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Abstract

The minimum conductance graph partitioning problem (MC-GPP) is to partition
the vertex set of a graph into two disjoint subsets while minimizing the ratio between
the number of the edges crossing the two subsets and the smallest volume of the two
subsets, the volume of a vertex set being the sum of degrees of its vertices. MC-GPP
has a variety of relevant applications, and however, is known to be NP-hard. In this
work, we present a novel metaheuristic algorithm called “stagnation-aware breakout
tabu search” for approximating MC-GPP. The algorithm combines a dedicated tabu
search procedure to discover high-quality solutions and a self-adaptive perturbation
procedure to overcome hard-to-escape local optimum traps. We perform extensive
evaluations of the algorithm on five datasets of 110 benchmark instances in the
literature. The key components of the proposed algorithm are analyzed to illustrate
their influences on the performance of the algorithm.
Keywords: Conductance minimization; graph partitioning; neighborhood search;
metaheuristics; adaptive perturbation.

1 Introduction

Graph partitioning problems are very general and useful models to formulate
various applications. Given an undirected and connected graph G = (V,E)
with vertex set V and edge set E ⊆ V × V , a partition of G is a separation
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of its vertex set V into two disjoint subsets A ⊂ V and Ā = V \ A. Graph
partition problems generally involve finding a particular partition to optimize
a given minimization or maximization objective while possibly satisfying some
constraints. For instance, the highly popular graph 2-way partitioning problem
requires to minimize the number of cut edges (whose endpoints belong to
different subsets) of the partition while the two subsets have roughly equal
size [9].

The minimum conductance graph partitioning problem (MC-GPP) considered
in this work can informally be stated as follows (its formal definition is pro-
vided in Section 2.1). Given a graph G, MC-GPP aims to find a partition of
G with minimum conductance. The conductance of a partition is given by the
ratio of the number of the cut edges to the smallest volume of the two subsets
of the partition, the volume of a vertex set being the sum of degrees of its
vertices. MC-GPP is a general and relevant model due to its widespread ap-
plications in the real world, such as clustering [15,33,36], community detection
in complex networks [17,27,37], defining and evaluating network communities
[40], analysis of protein-protein interaction networks in biology [38], and im-
age segmentation in computer vision [34]. However, from the perspective of
computational complexity, MC-GPP is known to be NP-hard [35]. As a result,
solving MC-GPP represents a real computational challenge for any solution
method.

As we observe in the literature review of Section 2, unlike the popular graph
2-way partitioning problem for which numerous solution methods are available
(see recent reviews [8,10]), research on practical solution methods for MC-GPP
remains quite limited. There is clearly an urgent need for effective algorithms
able to solve large graphs for MC-GPP. Meanwhile, given the NP-hardness
of the problem, unless P=NP , exact approaches will have an exponential
time complexity and thus can only be applied to solve problem instances of
limited sizes or instances with particular structures. In this work, we rather
focus our research on effective heuristic algorithms for MC-GPP that can be
used to find high-quality solutions for problem instances that cannot be solved
exactly. Precisely, we develop a novel heuristic algorithm called Stagnation-
aware Breakout Tabu Search (SaBTS) to compute the conductance of a general
graph. We summarize our main contributions as follows.

• The proposed SaBTS algorithm adapts for the first time the general break-
out local search method [5–7] to MC-GPP. SaBTS integrates a dedicated
tabu search procedure with a constrained neighborhood to find high-quality
solutions and a self-adaptive and multi-strategy perturbation mechanism to
escape local optimum traps.
• We demonstrate the effectiveness of the proposed algorithm on 110 bench-

mark instances including 98 graphs from the 10th DIMACS Implementation
Challenge and 12 anonymized social networks. Our computational studies
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indicate that SaBTS dominates a recent dedicated algorithm (StS-AMA)
[12,13]. Moreover, when SaBTS is run as a post-processing method, it consis-
tently improves on the solutions provided by the popular graph partitioning
tool Metis [24] and the state-of-the-art max-flow-based method MQI [25].
To shed light on the understanding of the algorithm, we study the impacts
of its key algorithmic components.

The remainder of the paper is organized as follows. Section 2 provides the
formal definition of the considered problem and reviews the related studies in
the literature. In Section 3, we describe the general scheme of the proposed
algorithm and its algorithmic components. Section 4 is dedicated to compu-
tational results and comparisons. In Section 5, several key elements of SaBTS
are investigated to understand their impact on the performance of the algo-
rithm. In the last section, we draw conclusions and suggest future research
directions.

2 Problem Definition and Literature Review

This section formally introduces the minimum conductance graph partitioning
problem and presents a review of solution methods available in the literature.

2.1 Minimum conductance graph partitioning

Let G = (V,E) be an undirected and connected graph with vertex set V and
edge set E ⊆ V × V . For a vertex v ∈ V , its degree deg(v) is equal to the
sum of edges incident to v in G. For a given vertex subset A ⊂ V , its volume
vol(A) is the sum of degrees of the vertices in A, i.e.,

vol(A) =
∑
v∈A

deg(v). (1)

Let Ā = V \ A be the complement set of A. Sets A and Ā define a partition
(or also called a cut) of G, which is denoted by s = (A, Ā). The cut edges of
partition s, cut(s), is defined as follows.

cut(s) = {(u, v) ∈ E : u ∈ A, v ∈ Ā}. (2)

The conductance Φ(s) of the partition s is the ratio between the number of
cut edges and the smallest volume of the two partition subsets, i.e.,
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Φ(s) =
|cut(s)|

min{vol(A), vol(Ā)}
. (3)

Finally, let Ω = {(A, Ā) : A ⊂ V } be the search space including all possible
partitions of G, the minimum conductance graph partitioning problem stud-
ied in this work involves determining the partition s∗ of G with minimum
conductance, i.e.,

(MC-GPP) s∗ = arg mins∈ΩΦ(s) (4)

For two partitions s′, s′′ ∈ Ω, we evaluate their relative quality as follows: s′

is better than s′′ if and only if Φ(s′) < Φ(s′′). An optimal solution s∗ verifies
thus Φ(s∗) ≤ Φ(s) for any s ∈ Ω. Φ(s∗) is the conductance of G, also called
the Cheeger constant [14] in statistical physics.

Fig. 1 provides an illustrative example where the partition s = (A, Ā) is defined
by sets A = {c, d, f, g} and Ā = {a, b, e}. In the example, vol(A) = 15,
vol(Ā) = 7 and |cut(s)| = 5, the conductance of this partition is Φ(s) = 5/7 =
0.71.

Fig. 1. A partition of graph G = (V,E) is given by s = (A, Ā) where A = {c, d, f, g}
and Ā = {a, b, e} with a conductance Φ(s) of 0.71.

2.2 Literature review

Existing solution methods for MC-GPP fall into three classes: approximation,
exact and heuristic algorithms.

Approximation methods provide provable performance guarantees on the qual-
ity of the obtained solutions. Cheeger studied the first (and weak) approxi-
mation algorithm for graph conductance [14]. Leighton & Rao implemented a
O(logn)-approximation algorithm [26], which was then improved by Arora et
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al. [2,3] to O(
√
logn). Leskovec et al. [28] proposed approximation algorithms

for the graph partitioning problem according to the conductance measure to
define and identify clusters or communities in social and information networks.
Zhu et al. [43] studied random-walk based local algorithms with improved the-
oretical guarantees in terms of the clustering accuracy and the conductance.

Exact methods guarantee the optimality of the found solutions by enumerat-
ing, often implicitly, all candidate solutions of the search space. Surprisingly,
exact algorithms for the general MC-GPP were rarely proposed, even if studies
exist on special cases. For instance, Hochbaum [22,23] devised time-efficient
algorithms for the ratio region problem and a variant of normalized cut (or
the conductance problem), as well as a few other ratio problems in the field
of image segmentation.

Heuristic methods aim to find high-quality solutions in an acceptable com-
putation time frame, but without provable performance guarantee of the so-
lutions they found. Lang & Rao [25] proposed a Max-flow Quotient-cut Im-
provement algorithm (MQI) which was used to refine the results of the Metis
graph partitioning heuristic [24]. This approach was further improved by An-
dersen & Lang [1], by solving a sequence of polynomially many s-t minimum
cut problems to find a larger-than-expected intersection with lower conduc-
tance. Lim et al. [30,31] proposed a dedicated method called MTP for dis-
covering a global balanced partition with low conductance. In the context
of local network community detection, Laarhoven & Marchiori studied the
continuous optimization of conductance [37]. For this, they introduced a new
objective function, called σ-conductance, which combines conductance and a
regularization term controlled by a parameter σ. A projected gradient descent
algorithm and an expectation-maximization algorithm were proposed to op-
timize σ-conductance. Very recently, Chalupa [12] presented several dedicated
heuristic algorithms based on the general local search and memetic search
frameworks and reported experimental results on real-world social networks.

In a nutshell, efficient and practical algorithms dedicated to MC-GPP remain
rare so far. To fill the gap, we introduce in this work a new algorithm and
show extensive computational results on a variety of benchmark instances.

3 A stagnation-aware breakout tabu search

In this section, we present the proposed heuristic algorithm for solving MC-
GPP. We first introduce the general procedure and then explain the composing
ingredients.
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3.1 Main scheme

The proposed stagnation-aware breakout tabu search algorithm (SaBTS) for
MC-GPP adopts the general breakout local search method (BLS) introduced
in [5–7]. BLS relies on a dedicated local search procedure to find local optimal
solutions and an adaptive perturbation procedure to jump out of local opti-
mum traps. In addition to the local search procedure which ensures search
intensification, BLS employs its adaptive perturbation mechanism to reach a
suitable search diversification. This is achieved by dynamically determining
the number of perturbation moves (i.e., the jump magnitude) and the type of
perturbation (with different intensities). By iterating the local search phase
and the adaptive perturbation phase, the method favors a balanced search
in terms of intensification and diversification and helps to find high-quality
solutions in the given search space.

From a perspective of algorithm design, the SaBTS algorithm is composed
of two principal components: a constrained neighborhood tabu search proce-
dure (CNTS, Section 3.3) and a self-adaptive perturbation procedure (SAP,
Section 3.4). Starting with an initial solution that can be provided by any
means (Section 3.2), SaBTS uses the CNTS procedure to perform an intensi-
fied examination of candidate solutions to find improved solutions. Upon the
termination of the CNTS procedure, SaBTS triggers the SAP procedure to di-
versify the search and drive the process to new and unexplored zones. SaBTS
iterates these two procedures to discover solutions of increasing quality.

SaBTS uses a number of variables (see Algorithm 1): s and s∗ indicate the
current solution and the best solution ever discovered (which is also the output
of the whole algorithm), st records the solution returned by the last tabu search
run, ω counts the consecutive ‘while’ loops during which s∗ is not updated (see
below), freq records for each vertex the consecutive iterations during which
the vertex is not relocated for the current tabu search run (this information is
used by the perturbation procedure), L is the jump magnitude which is used
by the perturbation procedure.

The general scheme of the SaBTS algorithm is summarized in Algorithm 1.
After initializing the above variables and obtaining a starting solution (lines
1-6 and Section 3.2), SaBTS performs a ‘while’ loop to iterate over the tabu
search procedure, followed by the perturbation procedure (lines 7-24). For
each iteration, the current solution s is submitted to the CNTS procedure
for quality improvement (line 8 and Section 3.3). s∗ and w are updated when
a new best solution is found (lines 9-14). If the search returns to the local
optimum obtained from the preceding tabu search run, the jump magnitude
L is increased by 1. Otherwise, L is reset to the initial jump magnitude L0

(lines 15-20). After recording the last solution from CNTS in st (line 21), the
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perturbation procedure is triggered to modify the current solution s using
information provided by ω, T and L (line 22). After resetting the frequency
counter to 0 (line 23), the next ‘while’ loop starts with the perturbed solution
as its new starting solution. The whole SaBTS algorithm terminates when a
given stopping condition is met, which is typically a maximum allowed cut-off
time limit.

We present below the components of the SaBTS algorithm.

Algorithm 1 The main framework of Stagnation-aware Breakout Tabu
Search (SaBTS)

Require: Graph G = (V,E), depth of tabu search D, stagnation threshold T , initial
jump magnitude L0.
Ensure: The best partition s∗ found so far.

1: ω ← 0 /∗ initialize counter of non-improving local optima ∗/
2: freq(v)← 0 for all v ∈ V /∗ initialize move frequency of vertices, Sect. 3.3 ∗/
3: L← L0 /∗ initialize jump magnitude, Section 3.4 ∗/
4: s← Initial Solution Generation() /∗ Sect. 3.2 ∗/
5: st ← s /∗ record the last local optimum found ∗/
6: s∗ ← s /∗ the best solution encountered until now ∗/
7: while Stopping condition is not satisfied do
8: s← Constrained Neighborhood Tabu Search(s,D, freq) /∗ Section 3.3 ∗/
9: if Φ(s) < Φ(s∗) then

10: s∗ ← s /∗ update the best solution found so far ∗/
11: ω ← 0
12: else
13: ω ← ω + 1
14: end if
15: /∗ search returns to last local optimum, increase jump magnitude L ∗/
16: if s = st then
17: L← L+ 1
18: else
19: L = L0

20: end if
21: st ← s /∗ record the current solution, to be used in line 16 of next loop ∗/
22: s← Self Adaptive Perturbation(s, ω, T, L, freq) /∗ Sect. 3.4 ∗/
23: freq(v)← 0 for all v ∈ V /∗ reset move frequency of vertices ∗/
24: end while
25: return s∗

3.2 Initial solution

To start its search, SaBTS requires an initial solution (partition), which can
be provided by any means. In this work, we adopt two different methods by
using a simple greedy procedure and a powerful graph partitioning tool (Metis
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[24]. To this end, other state-of-the-art graph partitioners like KaHIP [32] can
be equally used).

• Greedy initialization. We first randomly select a vertex v0 ∈ V to construct
an initial partition s0 = (A, Ā) with A = {v0} and Ā = V − {v0}. Then,
the procedure iteratively relocates one vertex from Ā to A such that the
conductance is improved (ties are broken randomly). This relocation pro-
cess is repeated until the conductance cannot further be improved. Using
the incremental technique introduced in [12], we can evaluate each relocat-
able candidate vertex and perform the necessary post-relocation updates
in O(1) time (see Section 3.3.1 for details). Since selecting the vertex for
relocation at each iteration requires O(|V |) and the number of relocated
vertices is bounded by the number of vertices in V , the time complexity of
this procedure is bounded by O(|V |2). To obtain a good initial solution, we
repeat this process 10 times to obtain 10 candidate solutions among which
we select one best solution.
• Metis initialization. Metis is a powerful tool designed for the conventional

k-way graph partitioning problem. Based on efficient implementation of var-
ious multilevel heuristics, Metis is extremely fast (e.g., it can produce a good
partition in several seconds even for a graph with a half million vertices).
For a given instance, we use Metis to obtain an initial partition with a
minimized number of cut edges. Then we run SaBTS to improve the in-
put solution. In this manner, SaBTS can be considered as a post-processing
method to boost the solution quality that is found by Metis.

With these two very different types of initialization, we can observe the impact
of the initial solution on the quality of the final partition found by SaBTS.
Moreover, we can verify whether partitions from a popular graph partitioning
package (designed for the minimization of cut edges) can be further improved
by a dedicated MC-GPP algorithm in terms of the conductance criterion.

3.3 Constrained neighborhood tabu search

To improve the initial solution provided by any of the above initialization pro-
cedures, the proposed algorithm applies a dedicated constrained neighborhood
tabu search (CNTS) procedure, which is based on the popular tabu search
(TS) metaheuristic [19]. From a general point of view, TS visits candidate so-
lutions of the given search space by iteratively replacing the current solution
by a neighbor solution taken from a neighborhood (see Section 3.3.1). At each
iteration, tabu search selects one of the best neighbors among the neighbor
solutions. This selection rule has the following interesting properties. If the
current solution is not a local optimum, i.e., there is at least one solution of
better quality in the neighborhood, then tabu search visits one such improv-
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ing solutions. When no improving solutions exist in the neighborhood (i.e.,
when a local optimum is reached), tabu search visits the least worsening solu-
tion in the neighborhood. As a result, this strategy allows the search process
to go beyond local optima encountered and continue its exploration toward
possibly better solutions. To prevent the search from re-visiting previously
seen solutions, tabu search uses a so-called tabu list to keep track of some re-
cently visited solutions. For a detailed presentation of tabu search, the reader
is referred to [19].

Our CNTS procedure adopts the general TS method to MC-GPP and inte-
grates two key search components specially tailored to the considered problem:
constrained neighborhood and dynamic tabu list management. As shown in
Algorithm 2, CNTS improves the incumbent solution s by iteratively relocat-
ing a particular vertex (lines 6-7, see below), followed by some updates (sbest,
H, freq, lines 8-16). CNTS terminates if sbest cannot be improved during D (a
parameter) consecutive iterations, returning sbest as the best solution found.

Algorithm 2 Constrained Neighborhood Tabu Search (CNTS)

Require: Graph G = (V,E), current solution s, depth of tabu search D, vertex
move frequency vector freq.
Ensure: The best solution found sbest.

1: sbest ← s /∗ record the best solution found during the current TS run ∗/
2: H ← ∅ /∗ initialize tabu list, Section 3.3.2 ∗/
3: β ← 0 /∗ counter of consecutive non-improving iterations w.r.t. sbest ∗/
4: Create the set CV (s) of critical vertices /∗ Section 3.3.1 ∗/
5: while β < D do
6: Select a best eligible vertex v in CV (s) /∗ Section 3.3.1 ∗/
7: s← s⊕Relocate(v)
8: Update the set of critical vertices CV (s)
9: Update tabu list H[v] with tabu tenure tt /∗ Section 3.3.2 ∗/

10: freq(v)← 0, freq(u)← freq(u) + 1 for all u ∈ V \ {v}
11: if Φ(s) < Φ(sbest) then
12: sbest ← s
13: β ← 0
14: else
15: β ← β + 1
16: end if
17: end while
18: return sbest

3.3.1 Constrained neighborhood and its examination

Neighborhood is one of the most critical components of a tabu search proce-
dure and identifies the candidate solutions that are considered at each itera-
tion. For our MC-GPP problem, we adopt the ‘Relocate’ operator (also called
‘Single Move’ [4]) to define the neighborhood. Basically, let s = (A, Ā) be the
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incumbent solution, the ‘Relocate’ operator displaces a vertex from its current
set A or Ā to the complement set. Let v be the vertex to be displaced. We use
s′ = s⊕Relocate(v) to denote the neighbor solution s′ obtained by relocating
v. Then the classic neighborhood induced by the ‘Relocate’ operator, is given
by:

N (s) = {s′ : s⊕Relocate(v), v ∈ A or v ∈ Ā}. (5)

One notices that this neighborhood is unconstrained in the sense that every
vertex of V is a possible candidate for the ‘Relocate’ operator. However, the
size of this neighborhood is in order O(|V |), implying that its exploration
would be time-consuming and expensive in particular for large graphs. Mean-
while, we observe that this unconstrained neighborhood includes many non-
promising neighbor solutions that are irrelevant for conductance improvement
as discussed below.

For these reasons, we introduce a constrained neighborhood that focuses on
promising neighbor solutions and is of smaller size. The rationale behind the
constrained neighborhood is that in terms of conductance improvement, all
vertices are not equally interesting for the ‘Relocate’ operator. The idea is
then to identify the “critical” vertices that are relevant for the ‘Relocate’
operator and exclude the “non-critical” vertices (or “ordinary” vertices) for
consideration.

Given a solution s = (A, Ā), let e(A) = |{(u, v) ⊂ E : u, v ∈ A}| and e(Ā) =
|{(u, v) ⊂ E : u, v ∈ Ā}| be the number of edges whose endpoints belong to
A and Ā respectively. Then, it is easy to check that the volume of sets A and
Ā can be re-written as: vol(A) = 2e(A) + |cut(s)|, vol(Ā) = 2e(Ā) + |cut(s)|.
Thus, the conductance Φ(s) can be re-expressed as follows,

Φ(s) =
|cut(s)|

min{vol(A), vol(Ā)}

=
|cut(s)|

|cut(s)|+ 2 ·min{e(A), e(Ā)}

= 1/

{
1 + 2 · min{e(A), e(Ā)}

|cut(s)|

}
.

(6)

By equation (6), it is clear that increasing min{e(A), e(Ā)} and decreasing
|cut(s)| reduces the conductance Φ(s). Inversely, decreasing min{e(A), e(Ā)}
and increasing |cut(s)| augment the conductance Φ(s).

Let CV (s) = {v ∈ V : (v, ) ∈ cut(s)} be the set of critical vertices of s, i.e.,
the border vertices of the current partition s. Let OV (s) = V \CV (s) be the
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Fig. 2. An example of moving “non-critical” or “ordinary” vertices in the constrained
neighboring structure defined in the cut edges set.

set of ordinary vertices of s. We have the following theorem.

Theorem. Let s = (A, Ā) be a partition of V with conductance Φ(s), let
OV (s) be the set of ordinary vertices with respect to s. Let s′ = (A′, Ā′) =
(A \ {v}, Ā ∪ {v}) be the partition obtained from s by relocating a vertex v of
OV , then Φ(s′) > Φ(s) holds.

Proof : There are two cases to consider. 1) e(A) = e(Ā), and 2) e(A) 6= e(Ā).
For case 1, without loss of generality, suppose that vertex v ∈ OV belongs to
A. Let deg(v) be the degree of v. Then we have min{e(A′), e(Ā′)} = e(A′) =
e(A) − deg(v), which is smaller than min{e(A), e(Ā)} = e(A) on the one
hand, and |cut(s′)| = |cut(s)| + deg(v), which is larger than |cut(s)| on the
other hand. According to equation (6), we have Φ(s′) > Φ(s).

For case 2, we consider the two possible situations according to the origin of v.
First, if vertex v belongs to the subset with smaller number of inner edges, then
min{e(A′), e(Ā′)} = min{e(A), e(Ā)} and |cut(s′)| = |cut(s)| + deg(v). Ac-
cording to equation (6), Φ(s′) > Φ(s) holds. Second, if v belongs to the subset
with larger number of inner edges. Suppose it is set A, i.e., min{e(A), e(Ā)} =
e(Ā) and let e(A) = e(Ā) + δ with δ > 0. After relocating v from A to Ā, we
obtain |cut(s′)| = |cut(s)|+deg(v) and e(Ā′) = e(Ā) (since adding v to Ā does
not change e(Ā)). Then if δ ≤ deg(v), min{e(A′), e(Ā′)} equals e(Ā′) = e(Ā).
Since |cut(s′)| = |cut(s)| + deg(v) > |cut(s)|, we have Φ(s′) > Φ(s) according
to equation (6). Otherwise, if δ > deg(v), min{e(A′), e(Ā′)} = e(A′) = e(A)−
deg(v). Since e(A′) < e(Ā) and |cut(s′)| > |cut(s)|, we have again Φ(s′) > Φ(s)
according to equation (6). This finishes the proof of the theorem. 2
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This theorem indicates that ordinary vertices are not interesting for the ‘Re-
locate’ operator since they always deteriorate the conductance of the current
solution. Consequently, it is relevant to exclude these ordinary vertices and
only consider the critical vertices of set CV (s). This consideration leads to
our critical vertices constrained neighborhood NC ,

NC(s) = {s′ : s⊕Relocate(v), v ∈ CV (s)}. (7)

Compared to the unconstrained neighborhood N (s) whose size is of O(|V |)
(see Equation (5)), the constrained neighborhoodNC(s) has a size ofO(|CV (s)|).
Our experiments suggest that CV (s) is generally much smaller than V (ex-
cept for very dense graphs). Therefore using NC(s) rather than N (s) is more
time-efficient and favors conductance improvement as well.

To quantify the quality of a neighbor solution s′ obtained by relocating vertex
v, we use δ(v) to denote the move gain as follows.

δ(v) = Φ(s′)− Φ(s) (8)

So a negative, zero and positive δ(v) value indicates an improving, stagnating
and worsening neighbor solution respectively.

To explore the constrained neighborhood NC(s), the CNTS procedure first
identifies the set CV (s) of critical vertices (Algorithm 2, line 4). This can be
achieved in O(|V | ∗ degmax) time where degmax is the maximum degree of the
given graph. Then CNTS performs each subsequent iteration in three steps: 1)
selects, among the eligible critical vertices, one best vertex v (ties are broken
randomly) with the smallest move gain, 2) relocate v to obtain a neighbor
solution, and 3) make necessary updates.

A vertex qualifies as eligible if it is not forbidden by the tabu list (see Section
3.3.2). Note that if relocating a vertex leads to a solution better than the best
solution sbest found during the tabu search process, this vertex always qualifies
as eligible even if it is forbidden by the tabu list (this is called the aspiration
criterion in tabu search).

To ensure the computation efficiency of the CNTS procedure, we adopt the
incremental updating technique [12] to perform the necessary calculations of
each CNTS iteration. Given the incumbent solution s = {A, Ā}, the number
of cut edges |cut(s)|, the degrees of each vertex v in both partition subsets
degA(v) and degĀ(v), let s′ = {A′, Ā′} with A′ = A \ {v}, Ā′ = Ā∪{v} be the
new neighbor solution after relocating v from A to Ā. The conductance of s′

can be efficiently recalculated in O(1) time,
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vol(A′) = vol(A)− deg(v). (9)

vol(Ā′) = vol(Ā) + deg(v). (10)

|cut(s′)| = |cut(s)|+ degA(v)− degĀ(v). (11)

After relocating v, we update the auxiliary degrees of each vertex w adjacent
to v in O(1) time,

degA′(w) = degA(w)− 1. (12)

degĀ′(w) = degĀ(w) + 1. (13)

So each iteration of CNTS can be achieved in O(|CV (s)|) time. As noticed in
[12], even if the numerator of conductance is bounded by degmax, the denom-
inator (the volumes of the two subsets) can be potentially modified in all |V |
components after relocating a vertex. As a result, it remains open whether im-
proving neighbor solutions can be identified in O(1) time for MC-GPP. This is
in sharp contrast to the conventional graph partitioning problem for which the
best neighbor solution (by the relocation operation) can be found in O(1) time
thanks to the use of dedicated data structures and incremental techniques.

Finally, as mentioned in [8,10], the above constrained neighborhood based on
border vertices of the incumbent partition has been advantageously used in
several graph partitioning algorithms and tools (e.g., Metis, KaHIP, Scotch).
This work demonstrates for the first time that this constrained neighborhood
is equally valuable for implementing MC-GPP algorithms.

3.3.2 Dynamic tabu tenure management

As mentioned above, the CNTS procedure uses a tabu list H to record re-
cently relocated vertices to prevent them from being reconsidered for a future
relocation and thus avoid revisiting previously visited solutions. Specifically,
each time a vertex v ∈ CV is relocated, v is added in the tabu list and is not
considered for next tt(v) iterations (tt is called tabu tenure). To implement
the tabu list efficiently, we use a vector H of size |V | (initialized to 0) to rep-
resent the tabu list. When a vertex v is relocated, H[v] is updated to iter+ tt
where iter represents the current number of iterations. Then during the next
iterations, if iter < H[v], v is forbidden by the tabu list; Otherwise, v is not
prohibited by the tabu list.

To determine the tabu tenure tt, we adopt a technique which dynamically
adjusts the tabu tenure with a periodic step function F defined over the cur-
rent iteration number iter [18,39]. Typically, each period of the step func-
tion consists of 1500 iterations that are divided into 15 steps (also called
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intervals) [xi, xi+1 − 1]i=1,2,...,15 with x1 = 1, xi+1 = xi + 100. According to
the current iteration number, the tabu tenure changes dynamically during
the search with one of four possible values: (10 × α, 20 × α, 40 × α, 80 ×
α), where α is a parameter. Precisely, for an iteration iter ∈ [xi, xi+1 − 1],
the tabu tenure tt equals F (iter), which is given by (yi)i=1,2,...,15 = α ×
(10, 20, 10, 40, 10, 20, 10, 80, 10, 20, 10, 40, 10, 20, 10). The tabu tenure is thus
equal to 10 × α for the first 100 iterations [1, 100]; then 20 × α for iterations
from [101, 200]; followed by 10×α again for iterations [201, 300]; and 40×α for
iterations [401, 500] etc. After reaching the largest value 80× α for iterations
[701, 800], the tabu tenure drops again to 10×α for the next 100 iterations and
so on (see Section 2.2.3 of [39] for an illustrative example). This dynamic tabu
tenure technique has previously shown its usefulness for graph partitioning and
max-bisection algorithms [18,39]. Our experimental study also indicates that
this technique is quite suitable for SaBTS as well and helps the algorithm to
escape various local optima. Contrary to static tabu tenure techniques, vary-
ing the tabu tenure periodically and dynamically makes the algorithm quite
robust across the tested instances and avoids the difficulties encountered with
manually tuned static techniques.

3.4 Self-adaptive perturbation strategy

Algorithm 3 The Self-adaptive Perturbation Procedure (SAP)

Require: GraphG = (V,E), current solution s, non-improving local optima counter
ω, stagnation threshold T , jump magnitude L, minimum probability threshold P0.
Ensure: A perturbed partition found s.

1: if ω > T then
2: s← random perturb(s, ω, L) /∗ search stagnating, apply rand. perturb. ∗/
3: L← L0 /∗ reset L ∗/
4: else
5: calculate probability P according to Eq. (14)
6: r ← random(0, 1) /∗ generate a random number in (0, 1) ∗/
7: if r < P then
8: with prob. 0.5: s← frequency based perturb(s, ω, L, freq)
9: with prob. 0.5: s← cut edge based perturb(s, ω, L)

10: else
11: s ← rand perturb(s, ω, L)
12: end if
13: end if
14: return s

The tabu search procedure presented in Section 3.3 can overcome some local
optimum traps thanks to its tabu list. However, CNTS can still be trapped
in deep local optima. To escape such traps, the proposed SaBTS algorithm
employs a self-adaptive perturbation (SAP) procedure (see Algorithm 3) that
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relies on information related to ω (counter of non-improving local optima), T
(stagnation threshold), freq (vertex move frequency) (see Algorithm 1 and
Section 3.1) as well as three perturbation operators, which are given below.

(1) Frequency based perturbation uses information on vertex move frequency
(freq) collected during the last tabu search run. This perturbation fo-
cuses on the L least frequently relocated vertices (i.e., the L vertices with
the largest freq values) and forces them to move to their opposite sets.
In this way, the perturbation focuses on “hard to move” vertices and cre-
ates opportunities to overcome deep local optima that could be difficult
to escape otherwise.

(2) Cut edge based swap perturbation exchanges two vertices u and v linked by
a cut edge (see equation (2)). By focusing on cut edges, this perturbation
does not significantly change the solution in general.

(3) Random perturbation relocates L vertices that are randomly selected.
Since a random relocation can seriously affect the quality of the result-
ing solution, this perturbation has a significantly stronger diversification
effect than the two other perturbations.

To apply these perturbations, we adopt the key idea of the breakout local
search method [5–7] that applies perturbations of different intensity adaptively
and probabilistically. Specifically, if ω > T (i.e., at least T consecutive local
optima have been visited without improving the best solution found s∗, see
Algorithm 1), the search is believed to be stagnating in a deep local optimum
attractor (line 2, Algorithm 3). To escape the trap, we apply the random
perturbation to change the incumbent solution significantly and displace the
search to a distant search zone. Otherwise, we apply the three perturbations
in a probabilistic way. For this purpose, we first calculate the probability P
as follows ([5]).

P = max{e−ω/T , P0} (14)

where P0 (typically larger than 0.5) is a prefixed (minimum) probability value.

Then with probability P , we apply either the frequency based perturbation or
the cut edge based perturbation with equiprobability. With probability 1−P ,
we trigger the random perturbation.

Finally, the perturbed solution serves then as the new starting solution of the
next round of the tabu search procedure.
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4 Computational Results

In this section, we assess the performance of our proposed SaBTS algorithm.

4.1 Benchmark instances

We adopt five sets of 110 benchmark graphs: four sets (98 graphs) from the
10th DIMACS Challenge and one set (12 graphs) from the SNAP network
collection. These graphs are connected and have up to around 500, 000 vertices.

• The 10th DIMACS Implementation Challenge Benchmark 1 . We use 98
graphs belonging to four sets. (1) 17 clustering graphs, which are from real-
world applications and often used for testing algorithms for graph clustering
and community detection. (2) 9 Delaunay graphs, which are generated as
Delaunay triangulations of random points in the unit square. (3) 42 Re-
districting graphs, which are popular for the Redistricting and graph parti-
tioning problems. (4) 30 graphs from Walshaw’s graph partitioning archive,
which are from real-life applications and very popular for assessing graph
partitioning algorithms.
• Social networks 2 . We use a set of 12 anonymized social network graphs that

are extracted from the popular SNAP collection [29] and tested in [12].

4.2 Parameter setting and experimental protocol

The proposed SaBTS algorithm requires five parameters (see Table 1). We
calibrate them by running a tuning experiment on 10 representative instances
(PGPgiantcompo, preferentialAttachment, delaunay n16, delaunay n17, sd2010,
ms2010, wing, brack2, gplus 2000, pokec 20000) from different datasets. The
best configuration from this tuning experiment (as illustrated in Section 5.1)
is shown in Table 1. These parameter values can be considered as the default
setting of the SaBTS algorithm. They are also consistently used to solve the
five sets of benchmark instances introduced in Section 4.1.

SaBTS was programmed in C++The code of our SaBTS algorithm is available
at: http://www.info.univ-angers.fr/~hao/mcgpp.html and compiled us-
ing g++ 4.4.7 compiler with the “-O3” flag on an Intel Xeon E5440 processor
with 2.83GHz and 2GB RAM running CentOS 6.8. To evaluate our results,
we adopt three reference methods.

1 https://www.cc.gatech.edu/dimacs10/downloads.shtml
2 http://davidchalupa.github.io/research/data/social.html
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Table 1
Parameter setting.

Parameter Section Description Value

α 3.3 tabu tenure management factor 100

D 3.3 depth of tabu search 6000

T 3.4 stagnation threshold 1000

L0 3.4 initial jump magnitude 0.4×|V |
P0 3.4 minimum probability 0.8

(1) StS-AMA [12]: The population-based memetic algorithm StS-AMA is
among the rare and recent heuristics dedicated to MC-GPP. As indicated
in [12], StS-AMA is the best performing algorithm among several local
search and evolutionary algorithms. Since the code of this algorithm is
not available, we decided to reimplement StS-AMA to make a fair com-
parison. It is well known that implementation details can significantly
impact the performance of partitioning heuristics [11,20]. To implement
StS-AMA, we followed faithfully the description given in [12] and checked
that the results of our implementation are consistent with those reported
in the reference paper.

(2) Metis [24]: As a popular graph partitioning package, Metis has been used
to generate partitions in several studies on MC-GPP [1,25,28]. From these
studies, one notices that even if Metis does not directly minimize the con-
ductance criterion (it minimizes the number of cut edges), it can still com-
pute reasonably good partitions in terms of conductance. We use Metis
for two purposes: 1) to evaluate the results of our SaBTS algorithm when
it is run with initial solutions generated by the simple greedy procedure
of Section 3.2, and 2) like in [1,25], to verify whether and to which extend
SaBTS can improve the conductance of a partition produced by Metis.
For this study, we use the latest version Metis 5.1.0 3 and run Metis on
the same computer as for the other algorithms.

(3) MQI [25]: This is a max-flow quotient-cut improvement algorithm for im-
proving graph bipartitions when the cut quality is measured by quotient-
style metrics such as conductance. MQI refines an initial partition and
has been shown to be able to improve the results of Metis in terms of
conductance. To our knowledge, MQI is one of the best algorithms for
MC-GPP. We adopt MQI as our main reference for two purposes: 1) to
compare SaBTS and MQI when they are run from the same partition
given by Metis, 2) to verify whether SaBTS can further improve the re-
sults of MQI. For this study, we use the latest implementation of MQI 4

and run MQI on the same computer as for the other algorithms.

The computational studies reported in this section are based on two differ-

3 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
4 https://github.com/kfoynt/LocalGraphClustering
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ent experiments where all algorithms are run using their default parameter
settings.

The first experiment aims to compare SaBTS against StS-AMA as well as
Metis, when SaBTS is run from an initial solution given by the greedy pro-
cedure of Section 3.2 (we use Greedy+SaBTS to denote this SaBTS running
variant). For this experiment, we run all algorithms 20 times with different
random seeds to solve each problem instance, each run being limited to 60
minutes.

The second experiment performs a comparison between SaBTS and MQI when
both algorithms start from a partition provided by Metis (we use Metis+SaBTS
and Metis+MQI to denote these SaBTS and MQI running variants). For each
problem instance, we first run Metis 20 times and record the 20 output par-
titions. We then run both SaBTS and MQI 20 times using these 20 par-
titions as their initial solutions. This experiment allows us to assess, with
respect to the powerful MQI method, the ability of SaBTS to improve the
conductance of a partition from Metis. The second experiment also includes a
study on the ability SaBTS to further improve the results of MQI by running
SaBTS on each instance from the 20 partitions provided by Metis+MQI (we
use (Metis+MQI)+SaBTS to denote this SaBTS running variant).

4.3 Computational results

In this section, we assess the performance of the SaBTS algorithm according
to the two experiments explained above. To this end, we show summarized re-
sults of the studied algorithms to highlight the main findings. In the appendix,
we report the detailed results of SaBTS together with the main reference al-
gorithms on the 110 benchmark instances (Table A.1 and A.2), the statistical
results (p-values) from the Wilcoxon signed-rank test applied to different pair-
wise comparisons for all datasets (Table A.2) as well as a comparison using
the geometric mean metric [16,21] (Table A.3).

4.3.1 Greedy+SaBTS compared to StS-AMA and Metis

The computational results of the first experiment are summarized in Table 2,
where we compare Greedy+SaBTS against StS-AMA and Metis. Column 1
indicates the compared algorithms. Column 2 gives the names of the datasets
with the number of graphs in parenthesis (Datasets (size)). Column 3 indicates
the quality indicators in terms of the best and average conductance (Φbest and
Φavg). Columns 4-6 count the number of instances on which Greedy+SaBTS
achieves a better, equal or worse result compared to StS-AMA and Metis
respectively (#Wins, #Ties and #Losses).
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From Table 2, we observe that Greedy+SaBTS performs remarkably well on
all five datasets compared to StS-AMA in terms of Φbest (Φavg resp.) by re-
porting 87 (89) wins, 16 (10) ties and 7 (11) losses for the 110 graphs. First,
Greedy+SaBTS performs marginally better on the Clustering and Social net-
work datasets. For the 17 Clustering graphs, Greedy+SaBTS reports 5 (7)
better, 9 (7) equal and 3 (3) worse results for Φbest (Φavg resp.), while it
wins 6 (6), ties 4 (3) and losses 2 (3) instances in terms of Φbest and Φavg

for the 12 Social graphs. Second, Greedy+SaBTS shows a clear dominance
over StS-AMA for the Delaunay, Redistricting and Walshaw datasets. For the
9 Delaunay graphs, Greedy+SaBTS wins all 9 instances for both Φbest and
Φavg. Similarly, for the 42 Redistricting graphs, Greedy+SaBTS wins 41 (39),
and looses 1 (3) instances for Φbest (Φavg resp.). For the 30 Walshaw’s graphs,
Greedy+SaBTS reports 26 (28) better, 3 (0) equal and 1 (2) worse values for
Φbest (Φavg resp.).

When we inspect the results of Greedy+SaBTS and Metis in Table 2, we
observe that Greedy+SaBTS performs significantly better for the Cluster-
ing dataset with 11 (11) wins, 3 (2) ties and 3 (4) losses, and the Social
dataset with 10 (10) wins, 0 (0) ties and 2 (2) losses for Φbest (Φavg resp.).
Greedy+SaBTS performs only marginally better than Metis for the Delaunay
dataset (#Wins/#Ties/#Looses=5/0/4 for Φbest and Φavg), and the Walshaw
dataset (#Wins/#Ties/#Looses=15/1/14 for Φbest and 14/0/16 for Φavg). On
the other hand, Greedy+SaBTS performs much worse than Metis for the Re-
districting graphs (#Wins/#Ties/#Looses=0/0/42 for Φbest and Φavg).

The results of this experiment indicate that 1) Greedy+SaBTS dominates the
dedicated StS-AMA algorithm, and 2) Greedy+SaBTS and Metis perform well
on different datasets and complement each other.

4.3.2 Using SaBTS to improve solutions given by Metis and Metis+MQI

Table 3 shows the summarized results of the second experiment concerning
SaBTS and MQI, when both algorithms are used to refine a partition given by
Metis (entries involving Metis+SaBTS and Metis+MQI) and when SaBTS is
used to refine a partition produced by Metis+MQI (entry (Metis+MQI)+SaBTS).
As before, columns 1-3 indicate the studied algorithms, the information on the
datasets and quality indicators respectively. Columns 4-6 count the number of
instances on which each studied algorithm (Metis+SaBTS, Metis+MQI and
(Metis+MQI)+SaBTS) achieves a better, equal or worse result compared to
the input solution from Metis respectively (#Wins, #Ties and #Losses). Col-
umn 7 shows, for each dataset, the average improvement percentage (∆1(%))
of a method over the results of Metis in terms of Φbest and Φavg. Specifically,
we calculate the average improvement percentage (∆(%)) as follows. First,
we compute the improvement percentage for each instance, which is given by
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Table 2
Comparative results of Greedy+SaBTS (when it is run with greedy initial solutions)
with the reference algorithms StS-AMA [12] and Metis [24].

Algorithm pair Datasets (size) Indicator #Wins #Ties #Losses

Greedy+SaBTS vs.
StS-AMA [12]

Clustering (17) Φbest 5 9 3

Φavg 7 7 3

Delaunay (9) Φbest 9 0 0

Φavg 9 0 0

Redistricting (42) Φbest 41 0 1

Φavg 39 0 3

Walshaw (30) Φbest 26 3 1

Φavg 28 0 2

Social (12) Φbest 6 4 2

Φavg 6 3 3

Greedy+SaBTS vs.
Metis [24]

Clustering (17) Φbest 11 3 3

Φavg 11 2 4

Delaunay (9) Φbest 5 0 4

Φavg 5 0 4

Redistricting (42) Φbest 0 0 42

Φavg 0 0 42

Walshaw (30) Φbest 15 1 14

Φavg 14 0 16

Social (12) Φbest 10 0 2

Φavg 10 0 2

(Φ − ΦMetis)/Φ × 100%, where Φ is the best (or average) conductance value
of the compared algorithms and ΦMetis is the best (or average) conductance
value of Metis. Then, the average improvement percentage for each dataset is
given by

∑n
i=1 (Φi − ΦMetis)/Φi × 100%/n, where n is the number of instances

of each dataset.

In Table 4, we show the improvements of SaBTS (i.e., (Metis+MQI)+SaBTS)
over the results of Metis+MQI, which are obtained by running SaBTS from
the output partitions of Metis+MQI. Columns 4-6 indicate the number of
instances on which the result of (Metis+MQI)+SaBTS is better, equal or worse
than the partitions provided by Metis+MQI (#Wins, #Ties and #Losses),
while column 7 shows the average improvement percentage (∆2(%)) of SaBTS
over the results of Metis+MQI in terms of Φbest and Φavg.

From the results of Table 3 (and the detailed results of Table A.1 in the
appendix), we first observe that both SaBTS and MQI consistently improve
on the results of Metis for all five datasets. Specifically, in terms of Φbest

(Φavg resp.), Metis+SaBTS can make an improvement for slightly more in-
stances compared to MQI: 105 (107) out of 110 instances for Metis+SaBTS
against 97 (106) for MQI. However, the last column of Table 3 shows that MQI
achieves much more important average improvement percentages for the dif-
ferent datasets. Inspecting the detailed results in Table A.1 shows that while
SaBTS performs better on more instances of the Clustering, Delaunay and
Walshaw datasets, MQI performs remarkably better on the 42 Redistricting
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Table 3
Comparative results of how MQI [25], SaBTS, and a combination of MQI and SaBTS
can improve the results of Metis [24] (indicated by Metis+MQI, Metis+SaBTS and
(Metis+MQI)+SaBTS respectively).

Algorithm Datasets (size) Indicator #Wins #Ties #Losses ∆1(%)

Metis+MQI [25] vs.
Metis [24]

Clustering (17) Φbest 11 6 0 19.51%

Φavg 14 3 0 20.22%

Delaunay (9) Φbest 8 1 0 4.37%

Φavg 9 0 0 5.19%

Redistricting (42) Φbest 42 0 0 22.06%

Φavg 42 0 0 22.16%

Walshaw (30) Φbest 25 5 0 12.19%

Φavg 29 1 0 12.21%

Social (12) Φbest 11 1 0 40.63%

Φavg 12 0 0 39.20%

Metis+SaBTS vs.
Metis [24]

Clustering (17) Φbest 14 3 0 8.58%

Φavg 15 2 0 12.20%

Delaunay (9) Φbest 9 0 0 2.81%

Φavg 9 0 0 6.21%

Redistricting (42) Φbest 42 0 0 0.75%

Φavg 42 0 0 0.98%

Walshaw (30) Φbest 28 2 0 6.49%

Φavg 29 1 0 9.45%

Social (12) Φbest 12 0 0 23.26%

Φavg 12 0 0 27.62%

(Metis+MQI)+SaBTS vs.
Metis [24]

Clustering (17) Φbest 14 3 0 24.84%

Φavg 15 2 0 28.47%

Delaunay (9) Φbest 9 0 0 5.24%

Φavg 9 0 0 9.11%

Redistricting (42) Φbest 42 0 0 22.09%

Φavg 42 0 0 22.37%

Walshaw (30) Φbest 28 2 0 13.70%

Φavg 29 1 0 15.36%

Social (12) Φbest 12 0 0 42.42%

Φavg 12 0 0 45.44%

Table 4
Comparative results of how SaBTS can further improve the results of Metis+MQI
[25] (indicated by (Metis+MQI)+SaBTS).

Algorithm Datasets (size) Indicator #Wins #Ties #Losses ∆2(%)

(Metis+MQI)+SaBTS vs.
Metis+MQI [25]

Clustering (17) Φbest 8 9 0 5.40%

Φavg 12 5 0 8.63%

Delaunay (9) Φbest 8 1 0 0.89%

Φavg 9 0 0 4.06%

Redistricting (42) Φbest 16 26 0 0.03%

Φavg 42 0 0 0.35%

Walshaw (30) Φbest 16 14 0 1.71%

Φavg 28 2 0 4.54%

Social (12) Φbest 4 8 0 1.86%

Φavg 8 4 0 10.06%
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graphs and relatively better on some Social graphs.

Very interestingly, the results of Table 4 indicate that SaBTS can further
improve the results of MQI for all five datasets. In terms of Φbest (Φavg resp.),
the number of improved results is 8 (12) for the 17 Clustering graphs, 8 (9)
for the 9 Delaunay graphs, 16 (42) for the 42 Redistricting graphs, 16 (28)
for the 30 Walshaw graphs, and 4 (8) for the 12 Social graphs. The average
improvement percentage achieved by SaBTS over MQI varies according to the
datasets. The improvements are more important for the Clustering, Delaunay,
Walshaw and Social datasets than for the Redistricting dataset. Finally, the
detailed results of Table A.1 in the appendix show that Metis+SaBTS and
(Metis+MQI)+SaBTS together cover all the best results in terms of Φbest and
Φavg for the 110 instances tested.

This experiment confirms that 1) it is more advantageous to start SaBTS with
a solution from Metis or MQI to obtain still better solutions, and 2) we can
jointly apply Metis, MQI and SaBTS to find high quality partitions in terms
of low conductance for divers graphs with different structures.

Finally, even if we do not report more computational results, we mention
that we also tested much larger graphs from the 10th DIMACS Challenge
with 8× 105 to 1.4× 107 vertices. We observed that SaBTS can improve the
partitions given by Metis and MQI.

5 Analysis of SaBTS

In this section, we first analyze the effect of the parameters on the perfor-
mance of SaBTS, and then investigate the impact of the constrained neigh-
borhood in the tabu search, and lastly provide some insights into the adaptive
perturbation strategy. These studies are based on 10 challenging instances se-
lected from the 110 benchmark instances: PGPgiantcompo, preferentialAttach-
ment, delaunay n16, delaunay n17, sd2010, ms2010, wing, brack2, gplus 2000,
pokec 20000. As before, we independently solve 20 times each instance with
a cutoff time of 60 minutes, each run being started with an initial solution
generated with the greedy method of Section 3.2.

5.1 Effect of the parameters

The proposed algorithm has five parameters: the tabu tenure management
factor α, depth of tabu search D, stagnation threshold T , initial jump magni-
tude L0 and minimum probability P0. To investigate the effect of a parameter
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Fig. 3. Analysis of the effects of the parameters (α, D, T , L0 and P0).

on the performance of the algorithm, we vary its value within a reasonable
range, while maintaining other parameters to their default values as shown
in Table 1. We use the following value ranges: α = {40, 60, 80, 100, 120},
D = {2000, 4000, 6000, 8000, 10000}, T = {1000, 3000, 5000, 7000, 9000}, L0 =
{0.3, 0.4, 0.5, 0.6, 0.7} × |V | and P0 = {0.65, 0.7, 0.75, 0.8, 0.85}. Fig. 3 shows
the behavior of SaBTS with respect to each of the parameters, where the X-
axis indicates the values of each parameter and the Y-axis shows the best/
average objective values over the 10 tested instances.

Fig. 3 indicates that the performance of SaBTS is significantly influenced by
the setting of each parameter. For α, the best performance is attained when
α = 100, and a too small α value leads to poor performance of SaBTS. This
can be explained that a small α value makes the prohibited time too short and
cannot effectively prevent the search from cycling. For D, the value of 6000
is the best choice, and a too large or too small D value deteriorates SaBTS
performance. Also, SaBTS reaches its best performance with a T value of
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Table 5
Comparison of SaBTS with a variant SaBTSno cons using the unconstrained neigh-
borhood. Columns ∆Φbest and ∆Φavg report the best and average result gap of
SaBTSno cons compared to the results of SaBTS. A positive (negative) value indi-
cates a worse (better) result. The last row gives the p-values from the Wilcoxon
signed-rank test.

Instance
SaBTSno cons

∆Φbest ∆Φavg

PGPgiantcompo +0.0093 +0.0113

preferentialAttachment +0.0006 +0.0018

delaunay n16 +0.0008 +0.0001

delaunay n17 +0.0392 +0.0337

sd2010 +0.0039 +0.0052

ms2010 +0.0070 +0.0139

wing +0.0065 +0.0088

brack2 +0.0002 +0.0035

gplus 2000 0 +0.0014

pokec 20000 +0.0004 +0.0010

p-value 2.00e-03 2.00e-03

1000. However, the performance of SaBTS is not sensitive to an increase of T .
Then for L0, the performance of SaBTS generally decreases as the coefficient
of L0 increases and the value of 0.4 shows the best performance, while a too
large coefficient value will have an effect similar to a random restart. For P0,
the best solution is not really sensitive to P0. Thus we set P0 = 0.8, which
leads to the best average solution.

This study justifies the default parameter setting of Table 1. We notice that
among these parameters, D, T and L0 are a little more sensitive than α and
P0. Therefore, if the user needs to tune the parameters, effort should be put
on D, T and L0.

5.2 Impact of the constrained neighborhood on tabu seach

As explained in Section 3.3.1, the constrained neighborhood based on critical
vertices is a key component of the tabu search procedure. In this experiment,
we highlight its interest by comparing the SaBTS procedure with a SaBTS
variant (called SaBTSno cons) where we replace the constrained neighborhood
(see Equation (7)) by the unconstrained neighborhood defined by equation (5)
and keep the other components unchanged. We run both algorithms 20 times
to solve each of the 10 instances used in the last section and report the results
in Table 5.

In Table 5, we indicate for each instance the gap of the best and average re-
sults of SaBTSno cons with respect to the best and average results of SaBTS.
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Table 6
Comparison of SaBTS with three variants SaBTSD3, SaBTSD1+D2 and
SaBTSD2+D3 applying different perturbation schemes. Columns ∆Φbest and ∆Φavg
report the best and average result gap of each variant with respect to the result of
SaBTS. A positive (negative) value indicates a worse (better) result. The last row
gives the p-values from the Wilcoxon signed-rank test.

Instance
SaBTSD3 SaBTSD1+D2 SaBTSD2+D3

∆Φbest ∆Φavg ∆Φbest ∆Φavg ∆Φbest ∆Φavg

PGPgiantcompo +0.0035 +0.0026 +0.0032 +0.0180 -0.0009 -0.0010

preferentialAttachment +0.0095 +0.0117 +0.0143 +0.2373 +0.2882 +0.3152

delaunay n16 +0.0083 +0.0077 +0.0012 +0.0035 -0.0003 0

delaunay n17 +0.0011 +0.0088 -0.0062 +0.0037 -0.0070 +0.0089

sd2010 +0.0064 +0.0130 -0.0002 +0.0058 -0.0005 +0.0041

ms2010 +0.0150 +0.0176 +0.0009 +0.0097 +0.0006 +0.0202

wing +0.0070 +0.0061 -0.0009 +0.0082 -0.0018 +0.0060

brack2 +0.0012 +0.0028 +0.0148 +0.0295 +0.0126 +0.0184

gplus 2000 0 -0.0001 +0.0083 +0.0178 0 +0.0003

pokec 20000 +0.0007 +0.0004 +0.0141 +0.0893 +0.0004 +0.0049

p-value 2.00e-03 3.90e-03 6.45e-02 2.00e-03 1.00e-00 9.80e-03

The p-values from the Wilcoxon signed-rank test are shown in the last row of
the table. For example, for the instance PGPgiantcompo, SaBTSno cons has
worse results in terms of Φbest and Φavg with a best and average gap of
0.0093 and 0.0113 respectively compared to the best and average values of
SaBTS. From the table, we observe that SaBTS dominates SaBTSno cons for
each tested instance both in terms of best and average solutions. The p-values
from the Wilcoxon signed-rank test also confirm the dominance of SaBTS over
SaBTSno cons. This experiment demonstrates the usefulness and effectiveness
of the constrained neighborhood for the SaBTS algorithm.

5.3 Impact of the perturbation strategy

As mentioned in Section 3.4, the perturbation procedure aims to diversify
the search and help the search process to escape local optima traps. In or-
der to highlight the contribution of the adopted perturbation strategy to the
overall performance, we create three variants of SaBTS by varying the per-
turbation mechanism. The first variant (called SaBTSD3) only employs the
random perturbation. The second variant (called SaBTSD1+D2) disables the
random perturbation, but keeps the frequency based perturbation and the cut
edge based swap perturbation. The last variant (called SaBTSD2+D3) disables
the frequency based perturbation, but keeps the cut edge based swap pertur-
bation and the random perturbation. For all the variants, we keep the other
components of SaBTS unchanged.

Table 6 shows the best and average result gap of each SaBTS variant with
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reference to the result of SaBTS. The p-values from the Wilcoxon signed-rank
test are given in the last row. First, SaBTS significantly dominates SaBTSD3

by reaching the best and average results for 9 out of 10 instances (p = 0.002
for Φbest and p = 0.0039 for Φavg). Second, compared to SaBTSD1+D2, SaBTS
performs marginally better in terms of Φbest (winning 7 instances with p =
0.0645) and significantly better than in terms of Φavg (winning 10 instances
with p = 0.002). Third, compared to SaBTSD2+D3, even if SaBTS does not
show any advantage in terms of Φbest, SaBTS has a clear dominance in terms of
Φavg (p = 0.0098). This experiment thus confirms the interest of the adopted
perturbation strategy compared to alternative strategies.

6 Conclusions and future work

This paper introduced a stagnation-aware breakout tabu search algorithm
(SaBTS) for solving the minimum conductance graph partitioning problem
(MC-GPP). As the first algorithm adapting the breakout local search frame-
work to MC-GPP, SaBTS distinguishes itself from existing MC-GPP algo-
rithms mainly by two noteworthy features: the constrained neighborhood tabu
search procedure and the self-adaptive and multi-strategy perturbation pro-
cedure. We performed a large scale computational study to assess the perfor-
mance of the proposed algorithm and investigated its key components (pa-
rameters, constrained neighborhood, perturbation strategy) to gain insights
on the functioning of the algorithm.

The computational study on five datasets of 110 benchmark graphs with up
to around 500 000 vertices allows us to draw the following conclusions.

• SaBTS with greedy initial solutions (Greedy+SaBTS) dominates the recent
StS-AMA algorithm dedicated to MC-GPP [12] both in terms of the best
and average results.
• SaBTS with greedy initial solutions (Greedy+SaBTS) and the popular graph

partitioning tool Metis (version 5.1.0) [24] perform well on different datasets.
Globally there is no clear dominance of one method over the other. When
SaBTS is used to refine the results of Metis, it consistently improves the
partitions provided by Metis for 108 out of the 110 benchmark graphs.
• When SaBTS is used as a post-processing procedure of Metis and is com-

pared to the state-of-the-art max-flow based method MQI [25], SaBTS im-
proves the result of Metis on slightly more graphs than MQI, but MQI
achieves much more important quality improvement.
• When SaBTS is used as a post-processing procedure of MQI, it consistently

improves the partitions provided by MQI, raising the partition quality for
the tested datasets.
• SaBTS and existing methods like Metis and MQI can be advantageously
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used in a combined way, helping to find high quality partitions for graphs
with very different structures and characteristics.

For future work, we advance the following directions. First, as the results of
Metis suggest, optimizing the number of cut edges helps to find partitions
of relatively low conductance. Therefore, one interesting study would be to
investigate the use of cut-edge criterion as an approximate evaluation func-
tion of conductance in search algorithms. Indeed, one can take advantage of
the well-known efficient data structures and fast incremental update tech-
niques available for the cut-edge criterion, helping to significantly reduce the
computational cost of search algorithms for MC-GPP. Second, we can in-
vestigate hybrid approaches by combining SaBTS (or its variant) and other
partition algorithms or other search frameworks like population-based evolu-
tionary methods. Third, it would be interesting to study learning-based search
methods like [41,42] within the context of solving MC-GPP. Finally, the liter-
ature offers few exact approaches for MC-GPP. It is thus worth investigating
general approaches such as integer linear programming and dedicated branch
and bound algorithms.
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A Appendix

This appendix presents detailed results of Metis, Metis+MQI, Metis+SaBTS
and (Metis+MQI)+SaBTS for the five datasets including 110 graphs (Table
A.1). The best values of Φbest are highlighted in boldface while the best values
of Φavg are indicated in italic. These best values can be used to evaluate
other MC-GPP algorithms. Table A.2 shows the statistical results (p-values)
from the Wilcoxon signed-rank test with a confidence level of 99% applied to
different pairwise comparisons for all datasets. The tests are performed on the
Φbest and Φavg values.

To complete the computational comparison presented in Section 4.3, we show
in Table A.3 an additional comparison of the studied algorithms using the ge-
ometric mean metric [16,21] calculated with the best and average conductance
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values of each compared algorithm (Gbest and Gavg) on five datasets. The best
values of Gbest are highlighted in boldface while the best values of Gavg are
indicated in italic.

Table A.1
Detailed computational results of Metis, Metis+MQI, Metis+SaBTS and
(Metis+MQI)+SaBTS on four datasets from the 10th DIMACS Challenge (includ-
ing 17 Clustering, 9 Delaunay, 42 Redistricting, 30 Walshaw graphs) and 12 Social
network graphs from the SNAP network dataset (a total of 110 graphs). As explained
in Section 4.3, these results are based on 20 independent runs of each algorithm to
solve each instance with a cutoff limit of 60 minutes per run and per instance. Φbest

of an algorithm for an instance indicates the lowest conductance achieved for the
instance among the conductance values of the 20 runs, while Φavg is the average of
the 20 Φbest values. The best of the Φbest values for each instance is highlighted in
boldface, while the best of the Φavg values for each instance is indicated in italic.
t(s) is the average CPU time in seconds of 20 runs to attain the 20 best results, and
a time less than one second is indicated as 0.

Instance Metis [24] Metis+MQI [25] Metis+SaBTS (Metis+MQI)+SaBTS

Graph |V | Φbest Φavg t(s) Φbest Φavg t(s) Φbest Φavg t(s) Φbest Φavg t(s)

karate 34 .12820512 .12820512 0 .12820512 .12820512 0 .12820512 .12820512 0 .12820512 .12820512 0

chesapeake 39 .33823529 .33823529 0 .31666666 .31666666 0 .27810650 .27810650 0 .27810650 .27810650 0

dolphins 62 .11428571 .11428571 0 .11428571 .11428571 0 .06382978 .06382978 0 .06382978 .06382978 0

lesmis no 77 .13829787 .13829787 0 .13043478 .13043478 0 .12252964 .12252964 0 .12252964 .12252964 0

polbooks 105 .04347826 .04347826 0 .04347826 .04347826 0 .04347826 .04347826 0 .04347826 .04347826 0

adjnoun 112 .29047619 .36504418 0 .29047619 .36371867 0 .27830188 .27830188 2 .27830188 .27830188 4

football 115 .10116086 .10607000 0 .10116086 .10568471 0 .10116086 .10116086 0 .10116086 .10116086 0

jazz 198 .20062942 .23112145 0 .12292358 .15637114 0 .12292358 .13773036 1180 .12292358 .13180765 464

celegansneural
no

297 .18136272 .18720455 0 .18136272 .18640142 0 .17575757 .17575757 0 .17575757 .17575757 0

celegans
metabolic

453 .18118811 .20923099 0 .09375000 .09437500 0 .18083003 .18083003 3 .09375000 .09437500 0

email 1133 .13599380 .14892463 0 .13511507 .14779292 0 .12697247 .12697247 18 .12697247 .12697247 16

power 4941 .00172603 .00220262 0 .00165617 .00179099 0 .00172170 .00219958 0 .00165617 .00178847 0

PGPgiantcompo 10680 .01740410 .01887126 0 .00589390 .00659428 0 .01740109 .01876534 118 .00589390 .00659428 0

as-22july06 22963 .07589651 .08244258 0 .02838427 .03323962 0 .07397543 .07716065 209 .02838427 .03322895 0

preferential
Attachment

100000 .31136208 .33179699 0 .31132997 .33039853 4 .29468142 .29575422 1790 .29457883 .29584725 2264

smallworld 100000 .11353648 .11625592 0 .11322141 .11604861 9 .10048440 .10143134 3191 .10105860 .10387462 3181

cnr-2000 325557 .00014499 .00045316 0 .00000156 .00000649 24 .00014499 .00045286 179 .00000156 .00000649 0

delaunay n10 1024 .02110552 .02328329 0 .02081934 .02253209 0 .02063544 .02063544 3 .02063544 .02063544 8

delaunay n11 2048 .01422730 .01577331 0 .01422730 .01522355 0 .01388661 .01388661 23 .01388661 .01388661 32

delaunay n12 4096 .01003344 .01094052 0 .00985059 .01054848 0 .00962165 .00962165 203 .00962165 .00962165 308

delaunay n13 8192 .00673386 .00718985 0 .00647034 .00696698 1 .00632028 .00643885 1651 .00635428 .00644994 1305

delaunay n14 16384 .00497289 .00518921 0 .00461126 .00492712 5 .00462337 .00481027 1716 .00461126 .00480381 1380

delaunay n15 32768 .00348042 .00363716 0 .00332954 .00344836 14 .00342228 .00357769 540 .00331553 .00343738 3

delaunay n16 65536 .00245485 .00255656 0 .00233083 .00239444 37 .00244182 .00254590 0 .00232641 .00239002 0

delaunay n17 131072 .00176260 .00180880 0 .00161703 .00166800 109 .00174222 .00180321 0 .00161683 .00166666 0

delaunay n18 262144 .00122712 .00128721 0 .00113731 .00117238 251 .00122711 .00128230 48 .00113724 .00117144 0

de2010 24115 .00100064 .00127794 0 .00050288 .00059755 8 .00100046 .00118161 589 .00050288 .00059753 0

vt2010 32580 .00173854 .00190018 0 .00155765 .00169724 13 .00169722 .00186404 114 .00155765 .00169503 0

nh2010 48837 .00161459 .00184365 0 .00145135 .00155501 24 .00161395 .00181740 41 .00145125 .00155442 0

ct2010 67578 .00098448 .00115908 0 .00092903 .00097271 41 .00097090 .00114793 46 .00092898 .00097204 0

me2010 69518 .00117651 .00124040 0 .00101766 .00108420 49 .00117621 .00123497 0 .00101766 .00108413 0

nv2010 84538 .00087685 .00097645 0 .00054977 .00064500 33 .00087666 .00096624 0 .00054977 .00064498 0

wy2010 86204 .00090767 .00099869 0 .00074495 .00080643 36 .00090738 .00099288 0 .00074494 .00080564 0

sd2010 88360 .00123912 .00131777 0 .00085548 .00097029 58 .00122486 .00130146 0 .00085548 .00096968 0

ut2010 115406 .00078902 .00088075 0 .00070507 .00073532 62 .00078528 .00087737 92 .00070503 .00073473 0
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Instance Metis [24] Metis+MQI [25] Metis+SaBTS (Metis+MQI)+SaBTS

Graph |V | Φbest Φavg t(s) Φbest Φavg t(s) Φbest Φavg t(s) Φbest Φavg t(s)

mt2010 132288 .00071891 .00081168 0 .00061165 .00066817 81 .00071878 .00080834 0 .00061164 .00066798 0

nd2010 133769 .00087400 .00092500 0 .00072302 .00079025 110 .00085006 .00091267 0 .00072301 .00079004 0

wv2010 135218 .00077726 .00084091 0 .00037207 .00056509 77 .00077716 .00083595 0 .00037207 .00056508 0

md2010 145247 .00053193 .00067355 0 .00025821 .00037207 79 .00052037 .00067051 0 .00025821 .00037177 0

id2010 149842 .00040161 .00046919 0 .00034074 .00034609 81 .00040158 .00046755 68 .00034073 .00034509 32

ma2010 157508 .00075352 .00080316 0 .00015062 .00035955 112 .00073612 .00079644 0 .00015062 .00035940 42

nm2010 168609 .00073562 .00081205 0 .00061859 .00066598 113 .00073304 .00080823 0 .00061859 .00066579 51

nj2010 169588 .00030377 .00035228 0 .00026076 .00027517 132 .00030132 .00034956 0 .00026076 .00027480 18

ms2010 171778 .00051261 .00056845 0 .00046697 .00048685 126 .00050773 .00056498 0 .00046697 .00048647 0

sc2010 181908 .00049659 .00056328 0 .00044872 .00047434 137 .00049654 .00056092 0 .00044870 .00047421 108

ar2010 186211 .00063725 .00075843 0 .00056505 .00060157 138 .00062595 .00075211 0 .00056505 .00060098 19

ne2010 193352 .00073694 .00077838 0 .00062061 .00066083 204 .00072686 .00076986 0 .00062061 .00065992 0

wa2010 195574 .00041805 .00051484 0 .00031168 .00038894 102 .00041380 .00051276 0 .00031168 .00038850 32

or2010 196621 .00051806 .00061847 0 .00050410 .00053217 179 .00051793 .00061535 0 .00050196 .00053184 342

co2010 201062 .00067974 .00073333 0 .00053701 .00061163 116 .00067382 .00072937 0 .00053700 .00061060 0

la2010 204447 .00037015 .00042879 0 .00017789 .00028106 150 .00036595 .00042063 28 .00017789 .00028104 35

ia2010 216007 .00067628 .00072474 0 .00060103 .00062588 192 .00067607 .00071503 0 .00060102 .00062450 0

ks2010 238600 .00058509 .00063764 0 .00051471 .00054122 226 .00057938 .00063012 0 .00051470 .00054080 0

tn2010 240116 .00043558 .00048995 0 .00033671 .00039117 257 .00043051 .00048415 0 .00033671 .00038654 0

az2010 241666 .00057028 .00063012 0 .00044358 .00051400 164 .00057022 .00062654 1 .00044358 .00051398 130

al2010 252266 .00059056 .00065367 0 .00051345 .00054504 221 .00057567 .00065110 0 .00050982 .00054469 69

wi2010 253096 .00053361 .00063087 0 .00049104 .00053608 225 .00053185 .00062475 0 .00049099 .00053505 106

mn2010 259777 .00061880 .00066681 0 .00053576 .00055713 251 .00061709 .00066058 0 .00053535 .00055552 161

in2010 267071 .00054622 .00060620 0 .00045199 .00047775 233 .00054614 .00060081 1 .00045199 .00047766 51

ok2010 269118 .00054795 .00060312 0 .00046031 .00050643 236 .00054185 .00059924 1 .00046031 .00050597 192

va2010 285762 .00060428 .00066761 0 .00050629 .00054958 287 .00060130 .00066431 1 .00050629 .00054526 129

nc2010 288987 .00033192 .00036179 0 .00029130 .00030411 267 .00033045 .00035826 1 .00029129 .00030381 79

ga2010 291086 .00041835 .00047506 0 .00036488 .00039249 224 .00041692 .00047249 74 .00036488 .00039204 445

mi2010 329885 .00050360 .00055231 0 .00009247 .00022270 217 .00050347 .00054874 1 .00009247 .00020506 72

mo2010 343565 .00055795 .00062254 0 .00044010 .00051012 310 .00054932 .00061939 1 .00044010 .00050980 82

oh2010 365344 .00055951 .00060063 0 .00047052 .00050917 358 .00055701 .00059543 2 .00047052 .00050873 116

pa2010 421545 .00034314 .00039015 0 .00026616 .00028228 398 .00034309 .00038692 1 .00026616 .00027731 0

il2010 451554 .00029503 .00031679 0 .00025204 .00026746 436 .00029324 .00031372 1 .00025204 .00026736 5

add20 2395 .09666175 .10447239 0 .06666666 .07216142 0 .08498253 .09233823 340 .06666666 .07216142 0

data 2851 .01469387 .01591328 0 .00271370 .00676232 0 .00271370 .00271370 4 .00271370 .00271370 1

3elt 4720 .00653402 .00700176 0 .00642113 .00675269 1 .00641829 .00641829 5 .00641829 .00641829 1

uk 4824 .00271821 .00333143 0 .00140745 .00217459 0 .00271739 .00318795 0 .00140745 .00216040 0

add32 4960 .00105842 .00128519 0 .00084797 .00092013 0 .00084797 .00084797 9 .00084797 .00084797 3

bcsstk33 8738 .03538192 .03702396 0 .03538192 .03672157 4 .03297368 .03386983 867 .03297368 .03364927 1310

whitaker3 9800 .00441714 .00458982 0 .00437743 .00450095 4 .00435534 .00435534 235 .00435534 .00435534 210

crack 10240 .00613173 .00661861 0 .00609432 .00647212 4 .00603940 .00604737 1211 .00603940 .00604418 1062

wing nodal 10937 .02335338 .02409075 0 .02314980 .02393522 3 .02276763 .02300116 2170 .02277213 .02301140 1978

fe 4elt2 11143 .00396124 .00398227 0 .00396124 .00396432 3 .00396124 .00396124 0 .00396124 .00396124 0

vibrobox 12328 .06313547 .06996290 0 .06313547 .06990522 1 .06257966 .06683194 1448 .06257966 .06712296 1704

4elt 15606 .00305343 .00331711 0 .00302711 .00320052 7 .00302101 .00302358 1475 .00302101 .00302350 1218

fe sphere 16386 .00797720 .00873260 0 .00797720 .00866704 5 .00785319 .00785319 43 .00785319 .00785319 48

cti 16840 .00697478 .00760394 0 .00603037 .00627024 2 .00603037 .00603037 29 .00603037 .00603037 3

memplus 17758 .13524535 .14303722 0 .11111111 .13233754 0 .12548497 .12853271 2029 .07317073 .12465939 1036

cs4 22499 .00927591 .00962395 0 .00864943 .00884077 6 .00921959 .00953506 101 .00864076 .00882310 0

bcsstk30 28924 .00675000 .00694634 0 .00564041 .00568051 20 .00660561 .00664748 1965 .00564041 .00567433 13

bcsstk32 44609 .00538981 .00584374 0 .00213062 .00276341 26 .00525500 .00562842 2184 .00213062 .00273620 102

t60k 60005 .00088178 .00103187 0 .00069385 .00073514 45 .00082876 .00098630 9 .00069385 .00073344 6

wing 62032 .00709383 .00734335 0 .00668630 .00690103 26 .00708296 .00731614 0 .00668219 .00689348 0

brack2 62631 .00199422 .00207331 0 .00185332 .00185425 36 .00185332 .00192248 1767 .00185332 .00185332 7

finan512 74752 .00062040 .00062041 0 .00062040 .00062041 15 .00062040 .00062040 0 .00062040 .00062040 0

fe tooth 78136 .00908187 .00955851 0 .00878706 .00903448 37 .00854413 .00920313 2008 .00857068 .00893257 735

fe rotor 99617 .00323856 .00331810 0 .00307533 .00314188 50 .00319580 .00322448 2081 .00303132 .00313967 0

598a 110971 .00332544 .00336420 0 .00325673 .00327184 80 .00323883 .00327078 1707 .00325666 .00326880 151

fe ocean 143437 .00086985 .00120139 0 .00078223 .00090825 65 .00079436 .00095124 2069 .00078223 .00083713 1255

144 144649 .00620481 .00636608 0 .00611994 .00622039 99 .00611787 .00620977 1444 .00610660 .00620893 206

wave 156317 .00853325 .00865172 0 .00830287 .00845742 81 .00828070 .00838166 2315 .00828692 .00838030 764
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Instance Metis [24] Metis+MQI [25] Metis+SaBTS (Metis+MQI)+SaBTS

Graph |V | Φbest Φavg t(s) Φbest Φavg t(s) Φbest Φavg t(s) Φbest Φavg t(s)

m14b 214765 .00233434 .00239063 0 .00230381 .00232866 201 .00230194 .00231493 818 .00229901 .00232534 416

auto 448695 .00314960 .00321218 1 .00298571 .00301454 412 .00314093 .00318418 1196 .00298571 .00301256 120

soc 52 52 .16666666 .16666666 0 .15942028 .15942028 0 .13108614 .13108614 0 .13108614 .13108614 0

gplus 200 200 .06748466 .08646393 0 .02040816 .03362385 0 .02040816 .02040816 1 .02040816 .02040816 0

gplus 500 500 .04083769 .04852110 0 .02040816 .03341495 0 .02040816 .02040816 11 .02040816 .02040816 6

pokec 500 500 .03086419 .03558025 0 .01345291 .01582565 0 .01345291 .01345291 23 .01345291 .01345291 1

gplus 2000 2000 .05100039 .05680885 0 .05100039 .05310422 0 .04941531 .04989255 1363 .04941531 .04998752 1553

pokec 2000 2000 .02487028 .02593958 0 .02478740 .02514801 0 .02470694 .02471176 1136 .02470694 .02470694 136

gplus 10000 10000 .06557797 .07215977 0 .03846153 .03896320 0 .06330439 .06532798 5 .03846153 .03896320 0

pokec 10000 10000 .08301660 .08981484 0 .01587301 .01587301 0 .05156276 .05301195 1722 .01587301 .01587301 0

gplus 20000 20000 .09313357 .09955761 0 .02222222 .03093231 0 .08468862 .08686201 1253 .02222222 .03093231 0

pokec 20000 20000 .04300580 .04357731 0 .02857142 .02857142 0 .04154982 .04182691 2986 .02857142 .02857142 0

gplus 50000 50000 .10161919 .11085562 0 .02608695 .02652888 2 .07858296 .08095789 23 .02608695 .02645962 0

pokec 50000 50000 .05240102 .05454230 0 .05220723 .05399464 4 .05170981 .05320730 1709 .05164592 .05300030 1875

Table A.2
The statistical results (p-values) from the Wilcoxon signed-rank test with a confi-
dence level of 99% of different pairwise comparisons for the five datasets.

Algorithm pair Indicator
Clustering Delaunay Redistricting Walshaw Social

p-value p-value p-value p-value p-value

Greedy+SaBTS vs.
StS-AMA [12]

Φbest 4.61e-01 3.90e-03 2.73e-08 1.10e-05 2.50e-01

Φavg 4.32e-01 3.90e-03 4.07e-06 2.88e-06 7.34e-01

Greedy+SaBTS vs.
Metis [24]

Φbest 6.71e-03 8.20e-01 1.65e-08 1.98e-01 1.22e-02

Φavg 1.03e-02 4.96e-01 1.65e-08 4.95e-02 1.22e-02

Metis+SaBTS vs.
Metis [24]

Φbest 2.44e-04 3.91e-03 1.65e-08 3.79e-06 4.88e-04

Φavg 6.10e-05 3.91e-03 1.65e-08 1.73e-06 4.88e-04

Metis+SaBTS vs.
Metis+MQI [25]

Φbest 4.14e-01 4.26e-01 1.65e-08 3.61e-01 2.50e-01

Φavg 1.88e-01 3.01e-01 1.65e-08 5.72e-01 5.19e-01

(Metis+MQI)+SaBTS
vs. Metis [24]

Φbest 1.22e-04 3.91e-03 1.65e-08 3.79e-06 4.88e-04

Φavg 6.10e-05 3.91e-03 1.65e-08 1.73e-06 4.88e-04

(Metis+MQI)+SaBTS
vs. Metis+MQI [25]

Φbest 7.81e-03 7.81e-03 3.61e-04 2.93e-04 1.25e-01

Φavg 4.88e-04 3.91e-03 1.64e-08 2.56e-06 7.81e-03

(Metis+MQI)+SaBTS
vs. Metis+SaBTS

Φbest 1.09e-01 9.38e-02 1.65e-08 5.62e-03 3.13e-02

Φavg 7.81e-02 9.38e-02 1.65e-08 1.38e-03 2.34e-02
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Table A.3
The geometric mean of the best and average conductance values (Gbest and Gavg)
of Metis, Metis+MQI, Metis+SaBTS and (Metis+MQI)+SaBTS on five datasets.
A small value indicates a better performance. The best of the Gbest values for each
dataset is highlighted in boldface, while the best of the Gavg values for each dataset
is indicated in italic.

Dataset
Metis [24] Metis+MQI [25] Metis+SaBTS (Metis+MQI)+SaBTS

Gbest Gavg Gbest Gavg Gbest Gavg Gbest Gavg

Clustering .06627171 .07595360 .04158546 .04814845 .05982594 .06583945 .03902536 . 04359008

Delaunay .00497424 .00529025 .00475492 .00501473 .00483327 .00495440 .00471231 .00480691

Redistricting .00062224 .00069732 .00046329 .00053508 .00061756 .00069047 .00046315 .00053315

Walshaw .00605934 .00650062 .00509474 .00559503 .00550456 .00569929 .00499503 .00528675

Social .05979176 .06549718 .03028849 .03461953 .04316621 .04374305 .02968546 .03067951
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