fbk. The entries in 10

bold indicate the cases where HESA improves on the best-known result from 11

the literature (i.e., when the percentage gap is negative). We do not compare 12

the performances of the three algorithms in terms of the average solution 13

quality, as the average results are not reported for TS in [14] and GRASP-ILS 14

in [1]. 15

16

Table 5
Results for problem instances with 200 nodes.

TS GRASP-ILS HESA
Instance fbest t(s) fbest t(s) fbest favg t(s) Gap(%)

1 877523 1454.2 877530 1097.9 877610 877597.6 1098.9 -0.01
2 901419 1434.4 901559 1047.6 901898 901762.6 1048.2 -0.04
3 888082 1431.7 888393 1143.0 888393 888393.0 1144.1 0.00
4 873530 1440.1 873840 1065.4 873910 873757.6 1068.8 -0.01
5 849205 1432.7 849231 1110.5 849358 849358.0 1111.7 -0.01
6 816452 1434.7 816910 1108.4 816923 816904.4 1109.0 -0.00
7 783367 1448.7 783594 1082.2 784120 784107.8 1082.4 -0.07
8 837908 1432.7 837938 1114.7 838023 837828.6 1115.4 -0.01
9 891035 1439.7 891071 1043.4 891203 891203.0 1046.0 -0.01

10 846662 1430.2 847235 1062.3 847303 847177.8 1065.4 -0.01
11 803605 1430.0 803671 1082.2 804851 804630.2 1082.4 -0.15
12 808313 1428.8 808686 1108.4 808966 808963.0 1108.6 -0.03
13 861375 1433.5 861604 1072.8 861729 861713.0 1075.5 -0.01
14 849942 1429.4 850118 1102.1 850507 850330.2 1106.5 -0.05
15 847181 1455.8 847755 1088.5 848006 847861.2 1092.0 -0.03
16 853315 1445.0 854075 1121.0 854075 854046.6 1122.2 0.00
17 860638 1429.4 861175 1040.3 861747 861327.4 1042.4 -0.07
18 841922 1433.0 842283 1138.8 842953 842817.6 1142.2 -0.08
19 822308 1432.6 822397 1063.3 822855 822810.6 1065.6 -0.06
20 902948 1428.1 903772 1041.3 904326 904308.6 1042.0 -0.06

Table 6
Results for problem instances with 500 nodes.

TS GRASP-ILS HESA
Instance fbest t(s) fbest t(s) fbest favg t(s) Gap(%)

1 6596427 2857.1 6610423 1905.6 6630382 6615138.8 1911.1 -0.30
2 6382793 2856.0 6409937 1995.7 6418393 6390801.6 2001.5 -0.13
3 6331860 2856.0 6336705 1981.0 6383933 6370222.8 1985.6 -0.75
4 6589154 2856.7 6620316 1992.6 6628111 6604666.2 1996.4 -0.12
5 6751588 2857.2 6778323 2075.3 6780912 6756765.6 2079.7 -0.04
6 6104076 2857.2 6123548 1908.8 6128506 6119310.4 1911.0 -0.08
7 6694671 2856.9 6778295 2024.0 6778911 6769301.2 2026.1 -0.01
8 6506056 2857.0 6518013 1870.0 6534078 6509147.2 1871.2 -0.25
9 6530832 2857.1 6560088 1931.8 6581036 6569852.2 1934.6 -0.32

10 6686395 2856.6 6713796 1917.1 6714813 6685038.4 1922.9 -0.02
11 6689340 2856.1 6719607 2082.7 6739761 6717390.6 2087.1 -0.30
12 6466482 2855.9 6505037 2005.1 6507506 6489918.4 2011.1 -0.04
13 6341393 2856.5 6385898 1926.6 6386100 6376000.4 1931.1 -0.00
14 6718962 2856.4 6720088 1907.7 6758997 6741078.0 1910.5 -0.58
15 6719534 2856.6 6731903 1853.2 6759142 6745388.6 1856.2 -0.40
16 6548694 2855.9 6606948 1954.9 6610001 6598459.0 1955.5 -0.05
17 6575817 2856.8 6606835 2090.0 6608356 6605565.8 2095.5 -0.02
18 6556239 2855.9 6563180 1977.9 6581089 6561545.8 1983.6 -0.27
19 6586219 2857.0 6614261 2012.5 6617187 6606727.0 2017.4 -0.04
20 6616931 2840.0 6636568 1848.0 6638626 6625809.4 1853.6 -0.03

Table 7
Summary of results.

TS GRASP-ILS HESA
n Best-known

sol.
Average
Gap(%)

Average
time(s)

Best-known
sol.

Average
Gap(%)

Average
time(s)

Best-known
sol.

Average
Gap(%)

Average
time(s)

10 20/20 0.00 < 1 20/20 0.00 < 1 20/20 0.00 < 1

20 20/20 0.00 < 1 20/20 0.00 < 1 20/20 0.00 < 1

50 20/20 0.00 14.2 20/20 0.00 9.4 20/20 0.00 9.4
100 16/20 0.01 149.9 19/20 0.01 106.6 20/20 0.00 106.7
200 0/20 0.07 1436.2 2/20 0.04 1086.7 20/20 0.00 1088.5
500 0/20 0.60 2855.8 0/20 0.19 1963.0 20/20 0.00 1967.1

The results of Tables 3-6 show that the HESA algorithm reports improved1

lower bounds for 39 out of these 80 instances with unknown optima, and2

matches the current best-known results on the remaining instances. Moreover,3

we observe that 38 of these 39 improved results concern large instances with4

200 and 500 nodes.5

To verify the statistical significance of the observed differences, we apply the6

non-parametric Friedman test to compare the three algorithms on the two7

17

sets of large instances with 200 and 500 nodes. The Friedman test in terms 1

of best objective values reveals a p-value of 3.27e-09 (<< 0.05) on the set of 2

instances with 200 nodes, and a p-value of 2.06e-09 (<< 0.05) on the set of 3

instances with 500 nodes, confirming the statistical significance of the observed 4

differences. 5

To conclude, Table 7 summarizes the results reported with the compared ap- 6

proaches on the six sets of 120 benchmark instances. For each set, we show 7

the results reported by each method, including the number of cases for which 8

the best-known result was reached or improved, the average gap between the 9

updated best-known and the best reported result, and the average compu- 10

tation time in seconds required. Table 7 reveals the largest performance gap 11

between TS/GRASP-ILS and HESA on the last two sets of medium and large 12

size instances, which constitute the most challenging benchmark instances. 13

5.4 Comparison with upper bound 14

2 4 6 8 10 12 14 16 18 20
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Instance

%
 g

ap
 to

 th
e

up
pe

r
bo

un
d

Best results
Average results

(a) n=50

2 4 6 8 10 12 14 16 18 20
3.5

4

4.5

5

5.5

6

6.5

Instance

%
 g

ap
 to

 th
e

up
pe

r
bo

un
d

Best results
Average results

(b) n=100

2 4 6 8 10 12 14 16 18 20
2.5

3

3.5

4

Instance

%
 g

ap
 to

 th
e

up
pe

r
bo

un
d

Best results
Average results

(c) n=200

2 4 6 8 10 12 14 16 18 20
7.5

8

8.5

9

9.5

10

Instance

%
 g

ap
 to

 th
e

up
pe

r
bo

un
d

Best results
Average results

(d) n=500

Fig. 3. Gap to the upper bound for each individual benchmark set

In [14], a simple and crude upper bound is presented for each instance, which 15

can be used to contrast the quality of solutions found by a heuristic algo- 16

18

rithm (which are lower bounds). This upper bound is simply calculated by1

the difference between an upper bound for the collected profits and a lower2

bound for the total latency. To further investigate the performance of HESA,3

we provide a comparison with the upper bounds (provide in [1]) on the in-4

stances with unknown optima. Figure 3 shows the percentage gap between5

the upper bound and the best/average result reported with HESA for theses6

instances. The percentage gap between two results L1 and L2 is computed as7

gap = 100× L1−L2

L1
.8

We observe that the gap varies between 2.5% and 10%. Furthermore, the gap9

is less than 3.5% for all cases with 200 nodes. These results reveal that our10

HESA algorithm can lead to high-quality solutions (or near-optimal solutions).11

Besides, the average results are the same as the best ones on almost all of the12

instances with n = 50, 100 and 200, which further confirms the robustness of13

the algorithm.14

5.5 Comparison with solutions reported by CPLEX15

In [14] (2013), optimal solutions are reported for the 40 small instances with16

n = 10 and 20 by running the mixed integer programming solver CPLEX17

(version 10.1) on the mathematical model presented in Section 3. However,18

this approach failed to solve any larger instance with n ≥ 50. Given that other19

advanced technologies has been integrated in CPLEX since 2013, one may20

wonder whether more instances can be optimally solved by today’s CPLEX21

solver. For this purpose, we perform an additional experiment where we run22

CPLEX 12.6 with the model of [14] to try to solve the 20 instances with23

n = 50, with a maximum computation time set to three hours (10800 seconds)24

per instance.25

Table 8 gives the detailed results of CPLEX 12.6 together with the results
of our HESA algorithm. The first column indicates the instance name and
the second column shows the best lower bound obtained with CPLEX 12.6,
followed by the required computation time in seconds. Columns 4-7 present
the computational results of HESA: the best (fbest) and the average objective
value (favg) over 5 independent runs, the average computation time in seconds
needed to attain the result, and the percentage gap between the best objective
values obtained with CPLEX and HESA defined as

gap = 100× fCPLEX − fHESA

fCPLEX

.

If the gap is negative, HESA outperforms CPLEX, and HESA is outperformed26

otherwise.27

19

Table 8
Computational results of CPLEX 12.6 and HESA on the 20 instances with n = 50

Instance CPLEX HESA
f t(s) fbest favg t(s) Gap(%)

1 49895 >10800 50921 50921.0 11.5 -2.06
2 51630 >10800 52594 52594.0 8.4 -1.87
3 51174 >10800 52144 52144.0 9.4 -1.90
4 44067 >10800 45465 45465.0 7.3 -3.17
5 44921 >10800 45489 45489.0 8.4 -1.26
6 54119 >10800 55630 55630.0 7.3 -2.79
7 43772 >10800 44302 44302.0 9.4 -1.21
8 54400 >10800 55801 55801.0 10.5 -2.58
9 44202 >10800 44964 44964.0 10.5 -1.72

10 46092 >10800 47071 47071.0 9.4 -2.12
11 51376 >10800 51912 51912.0 9.4 -1.04
12 53191 >10800 53567 53567.0 8.4 -0.71
13 45701 >10800 46830 46830.0 9.4 -2.47
14 51183 >10800 52665 52665.0 8.4 -2.90
15 56781 >10800 58856 58856.0 10.5 -3.65
16 48467 >10800 49754 49754.0 12.6 -2.66
17 42074 >10800 42525 42525.0 8.4 -1.07
18 40153 >10800 40536 40536.0 9.4 -0.95
19 53779 >10800 55346 55346.0 10.5 -2.91
20 60097 >10800 61286 61286.0 9.4 -1.98

We observe that CPLEX 12.6 fails to optimally solve any of the 20 instances 1

with n = 50 in three hours and the best feasible solutions reported by CPLEX 2

are always worse than the solutions found by the HESA algorithm. Further- 3

more, HESA requires significantly less time than CPLEX 12.6 to reach the 4

reported results. 5

6 Discussions 6

We now turn our attention to an analysis of several major ingredients of the 7

proposed algorithm: the RVND method, the neighborhoods, the adaptive se- 8

lection of crossovers and the convergence ability of the proposed algorithm. 9

6.1 Comparison between RVND and basic VND 10

As described in Section 4.3, the VNS algorithm employs the RVND method 11

as its local optimization procedure. The proposed RVND method is an exten- 12

sion of the basic VND method described in [23], which works in the following 13

way. The neighborhood structures are firstly ordered in a list and then are 14

examined one by one following the established order. As soon as an improve- 15

ment of the incumbent solution in the current neighborhood occurs, the basic 16

VND procedure resumes the search in the first neighborhood of the new in- 17

cumbent solution. The whole process is stopped if the search process reaches 18

the last neighborhood and no improving solution can be found in the last 19

neighborhood. 20

Since the RVND method is an extension of the basic VND method, we car- 21

20

10 20 30 40 50 60 70 80 90 100

8.66

8.68

8.7

8.72

8.74

8.76

x 10
5

number of iterations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

RVND
Basic VND

(a) Evolution of best objective value for 200.1

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

number of iterations

co
m

pu
ta

tio
na

l t
im

e
(s

)

RVND
Basic VND

(b) Evolution of run time for 200.1

10 20 30 40 50 60 70 80 90 100

8.4

8.41

8.42

8.43

8.44

8.45

8.46

8.47

8.48

8.49

x 10
5

number of iterations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

RVND
Basic VND

(c) Evolution of best objective value for 200.5

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

number of iterations

co
m

pu
ta

tio
na

l t
im

e
(s

)

RVND
Basic VND

(d) Evolution of run time for 200.5

10 20 30 40 50 60 70 80 90 100

8.37

8.38

8.39

8.4

8.41

8.42

8.43

8.44

8.45

8.46

8.47
x 10

5

number of iterations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

RVND
Basic VND

(e) Evolution of best objective value for 200.10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

number of iterations

co
m

pu
ta

tio
na

l t
im

e
(s

)

RVND
Basic VND

(f) Evolution of run time for 200.10

10 20 30 40 50 60 70 80 90 100

8.36

8.38

8.4

8.42

8.44

8.46

8.48

x 10
5

number of iterations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

RVND
Basic VND

(g) Evolution of best objective value for 200.15

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

number of iterations

co
m

pu
ta

tio
na

l t
im

e
(s

)

RVND
Basic VND

(h) Evolution of run time for 200.15

Fig. 4. Influence of the RVND and basic VND for the VNS algorithm.

21

ried out an experiment to compare both methods on four selected instances 1

(200.1, 200.5, 200.10 and 200.15) with n = 200, under the same experimen- 2

tal condition as specified in Section 5.1. In this experiment, both RVND and 3

VND were respectively employed as a local optimization procedure in the VNS 4

algorithm, and the order of neighborhoods (i.e., N1 → N2 → N3 → N4) is 5

applied in the basic VND method. Specifically, for each instance, from a same 6

initial solution generated by the construction procedure presented in Section 7

4.2, both methods were iteratively performed until a pre-fixed maximum num- 8

ber of iterations (set to 100) is reached. The evolutions of the best objective 9

value and the run time of the iterations are plotted in Figure 4. 10

From Figure 4, one observes that the VNS algorithm with the RVND method 11

performs generally better than that with the basic VND method in terms of 12

the solution quality. Moreover, the run time increases linearly with the increase 13

of the number of iterations, and the RVND method is faster than the basic 14

VND method. These outcomes demonstrate the interest of the RVND method 15

compared to the basic VND method. 16

6.2 Observations on neighborhood effectiveness 17

5 10 15 20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

%
 g

ap
 to

 th
e

be
st

−
kn

ow
n

so
lu

tio
n

 Instance

Without Insertion
Without Swap
Without Or−opt
Without Two−opt
Standard

(a) Best results

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

%
 g

ap
 to

 th
e

be
st

−
kn

ow
n

so
lu

tio
n

 Instance

Without Insertion
Without Swap
Without Or−opt
Without Two−opt
Standard

(b) Average results

Fig. 5. Comparisons of HESA with its variants that exclude different neighborhoods.

As described in Section 4.3.2, our RVND procedure employs four dedicated 18

neighborhood structures which are induced by the Insertion, Swap, Or-opt 19

and Two-opt operators. In this section, we investigate the influence of each 20

neighborhood over the performance of the HESA algorithm. For this purpose, 21

we propose four weakened versions of HESA such that for each HESA variant, 22

22

we disable one particular neighborhood while keeping the other components1

unchanged. Along with the standard HESA algorithm, five HESA versions are2

tested on the set of instances with 200 nodes, under the same experimental3

condition as specified in Section 5.1. The best and the average performances4

are plotted in Figure 5, where the y-axis indicates the percentage gap to the5

updated best-known solution (see Table 5).6

Figure 5 shows removing a neighborhood deteriorates the search power of7

HESA. This experiment confirms that all four neighborhoods contribute to8

the performance of the HESA algorithm. Apart from the usefulness of each9

individual neighborhood, their combined use within the HESA algorithm con-10

stitutes an important feature to ensure the performance of the algorithm.11

6.3 Impact of the joint use of two crossover operators12

5 10 15 20

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6
0

.0
7

%
 g

a
p

 t
o

 t
h

e
 b

e
s
t−

k
n

o
w

n
 s

o
lu

ti
o

n

 Instance

One−point

Two−point

Adaptive

(a) Best results

5 10 15 20

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

%
 g

a
p

 t
o

 t
h

e
 b

e
s
t−

k
n

o
w

n
 s

o
lu

ti
o

n

 Instance

One−point

Two−point

Adaptive

(b) Average results

Fig. 6. Comparisons of HESA with its variants that use a single crossover operator.

As described in Section 4.4, HESA jointly applies two crossover operators by13

means of a probabilistic selection mechanism. To investigate the merit of this14

crossover combination, we compare HESA with two weakened versions of the15

algorithm that only use the one-point crossover and the two-point crossover16

respectively. For this analysis, we repeat the same experimental procedure as17

in the previous section. The best and the average performances are plotted in18

Figure 6.19

In terms of the best and the average results, we observe a better performance20

of HESA when the two crossover operators are used, which highlights the21

23

contribution of the combined use of the two crossover operator for HESA. 1

6.4 Convergence ability of the proposed algorithm 2

In this section, we present an experiment to assess the convergence ability 3

of the proposed HESA algorithm. In this experiment, we ran HESA on four 4

selected instances (200.1, 200.5, 200.10 and 200.15) with n = 200, under 5

the same experimental condition as specified in Section 5.1. The stopping 6

criterion is the number of generations (i.e., the number of applications of the 7

recombination operation) which is set to 100. 8

10 20 30 40 50 60 70 80 90 100

8.771

8.772

8.773

8.774

8.775

8.776

8.777
x 10

5

number of generations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

(a)

10 20 30 40 50 60 70 80 90 100
8.487

8.488

8.489

8.49

8.491

8.492

8.493

8.494

x 10
5

number of generations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

(b)

10 20 30 40 50 60 70 80 90 100

8.464

8.466

8.468

8.47

8.472

8.474

x 10
5

number of generations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

(c)

10 20 30 40 50 60 70 80 90 100

8.464

8.466

8.468

8.47

8.472

8.474

8.476

8.478

8.48

8.482
x 10

5

number of generations

th
e

be
st

 o
bj

ec
tiv

e
va

lu
e

(d)

Fig. 7. Convergence graphs of HESA on four instances.

We use the running profile (convergence graph) to observe the evolution of the 9

best objective value during the search process. Figure 7 shows the convergence 10

graphs of HESA for the studied instances. We observe that the algorithm 11

quickly makes significant improvements at the beginning of the search and 12

converges to its best solution after ten to several tens of generations according 13

to the instances considered. 14

24

7 Conclusion1

The Traveling Repairman Problem with Profits is an NP-hard problem de-2

rived from several practical situations. In this paper, we presented the first3

population-based hybrid evolutionary search algorithm to tackle the problem.4

Extensive computational results conducted on six sets of 120 benchmark in-5

stances reveal that our algorithm competes very favorably with the existing6

heuristics from the literature. In particular, it reports 39 new lower bounds7

out of the 80 benchmark instances with unknown optima, while matching the8

best-known results of the literature for the remaining instances.9

For future work, it would be interesting to investigate other crossover oper-10

ators by considering more problem specific knowledge. Similarly, additional11

neighborhood operators could be investigated to reinforce the local optimiza-12

tion procedure. In addition, to efficiently examine the neighborhoods, it would13

be interesting to develop a fast neighborhood evaluation technique to accel-14

erate the local search procedure. Finally, the proposed algorithm embodies15

rather general strategies that could be of interest for other routing problems16

with time-dependent profits (e.g., the Multiple Traveling Repairman Problem17

with Profits).18

Acknowledgment19

We are grateful to the anonymous referees for valuable suggestions and com-20

ments which helped us improve the paper. We thank Dr. Mustafa Avci, the first21

author of reference [1], for providing us with the benchmark instances tested22

in this work. This work is partially supported by the National Natural Science23

Foundation Program of China [Grant No. 71401059, 71620107002, 71531009]24

and the Huazhong University of Science and Technology (5001300001).25

References26

[1] Avci, M., & Avci, M. G. (2017). A GRASP with iterated local search for the27

traveling repairman problem with profits. Computers & Industrial Engineering,28

113, 323-332.29

[2] Bruni, M.E., Beraldi, P., & Khodaparasti, S. (2018). A heuristic Approach for30

the k-Traveling Repairman Problem with Profits under Uncertainty. Electronic31

Notes in Discrete Mathematics, 69, 221-228.32

25

[3] Bang, B. H., & Nghia, N. D. (2010). Improved genetic algorithm for minimum 1

latency problem. In Proceedings of the 2010 Symposium on Information and 2

Communication Technology (pp. 9-15). ACM. 3

[4] Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-Race and 4

iterated F-Race: An overview. In Experimental methods for the analysis of 5

optimization algorithms (pp. 311-336). Springer Berlin Heidelberg. 6

[5] Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., & 7

Sudan, M. (1994). The minimum latency problem. In Proceedings of the 26th 8

Annual ACM Symposium on Theory of Computing (pp. 163-171). ACM. 9

[6] Ban, H. B., Nguyen, K., Ngo, M. C., & Nguyen, D. N. (2013). An efficient exact 10

algorithm for Minimum Latency Problem. J. PI, 1(10), 1-8. 11

[7] Beraldi, P., Bruni, M. E., Laganà, D., & Musmanno, R. (2018). The risk-averse 12

traveling repairman problem with profits. Soft Computing, 1-15. 13

[8] Bruni, M. E., Beraldi, P., & Khodaparasti, S. (2018). A fast heuristic for routing 14

in post-disaster humanitarian relief logistics. Transportation research procedia, 15

30, 304-313. 16

[9] Bruni, M. E., Brusco, L., Ielpa, G., & Beraldi, P. (2019). The Risk-averse 17

Profitable Tour Problem. In Proceedings of International Conference on 18

Operations Research and Enterprise Systems, 2019. 19

[10] Campos, V., Martí, R., Sánchez-Oro, J., & Duarte, A. (2014). GRASP with 20

path relinking for the orienteering problem. Journal of the Operational Research 21

Society, 65(12), 1800-1813. 22

[11] Chen, Y., Hao, J. K., & Glover, F. (2016). A hybrid metaheuristic approach 23

for the capacitated arc routing problem. European Journal of Operational 24

Research, 253(1), 25-39. 25

[12] Coene, S., & Spieksma, F. C. (2008). Profit-based latency problems on the line. 26

Operations Research Letters, 36(3), 333-337. 27

[13] Carrabs, F., Cordeau, J. F., & Laporte, G. (2007). Variable neighborhood search 28

for the pickup and delivery traveling salesman problem with LIFO loading. 29

INFORMS Journal on Computing, 19(4), 618-632. 30

[14] Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F. C., & Vansteenwegen, P. 31

(2013). Heuristics for the traveling repairman problem with profits. Computers 32

& Operations Research, 40(7), 1700-1707. 33

[15] Dang, D. C., Guibadj, R. N., & Moukrim, A. (2013). An effective PSO-inspired 34

algorithm for the team orienteering problem. European Journal of Operational 35

Research, 229(2), 332-344. 36

[16] Ekici, A., Retharekar, A. (2013). Multiple agents maximum collection problem 37

with time dependent rewards. Computers & Industrial Engineering, 64(4), 1009- 38

1018. 39

26

[17] Erkut, E., & Zhang, J. (1996). The maximum collection problem with time-1

dependent rewards. Naval Research Logistics, 43(5), 749-763.2

[18] Erdoǧan, G., & Laporte, G. (2013). The orienteering problem with variable3

profits. Networks, 61(2), 104-116.4

[19] Fischetti, M., Gonzalez, J. J. S., & Toth, P. (1998). Solving the orienteering5

problem through branch-and-cut. INFORMS Journal on Computing, 10(2),6

133-148.7

[20] Fakcharoenphol, J., Harrelson, C., & Rao, S. (2007). The k-traveling repairmen8

problem. ACM Transactions on Algorithms (TALG), 3(4), 40.9

[21] Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems10

with profits. Transportation science, 39(2), 188-205.11

[22] Goemans, M., & Kleinberg, J. (1998). An improved approximation ratio for the12

minimum latency problem. Mathematical Programming, 82(1-2), 111-124.13

[23] Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2017). Variable14

neighborhood search: basics and variants. EURO Journal on Computational15

Optimization, 5(3), 423-454.16

[24] Hao, J. K. (2012). Memetic algorithms in discrete optimization. In Neri et17

al. (Eds.), Handbook of Memetic Algorithms (pp. 73-94). Springer Berlin18

Heidelberg.19

[25] Hernández-Pérez, H., Rodríguez-Martín, I., & Salazar-González, J. J. (2016).20

A hybrid heuristic approach for the multi-commodity pickup-and-delivery21

traveling salesman problem. European Journal of Operational Research, 251(1),22

44-52.23

[26] Jarboui, B., Derbel, H., Hanafi, S., & Mladenović, N. (2013). Variable24

neighborhood search for location routing. Computers & Operations Research,25

40(1), 47-57.26

[27] Kellegöz, T., Toklu, B., & Wilson, J. (2008). Comparing efficiencies of genetic27

crossover operators for one machine total weighted tardiness problem. Applied28

Mathematics and Computation, 199(2), 590-598.29

[28] Kuo, Y., & Wang, C. C. (2012). A variable neighborhood search for the30

multi-depot vehicle routing problem with loading cost. Expert Systems with31

Applications, 39(8), 6949-6954.32

[29] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., &33

Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm34

configuration. Operations Research Perspectives, 3, 43-58.35

[30] Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the36

traveling-salesman problem. Operations Research, 21(2), 498-516.37

[31] Lu, Y., Benlic, U., & Wu, Q. (2018). A memetic algorithm for the Orienteering38

Problem with Mandatory Visits and Exclusionary Constraints. European39

Journal of Operational Research, 268(1), 54-69.40

27

[32] Luo, Z., Qin, H., & Lim, A. (2014). Branch-and-price-and-cut for the multiple 1

traveling repairman problem with distance constraints. European Journal of 2

Operational Research, 234(1), 49-60. 3

[33] Martí, R., Duarte, A., & Laguna, M. (2009). Advanced scatter search for the 4

max-cut problem. INFORMS Journal on Computing, 21(1), 26-38. 5

[34] Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers 6

& Operations Research, 24(11), 1097-1100. 7

[35] Mladenović, N., Urošević, D., & Ilić, A. (2012). A general variable neighborhood 8

search for the one-commodity pickup-and-delivery travelling salesman problem. 9

European Journal of Operational Research, 220(1), 270-285. 10

[36] Moscato, P. (1999). Memetic algorithms: A short introduction. In New Ideas in 11

Optimization (pp. 219-234). McGraw-Hill Ltd., UK. 12

[37] Neri, F., Cotta, C. & Moscato, P. (2012). Handbook of Memetic Algorithms. 13

Springer Berlin Heidelberg. 14

[38] Or, I. (1976). Traveling salesman-type combinational problems and their 15

relation to the logistics of blood banking (PhD thesis). USA: Northwestern 16

University. 17

[39] Prins, C., & Bouchenoua, S. (2005). A memetic algorithm solving the VRP, 18

the CARP and general routing problems with nodes, edges and arcs. Recent 19

Advances in Memetic Algorithms. Springer Berlin Heidelberg. 20

[40] Salehipour, A., Sörensen, K., Goos, P., & Bräysy, O. (2011). Efficient 21

GRASP+VND and GRASP+VNS metaheuristics for the traveling repairman 22

problem. 4OR, 9(2), 189-209. 23

[41] Silva, M. M., Subramanian, A., Vidal, T., & Ochi, L. S. (2012). A simple and 24

effective metaheuristic for the minimum latency problem. European Journal of 25

Operational Research, 221(3), 513-520. 26

[42] Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The 27

orienteering problem: A survey. European Journal of Operational Research, 28

209(1), 1-10. 29

[43] Wu, B. Y. (2000). Polynomial time algorithms for some minimum latency 30

problems. Information Processing Letters, 75(5), 225-229. 31

28

