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ABSTRACT11

The Clustered Traveling Salesman Problem (CTSP) is a variant of the popular Traveling Salesman
Problem (TSP) arising from a number of real-life applications. In this work, we explore a transformation
approach that solves the CTSP by converting it to the well-studied TSP. For this purpose, we first
investigate a technique to convert a CTSP instance to a TSP and then apply powerful TSP solvers
(including exact and heuristic solvers) to solve the resulting TSP instance. We want to answer the
following questions: How do state-of-the-art TSP solvers perform on clustered instances converted from
the CTSP? Do state-of-the-art TSP solvers compete well with the best performing methods specifically
designed for the CTSP? For this purpose, we present intensive computational experiments on various
benchmark instances to draw conclusions.
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INTRODUCTION22

The Clustered Traveling Salesman Problem (CTSP), originally proposed by Chisman (1975), is an23

extension of the classic Traveling Salesman Problem (TSP) where the cities are grouped into clusters24

and the cities of each cluster must be visited contiguously. Formally, the problem is defined on a25

symmetric complete weighted graph G = (V,E) with a set of vertices V = {1,2, ...,n} and a set of26

edges E = {(i, j) : i, j ∈ V, i 6= j}. The vertex set V is partitioned into disjoint clusters V1,V2, ...,Vm27

(V1∪V2∪ ...∪Vm =V ). Let C be an n×n symmetric distance matrix such that ci j (i, j = 1,2...,n, i 6= j)28

represents the travel cost between two corresponding vertices i and j, and satisfies the triangle inequality29

rule. The objective of the CTSP is to find a minimum cost Hamiltonian circuit over all the vertices, where30

the vertices of each cluster must be visited consecutively.31

The CTSP can be formally modelled as the following integer programming model described in32

Chisman (1975), where without loss of generality, the salesman is assumed to leave origin city 1 and33

return to 1.34

min f =
n

∑
i=1

n

∑
j=1

ci jxi j (1)

subject to

n

∑
j=1

xi j = 1 ∀i ∈V (2)

n

∑
i=1

xi j = 1 ∀ j ∈V (3)
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Figure 1. A feasible solution for an instance of the CTSP

ui−u j +(n−1)xi j ≤ n−2 2≤ i 6= j ≤ n (4)

∑
i∈Vk

∑
j∈Vk

xi j = |Vk|−1 ∀Vk ⊂V, |Vk| ≥ 1,k = 1,2, ...,m (5)

xi j ∈ {0,1} ∀i, j ∈V (6)

ui ≥ 0 2≤ i≤ n (7)

In this model, the binary variable xi j = 1 if city j is visited immediately after city i; xi j = 0 otherwise.35

Objective function (1) seeks to minimize the total distance traveled by the salesman. Constraints (2) and36

(3) ensure that each city is visited exactly once. Constraints (4) eliminate subtours, while constraints (5)37

guarantee that the cities of each cluster are visited contiguously. The remaining constraints are related to38

the decision variables.39

The above subtour elimination constraints (4) are called MTZ formulation (Miller et al., 1960).40

Although MTZ is simple to implement, it provides a very poor linear relaxation (Campuzano et al.,41

2020). Many compact formulations have been proposed to replace Constraints (4). According to the42

literature, a multi-commodity flow formulation (Wong, 1980; Claus, 1984) was proven to provide a strong43

linear relaxation, without compromising its simplicity. In the multi-commodity flow formulation, let44

k = 2,3, ...,n be n−1 commodities, and let yk
i j be a nonnegative decision variable which represents the45

flow on the arc (i, j)∈ E for the commodity k from city 1 to city k. Then, another alternative mathematical46

model for the CTSP is constituted of the objective function (1) and the constraints (2), (3), (5), (6) along47

with the following subtour elimination constraints:48

0≤ yk
i j ≤ xi j ∀i, j,k ∈V,k 6= 1 (8)

n

∑
i=2

yk
1i = 1 ∀k ∈V \{1} (9)

n

∑
i=2

yk
i1 = 0 ∀k ∈V \{1} (10)

n

∑
i=1

yk
ik = 1 ∀k ∈V \{1} (11)

n

∑
j=1

yk
k j = 0 ∀k ∈V \{1} (12)
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n

∑
i=1

yk
i j−

n

∑
i=1

yk
ji = 0 ∀ j,k ∈V \{1}, j 6= k (13)

Constraints (8) only allow flow in an arc (i, j) if and only if it is traversed by the salesman (i.e.,49

xi j = 1). Constraints (9) ensure that city 1 is the source of one unit of each commodity k ∈V \{1} and50

Constraints (10) avoid that the flow of each commodity k ∈ V \{1} returns to city 1. Constraints (11)51

and (12) guarantees that one flow unit of commodity k enters to city k and it does not leave the city k.52

Constraints (13) ensure flow conservation at each city, apart from city 1 and for commodity k at city k.53

One notices that the CTSP is equivalent to the TSP when there is a single cluster or when each cluster54

contains exactly one vertex. Therefore, the CTSP is NP-hard, and thus computationally challenging in the55

general case. From a practical perspective, the CTSP is a versatile modeling tool for several operational56

research applications arising in a wide variety of areas, including automated warehouse routing (Chisman,57

1975), emergency vehicle dispatching (Weintraub et al., 1999), production planning (Lokin, 1979), disk58

defragmentation (Laporte and Palekar, 2002), and commercial transactions with supermarkets, shops59

and grocery suppliers (Ghaziri and Osman, 2003). As a result, effective solution methods for the CTSP60

can help to solve these practical problems. Indeed, the computational challenge and the wide range61

of applications of the problem have motivated a variety of approaches that are reviewed in Section 1.62

However, unlike the classic TSP problem for which many powerful methods have been introduced in the63

past decades, studies on the CTSP are still quite limited.64

Moreover, the CTSP belongs to the large class of traveling salesman problems. Among the TSP65

variants, the generalized traveling salesman problem (GTSP) (Srivastava et al., 1969; Cosma et al., 2021)66

and the family traveling salesman problem (FTSP) (Morán-Mirabal et al., 2014; Pop et al., 2018) share67

similarities with the CTSP. In the GTSP, the set of vertices is divided into clusters and the objective is to68

find a minimum-cost tour passing through one vertex from each cluster. In the FTSP, the set of vertices is69

also divided into clusters (called families) and the objective is to visit a predefined number of vertices in70

each family at a minimum cost.71

In this work, we investigate the problem transformation approach proposed in Chisman (1975), which72

converts the CTSP to the TSP and assess the interest of popular modern TSP solvers for solving the73

resulting TSP instances. To our knowledge, this is the first large computational study testing modern74

TSP solvers on solving the CTSP. The work is motivated by the following considerations. First, intensive75

researches on the TSP have led to the development of many very powerful solvers. Thus, it is interesting76

to know whether we can take advantage of these solvers to effectively solve the CTSP. Second, the TSP77

instances converted from the CTSP are characterized by their cluster structures. These instances constitute78

interesting test cases for existing TSP solvers. This work aims thus to answer the following questions.79

1. How do state-of-the-art exact TSP solvers perform on clustered instances converted from the CTSP?80

2. How do state-of-the-art inexact (heuristic) TSP solvers perform on clustered instances converted81

from the CTSP?82

3. Do state-of-the-art TSP solvers compete well with the best performing methods specifically designed83

for the CTSP?84

To our knowledge, Questions 1 and 3 have never been investigated in the literature. Regarding85

Question 2, two previous studies (Neto, 1999; Helsgaun, 2014) are of interest. However, they are limited86

because they only concern one TSP algorithm, i.e., the local search based LKH solver (Helsgaun, 2009),87

while ignoring other powerful TSP solvers like GA-EAX (Nagata and Kobayashi, 1997) and Concorde88

(Applegate et al., 2006a). Answering these questions helps to enrich the state-of-the-art of solving the89

CTSP and gain novel knowledge on using modern TSP methods to solve new problems. Finally, we90

mention that the transformation approach was also tested in Lokin (1979) and Jongens and Volgenant91

(1985). However, these studies are clearly outdated and don’t provide useful information as to the92

questions we want to investigate.93

The remainder of this paper is organized as follows. Section 1 reviews existing solution methods for94

the CTSP. Section 2 presents the transformation of the CTSP to the TSP and three powerful TSP methods95

(solvers). Section 3 shows computational studies of the TSP solvers applied to the clustered instances and96

comparisons with existing algorithms dedicated to the CTSP. Finally, concluding remarks are provided in97

Section 5.98
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1 LITERATURE REVIEW ON EXISTING SOLUTION METHODS99

There are several dedicated solution algorithms for solving the CTSP that are based on exact, approxima-100

tion, and metaheuristic approaches.101

Along with the introduction of the CTSP, Chisman (1975) proposed a branch-and-bound algorithm to102

solve the integer programming model presented in the Introduction section. Jongens and Volgenant (1985)103

developed an algorithm based on the 1-tree relaxation to provide lower bounds as well as a heuristic104

to find satisfactory upper bounds. Mestria et al. (2013) used the mathematical formulation of Chisman105

(1975) and IBM Parallel CPLEX solver (version 11.2) to obtain lower bounds for medium CTSP instances106

(|V | ≤ 1000).107

Various a-approximation algorithms (Anily et al., 1999; Gendreau et al., 1997; Guttmann-Beck et al.,108

2000) have been developed for the CTSP. These approximation algorithms require either the starting109

and ending vertices in each cluster or a prespecified order of visiting the clusters in the tour as inputs,110

and solve the inter-cluster and intra-cluster problems independently. Bao and Liu (2012) presented a111

new 2.17-approximation algorithm where no starting and ending vertices were specified. Later, Bao et al.112

(2017) provided a 2.5-approximation algorithm for another version of the CTSP where the starting vertex113

of each cluster is given while the ending vertex is not specified. Recently, Kawasaki and Takazawa (2020)114

improved the approximation ratio for the CTSP by incorporating a recent approximation algorithm for the115

TSP by Zenklusen (2019).116

Given that the CTSP is a NP-hard problem, a number of heuristic and metaheuristic algorithms have117

also been investigated, which aim to provide high-quality solutions in acceptable computation time,118

but without provable optimal guarantee of the attained solutions. For example, Laporte et al. (1997)119

presented a tabu search algorithm to solve a particular case of the CTSP, where the clusters are visited in120

a prespecified order. Potvin and Guertin (1996) developed a genetic algorithm for the CTSP that finds121

inter-cluster paths and then intra-cluster paths. Later, Ding et al. (2007) proposed a two-level genetic122

algorithm for the CTSP. In the first level, a genetic algorithm is used to find the shortest Hamiltonian cycle123

for each cluster. In the second level, a modified genetic algorithm is applied to merge the Hamiltonian124

cycles of all the clusters into a complete tour.125

In addition to these early heuristic algorithms, Mestria et al. (2013) investigated GRASP (Greedy126

Randomized Adaptive Search Procedure) with path-relinking. Among the six proposed heuristics, one127

heuristic corresponds to the traditional GRASP procedure whereas the other heuristics include different128

path relinking procedures. Mestria (2016) studied a hybrid heuristic, which is based on a combination129

of GRASP, Iterated Local Search (ILS) and Variable Neighborhood Descent (VND). Recently, Mestria130

(2018) presented another complex hybrid algorithm (VNRDGILS) which mixes GRASP, ILS, and Variable131

Neighborhood Random Descent to explore several neighborhoods. According to the computational results132

reported in Mestria et al. (2013); Mestria (2016, 2018), these GRASP-based algorithms are among the133

best performing heuristics specially designed for the CTSP currently available in the literature. In addition,134

Hà et al. (2022) proposed a metaheuristic method based on the ILS framework with problem-tailored135

operators for a version of the CTSP where the order of visiting the clusters is prespecified.136

Existing studies have significantly contributed to better solving the CTSP. According to the computa-137

tional results reported in the literature, due to the NP-hardness of the problem, only small CTSP instances138

were able to be solved to optimality with the exact algorithms. The approximation algorithms provide139

solutions for the CTSP within a given approximation factor. However, due to the high approximation140

factors involved (e.g., 5/3 (Anily et al., 1999), 3/2 Gendreau et al. (1997), 2.17 (Bao and Liu, 2012),141

and 2.5 (Bao et al., 2017)), these approximation algorithms are not practical for solving large instances.142

To deal with large CTSP instances, heuristic and metaheuristic algorithms are often preferred to find143

sub-optimal solutions within an acceptable computation time.144

2 SOLVING THE CTSP VIA TSP METHODS145

2.1 Transformation of the CTSP to the TSP146

As the literature review shows, a number of dedicated solution approaches have been developped to147

solve the CTSP. However, one observes that these approaches have difficulty producing robustly and148

consistently high-quality solutions for large-scale CTSP instances with tens of thousands of vertices.149

Moreover, the best performing CTSP methods (e.g., VNRDGILS (Mestria, 2018), HHGILS (Mestria,150

2016), and GPR1R2 (Mestria et al., 2013)) are computationally expensive (e.g., requiring 1080 seconds151
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to find good solutions for instances with 1173≤ n≤ 2000).152

On the other hand, problem transformation has been highly successful in solving several difficult153

optimization problems such as the Latin square completion problem via graph coloring (Jin and Hao,154

2019) and the winner determination problem via weighted maximum cliques (Wu and Hao, 2015). It155

is known that the CTSP can be transformed to the conventional TSP (Chisman, 1975). Therefore, in156

principle, the CTSP can be solved by any TSP algorithm. However, to our knowledge, no computational157

study on using problem transformation to solve the CTSP has been presented in the literature. This work158

fills the gap by exploring the problem transformation approach of Chisman (1975) and testing three159

representative state-of-the-art TSP solvers including both exact and inexact solution approaches.160

The basic idea of transforming the CTSP to the TSP is to add a large artificial cost M to all inter-cluster161

edges in order to force the salesman to visit all the cities within each cluster before leaving it.162

Given a CTSP instance G = (V,E) with distance matrix C, we define a TSP instance G
′
= (V

′
,E
′
)163

with distance matrix C
′

as follow.164

• Define V =V
′

and E = E
′
.165

• Define the travel distance c
′
i j in G

′
by

c
′
i j =

{
ci j +M if i and j belong to different clusters
ci j otherwise

Obviously, if the value of M is sufficiently large, then the best Hamiltonian cycle in G
′

is a feasible166

CTSP solution in G, in which the vertices of each cluster are visited contiguously.167

Property. An optimal solution to the TSP instance corresponds to an optimal solution to the original168

CTSP instance.169

Proof. Let S
′

and S be the optimal solutions of the TSP instance G
′

and the original CTSP instance
G, respectively. Let m be the number of clusters of G. To minimize the total travel cost, there are only
m inter-cluster edges in S

′
. Therefore, S

′
is a feasible CTSP solution for G and satisfies the following

relation:
f (S

′
) = f (S)+m×M

Obviously, S
′

corresponds to S by subtracting the constant m×M.170

2.2 Solution methods for the TSP171

There are numerous solution methods for the TSP. In this work, we adopt three very powerful TSP solvers172

whose codes are publicly available, including one exact solver (Concorde (Applegate et al., 2006a)) and173

two inexact (heuristic) solvers (LHK-2 (Helsgaun, 2009) and GA-EAX (Nagata and Kobayashi, 2013)).174

Notice that the TSP instance converted from a CTSP instance has a particular feature that the vertices175

are grouped into clusters and the distance between each pair of vertices within a same cluster is in general176

small, while this distance is large for two vertices from different clusters. Along with the presentation177

of the TSP solvers, we discuss their suitability for solving such clustered instances each time this is178

appropriate.179

2.2.1 Exact Concorde solver180

Concorde is an advanced exact TSP solver for the symmetric TSP based on Branch-and-Bound and181

problem specific cutting plane methods (Applegate et al., 2006a). It makes use of a specifically designed182

QSopt linear programming solver. According to Hoos and Stützle (2014), Concorde is the best performing183

exact algorithm for the TSP. As shown in Applegate et al. (2006b), Concorde can solve benchmark184

instances from TSPLIB with up to 1000 vertices to optimality within a reasonable computation time and185

it also solves large TSP instances at the cost of a long computation time.186

The run time behavior of Concorde has been investigated essentially on random uniform instances.187

For instance, Applegate et al. (2006b) investigated the run time required by Concorde for solving random188

uniform instances and indicated that the run time increases as an exponential function of instance size |V |.189

Hoos and Stützle (2014) further demonstrated that the median run time required by Concorde scales with190

instance size |V | of the form ab
√
|V | (a≈ 0.21,b≈ 1.24) on the widely studied class of uniform random191

TSP instances. To our knowledge, no study has been reported concerning the behavior of Concorde on192

sharply clustered instances. As a result, the current study will provide useful information on this issue.193
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2.2.2 Lin-Kernighan based heuristic solver194

According to the TSP literature, a majority of the best performing TSP heuristic algorithms is based on195

the Lin-Kernighan (LK) heuristic (Lin and Kernighan, 1973) and its extensions. The LK heuristic is a196

variable-depth k-opt local search procedure, where the k-opt neighborhood is partially searched with a197

smart pruning strategy. LK explores the most promising neighbors within the k-opt neighborhood, that is,198

the set of feasible tours obtained by removing k edges and adding other k edges such that the resulting tour199

is feasible. Several improved versions of the basic LK heuristic have been introduced within the iterated200

local search framework (e.g., Applegate et al. (2003); Helsgaun (2000, 2009); Martin et al. (1991)).201

Among these iterated LK algorithms, Helsgaun’s LKH (Helsgaun, 2000, 2009) is the uncontested202

state-of-the-art heuristic TSP solver. Helsgaun (2000) developed an iterated version of LK together203

with an efficient implementation of the LK algorithm, known as the Lin-Kernighan-Helsgaun (LKH-1)204

heuristic, where a 5-opt move is used as the basic move to broaden the search and an α-measure method205

based on sensitivity analysis of minimum spanning trees is used to restrict the search to relative few of the206

α-nearest neighbors of a vertex to speed up the search process. Later, Helsgaun (2009) further extended207

LKH-1 by developing a highly effective implementation of the k-opt procedure (called LKH-2), which208

eliminated many of the limitations and shortcomings of LKH-1. Furthermore, LKH-2 specially extended209

the data structures of LKH-1 to solve very large TSP instances. The main features of LKH-2 include (1)210

using sequential and non-sequential k-opt moves, (2) using several partitioning procedures to partition211

a large TSP instance into smaller subproblems, (3) using a tour merging procedure to generate a better212

solution from two or more local optimum solutions, and (4) applying a backbone-guided search to guide213

the local search to make biased local perturbations. LKH-2 is considered to be one of most effective214

heuristic methods for finding very high-quality solutions for various large TSP instances (Dubois-Lacoste215

et al., 2015).216

However, the LK algorithm and any LK-based algorithms require much longer running times on217

clustered instances of the TSP than on uniformly distributed instances (Neto, 1999). The main reason218

why the LK heuristic stumbles on clustered instances is that relatively large inter-cluster edges serve219

as bait edges. During the LK search, when removing such a bait edge, the LK heuristic is tricked into220

long and often fruitless searches. More precisely, each time an edge bridging two clusters is removed,221

the cumulative gain rises enormously, and the procedure is encouraged to perform very deep searches.222

To alleviate the problem, a cluster compensation technique was proposed in Neto (1999) for the Lin-223

Kernighan heuristic to limit its performance degradation. Helsgaun (2009) showed that the LKH-2224

algorithm performs significantly worse on sharply clustered instances than on uniform random instances.225

To remedy this difficulty, Helsgaun (2014) considered the unusual structure of clustered instances, and226

adjusted the parameter settings of LKH-2 to better solve the clustered instances. The resulting solver is227

named CLKH, which is used in this study.228

2.2.3 Edge assembly crossover based genetic algorithm229

Population-based evolutionary algorithms are another well-known approach for the TSP. A popular exam-230

ple is the powerful genetic algorithm introduced by Nagata and Kobayashi (2013). This algorithm (called231

GA-EAX, see Algorithm 1) is characterized by its powerful edge assembly crossover (EAX) operator232

introduced in Nagata and Kobayashi (1997); Nagata and Soler (2012) with an efficient implementation233

and a cost-effective selection strategy for maintaining population diversity.234

Algorithm 1 GA-EAX for the CTSP
Require: TSP instance G, population size p; number of offspring solutions r generated from each parent pair
Ensure: best solution S∗

1: POP = {P1,P2, ...,Pp}← Initial Population(G)
2: while stopping condition is not met do
3: Randomly shuffle the solutions in POP
4: for i = 1,2, ..., p do
5: S1← Pi, S2← Pi+1 /* Note: Pp+1 = P1 */
6: (o1, ...,or)← EAX(S1,S2)
7: Pi← Select Best(o1, ...,or,S1)
8: end for
9: end while

10: S∗← Best(POP)
11: Return S∗
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The key EAX operator generates, from two high-quality tours (parents), one offspring tour by first235

inheriting the edges from the parents to construct disjoint subtours and then connecting the subtours with236

new edges in a greedy fashion (similar to building a minimal spanning tree). Let SA and SB be the parents,237

EAX operates as follows (see Fig. 2 for an example):238

SA

SB

GAB
AB-cycles E-set

Intermediate Offspring

Figure 2. Illustrative example of the EAX crossover operator

1. Generate an undirected multigraph defined as GAB = (V,EA∪EB), where EA and EB are the sets of239

edges of parents SA and SB, respectively.240

2. Extract all AB-cycles from GAB. An AB-cycle is defined as a cycle in GAB, such that edges of EA241

and edges of EB are alternately linked.242

3. Construct an E-set by selecting AB-cycles according to a given selection strategy (e.g., single,243

k-multiple, block and block2 (Nagata and Kobayashi, 2013)), where an E-set is a set of AB-cycles.244

4. Copy parent SA to an intermediate solution o. Then, remove the edges of EA in the E-set from o245

and add those of EB in the E-set to o. This leads to an intermediate solution o with one or more246

subtours.247

5. Connect all the subtours in o with new short edges to generate a complete tour (a feasible offspring248

solution) by using a greedy heuristic.249

Note that different versions of EAX can be developed by using different selection strategies of250

AB-cycles for constructing E-sets. The GA-EAX algorithm employs the single and block2 strategies to251

generates offspring solutions from parent solutions. To maintain a healthy population diversity, GA-EAX252

also uses an edge entropy measure to select the solution to be used to replace a parent in the population.253

Other studies (e.g., Hains et al. (2012)) also indicated the usefulness of edge-assembly-like crossovers254

for solving clustered instances of the TSP. As shown in the next section, the EAX-based genetic algorithm255

performs remarkably well on all the clustered instances transformed from the CTSP.256

3 COMPUTATIONAL EXPERIMENTS257

In this section, we evaluate the capacity of the TSP solvers presented in Section 2.2 to solve the CTSP258

via its transformation to the TSP. For this purpose, we examine their qualitative performances and run259

time efficiencies on various benchmark instances and make comparisons with the best dedicated CTSP260

algorithms in the literature.261
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3.1 Benchmark instances262

Our computational assessments are based on three sets of 73 benchmark instances with 101 to 24,978263

vertices. Sets 1 and 2 include 20 medium instances (101≤ |V | ≤ 1000) and 15 large instances (1173≤264

|V | ≤ 2000), which are classical and widely used in the CTSP literature (e.g., Mestria et al. (2013);265

Mestria (2016, 2018)). Set 3 includes 38 large GTSP instances (1000≤ |V | ≤ 24,978) from Helsgaun266

(2014).267

Sets 1 and 2 (35 instances): These instances belong to the following six types: (1) instances taken268

from the TSPLIB (Reinelt, 1991) where the clusters are generated by using a k-means clustering algorithm;269

(2) instances created from a selection of classic TSP instances (Johnson and McGeoch, 2007), where270

the clusters are created by grouping the vertices in geometric centers; (3) instances generated by using271

the Concorde interface (Applegate et al., 2006a); (4) instances generated using the layout proposed in272

Laporte and Palekar (2002); (5) instances similar to type 2, but generated with different parameters; (6)273

instances adapted from the TSPLIB (Reinelt, 1991), where the rectangular floor plan is divided into274

several quadrilaterals and each quadrilateral corresponds to a cluster. These instances are available at275

http://www2.ic.uff.br/˜labic/conteudo/instance/.276

Set 3 (38 instances): These large instances have 1000 to 24,978 vertices and come from GTSPLIB277

for the Generalised Travelling Salesman Problem (GTSP). They were generated from TSP instances278

by using Fischetti et al.’s clustering algorithm (Fischetti et al., 1997) and tested in Helsgaun (2014) by279

considering them as CTSP instances. These instances are available at http://www.ruc.dk/˜keld/280

research/CLKH. In Helsgaun (2014), six very large instances with 31,623 to 85,900 vertices were281

also tested. We ignore these instances, because they are too large for the exact Concorde solver and the282

GA-EAX solver stops abnormally when solving these instances.283

3.2 TSP solvers and experimental protocol284

For our study, we employed three representative TSP solvers presented in Section 2.2, which are among285

the most powerful methods for the TSP in the literature.286

• Exact Concorde TSP solver1: We used version Concorde-03.12.19 and ran the solver with its287

default parameter setting with a cutoff time of 24 CPU hours per instance.288

• Inexact CLKH solver2: We used the version CLKH-1.0 which is based on the latest version 2.0.93
289

of LKH-2. The default parameter setting given in Helsgaun (2014) was adopted to run CLKH.290

Notice that to reduce its run time, the maximum number of trials (iterations) is set to 1000 in CLKH,291

while this number is set to n (instance size) by default in LKH-2.292

• Inexact GA-EAX TSP solver4: We used GA-EAX with its default parameter setting given in Nagata293

and Kobayashi (2013): p = 300, r = 30 and GA-EAX terminates if the difference between the294

average tour length and the shortest tour length in the population is less than 0.001. Following295

Kerschke et al. (2018); Kotthoff et al. (2015), we reset the random seed for GA-EAX for each run296

(which was set to a fixed value in the official implementation).297

The experiments were carried out on a computer running Linux operating system with an Intel E5-298

2670 processor (2.8 GHz and 4G RAM). Given the stochastic nature of CLKH and GA-EAX, we ran299

each algorithm 10 times for each instances while the deterministic Concorde TSP solver was run one time300

to solve each instance.301

3.3 Computational results and comparison of popular TSP solvers302

Our computational studies aim to answer the following questions: How do state-of-the-art exact TSP303

solvers perform on clustered instances converted from the CTSP? How do state-of-the-art inexact (heuris-304

tic) TSP solvers perform on clustered instances converted from the CTSP?305

The results of the three TSP solvers (Concorde, CLKH, GA-EAX) on the 20 medium and 15 large306

CTSP benchmark instances are summarized in Table 1 (Set 1) and Table 2 (Set 2). Columns 1 to 3 show307

the basic information of each instance: the instance name (Instance), the number of vertices (|V |) and308

1http://www.math.uwaterloo.ca/tsp/concorde/index.html
2http://www.ruc.dk/˜keld/research/CLKH
3http://akira.ruc.dk/˜keld/research/LKH/
4https://github.com/sugia/GA-for-TSP
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the number of clusters (m). Column 4 gives the optimal objective value reported by the exact Concorde309

TSP solver, followed by the required run time in seconds. For both the CLKH and GA-EAX solvers,310

we show the best (Gapbest) and average (Gapavg) results over 10 independent runs in the form of the311

percentage gap to the optimal solution, as well as the average run time in seconds. If the best solution312

over 10 independent runs equals the optimal solution obtained with the exact Concorde TSP solver, the313

corresponding cell in column Gapbest shows ‘=’ along with the number of runs that succeeded in finding314

the optimal solution. Finally, row ‘Avg.’ provides the average run time in seconds for each approach, and315

the average gap between the average objective values obtained with CLKH/GA-EAX and the optimal316

values obtained with the Concorde TSP solver.317

Table 1. Computational results of the TSP solvers Concorde, CLKH and GA-EAX on medium CTSP
instances (Set 1).

Concorde CLKH GA-EAX
Instance |V | m Opt. t(s) Gapbest Gapavg t(s) Gapbest Gapavg t(s)

i-50-gil262 262 50 135431 1.9 =(10) 0.0000 1.3 =(10) 0.0000 1.7
10-lin318 318 10 529584 2.2 =(10) 0.0000 19.5 =(10) 0.0000 1.8
10-pcb442 442 10 537419 20.7 =(10) 0.0000 46.9 =(10) 0.0000 6.3

C1k.0 1000 10 132521027 21.9 =(9) 0.0001 128.6 =(10) 0.0000 16.3
C1k.1 1000 10 129128125 22.3 =(10) 0.0000 70.6 =(10) 0.0000 14.3
C1k.2 1000 10 142784000 69.9 0.0009 0.0009 244.6 =(9) 0.0001 17.2
300-6 300 6 8934 4.4 =(10) 0.0000 30.2 =(10) 0.0000 3.5
400-6 400 6 9045 6.7 =(10) 0.0000 26.7 =(10) 0.0000 4.4
700-20 700 20 41425 29.9 =(10) 0.0000 200.0 =(10) 0.0000 10.2
200-4-h 200 4 62777 0.6 =(10) 0.0000 5.4 =(10) 0.0000 0.9

200-4-x1 200 4 60574 1.1 =(10) 0.0000 6.5 =(10) 0.0000 0.9
600-8-z 600 8 128891 9.9 =(10) 0.0000 48.2 =(10) 0.0000 5.3

600-8-x2 600 8 128891 4.8 =(10) 0.0000 48.2 =(10) 0.0000 5.3
300-5-108 300 5 67760 1.2 =(10) 0.0000 8.5 =(10) 0.0000 2.0
300-20-111 300 20 309739 1.8 =(10) 0.0000 6.0 =(10) 0.0000 2.0
500-15-306 500 15 194818 2.6 =(10) 0.0000 37.1 =(10) 0.0000 5.2
500-25-308 500 25 365447 4.4 =(10) 0.0000 10.1 =(10) 0.0000 5.4
25-eil101 101 25 23671 0.5 =(10) 0.0000 0.4 =(10) 0.0000 0.8
42-a280 280 42 129645 2.3 =(10) 0.0000 2.4 =(10) 0.0000 1.7

144-rat783 783 144 914228 70.2 =(10) 0.0000 14.6 =(10) 0.0000 9.4
Avg. 14.0 0.0001 47.8 0.0000 5.7

Table 2. Computational results of the TSP solvers Concorde, CLKH and GA-EAX on large CTSP
instances (Set 2).

Concorde CLKH GA-EAX
Instance |V | m Opt. t(s) Gapbest Gapavg t(s) Gapbest Gapavg t(s)

49-pcb1173 1173 49 61600 5638.3 0.6250 1.0519 1065.8 =(4) 0.0326 35.0
100-pcb1173 1173 100 63382 588.3 =(7) 0.0066 63.2 =(8) 0.0013 32.5
144-pcb1173 1173 144 62142 38.4 =(10) 0.0000 25.8 =(10) 0.0000 18.6
10-nrw1379 1379 10 58783 562.9 =(10) 0.0000 174.9 =(6) 0.0070 26.8
12-nrw1379 1379 12 59129 58.5 =(10) 0.0000 39.7 =(9) 0.0007 27.6
1500-10-503 1500 10 11116 65.5 =(5) 0.0225 603.6 =(10) 0.0000 28.4
1500-20-504 1500 20 15698 40.7 =(10) 0.0000 167.9 =(5) 0.0172 34.5
1500-50-505 1500 50 22900 67.0 =(7) 0.0476 178.8 =(5) 0.0044 35.1

1500-100-506 1500 100 29799 108.7 =(6) 0.0228 58.3 =(8) 0.0020 39.5
1500-150-507 1500 150 34068 114.7 =(10) 0.0000 44.4 =(10) 0.0000 32.3

2000-10-a 2000 10 105360 7214.3 0.0038 0.0155 401.9 0.0826 0.1167 45.3
2000-10-h 2000 10 33708 812.7 =(9) 0.0006 229.9 =(10) 0.0000 35.6
2000-10-z 2000 10 33509 200.9 =(10) 0.0000 160.1 =(9) 0.0003 37.3

2000-10-x1 2000 10 33792 1325.4 =(4) 0.0213 485.3 =(6) 0.0136 35.6
2000-10-x2 2000 10 33509 170.9 =(10) 0.0000 160.1 =(10) 0.0000 39.6

Avg. 1133.8 0.0793 257.3 0.0131 33.6

From Tables 1-2, we can make the following observations:318

First, the exact Concorde TSP solver performs very well on these 35 instances and is able to solve319

all of them exactly. Specifically, the 20 medium instances can be solved easily in a short run time (an320

average of about 14 seconds). The 15 large instances are more difficult and the run time needed to solve321

these instances increases considerably (an average of 1133.8 seconds, reaching 7214.3 seconds for the322

most difficult instance).323

Second, the CLKH solver performs globally very well on these 35 instances. For the 20 medium324

instances, CLKH attains all the optimal solutions but one with an average run time of 47.8 seconds. For325

the 15 large instances, CLKH reaches the optimal solutions for 13 instances with an average run time of326

257.3 seconds.327

Third, the GA-EAX solver performs remarkably well by attaining the optimal values for all 35328

instances but one. For the 20 medium instances, GA-EAX consistently hits the optimal solutions for each329

of its 10 run (except for one instance for which it has a hit of 9 out of 10). The average run time is only330

5.7 seconds for the medium instances and 33.6 seconds for the large instances. Compared to Concorde331

and CLKH, GA-EAX is thus extremely time efficient. Moreover, contrary to the Concorde and CLKH332

solvers, the computation time required by GA-EAX remains very stable across the instances of the same333
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set, indicating a high robustness and scalability of this solver.334

Table 3. Computational results of the TSP solvers Concorde, CLKH and GA-EAX on large GTSP
instances (Set 3).

CLKH GA-EAX
Instance |V | m Optimum Concorde’s run-time Gapbest Gapavg t(s) Gapbest Gapavg t(s)
10C1k.0 1000 10 12139627 23.5 =(9) 0.0016 194.5 =(10) 0.0000 16.1
200C1k.0 1000 200 11929315 17.4 =(10) 0.0000 64.7 =(10) 0.0000 15.6
200E1k.0 1000 200 24468822 66.2 =(8) 0.0008 27.7 =(10) 0.0000 15.1

49usa1097 1097 49 77583052 51.1 =(7) 0.0069 128.6 =(10) 0.0000 23.7
235pcb1173 1173 235 59796 65.5 =(9) 0.0151 36.4 =(10) 0.0000 16.4
259d1291 1291 259 55962 8402.5 0.0286 0.0484 51.7 =(7) 0.0064 17.3
261rl1304 1304 261 261132 19.2 =(10) 0.0000 18.7 =(10) 0.0000 7.5
265rl1323 1323 265 280004 3361.3 0.0114 0.0381 18.9 =(8) 0.0019 10.2

276nrw1379 1379 276 60473 234.4 =(3) 0.0223 30.8 =(10) 0.0000 30.7
280fl1400 1400 280 20229 6108.5 =(3) 0.0900 504.7 =(8) 0.0178 21.5
287u1432 1432 287 162151 23029.9 =(8) 0.0136 111.6 =(10) 0.0000 26.8
316fl1577 1577 316 23023 1179.6 =(10) 0.0000 183.0 =(2) 0.2332 17.2
331d1655 1655 331 65871 142.9 =(3) 0.0797 51.8 =(7) 0.0029 24.6

350vm1748 1748 350 348244 230.9 =(2) 0.0371 88.2 =(10) 0.0000 25.7
364u1817 1817 364 61879 5675.7 =(1) 0.0739 77.7 =(6) 0.0050 31.8
378rl1889 1889 378 323040 461.5 =(1) 0.1197 29.0 =(10) 0.0000 18.1
421d2103 2103 421 (91637) - =(2) 0.0598 112.7 =(10) 0.0000 32.8
431u2152 2152 431 (69876) - =(2) 0.0215 98.5 =(10) 0.0000 37.0
464u2319 2319 464 (246707) - =(10) 0.0000 703.2 =(3) 0.0167 84.9
479pr2392 2392 479 397707 1267.5 =(4) 0.0223 102.1 =(10) 0.0000 38.0

608pcb3038 3038 608 146351 45008.4 0.0014 0.0256 115.5 =(4) 0.0018 83.2
31C3k.0 3162 31 20058457 912.6 0.0144 0.0637 249.2 =(5) 0.0211 111.6

633C3k.0 3162 633 20158425 1650.4 0.0207 0.0869 163.5 =(8) 0.0011 98.0
633E3k.0 3162 633 42697510 5239.0 0.0036 0.0226 105.7 =(3) 0.0052 115.0
759fl3795 3795 759 (29582) - =(9) 0.0068 464.0 0.2637 0.3729 53.9

893fnl4461 4461 893 (193834) - =(2) 0.0163 139.0 =(8) 0.0004 236.6
1183rl5915 5915 1183 (599096) - 0.0212 0.1666 204.3 =(9) 0.0006 146.6
1187rl5934 5934 1187 (588074) - 0.0126 0.1256 251.6 =(5) 0.0033 156.1

1480pla7397 7397 1480 (23926551) - 0.0035 0.0213 1104.7 =(2) 0.0078 388.2
100C10k.0 10000 100 (36352580) - =(1) 0.6815 1877.4 0.0525 0.4872 2318.7
2000C10k.0 10000 2000 (34574383) - 0.0369 0.2590 730.6 =(1) 0.0139 992.9
2000E10k.0 10000 2000 (75506665) - 0.0112 0.0281 635.8 =(1) 0.0013 1320.0
2370rl11849 11849 2370 (977472) - 0.0081 0.0477 757.1 =(1) 0.0028 1051.9

2702usa13509 13509 2702 (20836160) - 0.0118 0.0185 1028.6 =(1) 0.0012 2154.0
2811brd14051 14051 2811 (496827) - 0.0125 0.0213 944.7 =(1) 0.0024 2454.9
3023d15112 15112 3023 (1658091) - 0.0220 0.0296 1193.3 =(1) 0.0019 3864.0
3703d18512 18512 3703 (683839) - 0.0209 0.0328 1561.9 =(1) 0.0019 4306.8

4996sw24978 24978 4996 (893042) - 0.0237 0.0369 2076.3 =(1) 0.0008 5706.2
Avg. 0.0616 427.3 0.0319 686.0

Table 3 presents the results of the three TSP solvers on the 38 large GTSP instances of Set 3. Notice335

that the Concorde solver failed to exactly solve three instances in 24 hours, the corresponding cell (in336

parentheses) in column ‘Optimum’ indicates the best tour length (best upper bound) found by CLKH and337

GA-EAX. In this case, the percentage gaps (Gapbest and Gapavg) are calculated by using the best bound,338

and column Gapbest shows ‘=’ the number of runs for an algorithm to find the best bound.339

From Table 3, we can make the following observations. First, Concorde manages to optimally solve340

21 large GTSP instances with up to 3162 vertices with a run time ranging from 17.4 seconds to 45008.4341

seconds while its solution time is not completely consistent with the size of the problem instances. For342

the 21 instances that can be solved exactly by Concorde, CLKH attains 15 best upper bounds, while343

GA-EAX reaches all best upper bounds in less computing time. Second, for most of the instances with344

|V |< 10,000, compared with CLKH, GA-EAX has a better performance both in terms of solution quality345

and computation time. For the instances with 10,000≤ |V | ≤ 24,978, the solution quality of GA-EAX is346

better than that of CLKH in most cases, while requiring more computation time.347

To sum up, the exact Concorde solver is very efficient for the instances with up to 1000 vertices (order348

of seconds) and can even find optimal solutions for instances with up to some 3000 vertices at a price349

of more run time (order of minutes to hours). For larger instances, both inexact solvers (CLKH and350

GA-EAX) are reliable alternatives to find optimal or sub-optimal solutions with some advantages for351

GA-EAX. These heuristic solvers also perform very well on smaller instances.352

To deepen our computational study, we call upon to the performance profile, an analytic tool for353

evaluating the performances of multiple compared optimization algorithms (Dolan and Moré, 2002). The354

performance profile uses a cumulative distribution function for a performance metric, such as run time,355

objective function values, number of iterations, and so on. Precisely, let S be a set of algorithms and P be356

a set of problem instances. For a given performance metric fs,p (that is the performance of algorithm s ∈ S357

solving instance p ∈ P), the performance ratio is defined by rs,p =
fs,p

min{ fa,p:a∈S} . Then, for each algorithm358

s ∈ S, the performance function is given by ρs(τ) =
|{p∈P:rs,p≤τ}|

|P| . Thus, the value of ρs(1) corresponds to359

the fraction of problem instances that algorithm s can achieve many times the performance of the best360

algorithm (meaning the probability that the algorithm s will win over the rest of the compared algorithms).361

For a large value τ , the value of ρs(τ) indicates a high robustness of algorithm s.362
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Figure 3. Performance profiles comparing solution quality and computing time.

To make a fair and meaningful comparison with this tool, we focus on the two inexact solvers CLKH363

and GA-EAX and run each solver 10 times on each of the 73 instances. We use the software ‘perprof-py’364

(Siqueira et al., 2016) to draw the performance profiles (see Figure 3) where the quality of the solution is365

measured by the average objective value and average run time. These performance profiles tend to show366

an advantage of GA-EAX over CLKH for solving these clustered instances with up to 24,978 vertices.367

3.4 TSP solvers v.s. state-of-the-art CTSP heuristics368

Table 4. List of the reference algorithms for the CTSP

Algorithm name Reference Search strategy
VNRDGILS Mestria (2018) A hybrid heuristic based on GRASP, ILS and VNRD
HHGILS Mestria (2016) A hybrid heuristic based on GRASP, ILS and VND
GPR1R2 Mestria et al. (2013) A GRASP with Path Relinking PR1 and PR2
GPR1 Mestria et al. (2013) A GRASP with Path Relinking PR1
GPR2 Mestria et al. (2013) A GRASP with Path Relinking PR2
GPR3 Mestria et al. (2013) A GRASP with Path Relinking PR3
GPR4 Mestria et al. (2013) A GRASP with Path Relinking PR4
GRASP Mestria et al. (2013) A traditional GRASP heuristic
TLGA Ding et al. (2007) A two-level genetic algorithm

In Section 3.3, we observed that the exact Concord TSP solver and the inexact CLKH and GA-EAX369

TSP solvers are powerful tools for solving clustered TSP instances converted from the CTSP. We now370

answer the following question: Do these general TSP solvers compete well with state-of-the-art CTSP371

heuristics specially designed for the problem?372

For this purpose, we adopt GA-EAX as our representative TSP solver and compare it with three best373

performing CTSP heuristics in the literature: VNRDGILS (Mestria, 2018), HHGILS (Mestria, 2016), and374

GPR1R2 (Mestria et al., 2013). Indeed, according to the experimental studies reported in Mestria et al.375

(2013); Mestria (2016, 2018), these three heuristics perform the best among the recent CTSP heuristics376

available in the literature (see Table 4). This study is based on the 35 medium and large instances of Sets377

1 and 2 (no results for the three CTSP heuristics are available on the large GTSP instances of Set 3).378

Table 5 provides the comparative results of the GA-EAX TSP solver along with the results reported by379

the three CTSP algorithms on the medium and large instances. For each instance and algorithm, columns380

‘ fbest ’, ‘ favg’ and ‘t(s)’ show respectively the best objective value over 10 independent runs, the average381

objective value and the average run time in seconds. Furthermore, the row ‘Avg.’ shows the average382

performances for each compared algorithm, including the average percentage gap of the best/average383

result to the optimal result obtained with the Concorde TSP solver and the average run time in seconds. To384

determine whether there exists a statistically significant difference in performance between the GA-EAX385

TSP solver and each CTSP algorithm in terms of best and average results, the p-values from the Wilcoxon386
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signed-rank tests are given in the last row of Table 5. Entries with “-” mean that the corresponding387

results are not available in the literature. The best objective values obtained by the compared algorithms388

are indicated in bold if they attain the optimal solution. Notice that the results of the CTSP algorithms389

(VNRDGILS, HHGILS and GPR1R2) correspond to 10 executions per instance on a computer with 2.83390

GHz Intel Core 2 CPU and 8 GB RAM and the time limit per run was set to 720 seconds for medium391

instances and 1080 seconds for large instances.392

Table 6. Statistical results for the GA-EAX TSP solver and three state-of-the-art CTSP algorithms on
Set 1 (medium instances) and Set 2 (large instances). Dominating values are indicated in bold.

GA-EAX VNRDGILS HHGILS GPR1R2
Set 1 Optimal solutions 20/20 0/20 1/20 0/20

Average Gapbest /Gapavg (%) 0.00/0.00 0.18/0.30 0.21/0.40 0.39/0.73
Average time (s) 5.7 720.0 720.0 720.0

Set 2 Optimal solutions 14/15 0/15 0/15 0/15
Average Gapbest /Gapavg (%) 0.00/0.01 8.61/10.39 8.92/11.04 12.25/15.51
Average time (s) 33.6 1080.0 1080.0 1080.0

Table 6 summarizes the statistical results for each compared algorithm on the two sets of medium and393

large instances. The first row indicates the number of optimal solutions found by each approach. The394

average percentage gap of the best/average result from the optimal result is provided in row ‘Average395

Gapbest /Gapavg’. Finally, row ‘Average time (s)’ provides the average run time in seconds for each396

algorithm.397

From Tables 5 and 6, we observe that the GA-EAX solver significantly outperforms the three CTSP398

algorithms on the medium and large instances in terms of both the best and the average results. For399

the large instance set, the improvement gaps between the results of GA-EAX and those of the CTSP400

methods are very high, ranging from 10.39% to 15.49%. Furthermore, in terms of the average run time,401

GA-EAX is about 30 to 130 times faster than the CTSP algorithms. The above results thus indicate that402

the GA-EAX TSP solver has a strong dominance over current best performing CTSP approaches in the403

literature. In addition, the small p-values (<0.05) from the Wilcoxon signed-rank tests further confirm404

the statistically significant difference of the compared results.405

GA−EAX VNRDGILS HHGILS

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0

0.19

0.24

(a) Medium instance set

GA−EAX VNRDGILS HHGILS GPR1R2

0
5

1
0

1
5

2
0

0

10.4
10.94

15.69

(b) Large instance set

Figure 4. Boxplots of the normalized average objective values for the medium instance set and large
instance set.

To have a finer analysis of the compared algorithms, Figure 4 provides boxplot graphs to compare the406

distribution and range of the average results for each compared algorithm, except GPR1R2 for the medium407
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instances since its results on several medium instances are not available. In this figure, the average objective408

value favg of a given algorithm is normalized according to the relation y = 100∗ ( favg− fopt)/ fopt , where409

fopt is the optimal value. The plots in Figure 4 show clear differences in the distributions of the average410

results between GA-EAX and each compared CTSP heuristic, which further confirms the efficiency of the411

GA-EAX TSP solver with respect to these dedicated CTSP heuristics.412

Finally, considering the results of the Concorde solver and the CLKH solver reported in Section 3.3,413

we conclude that these TSP solvers also dominate the current best CTSP algorithms in the literature.414

4 DISCUSSION415

We now provide additional explanations regarding the behaviors of the three TSP solvers. First, given416

the NP-hard nature of the CTSP and the exponential time complexity of the exact Concorde solver, it is417

expected that the exact Concorde solver reaches its limit when the instance to be solved reaches some418

size (about 3000 vertices for the studies instances). Indeed, when the search space becomes extremely419

large, the exact Branch-and-Bound search even equipped with the best problem specific cutting plane420

methods cannot effectively enumerate all candidate solutions. In fact, such a behavior has already been421

observed in previous studies on Concorde applied to classical TSP instances (Applegate et al., 2006b;422

Hoos and Stützle, 2014). Second, regarding the two heuristic solvers CLKH and GA-EAX, the CLKH423

solver exhibits a worse performance compared to GA-EAX. As discussed in Section 2.2.2, the underlying424

LK heuristic stumbles on clustered instances because relatively large intercluster edges serve as bait edges.425

With the presence of these bait edges, the LK heuristic may be tricked into long and often fruitless search426

trajectories. Third, the GA-EAX solver performs its search mainly with its edge assembly crossover,427

which inherits the edges of the parents to construct disjoint subtours and then connect the subtours. This428

crossover proves to be meaningful and helps the algorithm avoid local optimal traps. Once again, the429

excellent behavior of GA-EAX on the CTSP instances is consistent with its performance on conventional430

TSP instances as shown in Nagata and Kobayashi (2013).431

5 CONCLUSION432

This work presents the first extensive computational study on the transformation approach of solving the433

Clustered Traveling Salesman Problem with general TSP solvers. Based on the results from the exact434

Concorde solver and the heuristic CLKH and GA-EAX solvers on 20 medium (101≤ |V | ≤ 1000) and 15435

large (1173≤ |V | ≤ 2000) CTSP benchmark instances and 38 large GTSP benchmark instances (with up436

to 24,978 vertices) available in the literature, we can draw the following conclusions.437

• The exact Concorde solver can optimally solve all medium and large CTSP instances. It also solves438

exactly large GTSP instances with up to 3162 vertices in a reasonable time, but fails to solve larger439

GTSP instances in 24 hours. Its solution time is not completely consistent with the size of the440

problem instances.441

• The heuristic CLKH and GA-EAX solvers perform very well both in terms of solution quality and442

computational efficiency. Both solvers have a good scalability, making them particularly suitable443

for solving very large instances with at least several thousands of vertices. For the tested instances444

with up to some 24,978 vertices, GA-EAX exhibits a better performance than CLKH.445

• The general TSP solvers significantly dominate, both in terms of solution quality and computational446

efficiency, the current best performing CTSP heuristics specially designed for the problem. In447

particular, the TSP heuristics are several orders of faster than the state-of-the-art CTSP heuristics to448

find much better results.449

This study indicates that the existing CTSP benchmark instances in the literature are not challenging450

for modern TSP solvers even if they remain difficult for the existing CTSP algorithms.451

Finally, given the findings of this study, it would be interesting to investigate the problem transfor-452

mation approach for solving other TSP variants that can be converted to the TSP or to a TSP variant for453

which effective algorithms are available.454
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