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Abstract—The Clique Partitioning Problem (CPP) of an edge-
weighted complete graph is to partition the vertex set V into
k disjoint subsets such that the sum of the edge weights within
all cliques induced by the subsets is as large as possible. The
problem has a number of practical applications in areas such
as data mining, engineering and bio-informatics and is however
computationally challenging. To solve this NP-hard problem,
we propose the first evolutionary algorithm that combines a
dedicated Merge-Divide crossover operator to generate offspring
solutions and an effective simulated annealing based local opti-
mization procedure to find high-quality local optima. Extensive
experiments on three sets of 94 benchmark instances (including
two sets of 63 classical benchmark instances and one new set
of 31 large benchmark) show a remarkable performance of the
proposed approach compared to the state-of-the-art methods. We
analyze the key algorithmic ingredients to shed lights on their
impacts on the performance of the algorithm. The algorithm and
its available source code can benefit people working on practical
problems related to the CPP.

Index Terms—Clique partitioning; Hybrid evolutionary search
method; Crossover; Local optimization.

I. INTRODUCTION

The Clique Partitioning Problem (CPP) [1], [2] is a general
model that can naturally formulate many practical applications
in various areas including data mining [3], industrial engineer-
ing [4], [5], transportation science [6] and bio-informatics [7],
[8]. Let G = (V,E,w) be an undirected, complete and edge-
weighted graph with a vertex set V , an edge set E = V × V
and an edge weight function w : E → R. The CPP involves
partitioning V into unrestricted number of disjoint subsets
such that the sum of edge weights within the subsets is
maximized. The CPP is known to be NP-hard [1], [2] and thus
computationally challenging for solution methods. It is worth
noting that the name of clique-partitioning is sometimes used
to refer to another different problem (the clique cover problem)
which is to find the smallest number of cliques in a simple
graph such that every vertex in the graph belongs to exactly
one clique [9].

For the CPP studied in this work, a number of exact algo-
rithms have been proposed in the last decades. Integer Linear
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Programming is among the most commonly used approaches
for finding optimal solutions. These algorithms are based on
various techniques such as cutting planes [1], [2], Lagrangian
relaxation [10], branch-and-cut [11] and branch-price-cut [12],
[13]. Constraint programming [14] and SAT reasoning [3]
were also used to solve the CPP exactly.

However, due to the NP-hardness of the problem, exact
algorithms may require a prohibitive time in practice even for
problem instances of limited sizes (with up to 500 vertices).
To handle large instances, heuristic and metaheuristic algo-
rithms which aim to obtain high quality, but not necessarily
optimal solutions were also investigated (For general surveys
on metaheuristics, see [15], [16]). For example, De Amorim
et al. [17] introduced the first tabu search and simulated
annealing algorithms using the simple vertex reallocation
operator. Dorndorf et al. [11] combined ejection chain and
Kernighan-Lin heuristic with the same reallocation operator.
Charon et al. [18], [19] designed the so-called noising method
which adds random noises to the candidate solutions being
evaluated. Brusco et al. [20] integrated the local search algo-
rithms of [17] into a variable neighborhood search algorithm.
Palubeckis et al. [21] additionally presented an iterated tabu
search algorithm (ITS) which repeats a tabu search procedure
followed by a random perturbation procedure. This algorithm
with fine-tuned parameters reported excellent computational
results on a set of benchmark instances. Later, Zhou et al.
[22] proposed an effective three-phase local search algorithm
(CPP-P3) combining descent search, exploration search and
directed perturbation.

In addition to these local search algorithms which solve
the problem directly, the problem transformation approach
was also investigated, which converts the CPP to another
well-studied problem. For example, Kochenberger et al. [8]
transformed the CPP to the popular Unconstrained Binary
Quadratic Programming (UBQP) problem and solved the re-
sulting problem by an existing tabu search algorithm designed
for the UBQP. Recently, Brimberg et al. [23] recast the CPP
to the Maximally Diverse Grouping Problem which was then
solved via a variable neighborhood search method (SGVNS).

According to the computational results reported in the above
studies, we identify three best performing algorithms: ITS
[21], CPP-P3[22] and SGVNS [23]. However, these studies
indicate that existing approaches have difficulties in robustly
and consistently producing high-quality solutions for problem
instances with more than 500 vertices. On the other hand,
to the best of our knowledge, the powerful population-based
evolutionary approach has not been investigated for the CPP
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yet. In this work, we fill this gap by presenting an effec-
tive hybrid evolutionary algorithm called the Merge-Divide
Memetic Clique Partitioning Algorithm (MDMCP). The main
contributions of this work can be summarized as follows.

First, from the algorithmic perspective, the proposed algo-
rithm is the first evolutionary algorithm with several com-
plementary search components. The dedicated crossover is
designed to enable offspring solutions to preserve good proper-
ties of parent solutions (based on the notions of vertex “group-
ing” and “separating”). The simulated annealing based local
optimization procedure makes use of a restricted neighborhood
that allows the procedure to effectively sample candidate
solutions. The pool management relies on both distance and
quality information to maintain a healthy population.

Second, from the computational perspective, we report new
record results (improved lower bounds) for 12 out of the
popular 63 benchmark instances with up to 2000 vertices.
We also present for the first time lower bounds on 31 new
large benchmark instances with at least 2500 vertices. These
new bounds are useful for future studies on the CPP (e.g.,
as reference values for performance assessment). Moreover,
given that the CPP has a number of practical problems in
various application domains, the proposed algorithm can be
used by researchers and practitioners working in these domains
to better solve their problems and the availability of the source
code of our algorithm eases such practical applications.

Finally, this study demonstrates the benefit of the
population-based approach for solving this challenging prob-
lem and the dominance of this approach over all local search
and problem transformation approaches. Moreover, the design
of the crossover and local optimization procedure of this work
could inspire the invention of effective search operators for
other partition and grouping problems.

The rest of the paper is organized as follows. Section II in-
troduces necessary notations and definitions. Section III shows
the general framework of the proposed algorithm. Sections IV
and V introduce two of the most important components of
MDMCP, i.e., the dedicated crossover operator and the local
optimization procedure. Computational results and analysis are
presented in Sections VI and VII, respectively, followed by
conclusions in the last section.

II. NOTATIONS AND DEFINITIONS

A CPP instance is given by an undirected complete graph
G = (V,E,w) where V is the set of vertices, E is the set of
edges, and w is the edge weight function w : E → R.

For the given instance G, a candidate solution is any
partition of V into k (k is unknown) non-empty disjoint
subsets P = {S1, ..., Sk} such that

⋃k
i=1 Si = V and for

all 1 ≤ i 6= j ≤ k, Si ∩ Sj = ∅. Then the search space
Ω of G includes all possible partitions of V and has a size
of

∑n
j=1 S(n, j) where S(n, j) is the Stirling number of the

second kind.
For a candidate solution P = {S1, ..., Sk}, its fitness

f(P) is given by the objective value which is the sum
of the edge weights within each Si (i = 1, 2, . . . , k), i.e.,
f(P) =

∑k
i=1

∑
u,v∈Si,u 6=v wuv .

To compare two candidate solutions Pa and Pb, Pa is better
(or worse) than Pb if f(Pa) > f(Pb) (or f(Pa) < f(Pb)).

To measure the difference between two partitions, we use
the following well-known set-theoretic partition distance [24].

Definition 1: Given two partitions Pa and Pb, the distance
Dist(Pa,Pb) between them is the minimum number of ver-
tices that need to be displaced between subsets of Pa so that
the resulting partition becomes the same as Pb.

Definition 2: Given two partitions Pa and Pb, if
Dist(Pa,Pb) = 0, then Pa and Pb are two identical par-
titions. Otherwise, they are different partitions.
Dist(Pa,Pb) can be calculated in polynomial time [25].

III. THE MEMETIC FRAMEWORK

The Merge-Divide Memetic Clique Partitioning Algorithm
(MDMCP) is shown in Algorithm 1. MDMCP relies on the
canonical memetic algorithm framework [26], [27], which is
a powerful tool for solving difficult optimization problems
[28], [29], [30], [31], [32]. Generally, starting with an initial
population of at most p (p ≥ 2) individuals, MDMCP performs
a number of generations to evolve the population until the
given stopping condition (typically a cutoff time limit) is met.
During each generation, two parent solutions Pa and Pb are
randomly selected from the population and then recombined
by the dedicated Merge-Divide crossover operator (Section IV)
to generate an offspring solution. The offspring solution is then
submitted to the Simulated Annealing based local optimization
procedure for quality improvement (Section V). Finally, the
improved offspring solution is used to update the population
according to the adopted updating rule.

Below, we explain how the population is initialized and up-
dated while the crossover operator and the local optimization
procedure are presented in two other sections.

Algorithm 1: Main framework of the MDMCP algorithm

Input: Problem instance G = (V,E,w), population size p and
the other parameters of the algorithm

Output: The best solution found P∗
begin1

Pop← PoolInitialize(p)2
P∗ ← arg maxP∈Pop f(P)3
while stopping condition is not met do4

Randomly select two solutions Pa and Pb from Pop5
Po ← MDX Crossover(Pa,Pb) /∗ Sect. IV ∗/6
Po ← SALO LocalOptimization(Po) /∗ Sect. V ∗/7
if f(P o) > f(P∗) then8
P∗ ← Po9

Pop← UpdatePool(Pop,Po)10

end11
return P∗12

a) Population initialization: The initial population Pop
is generated as follows. We first create a trivial partition where
each of the n vertices forms a subset of the partition. Then
we run p times the local optimization procedure of Section
V from this trivial partition and fill Pop with the p improved
partitions. Given the stochastic nature of local optimization,
the set of p improved solutions may be all different from one
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another, or may contain some identical solutions in the sense of
Definition 2 (Section II) as well. To avoid identical solutions
in Pop, we use the distance measure given in Definition 1
to calculate the pairwise distances of the p solutions and
eliminate the duplicated solutions. If this reduces Pop to
only one solution (which happens when the p solutions are
identical), we apply again the local optimization procedure
to the initial trivial partition and stop the process when a
different solution of high-quality is reached. Therefore, the
initial population contains always 2 to p different solutions,
which are not only of high quality, but also diverse.

b) Population updating strategy: The population is up-
dated each time an offspring solution is generated and further
improved. For this, we first calculate the distance between the
offspring and each individual in the population. If the offspring
is identical to an individual in the population, the offspring
is dropped without changing the population. Otherwise, we
update the population by the following rule. If the number of
solutions in the population is less than p, then the offspring
is inserted into the population. Otherwise, we compare the
offspring with the worst solution in the population. If the off-
spring is better than the worst solution, the offspring replaces
the worst one; otherwise, the offspring is dropped.

IV. THE MERGE-DIVIDE CROSSOVER

It is generally recognized that a well-designed crossover
operator can play a driving role within a memetic algorithm
[33]. A suitable crossover operator should pass pertinent ge-
netic information from parents to offspring solutions. In graph
problems, such information is often represented by structural
properties shared by parent solutions (e.g. [28], [30], [32],
[34]). For the CPP, we introduce the concepts of grouping
edges and separating edges of the parents. We then design
the dedicated Merge-Divide crossover (MDX) that generates
offspring solutions while exploring such information.

A. Grouping and separating edges

Definition 3: Let Pa and Pb be two parent solutions. Let
{u, v} be an edge. If u and v are in the same subset in both
Pa and Pb (i.e., there exist two subsets X ∈ Pa and Y ∈ Pb

such that u, v ∈ X , u, v ∈ Y ), then {u, v} is a grouping edge
of the parents. If u and v are in two different subsets in both
parent solutions (i.e. there exist two different sets X,Y ∈ Pa

and two different sets Z,W ∈ Pb such that u ∈ X , v ∈ Y ,
and u ∈ Z, v ∈ W ), then {u, v} is a separating edge of the
parents. In the other cases, {u, v} is an undetermined gene of
the parents.

Definition 4: Given two parent solutions Pa and Pb, let
{u, v} be a grouping edge and {x, y} be a separating edge
of the parents. We say that a third solution Pc inherits the
grouping edge {u, v} if u and v are in the same subset in Pc.
Likewise, we say that Pc inherits the separating edge {x, y}
if x and y are in different subsets in Pc.

As they are defined, grouping and separating edges can be
considered as basic building blocks. Our crossover operator
aims then to identify the grouping and separating edges in
the parent solutions and build a promising (partial) offspring

solution by inheriting some selected grouping and separating
edges. To streamline the inheritance process from parents to
offspring, MDX applies an original technique that simplifies
the input complete graph into an auxiliary incomplete graph of
smaller size while randomly sampling the set of edges. When
this phase finishes, MDX ensures that any clique cover of the
resulting incomplete graph can directly produce a valid off-
spring solution that inherit the selected edges. By combining
the inheritance process and the clique cover process, MDX has
the advantage of favoring the creation of offspring solutions
of both high quality and diversity.

We explain below how MDX samples edges of interest and
reduces the input graph. Then we show a clique cover heuristic
to obtain a high-quality offspring solution from the resulting
graph.

B. Edge sampling and the Merge-Divide operations

MDX (see Algorithm 2) iteratively samples edges of an
auxiliary edge-weighted graph Gi = (Vi, Ei, w

i) while con-
sidering two reference solutions Pa

i and Pb
i , where i represents

the number of iterations. Initially, G0 is set to G, i.e., V0 = V ,
E0 = E and w0 = w, Pa

0 and Pb
0 are the same as Pa and

Pb, respectively. Then, in the ith iteration, MDX randomly
samples an edge from Gi, say {u, v} and transforms the
current graph Gi into a coarsened graph Gi+1 via a Merge
or Divide operation as follows.

If {u, v} is a grouping edge of Pa
i and Pb

i , then Merge
collapses u, v ∈ Vi to form a new coarse vertex y ∈ Vi+1 and
adds wi

uv to the fitness f . For any other vertex x ∈ Vi adjacent
to both u and v in Gi, the Merge operator merges edges {u, x}
and {v, x} into a new edge {y, x} in Ei+1 and sets the edge-
weight wi+1

yx as wi
ux + wi

vx. The remaining vertices in Gi

incident to u or v are now adjacent to y in Gi+1. Therefore,
after the Merge operation, the fitness equals the sum of the
merged edge-weight of the initial graph G0 (which is G).
Meanwhile, to make sure that Pa

i and Pb
i are still a partition

of Vi, u and v are replaced by y in Pa
i and Pb

i .
If {u, v} is a separating edge, the Divide operator is applied,

which just removes the edge {u, v} from Gi. If {u, v} is an
undetermined edge, MDX just ignores this edge and continues
its sampling process.

The Merge and Divide operations repeat until either Gi

becomes sufficiently small, i.e., the number of vertices in Gi

is not larger than n ∗ η (η is a predefined parameter in (0, 1])
or there are no more grouping or separating edges.

C. Offspring generation with clique cover

Upon the termination of the Merge and Divide operations
with auxiliary graph Gi = (Vi, Ei, w

i), we are ready to create
the offspring solution by finding a clique cover of Gi. Recall
first that a clique cover of an undirected graph is a partition of
its vertex set such that the vertices in each subset are pairwise
adjacent, that is, each subset is a clique. In our case, we use
a simple heuristic (GreedyCC, see Algorithm 3) to obtain a
clique cover CC = {S1, S2, . . . , Sk}. To identify a clique Sj

(j = 1, . . . , k), GreedyCC starts with a random seeding vertex
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Algorithm 2: Merge-Divide crossover (MDX)

Input: Graph instance G = (V,E,w), parent solutions Pa and
Pb, shrink ratio η ∈ (0, 1]

Output: Offspring solution P c

begin1
G0 ← G,Pa

0 ← Pa, Pb
0 ← Pb2

f ← 0, i← 03
repeat4

Randomly sample an edge {u, v} from Ei5
if {u, v} is a grouping edge of Pa

i and Pb
i then6

Gi+1 ← a coarsened graph of Gi by merging u7
and v into y, update the edges incident to u and v
/∗ Merge operation ∗/
Pa

i+1 ← replace u and v by y in Pa
i8

Pb
i+1 ← replace u and v by y in Pb

i9
f ← f + wi

uv10

else if {u, v} is a separating edge of Pa
i and Pb

i then11
Gi+1 ← a simplified graph of Gi by removing the12
edge {u, v} /∗ Divide operation ∗/

else13
Gi+1 ← Gi,Pa

i+1 ← Pa
i ,Pb

i+1 ← Pb
i14

i← i+ 115
until (i > n ∗ η) OR (neither grouping nor separating16
edge exists in Ei) ;
Pc

i ,∆← GreedyCC(Gi)17
Pc ← Replace each vertex of Pc

i by the aggregated18
vertices of G0

end19
return Pc, f + ∆20

and then expands the clique with other vertices that must be
adjacent to all vertices of the clique under construction.

From the clique cover CC = {S1, S2, . . . , Sk} of Gi, we
now unfold the aggregated vertices of each clique Si to obtain
a set of vertices of the initial graph G0, which forms a subset of
the offspring partition. The final offspring partition Pc is thus
composed of k subsets of vertices thus created. The fitness of
Pc is equal to f+∆, where f is the sum of edge weights of all
grouping edges returned by the Merge and Divide operations
and ∆ is the objective value of the clique cover returned by
the clique cover heuristic.

We now verify that the offspring Pc inherits the required
property (grouping and separating edges) of the parent solu-
tions. For this, let us qualify a grouping edge of Pa and Pb as
selected if its two vertices are merged into one coarse vertex
in Gi. Likewise, let us qualify a separating edge of Pa and
Pb as selected if its endpoints are merged into different coarse
vertices and meanwhile, no edge exists between the two coarse
vertices in Gi. Now, if {u, v} is a selected grouping edge, then
u and v must be merged into one coarse vertex in Gi by the
Merge operator, and thus must be in the same set in Pc. If
{x, y} is a selected separating edge, assume that x is merged
to x′ and y is merged to y′, then the Divide operator removes
the edge between x′ and y′. Thus, x′ and y′ cannot be in the
same subset of a clique cover. As a result, x and y must be
in different sets in Pc.

Fig. 1 illustrates MDX applied to a graph of five vertices.
Relative to the given parents Pa (f(Pa) = 4) and Pb

(f(Pb) = 4), we have one grouping edge {C,D}, six separat-

Algorithm 3: The clique cover procedure (GreedyCC)

Input: An undirected graph G = (V,E,w)
Output: Clique cover CC and objective value ∆
begin1

k ← 1, ∆← 0, CC ← ∅2
repeat3

Sk ← a random vertex in V4
B ← V5
repeat6

Randomly take u ∈ {v ∈ B :
∑

y∈Sk
wvy > 0}7

Sk ← Sk ∪ {u}8
B ← (B \ {u}) ∩NG(u) /∗ NG(u) is the set of9
neighbors of u ∗/
∆← ∆ +

∑
y∈Sk

wuy10
until there is no vertex v ∈ B such that11 ∑

y∈Sk
wvy > 0 ;

V ← V \ Sk12
CC ← CC ∪ {Sk}13
k ← k + 114

until V = ∅ ;15
end16
return clique cover CC, ∆17

ing edges {A,C}, {A,D}, {A,E}, {B,E}, {C,E}, {D,E},
and three undetermined edges {A,B}, {B,C}, {B,D}. Steps
1-5 of Fig. 1 show the Merge and Divide operations applied
to four randomly sampled edges (one grouping edge and three
separating edges). G5 is the reduced auxiliary graph when the
edge sampling process terminates (with the stopping condition
i > n ∗ η where i = 5, n = 5 and η = 0.6). Steps 6-7 in the
figure illustrate the clique cover and the resulting offspring
solution f(Pc) = 5.

D. Complexity of MDX

We establish the worst-case time complexity of MDX as
follows. Given a graph of n vertices, it requires O(n) time to
execute Merge and O(1) time to execute Divide. Since there
are at most n merge operations, the worst-case time complex-
ity of MDX (without GreedyCC) is O(n2). Meanwhile, the
runtime of GreedyCC is cubic in terms of the input number
of vertices, i.e., O((ηn)3). Hence, the overall worst-case time
complexity of MDX is O(n3). On the other hand, the space
complexity is O(n2) since we need to keep an auxiliary graph
of the same size as G.

V. SIMULATED ANNEALING BASED LOCAL OPTIMIZATION

This section is dedicated to the simulated annealing based
local optimization (SALO) component of the MDMCP algo-
rithm. We first introduce the neighborhood used by SALO and
then present the general algorithm.

A. Neighborhood

Neighborhood is one key ingredient of any local search al-
gorithm and should be carefully designed to favor the sampling
of high-quality candidate solutions of the given problem. For
the CPP, one popular neighborhood requires that the distance
between a solution P and a neighbor solution P ′ equals one,
i.e., Dist(P,P ′) = 1 according to Definition 1 in Section II.
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Fig. 1: An illustration of the Merge-Divide crossover (MDX).
Given the initial auxiliary graph G0 and two parent solutions
P a (f(Pa) = 4) and P b (f(Pb) = 4), the figure shows the
steps to generate the offspring solution P c. Steps 1-5 are the
Merge and Divide operations, leading to the objective value
f = 5; Step 6 applies GreedyCC(G5) to obtain the partition
P c
5 with ∆ = 0; Step 7 unfolds graph G5 to the initial

graph G0 and obtains the offspring solution P c with the final
objective value f(Pc) = 5.

With this neighborhood, a neighbor solution can be built by
transferring a random vertex from its current subset to another
subset in P ∪ {∅}. With no restriction on the vertex to be
transferred, the algorithm will sample neighbor solutions from
a large number of candidate solutions of order O(n× k).

To improve its search efficiency, our SALO procedure
adopts a restricted neighborhood that excludes non-promising
candidate solutions. Let P = {S1, ..., Sk} be the current
solution and v a vertex randomly selected in V . Suppose that
v belongs to subset Si in P . We define the best target subset
(or simply best set) of v to be the subset Sv in P ∪ {∅} such
that transferring v from Si to Sv leads to the largest gain of
the objective value. Formally, the best set of v is identified by:

Sv = arg max
Sv∈P∪{∅}

∑
u∈Sv

wuv −
∑
u∈Si

wuv (1)

Given that each vertex has one fixed best set, the size
of this restricted neighborhood is bounded by O(n). This
neighborhood has the advantages of having a smaller size
(O(n) instead of O(n× k) for the unrestricted neighborhood
above) and being more focused (it excludes neighbor solutions
with low objective gains).

To generate a neighbor solution, we use the popular
REALLOC(P, v, Sv) operator, which returns a neighbor P ′
of the current solution P by moving a random vertex v from
its current subset Si to its best set Sv . If Sv is the empty
set, REALLOC(P, v, Sv) removes v from P and returns
P∪{{v}}. Note that, by definition, a solution only consists of
non-empty sets, so if Si becomes empty when v is removed,
REALLOC(P, v, S′) also deletes this empty set from P ′.

As we show in Section VII-A, the SALO procedure using
this neighborhood performs very well.

B. General algorithm

The SALO procedure follows the general simulated anneal-
ing framework and uses the above neighborhood to effectively
explore candidate solutions. As shown in Algorithm 4, SALO
performs a number of search rounds (lines 2-13) with different
temperature values T (initially set to Tinit). During each
search round, SALO samples n ∗ k ∗ θsize candidate solutions
from the neighborhood to make transitions from the current
solution P to neighbor solutions P ′. To generate a neighbor
solution, a vertex v is randomly chosen and moved from
its current subset to a specially identified target subset (see
Section V-A) (lines 5-7). Then a decision is made to decide
whether the neighbor P ′ is accepted as the new current
solution according to the following acceptance probability:

Pr{P ← P ′} = min(1, e
f(P′)−f(P)

T ) (2)

If the acceptance probability is verified, the neighbor so-
lution P ′ becomes the new current solution P; otherwise,
the sampled neighbor solution is ignored without changing
the current solution during the current iteration (line 8). After
each solution transition, the best solution found so far Pbest

is updated each time a better solution is reached (lines 9-11).
When the current search round reaches its end with the

temperature T (i.e., n ∗ k ∗ θsize candidate solutions are
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Algorithm 4: Simulated annealing based local optimization
(SALO)

Input: Graph instance G = (V,E,w), input solution P , initial
temperature Tinit, controlling parameters θsize, θcool,
θminper

Output: The best solution found Pbest

begin1
T ← Tinit, Pbest ← P2
repeat3

for Iter = 1 to |V | ∗ k ∗ θsize do4
v ← a random vertex from V5
Sv ← the best set of v in P ∪ {∅}6
P ′ ← REALLOC(P, v, Sv)7
With probability defined in Equation (2), accept8
solution P ′ as new current solution P
if f(P) > f(Pbest) then9
Pbest ← P10
fbest ← f(P)11

T ← T ∗ θcool /∗ Temperature cooling down ∗/12
until Acceptance rate is below θminper for 5 consecutive13
rounds ;

end14
return Pbest15

sampled), the current temperature is decreased by a constant
factor θcool < 1 (line 12), which initiates the next search round
with the lowered new temperature.

One notices that each iteration of the SALO procedure does
not necessarily lead to a solution transition. For this reason, we
keep, in addition to the iteration counter Iter, a move counter
Move and define Move/Iter as the solution acceptance rate.
Then the whole SALO procedure terminates and returns the
best-recorded solution Pbest when the acceptance rate remains
below a threshold θminper for 5 consecutive search rounds.
Finally, like many simulated annealing algorithms, SALO’s
performance is sensitive to its initial temperature Tinit. We
use a simple automated binary search to find a suitable Tinit
value in the range [1, 2000] for a given instance. For this, we
run SALO with Tinit set to the middle value in the initial range
[1, 2000]. If this leads to a solution acceptance rate of 50%,
then Tinit is set definitively to this value. Otherwise, we re-run
SALO with the first or second half-sized range according to
whether the acceptance rate is lower or higher than 50%. The
tuning of the other parameters is discussed in Section VII-B.

C. Complexity of the local optimization procedure

Assume that the current solution P has k non-empty sub-
sets. Clearly, k is bounded by n, the number of vertices
in G. In our implementation, for a vertex v and each set
Si ∈ P ∪ {∅}, we create a table δ to maintain the sum
of edge-weights between v and all vertices in Si. With
this table, finding the best set of any vertex only requires
O(n). Meanwhile, the REALLOC operation updates the table
in O(n) if a neighbor solution is accepted. Therefore, one
iteration of the SALO procedure takes time O(n2) while the
space complexity is O(n2). Finally, if table δ is organized by
using a heap data structure, the time complexity can be further
reduced to O(n log n) without changing the space complexity.

VI. COMPUTATIONAL EXPERIMENTS

A. Experimental setting

The proposed MDMCP algorithm was implemented in
C++1, and complied using GNU g++ 5.4.0 with ‘-O3’ option,
and all experiments were carried out on a computer with an
AMD Opteron 4184 processor (2.82GHz) with 2GB RAM,
running the Linux operating system.

Table I shows the parameter setting of MDMCP that was
consistently used in all experiments reported in this section.
This setting can also be considered as MDMCP’s default
setting. We explain the tuning procedure in Section VII-B.

For the comparative assessment, we adopt, as our reference
algorithms, the best performing algorithms: CPP-P3 [22],
SGVNS [23], and ITS [21]. As indicated in the introduction
section, these algorithms represent the state-of-the-art for solv-
ing the CPP and together hold the best-known results for the
available benchmark instances. It is worth mentioning that the
source codes of these algorithms are available to us, making it
possible to perform a meaningful and fair comparative study.

Table II shows the cutoff times with respect to the number
of vertices of the benchmark instances. These cutoff times are
used by the four compared algorithms. Due to the stochastic
nature of the tested algorithms, each instance was solved 20
times independently by each algorithm. To run each reference
algorithm, we use their default parameter setting given in the
corresponding papers.

B. Benchmark instances

Our computational assessments are based on three sets of
94 benchmark instances with 100 to 7000 vertices.

• Small Set (38 instances). The instances of this set
have up to 500 vertices. The edge-weights are generated
randomly by different distributions. The first 13 instances
were provided by Charon and Hudry in [19] and Brusco
and Köhn in [20]. The next 20 instances prefixed by p500-
5 or p500-100 were originated from [21] while the last
5 instances with the prefix gauss were proposed in [22].

• Medium set (25 instances). These medium instances
were collected from [21] and [22] and the number of ver-
tices varies in {700, 800, 1000, 1500, 2000}. The edge-
weights of the first 10 graphs are uniformly distributed
in the range [−5, 5] and the last 15 graphs distributed in
range [−100, 100].

• Large set (31 instances). To assess the scalability of the
algorithms, we additionally adopt 31 large graphs with
at least 2500 vertices. The first 10 graphs (b2500.1 to
b2500.10) are recast from the well-known Unconstrained
Binary Quadratic Programming (UBQP) instances in the
OR-Lib2. The remaining instances are from [21].

1The code of our algorithm and the benchmark instances used
in this paper will be publicly available at: http://www.info.univ-
angers.fr/pub/hao/MDMCP.html

2An UBQP instance is a symmetric matrix which can be treated as the
adjacent matrix of an undirected edge-weighted complete graph for the CPP.
The diagonal elements in the matrix are ignored.
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TABLE I: Parameter setting.

Parameter Section Description Range Value

p §III size of population [5, 10, . . . , 45, 50] 10
η §IV shrink ratio in MDX [0.40, 0.45, . . . , 0.80, 0.85] 0.60
θsize §V max iteration coefficient per temperature of SALO [1, 2, . . . , 256, 512] 8
θcool §V cool ratio of SALO [0.90, 0.91, . . . , 0.98, 0.99] 0.96
θminper §V max acceptance rate for determining frozen state of SALO [0.5%, 1.0%, . . . , 4.5%, 5.0%] 1%

TABLE II: The cutoff times (in seconds) for different number
of vertices.

Number of vertices (n) Cutoff times (s)

100-300 200
400-500 500
700-800 1000

1000 2000
1500 4000

2000-2500 10000
Others 20000

C. Computational results

Tables III, IV and V show the computational results of the
proposed MDMCP algorithm along with the results of the
reference algorithms (CPP-P3 [22], SGVNS [23] and ITS [21])
on the three sets of benchmark instances respectively. Note that
the results of SGVNS on the large instances are missing in
Table V because SGVNS fails to run on these large instances
due to memory leaks.

In each table, columns Instance and fprev show the name
of the input instance and the best-known objective value ever
reported in the literature. For each algorithm, we report its
best objective value fbest among 20 runs, the average objective
value favg , the frequency hit of reaching fbest and the average
time t(s) in seconds to reach fbest over 20 runs. Note that
it is not really meaningful to compare the run times of the
algorithms if they don’t report the same fbest. As a result, the
timing information is provided only for indicative purposes.

Additionally, in the last two rows, we show the number of
instances that the corresponding algorithm produces a better,
equal and worse objective value compared to fprev and the p-
value from the non-parametric Wilcoxon signed-rank test with
a confidence level of 99% applied to the best and average
objective values of MDMCP and each reference algorithm.
In all tables, the fbest entries that are superior or inferior to
fprev are marked in bold or italic. An asterisk (∗) indicates a
strictly best fbest among the compared algorithms, which also
corresponds to a new best-known result.

1) Comparison on small instances (Table III): We observe
that MDMCP and CPP-P3 reach the previous best-known
results on all 38 instances whereas SGVNS and ITS fail on 5
and 4 instances, respectively. The statistical tests confirm that
MDMCP performs marginally better than CPP-P3 in terms of
the average results. On the other hand, MDMCP dominates the
two other reference algorithms (SGVNS and ITS) by yielding
better average objective values (confirmed by the p-values)
and slightly better best objective values. Finally, MDMCP also

performs the best in terms of hitting the best objective values.
2) Comparison on medium instances (Table IV): The re-

sults indicate that MDMCP dominates all reference algorithms
in terms of best and average objective values. Remarkably,
MDMCP improves the best-known objective value for 12 out
of the 25 instances (CPP-P3 and SGVNS also find improved
best-known result for 1 and 2 instances respectively). The sta-
tistical significance of this comparison between MDMCP and
each reference algorithm is confirmed by the small p-values.
Moreover, even though all algorithms show a relatively low
frequency of reaching their respective best results, MDMCP
hits the improved results more often than the reference algo-
rithms. We also checked how often MDMCP can reach the
previous best values fprev (not shown here) and observed that
MDMCP hits fprev more often while requiring shorter run
times than the reference algorithms.

3) Comparison on large instances (Table V): One ob-
serves that MDMCP performs remarkably well on these 31
large instances and shows its superiority over the reference
algorithms. For all 31 instances, MDMCP reports the best
fbest and favg values among the compared algorithms. Even
the average results are better than the best results of the
reference algorithms. These outcomes indicate that MDMCP
scales very well on large instances. The statistical significance
of this comparison is confirmed by the small p-values from
the Wilcoxon tests. However, all the algorithms show a low
frequency of hitting their respective fbest, implying that these
large instances are particularly difficult and there is still room
for further improvement.

4) A global comparison with performance profiles: We
create performance profiles [35] which provide a global per-
formance evaluation of all algorithms. To compare a set of
algorithms A over a set of problem instances I, we define the
performance ratio by ra,i = fa,i/min{fa,i : a ∈ A, i ∈ I}. If
an algorithm a does not solve a problem instance i, then we
simply set ra,i = +∞. Thus, the performance function of an
algorithm a is given by Ia(τ) = |{i ∈ Ia : ra,i ≤ τ}|/|Ia|.
The value Ia(τ) computes the fraction of problem instances
that algorithm a can solve with at most τ many times the
cost of the best algorithm. Ia(1) corresponds to the number
of instances that algorithm a solved faster than, or as fast as
the other algorithms in A do. The value Ia(rf ), for a large
enough rf , corresponds to the maximum number of instances
that algorithm a solved. The quantities Ia(1) and Ia(rf ) are
called efficiency and robustness of a respectively. We draw the
performance profiles of the compared algorithms by using the
software ‘perprof-py’ [36] and the results are shown in Fig. 2
(for the first two sets of 63 small and medium instances) and
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TABLE III: Computational results on 38 small instances of the proposed MDMCP algorithm, and three reference algorithms
CPP-P3 [22], SGVNS [23], and ITS [21].

MDMCP CPP-P3 [22] SGVNS [23] ITS [21]
Instance fprev fbest favg hit t(s) fbest favg hit t(s) fbest favg hit t(s) fbest favg hit t(s)

rand100-5 1407 1407 1407.00 20/20 0.70 1407 1407.00 20/20 0.15 1407 1407.00 20/20 0.44 1407 1407.00 20/20 0.05
rand100-100 24296 24296 24296.00 20/20 1.82 24296 24296.00 20/20 1.03 24296 24296.00 20/20 3.24 24296 24296.00 20/20 1.00
rand200-5 4079 4079 4079.00 20/20 26.14 4079 4079.00 20/20 9.56 4079 4078.95 19/20 23.28 4079 4079.00 20/20 23.25
rand200-100 74924 74924 74924.00 20/20 56.62 74924 74924.00 20/20 19.39 74924 74840.90 14/20 56.32 74924 74924.00 20/20 25.80
rand300-5 7732 7732 7732.00 20/20 201.68 7732 7732.00 20/20 45.20 7732 7731.45 17/20 129.83 7732 7730.50 10/20 156.75
rand300-100 152709 152709 152709.00 20/20 2.54 152709 152709.00 20/20 5.23 152709 152709.00 20/20 7.78 152709 152709.00 20/20 17.85
sym300-50 17592 17592 17592.00 20/20 100.54 17592 17592.00 20/20 53.84 17592 17589.40 14/20 149.37 17592 17589.10 15/20 162.55
regnier300-50 32164 32164 32164.00 20/20 2.21 32164 32164.00 20/20 0.83 32164 32164.00 20/20 1.32 32164 32164.00 20/20 1.90
zahn300 2504 2504 2504.00 20/20 7.68 2504 2504.00 20/20 6.58 2504 2502.90 18/20 16.14 2504 2504.00 20/20 29.15
rand400-5 12133 12133 12133.00 20/20 142.52 12133 12133.00 20/20 155.43 12133 12128.85 14/20 214.04 12133 12130.20 15/20 418.50
rand400-100 222757 222757 222757.00 20/20 88.53 222757 222757.00 20/20 198.31 222757 222681.95 13/20 242.06 222757 222678.30 10/20 490.45
rand500-5 17127 17127 17125.45 14/20 451.24 17127 17127.00 20/20 278.94 17127 17117.90 9/20 496.82 17127 17108.05 4/20 581.80
rand500-100 309125 309125 308901.80 2/20 953.10 309125 308920.45 3/20 328.41 309125 308839.40 3/20 808.37 309007 308851.55 1/20 516.85

p500-5-1 17691 17691 17691.00 20/20 188.76 17691 17691.00 20/20 350.59 17691 17680.30 4/20 137.74 17684 17671.40 1/20 601.70
p500-5-2 17169 17169 17167.65 11/20 476.10 17169 17168.85 19/20 355.19 17166 17153.80 3/20 79.13 17169 17152.50 2/20 500.60
p500-5-3 16816 16816 16815.35 9/20 447.93 16816 16815.05 4/20 579.30 16815 16803.60 1/20 782.32 16816 16807.35 2/20 536.95
p500-5-4 16808 16808 16808.00 20/20 192.45 16808 16808.00 20/20 155.67 16808 16797.35 7/20 618.47 16808 16790.00 5/20 577.45
p500-5-5 16957 16957 16957.00 20/20 161.17 16957 16957.00 20/20 98.89 16957 16939.85 3/20 335.00 16957 16945.80 10/20 563.15
p500-5-6 16615 16615 16614.75 19/20 289.60 16615 16614.85 19/20 350.22 16615 16604.40 6/20 559.36 16615 16603.90 6/20 444.15
p500-5-7 16649 16649 16648.55 16/20 447.10 16649 16647.30 12/20 351.07 16639 16624.15 5/20 396.57 16649 16629.80 1/20 571.30
p500-5-8 16756 16756 16755.55 17/20 326.41 16756 16756.00 20/20 174.15 16756 16744.25 14/20 361.43 16756 16739.75 5/20 547.40
p500-5-9 16629 16629 16628.60 19/20 322.48 16629 16629.00 20/20 350.85 16629 16609.65 2/20 455.10 16619 16600.35 1/20 548.50
p500-5-10 17360 17360 17360.00 20/20 25.75 17360 17360.00 20/20 69.87 17360 17347.00 11/20 226.46 17360 17353.75 16/20 470.45
p500-100-1 308896 308896 308892.40 12/20 420.82 308896 308895.65 19/20 319.17 308896 308855.15 5/20 83.45 308896 308832.35 7/20 467.05
p500-100-2 310241 310241 310174.70 3/20 724.81 310241 310217.00 13/20 447.77 310241 310046.15 2/20 329.90 310241 309809.20 2/20 543.60
p500-100-3 310477 310477 310465.20 16/20 550.08 310477 310474.05 19/20 266.29 310418 309943.55 4/20 358.81 310477 309883.45 3/20 513.90
p500-100-4 309567 309567 309555.50 16/20 509.23 309567 309412.00 7/20 411.82 309494 309311.00 2/20 311.80 309494 309163.55 1/20 431.75
p500-100-5 309135 309135 309135.00 20/20 196.45 309135 309106.95 16/20 473.37 309135 308888.75 11/20 454.52 309135 308934.30 2/20 473.85
p500-100-6 310280 310280 310280.00 20/20 83.06 310280 310280.00 20/20 300.59 310280 310210.70 15/20 426.52 310280 309903.65 11/20 454.80
p500-100-7 310063 310063 310057.20 18/20 403.36 310063 310063.00 20/20 186.26 310063 309984.35 6/20 347.18 310063 310013.30 8/20 490.20
p500-100-8 303148 303148 303148.00 20/20 301.58 303148 303114.25 19/20 324.59 303148 302756.05 10/20 380.30 303148 302601.70 6/20 505.50
p500-100-9 305305 305305 305305.00 20/20 35.52 305305 305305.00 20/20 138.16 305305 305056.70 10/20 526.67 305305 305184.45 10/20 500.70
p500-100-10 314864 314864 314864.00 20/20 78.04 314864 314864.00 20/20 52.24 314864 314771.00 4/20 269.08 314864 314815.90 11/20 334.20

gauss500-100-1 265070 265070 265049.80 18/20 429.43 265070 265029.25 16/20 468.48 265070 264788.55 2/20 165.69 265070 264770.15 2/20 567.85
gauss500-100-2 269076 269076 269076.00 20/20 320.45 269076 269028.05 12/20 409.84 269076 268648.10 3/20 338.24 269076 268734.05 4/20 374.80
gauss500-100-3 257700 257700 257590.25 12/20 504.67 257700 257401.00 2/20 598.59 257700 257296.20 4/20 511.24 257700 257029.80 1/20 611.35
gauss500-100-4 267683 267683 267683.00 20/20 114.68 267683 267615.20 16/20 343.28 267683 267549.15 9/20 497.22 267683 266876.15 5/20 446.15
gauss500-100-5 271567 271567 271567.00 20/20 38.68 271567 271567.00 20/20 174.08 271567 271493.00 9/20 379.52 271567 271471.65 7/20 461.85

#Best/Equal/Worst 0/38/0 0/38/0 0/33/5 0/34/4
p-value 1.00e-00 3.76e-01 6.25e-02 3.65e-07 1.25e-01 1.17e-06

Fig. 3 (for the third set of 31 large instances).
Fig. 2 and 3 show that MDMCP has an excellent perfor-

mance, surpassing the reference algorithms in terms of the
objective value (fbest and favg). MDMCP reports the highest
value of Ia(1), indicating that MDMCP can quickly find the
highest objective values for the tested instances. MDMCP has
a good robustness by arriving at Ia(rf ) first, implying that it
can consistently solve all the instances. Moreover, according
to Fig. 3, the dominance of MDMCP over the reference
algorithms is even more evident on the set of large instances.

5) A time-to-target comparison: We show a time-to-target
(TTT) plots [37] to compare the running time distributions of
all algorithms on representative (hard) instances. A TTT plot
is a useful tool to display, on the Y-axis, the probability that
an algorithm will find a solution at least as good as a given
target value within a given running time shown on the X-axis.
It is generated as follows. We perform Ex independent runs
of each algorithm per instance. The running time to arrive at a
given target objective value is recorded per run. Then, for each
instance, the running times are sorted in ascending order. We
associate with the i-th sorted running time ti a probability pi =
(i − 1/2)/Ex, and plot the points (ti, pi), for i = 1, . . . , Ex.
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Fig. 2: Performance profiles of the MDMCP algorithm and
reference algorithms CPP-P3 [22], SGVNS [23], and ITS [21]
on the sets of 63 small and medium instances.

In our case, we randomly choose 4 hard instances: {unif800-
100-5, p1000-5, b2500.6, p3000.1}, and 200 independent runs
were executed per instance: Ex = 200. In order to enable all
compared algorithms to get the target objective values in each
run, we set the target objective value which is 0.5% smaller
than the best objective value found by ITS [21].

Fig. 4 shows the probability distribution plots of three algo-
rithms for the four instances to obtain given target objective
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TABLE IV: Computational results on 25 medium instances of the proposed MDMCP algorithm, and three reference algorithms
CPP-P3 [22], SGVNS [23], and ITS [21].

MDMCP CPP-P3 [22] SGVNS [23] ITS [21]
Instance fprev fbest favg hit t(s) fbest favg hit t(s) fbest favg hit t(s) fbest favg hit t(s)

unif700-100-1 515016 515016 514787.45 10/20 550.73 515016 513984.60 4/20 589.30 515016 513938.95 3/20 538.06 514550 512057.90 1/20 635.80
unif700-100-2 519441 519441 519065.40 15/20 344.76 519441 518371.95 7/20 164.75 519441 517829.00 2/20 471.64 519387 516371.80 1/20 568.20
unif700-100-3 512351 512351 511206.20 4/20 575.41 512351 510720.20 1/20 503.58 512351 510860.95 4/20 694.50 512351 509332.95 1/20 565.45
unif700-100-4 513582 513582 512826.85 7/20 677.96 513582 513040.60 6/20 541.69 513582 512490.75 8/20 586.79 512500 510433.00 1/20 626.30
unif700-100-5 510387 *510585 510282.20 1/20 395.83 *510585 510033.50 1/20 741.04 510367 509665.45 2/20 409.75 510234 508051.80 1/20 664.45
unif800-100-1 639675 639675 639410.95 6/20 423.72 639675 638873.55 1/20 589.78 639675 638895.45 3/20 633.39 638968 636748.60 1/20 636.00
unif800-100-2 630704 630704 630570.75 4/20 400.22 630702 629865.55 4/20 530.72 630704 629620.80 2/20 633.55 629581 627768.65 1/20 535.80
unif800-100-3 629108 629108 628551.30 2/20 776.37 629108 628330.65 2/20 331.94 *629375 627866.45 1/20 999.96 628011 625896.55 1/20 586.50
unif800-100-4 624728 624728 624090.15 1/20 826.25 624127 623584.50 1/20 985.17 624127 623448.75 2/20 218.19 622191 620910.65 1/20 720.45
unif800-100-5 625905 625905 625664.15 6/20 428.21 625905 625101.50 1/20 891.13 625611 625273.60 6/20 485.82 624846 621927.20 1/20 696.60

p1000-1 885016 884970 884403.60 2/20 968.40 885016 883320.35 1/20 337.05 884411 882727.50 1/20 1296.32 882949 879069.05 1/20 1379.15
p1000-2 881751 881751 880801.55 5/20 1000.54 880883 879574.00 1/20 1569.00 881751 879880.85 1/20 1081.22 879916 876054.10 1/20 1227.45
p1000-3 866415 866441 865869.25 2/20 1454.97 866150 864135.85 1/20 1644.96 *866488 864564.15 1/20 1030.11 864309 860142.60 1/20 1207.00
p1000-4 869374 869374 868684.25 9/20 1287.82 868279 866636.20 1/20 808.18 869374 867847.70 7/20 1002.64 865866 862794.10 1/20 1316.30
p1000-5 888720 *888960 888383.15 1/20 1356.64 888666 887833.80 1/20 1252.13 888474 887048.80 1/20 213.89 887121 883537.30 1/20 1124.85
p1500-1 1618281 *1619362 1618310.50 4/20 3126.51 1616930 1613490.05 1/20 3135.99 1619101 1614210.75 1/20 3649.94 1608949 1603665.05 1/20 2676.40
p1500-2 1648800 *1649778 1647891.20 1/20 2248.48 1645674 1643714.80 1/20 3203.94 1647741 1643426.70 1/20 3256.79 1641257 1631271.35 1/20 2688.25
p1500-3 1609854 *1611197 1608917.85 1/20 3599.09 1607746 1603981.65 1/20 1667.45 1607668 1604935.75 1/20 3850.99 1602226 1593898.55 1/20 2890.60
p1500-4 1640643 *1641933 1640887.35 3/20 3067.75 1641370 1635524.50 1/20 1919.09 1640842 1636631.25 1/20 3465.88 1628976 1626086.45 1/20 2757.05
p1500-5 1593518 *1595627 1594238.60 4/20 2897.65 1593948 1589983.70 1/20 3212.44 1594621 1590461.50 1/20 2914.42 1587248 1576895.15 1/20 2947.60
p2000-1 2505359 *2507892 2504899.15 1/20 9054.82 2504797 2498412.60 1/20 9496.83 2506791 2497686.20 1/20 4681.56 2490112 2478567.95 1/20 7006.05
p2000-2 2492662 *2494840 2493592.70 1/20 7786.81 2489622 2483856.35 1/20 8741.36 2493883 2485781.70 1/20 4266.66 2476233 2465157.55 1/20 7259.80
p2000-3 2540063 *2544334 2541430.45 1/20 8492.93 2538005 2533434.40 1/20 9593.49 2543859 2536439.15 1/20 3367.03 2528777 2517154.75 1/20 7380.35
p2000-4 2525903 *2528684 2526603.55 1/20 7119.96 2524452 2518389.35 1/20 6890.70 2526658 2520347.60 1/20 5258.30 2509885 2498626.35 1/20 6951.25
p2000-5 2508729 *2513199 2509993.65 1/20 7308.74 2508806 2502155.05 1/20 6118.08 2509198 2505138.10 1/20 3397.66 2494600 2485841.65 1/20 6721.90

#Best/Equal/Worst 13/11/1 4/8/13 10/8/7 0/1/24
p-value 4.21e-04 1.39e-05 7.13e-04 1.23e-05 1.82e-05 1.23e-05

TABLE V: Computational results on 31 large instances of the proposed MDMCP algorithm, and two reference algorithms
CPP-P3 [22], and ITS [21].

MDMCP CPP-P3 [22] ITS [21]
Instance fbest favg hit t(s) fbest favg hit t(s) fbest favg hit t(s)

b2500.1 *1063447 1061285.90 1/20 9603.47 1058161 1054223.95 1/20 8268.97 1051544 1045699.75 1/20 7018.05
b2500.2 *1063517 1061926.35 1/20 7465.33 1058488 1055570.00 1/20 6647.19 1051339 1046204.45 1/20 6445.65
b2500.3 *1082275 1080759.70 1/20 7991.01 1076937 1073714.95 1/20 9934.26 1070093 1065769.10 1/20 7111.15
b2500.4 *1065977 1064729.95 1/20 9871.94 1060114 1057526.80 1/20 9344.38 1055566 1050087.60 1/20 7414.10
b2500.5 *1066387 1063602.25 1/20 6777.81 1061872 1058104.35 1/20 7249.99 1054226 1048259.40 1/20 6301.80
b2500.6 *1066847 1065194.10 1/20 4908.76 1060603 1058830.60 1/20 7445.48 1054109 1048448.90 1/20 6401.90
b2500.7 *1068161 1066540.75 1/20 4400.32 1063245 1060809.05 1/20 8734.46 1053798 1050445.10 1/20 7457.90
b2500.8 *1069934 1068766.85 1/20 5681.42 1064928 1061280.95 1/20 6635.79 1056671 1052615.10 1/20 7314.50
b2500.9 *1071272 1069488.00 1/20 9088.52 1066143 1062813.70 1/20 6121.51 1056994 1053589.65 1/20 6646.05
b2500.10 *1066735 1065303.15 1/20 8823.48 1061429 1058383.50 1/20 9931.12 1052154 1046592.85 1/20 7041.00

p3000.1 *3257061 3253637.60 1/20 14031.83 3243562 3235638.25 1/20 15910.03 3218903 3210395.70 1/20 14750.80
p3000.2 *4099540 4095924.60 1/20 10344.62 4086433 4076967.75 1/20 15866.52 4065638 4043362.40 1/20 14511.85
p3000.3 *4121651 4116510.05 1/20 14861.91 4106083 4097060.30 1/20 17460.15 4076558 4057087.80 1/20 14403.50
p3000.4 *4586819 4582002.80 1/20 19683.10 4574395 4556865.75 1/20 18944.28 4522639 4508185.60 1/20 13856.05
p3000.5 *4638416 4628915.50 1/20 8037.94 4611832 4600197.60 1/20 19886.69 4576868 4560847.75 1/20 16027.70
p4000.1 *5013660 5008649.80 1/20 19087.02 4991071 4977208.30 1/20 14350.22 4935821 4911988.30 1/20 14613.75
p4000.2 *6376823 6367326.50 1/20 15685.50 6336160 6321660.80 1/20 19480.23 6274852 6236934.30 1/20 16549.75
p4000.3 *6386325 6373723.90 1/20 18755.28 6346142 6328661.35 1/20 13341.48 6289871 6241976.05 1/20 15998.65
p4000.4 *7121377 7114980.55 1/20 17620.49 7100738 7072143.30 1/20 18782.95 6995198 6963301.60 1/20 16557.15
p4000.5 *7045223 7033485.25 1/20 11596.08 7002534 6985122.55 1/20 15541.30 6924546 6865919.65 1/20 15003.10
p5000.1 *7009948 6990929.85 1/20 17047.25 6949681 6930495.40 1/20 18712.82 6846645 6812578.45 1/20 16920.20
p5000.2 *8827548 8817131.05 1/20 17491.37 8776994 8747892.55 1/20 17078.41 8644244 8582114.20 1/20 16228.45
p5000.3 *8965743 8949408.10 1/20 19998.82 8895249 8872251.55 1/20 19979.24 8767725 8702682.85 1/20 15863.65
p5000.4 *9936590 9925708.30 1/20 13058.07 9870058 9852803.35 1/20 19525.51 9691848 9647205.35 1/20 17097.70
p5000.5 *9822306 9809770.55 1/20 12928.89 9757089 9733352.75 1/20 16660.47 9594230 9544658.80 1/20 17109.90
p6000.1 *9188495 9172648.55 1/20 13235.67 9119860 9102598.10 1/20 19692.94 8912507 8879127.85 1/20 17827.85
p6000.2 *11695305 11671648.95 1/20 20385.28 11609371 11578413.95 1/20 15881.51 11383676 11292837.15 1/20 17172.55
p6000.3 *13021696 12992334.65 1/20 18872.06 12917515 12890377.50 1/20 16937.16 12626976 12544219.20 1/20 17273.50
p7000.1 *11587271 11575532.90 1/20 21024.23 11505139 11477864.70 1/20 19788.91 11208096 11122645.05 1/20 17797.15
p7000.2 *14630551 14612414.95 1/20 16824.76 14522640 14486184.80 1/20 16774.32 14110703 13959415.60 1/20 17642.60
p7000.3 *16342018 16310296.40 1/20 14620.71 16226164 16157042.80 1/20 15459.21 15671620 15520258.70 1/20 17532.30

#Best/Equal/Worst 31/0/0 0/0/31 0/0/31
p-value 1.17e-06 1.17e-06 1.17e-06 1.17e-06
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Fig. 3: Performance profiles of the MDMCP algorithm and
reference algorithms CPP-P3 [22] and ITS [21] on the set of
31 large instances.
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Fig. 4: Probability distribution of the time (in seconds) needed
to attain a given target objective value.

values (Note that the results of SGVNS are missing because
we only have the executable code of SGVNS). These plots
clearly indicate that our MDMCP algorithm always attains
solutions of given target values much more faster than the
reference algorithms. For example, in the case of unif800-100-
5 and p1000-5, the probability that MDMCP finds a target
objective value in at most 100s is about 90%, while to reach
the same result, CPP-P3 and ITS require 200s and 1000s
respectively. This experiment demonstrates that our MDMCP
algorithm is more time efficient than the reference algorithms.

To sum up, we make the following observations. First,
MDMCP and the state-of-the-art algorithms perform similarly
on the small instances. Second, MDMCP begins to outperform
all competitors on the set of medium size instances and its ad-
vantage becomes much more evident on the largest instances.
We conclude that our population-based memetic approach is
really powerful, especially for solving large instances.

VII. ANALYSIS AND DISCUSSIONS

In this section, we perform additional experiments to get
useful insights into the impacts of the main search components
of the MDMCP algorithm and its parameters.

A. Assessment of memetic framework and local optimization

We assess the usefulness of 1) the population-based memetic
search framework and 2) the SA-based local optimization
procedure. For this purpose, we create two MDMCP variants:
MDMCPDescent and SALORestart. In MDMCPDescent, we
replace the SALO procedure by a pure descent procedure and
keep the other MDMCP ingredients unchanged. Specifically,
MDMCPDescent uses the same neighborhood as the SALO
procedure, but always chooses the best neighboring solution
(ties broken at random) to replace the current solution. This
variant allows us to verify the role of the SALO procedure
within the MDMCP algorithm. In SALORestart, we keep
SALO alone and disable the other ingredients of the MDMCP
algorithm. This variant allows us to verify the importance of
the population-based memetic framework. To avoid penalizing
the SALO procedure, we restart SALO if SALO converges
earlier than the allowed cutoff time. For this experiment,
we focus on the 31 large instances and run MDMCPDescent

and SALORestart 20 times to solve each instance under the
experimental protocol given in Section VI. The comparative
results are reported in Table VI with the same statistics as in
previous tables.

From Table VI, we can make the following observations.
First, MDMCPDescent reports the worst results in terms of
best and average objective values, which are significantly
worse than the results of MDMCP (confirmed by the small p-
values). This indicates that disabling the simulated annealing
based local optimization procedure greatly impacts (nega-
tively) the performance of the MDMCP algorithm and the
SALO procedure is one driving search component to ensure
MDMCP’s high performance. Second, SALORestart reports
better results than MDMCPDescent, but its results are still
significantly worse than the results of MDMCP (confirmed by
the small p-values). This indicates that removing the memetic
ingredients (i.e., population, crossover) greatly degrades the
performance of the MDMCP algorithm and the memetic
framework positively contributes to the high performance of
the MDMCP algorithm. Third, if we compare Tables V and VI,
we observe that the SALO procedure alone competes favorably
with the two other advanced local search algorithms (CPP-
P3 [22] and ITS [21]). This justifies the choice of SALO,
instead of the pure descent-based local search, as the local
optimization procedure of the MDMCP algorithm.

B. Impact of the parameter settings

The MDMCP algorithm requires 5 parameters (p, η, θsize,
θcool, and θminper) (see Table I). Among them, p is the
population size, η is the shrinking percentage of the Merge-
Divide crossover operator, while θsize, θcool, θminper are
required by the simulated annealing procedure. To investigate
these parameters, we first performed a 2-level full factorial
experiment [38] to check the interaction effects between the
parameters. For this experiment, we used 10 instances of rea-
sonable size and difficulty: {rand300-5, rand500-100, p500-
5-3, gauss500-100-3, unif700-100-2, unif800-100-4, p1000-
1, p1500-3, p2000-1, p2000-4}. This experiment (detailed
results omitted) indicated that the parameters didn’t show
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TABLE VI: Comparisons of the MDMCP algorithm against a MDMCP variant where SALO is replaced by the descent (denoted
by MDMCPDescent) and a multi-start simulated annealing algorithm (denoted by SALORestart) on the 31 large instances.

MDMCP MDMCPDescent SALORestart

Instance fbest favg hit t(s) fbest favg hit t(s) fbest favg hit t(s)

b2500.1 1063447 1061285.90 1/20 9603.47 1035376 1023423.55 1/20 7528.45 1061857 1059071.45 1/20 1562.25
b2500.2 1063517 1061926.35 1/20 7465.33 1038139 1024168.50 1/20 9179.00 1061436 1059209.70 1/20 9599.45
b2500.3 1082275 1080759.70 1/20 7991.01 1049939 1043955.30 1/20 9030.92 1078976 1077995.30 1/20 7183.11
b2500.4 1065977 1064729.95 1/20 9871.94 1036360 1027606.60 1/20 6571.26 1063708 1062156.90 1/20 7493.55
b2500.5 1066387 1063602.25 1/20 6777.81 1035516 1026547.25 1/20 4959.38 1063368 1061635.15 1/20 4103.49
b2500.6 1066847 1065194.10 1/20 4908.76 1038276 1027792.70 1/20 8030.66 1064224 1062578.70 1/20 6147.02
b2500.7 1068161 1066540.75 1/20 4400.32 1038707 1028545.85 1/20 3742.93 1066325 1064590.80 1/20 9587.66
b2500.8 1069934 1068766.85 1/20 5681.42 1042562 1032446.70 1/20 9756.89 1068220 1066249.85 1/20 6890.85
b2500.9 1071272 1069488.00 1/20 9088.52 1039552 1030482.65 1/20 8303.01 1068984 1067145.35 1/20 4861.28
b2500.10 1066735 1065303.15 1/20 8823.48 1035002 1026529.65 1/20 4854.38 1064969 1062393.15 1/20 1629.67

p3000.1 3257061 3253637.60 1/20 14031.83 3179189 3157880.50 1/20 11317.57 3249711 3245383.50 1/20 10765.46
p3000.2 4099540 4095924.60 1/20 10344.62 3989090 3969276.25 1/20 19591.90 4092839 4086648.90 1/20 911.81
p3000.3 4121651 4116510.05 1/20 14861.91 4019441 3993245.30 1/20 5506.45 4107522 4102876.20 1/20 10288.91
p3000.4 4586819 4582002.80 1/20 19683.10 4479556 4434224.75 1/20 17814.79 4574507 4568475.75 1/20 10930.15
p3000.5 4638416 4628915.50 1/20 8037.94 4531334 4489278.05 1/20 15408.93 4620217 4614552.60 1/20 7218.19
p4000.1 5013660 5008649.80 1/20 19087.02 4884964 4857029.25 1/20 15950.41 5005084 4997783.85 1/20 1575.19
p4000.2 6376823 6367326.50 1/20 15685.50 6203953 6164335.30 1/20 18019.52 6364505 6350604.60 1/20 14000.52
p4000.3 6386325 6373723.90 1/20 18755.28 6201018 6175411.85 1/20 8566.06 6374324 6354520.80 1/20 4282.66
p4000.4 7121377 7114980.55 1/20 17620.49 6970604 6909068.75 1/20 19118.89 7102379 7095909.55 1/20 15192.19
p4000.5 7045223 7033485.25 1/20 11596.08 6863026 6823538.35 1/20 19974.46 7019098 7012308.20 1/20 12446.18
p5000.1 7009948 6990929.85 1/20 17047.25 6810549 6776700.30 1/20 14837.36 6988837 6973262.50 1/20 17845.95
p5000.2 8827548 8817131.05 1/20 17491.37 8597361 8563585.90 1/20 16372.30 8804596 8793274.75 1/20 18345.06
p5000.3 8965743 8949408.10 1/20 19998.82 8754076 8682592.55 1/20 15066.93 8943630 8920049.80 1/20 3610.66
p5000.4 9936590 9925708.30 1/20 13058.07 9678251 9627255.85 1/20 17022.34 9920825 9903909.25 1/20 13068.94
p5000.5 9822306 9809770.55 1/20 12928.89 9601866 9526260.35 1/20 17139.90 9808196 9780004.05 1/20 8057.36
p6000.1 9188495 9172648.55 1/20 13235.67 8955011 8911414.35 1/20 18841.14 9174154 9162432.75 1/20 18147.17
p6000.2 11695305 11671648.95 1/20 20385.28 11398593 11346418.10 1/20 16085.46 11672843 11653217.35 1/20 5475.32
p6000.3 13021696 12992334.65 1/20 18872.06 12707909 12628831.05 1/20 15599.26 13008275 12980911.00 1/20 7291.35
p7000.1 11587271 11575532.90 1/20 21024.23 11319801 11268011.35 1/20 19638.84 11586258 11569685.80 1/20 18561.02
p7000.2 14630551 14612414.95 1/20 16824.76 14311736 14228451.10 1/20 17494.08 14627372 14611674.90 1/20 12032.58
p7000.3 16342018 16310296.40 1/20 14620.71 15942790 15861301.35 1/20 12572.60 16335446 16302131.85 1/20 21255.67

#Best/Equal/Worse 31/0/0 0/0/31 0/0/31
p-value 1.17e-06 1.17e-06 1.17e-06 1.17e-06
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Fig. 5: Analysis of the parameters (p, η, θsize, θcool, θminper)
on the performance of the MDMCP algorithm.

significant interactions. Then we performed a one-at-a-time
sensitivity analysis [39] to calibrate the parameters as follows.
Based on preliminary experiments, we empirically identi-
fied a reasonable range of values for each parameter: p ∈
[5, 10, . . . , 45, 50], η ∈ [0.40, 0.45, . . . , 0.80, 0.85], θsize ∈
[1, 2, . . . , 256, 512], θcool ∈ [0.90, 0.91, . . . , 0.98, 0.99], and
θminper ∈ [0.5%, 1.0%, . . . , 4.5%, 5.0%]. Then we tested
the values of each parameter independently while fixing the
other parameters according to our preliminary experiments
(including the values of Table I). We ran the MDMCP al-
gorithm 10 times with each parameter value to solve each of
the 10 instances above with the same cutoff time as before.
Fig. 5 shows the box and whisker plots of the results, where
the X-axis and Y-axis indicate the parameter values and the
accumulated best objective values over the 10 test instances,
respectively.

Fig. 5 indicates that the performance of MDMCP varies
according to the values of these parameters. We adopt the
best parameter values of this experiment to define the default
setting of Table I, which proves to be quite robust for solving
all benchmark instances tested in this work. In practice, when a
particular problem is considered, it would be worth fine-tuning
these parameters to achieve the best possible results.

VIII. CONCLUSION

We introduced the first hybrid evolutionary algorithm
(MDMCP) dedicated to the challenging Clique Partitioning
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Problem. Based on the general memetic framework, the algo-
rithm combines a specialized crossover for solution recombi-
nation and an effective simulated annealing optimizer. Exten-
sive computational evaluations of the algorithm on three sets
of 94 benchmark instances demonstrated its competitiveness
compared to the state-of-the-art methods. In particular, the
algorithm established new lower bounds for 12 out of the 63
instances commonly used in the literature and the best lower
bounds for the 31 new large instances.

Since the clique partitioning problem can formulate vari-
ous real-world applications (see examples in Section I), the
proposed algorithm can help to better solve these practical
problems. The availability of the source code of our algorithm
certainly facilitates such applications.

Finally, given the interest of the hybrid evolutionary ap-
proach for this partitioning problem, it would be interesting to
investigate the benefits of the underlying ideas of the proposed
algorithm for solving other related problems such as k-way
graph partitioning, clique cover and graph coloring.

ACKNOWLEDGMENT

We are grateful to the reviewers for their useful comments
and suggestions which helped us to significantly improve the
paper. We thank the authors of [23] for sharing the code of
their SGVNS algorithm and the author of [21] to make the
code of the ITS algorithm publicly available.

REFERENCES

[1] M. Grötschel and Y. Wakabayashi, “A cutting plane algorithm for a
clustering problem,” Mathematical Programming, vol. 45, no. 1-3, pp.
59–96, 1989.

[2] M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning
polytope,” Mathematical Programming, vol. 47, no. 1-3, pp. 367–387,
1990.

[3] A. Miyauchi, T. Sonobe, and N. Sukegawa, “Exact clustering via
integer programming and maximum satisfiability,” in Thirty-Second
AAAI Conference on Artificial Intelligence, February 2-7, 2018, New
Orleans, Louisiana, USA, 2018, pp. 1387–1394.

[4] M. Oosten, J. H. Rutten, and F. C. Spieksma, “The clique partition-
ing problem: facets and patching facets,” Networks: An International
Journal, vol. 38, no. 4, pp. 209–226, 2001.

[5] H. Wang, B. Alidaee, F. Glover, and G. Kochenberger, “Solving group
technology problems via clique partitioning,” International Journal of
Flexible Manufacturing Systems, vol. 18, no. 2, pp. 77–97, 2006.

[6] U. Dorndorf, F. Jaehn, and E. Pesch, “Modelling robust flight-gate
scheduling as a clique partitioning problem,” Transportation Science,
vol. 42, no. 3, pp. 292–301, 2008.

[7] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, and L. Liberti,
“Column generation algorithms for exact modularity maximization in
networks,” Physical Review E, vol. 82, no. 4, p. 046112, 2010.

[8] G. Kochenberger, F. Glover, B. Alidaee, and H. Wang, “Clustering
of microarray data via clique partitioning,” Journal of Combinatorial
Optimization, vol. 10, no. 1, pp. 77–92, 2005.

[9] J. Bhasker and T. Samad, “The clique-partitioning problem,” Computers
& Mathematics with Applications, vol. 22, no. 6, pp. 1–11, 1991.

[10] N. Sukegawa, Y. Yamamoto, and L. Zhang, “Lagrangian relaxation and
pegging test for the clique partitioning problem,” Advances in Data
Analysis and Classification, vol. 7, no. 4, pp. 363–391, 2013.

[11] U. Dorndorf and E. Pesch, “Fast clustering algorithms,” ORSA Journal
on Computing, vol. 6, no. 2, pp. 141–153, 1994.

[12] X. Ji and J. E. Mitchell, “Branch-and-price-and-cut on the clique
partitioning problem with minimum clique size requirement,” Discrete
Optimization, vol. 4, no. 1, pp. 87–102, 2007.

[13] A. Mehrotra and M. A. Trick, “Cliques and clustering: A combinatorial
approach,” Operations Research Letters, vol. 22, no. 1, pp. 1–12, 1998.

[14] F. Jaehn and E. Pesch, “New bounds and constraint propagation tech-
niques for the clique partitioning problem,” Discrete Applied Mathemat-
ics, vol. 161, no. 13-14, pp. 2025–2037, 2013.

[15] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Information Sciences, vol. 237, pp. 82–117, 2013.

[16] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey
on new generation metaheuristic algorithms,” Computers & Industrial
Engineering, vol. 137, p. 106040, 2019.
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