
A hybrid evolutionary algorithm for finding

low conductance of large graphs

Zhi Lu a, Jin-Kao Hao a,b,∗, Qinghua Wu c

aLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
bInstitut Universitaire de France, 1 rue Descartes, 75231 Paris, France

cSchool of Management, Huazhong University of Science and Technology, No.
1037, Luoyu Road, Wuhan, China

Future Generation Computer Systems,
https://doi.org/10.1016/j.future.2019.12.049

Abstract

Given an undirected graph G = (V,E) with vertex set V and edge set E, the min-
imum conductance graph partitioning problem is to partition V into two subsets
s = (A, Ā) such that its quotient cut is minimized. This problem arises in a number
of significant real-world applications; however, it is known to be NP-hard and thus
computationally challenging. We present in this work a hybrid evolutionary algo-
rithm for finding low conductance of large graphs. To ensure a high search efficiency
and efficacy, the algorithm relies on the general memetic search framework and inte-
grates specialized search components (e.g., fast local optimization with a progressive
neighborhood and quality-and-diversity based pool management). Computational
experiments on a set of 60 large-scale real-world benchmark instances in the liter-
ature with up to 23 million vertices lead to the following main findings. First, the
algorithm competes very favorably with the state-of-the-art methods and is able to
find efficiently solutions of low conductance for the tested instances. Second, the
dedicated search components are essential to ensure the high performance of the
algorithm. Third, the algorithm can further ameliorate the solutions obtained by
the well-known max-flow quotient-cut improvement algorithm. Finally, we illustrate
an application of using the algorithm to detect meaningful community structures
in complex networks.

Keywords: Conductance minimization; Cheeger number; Hybrid search; Meta-
heuristics; Large graph optimization.

∗ Corresponding author. Email address: jin-kao. hao@univ-angers.fr (J.K. Hao)

Preprint submitted to Elsevier 8 January 2020

1 Introduction

Graph partitioning is a general and convenient tool that can be used to model a
variety of practical problems. Let G = (V,E) be an undirected and connected
graph with vertex set V and edge set E ⊆ V ×V , graph partitioning generally
involves finding a partition (or a cut) (A, Ā) of V (i.e., A ∪ Ā = V and
A∩ Ā = ∅) in accordance with an optimization objective. A typical example is
the well-known graph 2-way partitioning problem that aims to minimize the
cut edges (i.e., the edges with endpoints in different partition subsets) of the
partition. In this work, we are interested in the following conductance (also
called quotient cut) criterion:

Φ(s) =
|cut(s)|

min{vol(A), vol(Ā)} (1)

where s = (A, Ā) is a cut of G, cut(s) is the set of cut edges of partition s
(called cut-set), and vol(.) is the volume of subset A or Ā given by the sum of
degrees of the vertices of the subset. Fig. 1 [28] shows a graph G with vertex
set V = {a, b, . . . , g} and a partition s = (A, Ā) with A = {c, d, f, g} and
Ā = {a, b, e}. Since vol(A) = 15, vol(Ā) = 7 and |cut(s)| = 5, this partition
has a conductance Φ(s) = 5/7 = 0.71.

Fig. 1. For the given graph G, we show a partition s = (A, Ā) where A = {c, d, f, g}
and Ā = {a, b, e} which has a conductance Φ(s) of 0.71 [28].

For a given graph G, its conductance is the lowest conductance over all pos-
sible partitions of the graph. The minimum conductance graph partitioning
problem (MC-GPP) is then to determine the conductance of a general graph.
In mathematics and statistical physics, the conductance of a graph is also
called the Cheeger constant (Cheeger number or isoperimetric number) [9].
Intuitively, finding the conductance of a graph is equivalent to minimize the
relative number of edges going out of the partition subset A with respect to
its size in terms of volume (or the size of Ā if Ā has a smaller size).

Inspired by [18], we introduce the following mathematical model to formulate

2

MC-GPP.

Let s = (A, Ā) be a partition of G, we define, for each vertex i ∈ V , a binary
variable xi such that

xi =

 1 , if i ∈ A
0 , if i ∈ Ā

(2)

We define, for each edge {i, j} ∈ E, two additional binary variables: zij = 1 if
exactly one of its endpoints i or j is in A; yij = 1 if both i and j are in A,

zij =

 1, if i ∈ A, j ∈ Ā, or i ∈ Ā, j ∈ A
0, if i, j ∈ A, or i, j ∈ Ā

(3)

yij =

 1, if i, j ∈ A
0, otherwise

(4)

Let C denote the number of the edges crossing the cut (i.e., C = |cut(s)|), let
I denote the number of edges whose endpoints are in A,

C =
∑
{i,j}∈E

zij (5)

I =
∑
{i,j}∈E

yij (6)

Then, MC-GPP can be state as the following minimization problem:

Minimize f(s) =
C

min{C + 2 ∗ I, 2 ∗ |E| − (C + 2 ∗ I)} (7)

Subject to xi − xj ≤ zij and xj − xi ≤ zji, ∀{i, j} ∈ E (8)

yij ≤ xi and yij ≤ xj, ∀{i, j} ∈ E (9)

1 ≤
∑
{i,j}∈E

yij ≤ |E| − 1 (10)

xi, xj ∈ {0, 1}, ∀i, j ∈ V (11)

zij, yij ∈ {0, 1}, ∀{i, j} ∈ E (12)

where s = (A, Ā) is a cut. Eq. (7) states the minimization objective which is
equivalent to Eq. (1). Constraint (8) ensures that the endpoints of each edge
crossing the cut are located in different subsets of the cut, while Constraint
(9) imposes that the endpoints of an edge {i, j} which does not cross the cut
belong to the same subset. Constraint (10) ensures that subset A contains

3

at least one edge with its endpoints in A, and at least one edge crossing the
cut (thus no subset is empty). Constraints (11) and (12) indicate that the
corresponding variables take binary values.

MC-GPP has various significant real-world applications. For instance, in [44],
conductance was used to identify ground-truth communities in large real-world
networks where nodes organize into densely linked communities with edges
appearing with high concentration among the members of the community. In
[8], a graph partitioning approach with minimum conductance was used to
find bottlenecks in complex networks where the existence of low conductance
minima indicates bottlenecks. Other relevant applications of MC-GPP include
clustering [10,35,39,46], community detection in complex networks [12,23,41],
analysis of protein-protein interaction networks in biology [42], and image
segmentation in computer vision [36].

Meanwhile, MC-GPP is a computationally challenging problem from the per-
spective of solution methods because it is known to be NP-hard in terms
of complexity [37]. Our literature review (see Section 2) indicates that un-
like other graph partition problems, few practical methods are available for
solving MC-GPP. Indeed, most existing methods rely on the approximation
framework. These methods are either specific to a particular application (e.g.,
clustering, community identification) or become unpractical for large and mas-
sive graphs due to their high computational complexity. One observes that
solution methods based on modern metaheuristics remain scarce, even though
they have shown to be powerful tools for solving difficult optimization prob-
lems. Indeed, heuristic algorithms were largely neglected and research on such
methods is still in its infancy. This work thus aims to enrich the toolkit of
practical solution methods for MC-GPP. For this purpose, we introduce a
novel hybrid evolutionary algorithm able to find high-quality solutions of low
conductance for large graphs. Specifically, the proposed algorithm integrates
a set of complementary components to jointly ensure its search effectiveness
and computational efficiency. We summarize the main contributions of this
work as follows.

• First, the hybrid evolutionary algorithm presented in this work takes advan-
tage of population-based global search and local optimization. Specifically,
while it adopts a standard crossover operator to generate offspring solutions,
the proposed algorithm integrates an innovative progressive local search pro-
cedure to cope with the difficulty raised by large graphs (with at least 6×104

vertices). To ensure a healthy population of both high diversity and qual-
ity, the algorithm uses a mixed technique for population initialization and
a proven distance-and-quality based pool updating strategy for population
management.
• Second, we perform extensive computational assessments on 60 large-scale

real-world benchmark instances (including 50 graphs from the 10th DI-

4

MACS Implementation Challenge and 10 graphs from the Network Data
Repository online, with up to 23 million vertices). We demonstrate the high
competitiveness of the proposed algorithm compared to four state-of-the-art
algorithms. As an additional assessment, we show an application of using
the algorithm to detect community structures in complex networks.
• Third, this work advances the state-of-the-art in terms of effective solving of

the general minimum conductance graph partitioning problem. Given that
the studied problem has a number of applications, the proposed algorithm
can be usefully applied to these practical problems (we will make the code
of our algorithm publicly available). Finally, the ideas of some underlying
algorithmic components are of general interest and could be advantageously
adapted to design effective algorithms for other large graph optimization
problems.

The reminder of the paper is organized as follows. In Section 3, we describe the
proposed algorithm and its ingredients. In Section 4, we present computational
studies and comparisons between the proposed algorithm and state-of-the-
art algorithms. An analysis of the key algorithmic components is provided
in Section 5. In the last Section, we draw concluding remarks and indicate
perspectives for future research.

2 Related work

Table 1
Summary of the key features and technical contributions of the most related studies
and the proposed approach.

Reference Aim Approach Main features Test Limitations

Approximation methods

Cheeger [9]
(1969)

Provide a lower bound
for the smallest eigenvalue
of the Laplacian

Mathematical
method

Establish a lower bound
in terms of a certain global
geometric invariant

No

Specific or
particular cases;
high computational
complexity

Leighton & Rao [22]
(1999)

Establish max-flow
min-cut theorems for
several classes of
multicommodity flow problems

Max-flow
min-cut algorithm

Implement a O(logn)-
approximation algorithm
for MC-GPP

No

Arora et al. [2,3]
(2004, 2009)

Propose a O(

√
logn)-

approximation algorithm
for MC-GPP

Semidefinite
programming

Implement a O(logn)-
approximation of
Leighton and Rao (1999)

No

Leskovec et al. [24]
(2009)

Define and identify
clusters or communities
by conductance measure

Flow-based,
spectral and
hierarchical methods

Suggest a detailed and
counterintuitive picture of
community structures in
large social and
information networks

Yes

Spielman et al. [39]
(2013)

Determine a good cluster
measured by conductance

Nearly linear
time local
clustering algorithm

Handle massive graphs;
find an approximate
sparsest cut with
nearly optimal balance

Yes

Zhu et al [46]
(2013)

Find well-connected
clusters in terms of
the conductance

Random-walk
based local
algorithms

Improve significantly the
conductance of cluster where
it is well-connected inside

Yes

Exact methods

5

Hochbaum [18]
(2010)

Solve the ratio region
problem, a variant of
normalized cut
in the field of
image segmentation

Max-flow
min-cut algorithm

Exact solution to the given
problem No

Specific or
particular cases;
high computational
complexity;
unpractical for
large graphsHochbaum [19]

(2013)

Solve a discrete
relaxation of a family
of NP-hard Rayleigh
problems

Max-flow
min-cut algorithm

Solution to the discrete Rayleigh
ratio problem without balance
constraint in strongly
polynomial time;
better solutions than
spectral approach

Yes

Heuristic and metaheuristic methods

Lang & Rao [21]
(2004)

Improve a graph cut
when cut quality is
measured by quotient-
style metrics such as
expansion or conductance

Max-flow
min-cut algorithm

Refine the results of Metis
graph partitioning heuristic;
run in nearly linear time

Yes

Decrease of
performance on
massive graphs
(with millions of
vertices)

Andersen & Lang [1]
(2008)

Find a larger-than-
expected intersection
with lower conductance

Sequence and
polynomially many
applications of
max-flow
min-cut algorithm

Prove a stronger guarantee of
the lowest conductance;
improve the quality of
cuts without impacting
the running time

Yes

Chalupa [7,8]
(2017,2018)

Solve MC-GPP as
a pseudo-Boolean
optimization problem

Local search and
memetic search

Basic search strategies;
applied to real-world
social networks

Yes

Lu et al [28]
(2019)

Find low conductance solution
for large problem instances

Breakout local search
(BLS)

Advanced iterated search;
applied to large real-world
social networks

Yes

This work
Enrich the toolkit
of practical methods
for MC-GPP

Hybrid evolutionary
algorithm

Fast local optimization;
advanced pool diversity
management; applied to large
and massive networks

Yes

Existing algorithms for MC-GPP are based on approximation, exact and
heuristic approaches. In [9], the first (and weak) approximation algorithm
for MC-GPP was presented. Improved approximation algorithms were stud-
ied later in [2,3,22]. More recently, motivated by large-scale graph clustering
in social and information networks, several effective algorithms with perfor-
mance guarantee were proposed in [24,39,46]. In [18,19], time-efficient exact
algorithms were proposed for a variant of the conductance problem and other
ratio problems in the context of image segmentation.

In addition to these approximation and exact approaches, heuristic methods
were also studied in order to find high-quality solutions within an acceptable
amount of time. One representative method is the Max-flow Quotient-cut Im-
provement algorithm (MQI) proposed in [21]. This method refines an initial cut
(typically given by the Metis graph partitioning heuristic [20]) by solving the
well-known max-flow problem. This approach was extended in [1] by solving a
sequence of polynomially many minimum cut problems to find a larger-than-
expected intersection with lower conductance. Recently, several metaheuristic
algorithms using local search and memetic search were studied in [7,8]. Very
recently, a stagnation-aware breakout tabu search algorithm (SaBTS) was in-
troduced in [28], which achieved state-of-the-art results on a large test suite
composed of small and medium size graphs (with < 500, 000 vertices). Accord-
ing to the intensive experimental studies reported in [28], the max-flow based
MQI algorithm [21] and the SaBTS algorithm [28] significantly dominate the
algorithms presented in [7,8]. Table 1 summarizes the main characteristics of

6

these solution methods.

One notices that the best performing algorithms such as MQI and SaBTS are
computationally extensive and generally their performance decreases with the
size of the problem instances to be solved. This is particularly true for MQI
when it is applied to massive graphs with more than 500,000 vertices. In this
work, we aim to advance the state-of-the-art of solving MC-GPP by proposing
an effective hybrid evolutionary algorithm. Compared to the existing methods,
the proposed algorithm distinguishes itself by some original features such as
a fast local optimization using a progressive neighborhood and a diversity
guarantee strategy based on distance and quality. As we show in Section 4,
the proposed algorithm competes very favorably with the state-of-the-art MC-
GPP algorithms on the tested large benchmark instances.

3 Memetic algorithm for MC-GPP

3.1 General Outline

Hybrid evolutionary algorithms are known to be a powerful and proven tool
for numerous NP-hard problems (e.g., graph partitioning [4,13,43], quadratic
assignment [5], graph coloring [30,33], and unconstrained binary quadratic
programming [26]) as well as many practical problems (e.g., service placement
in fog architectures [15], roadside unit deployment [31] and task scheduling
and data assignment on clouds [40]). In this work, we present a hybrid evo-
lutionary algorithm for solving MC-GPP, which relies particularly on the
memetic computing framework [32]. The proposed algorithm (denoted by
MAMC, see Algorithm 1) is composed of four main components: quality-and-
diversity based population initialization, recombination operator, progressive
constrained neighborhood tabu search and distance-and-quality based pool
updating procedure.

From an initial population Pop of p solutions (Algorithm 1, line 1), the best
solution s∗ among the population is first recorded (line 2). The algorithm then
enters into the ‘repeat’ loop to improve the population (lines 3-18). At each
loop, MAMC selects two parent solutions at random and applies the double-
point crossover to generate two offspring s1 and s2 (lines 4-5). Subsequently,
the offspring solutions are improved by the progressive constrained neighbor-
hood tabu search procedure (lines 7 and 13). The improved offspring solutions
are used to update the population according to the quality-and-distance based
procedure (lines 11 and 17). During the search process, the best solution s∗ is
updated each time a new best solution is found (lines 8-10, lines 14-16). This
process terminates when a given stopping condition is met, which is typically

7

a maximum allowed cut-off time limit.

Algorithm 1 Main framework of the memetic algorithm for the minimum
conductance graph partitioning problem (MAMC).

Require: Graph G = (V,E), depth of tabu search d, size of population p.
Ensure: The best partition s∗ found during the search.

1: Pop = {s1, s2, . . . , sp} ← Population Initialization() /∗ Section 3.2 ∗/
2: s∗ ← arg min{Φ(si) : i = 1, 2, . . . , p}
3: repeat
4: Randomly select two parent solutions si and sj from Pop
5: (s1, s2)← Crossover(si, sj) /∗ Section 3.3 ∗/
6: /∗ Trajectory 1: improve s1 with progressive constrained neighborhood tabu

search ∗/
7: s1 ← Tabu search(s1, d) /∗ Section 3.4 ∗/
8: if Φ(s1) < Φ(s∗) then
9: s∗ ← s1 /∗ update the best solution found so far ∗/

10: end if
11: Pop = {s1, s2, . . . , sp} ← Pool Updating(s1, Pop) /∗ Section 3.5 ∗/
12: /∗ Trajectory 2: improve s2 by progressive constrained neighborhood tabu

search ∗/
13: s2 ← Tabu search(s2, d)
14: if Φ(s2) < Φ(s∗) then
15: s∗ ← s2

16: end if
17: Pop = {s1, s2, . . . , sp} ← Pool Updating(s2, Pop)
18: until Stopping condition is satisfied
19: return s∗

3.2 Quality-and-diversity based population initialization

The proposed MAMC algorithm is characterized by its capacity of maintaining
a healthy population with solutions of high diversity and good quality. For the
initial population, we adopt the following three-step mixed strategy illustrated
by Algorithm 2. First, a seeding partition is generated either randomly or by
applying the MQI algorithm [21] with equal probability (lines 2-7). Second,
the seeding partition is improved by the progressive constrained neighborhood
tabu search of Section 3.4 (line 8). Third, the improved partition is added
into the population if it is not already present in the population (lines 9-
11). This process is repeated until the population is filled with p different
solutions. Given that each solution of the population comes from a seeding
solution which is either randomly generated or provided by MQI and then
improved by the local optimization procedure, the population is expected to
be diverse and of high quality. In Section 5.2, we present an experimental
study to show the merit of this mixed initialization strategy compared to two
random initialization techniques.

8

Algorithm 2 The quality-and-diversity based population initialization
Require: Graph G = (V,E), depth of tabu search d, size of population p.
Ensure: The initial population Pop = {s1, s2, . . . , sp}.
1: Pop← ∅
2: for i = 1, . . . , p do
3: if rand(0, 1) < 0.5 then
4: Construct a random partition s0 = (A, Ā) with A = {v}, Ā = V − {v}
5: else
6: s0 ← MQI() /∗ Create s0 by applying the max-flow algorithm MQI [21]

∗/
7: end if
8: s0 ← Tabu Search(s0, d) /∗ Section 3.4 ∗/
9: if s0 is different from all solutions in Pop then

10: Pop← {s0} ∪ Pop
11: end if
12: end for
13: return Pop

3.3 Recombination operator and parent selection

The crossover operator is used to generate new solutions from parent solutions.
For MC-GPP, we experimented three standard crossovers and one problem-
specific crossover. For our discussion, we note that a partition s = (A, Ā) can
be conveniently coded by a binary string of length n (n is the number of the
vertices in the given graph). Indeed, we can use a binary variable to represent
a vertex and set it to 1 if the vertex belongs to A and set it to 0 if the vertex
belongs to Ā. As a result, conventional crossovers that typically operate on
binary strings are directly applicable. Below, we describe the crossovers we
tested for solving MC-GPP.

• Single-point crossover: A crossover point on both parents is chosen randomly
and then the two bit strings of the parents to the right of the crossover point
are swapped to generate two offspring solutions.
• Double-point crossover: Two different crossover points on both parents are

chosen randomly and the two bit strings between the two crossover points
are swapped to generate two offspring solutions (see Fig. 2 for an example).
• Uniform crossover: Each bit of the offspring is randomly chosen from either

parent with equal probability.
• Cut-edge-preserving crossover: In this problem-specific crossover, the cut-

edges shared by both parents are preserved in the offspring. The vertices
that are not endpoints of these shared cut-edges are assigned randomly the
value of 1 or 0.

According to our experiments, the double-point crossover performs globally
the best compared to the other crossovers. We adopt thus the double-point

9

Parent1 : 11|10100|1000 Child s1 : 11|00101|1000

Parent2 : 00|00101|0101 Child s2 : 00|10100|0101

Fig. 2. The double-point crossover

crossover in our MAMC algorithm.

As to parent selection, we adopt the simple random selection instead of other
mechanisms such as roulette-wheel selection and tournament selection. This
is justified by the fact that thanks to the distance-and-quality pool updating
procedure of Section 3.5 and the powerful local optimization procedure of
Section 3.4, we make sure that the population is composed of solutions which
are pair-wisely distanced and of high quality. As such, any pair of selected
solutions are guaranteed to be well separated and have a high fitness.

3.4 Progressive constrained neighborhood tabu search

It is well known that hybrid evolutionary algorithms need an effective local
optimization procedure to ensure search intensification [17]. In [28], it is shown
that both the max-flow based MQI algorithm and the stagnation-aware break-
out tabu search algorithm (SaBTS) perform well on the tested graphs with
up to 500,000 vertices. This is particularly true, when they are used to refine
an initial solution of good quality provided by the Metis graph partitioning
tool [20]. As a result, both MQI and SaBTS could be used as our local opti-
mization procedure in principle. On the other hand, these algorithms become
time-consuming when we handle large and massive graphs, making them less
interesting and unsuitable for the purpose of this work where the studied
graphs have up to 23 million vertices. To be able to cope with such large
graphs, we created the progressive constrained neighborhood tabu search al-
gorithm (PCNTS) that is presented below.

Basically, our PCNTS procedure uses the ‘Relocate’ operator to explore “crit-
ical” vertices [28]. Specifically, let s = (A, Ā) be the incumbent solution and
v a vertex, then Relocate(v) transforms s to a new (neighbor) solution s′ (de-
noted by s′ = s⊕Relocate(v)) by displacing vertex v from its current set A or
Ā to the complement set. For the purpose of conductance minimization, it is
unnecessary to consider a vertex for relocation if the vertex is not the endpoint
of a cut edge [28]. As a result, we identify the set CV (s) of candidate vertices
for relocation as CV (s) = {v ∈ V : v is the endpoint of a cut edge of s}. Note
that even if the set CV (s) is much smaller than the set of vertices V , examin-
ing all critical vertices at each iteration of the algorithm (this is what SaBTS
of [28] does) can still become very expensive for large and massive graphs.

10

Algorithm 3 Progressive constrained neighborhood tabu search (PCNTS).

Require: Graph G = (V,E), current solution s, depth of tabu search d.
Ensure: The best solution found sb.

1: sb ← s /∗ record the best solution found during the current TS run ∗/
2: H ← ∅
3: β ← 0 /∗ counter of consecutive non-improving iterations w.r.t. sb ∗/
4: ev ← 1 /∗ ev is the number of evaluating vertices in NC(s) ∗/
5: Create the set CV (s, ev) of critical vertices
6: while β < d do
7: Select a best eligible vertex v in CV (s, ev)
8: s← s⊕Relocate(v)
9: Update the set of critical vertices CV (s, ev)

10: Update tabu list H[v] with tabu tenure tt
11: if Φ(s) < Φ(sb) then
12: sb ← s
13: β ← 0, ev ← 1
14: else
15: β ← β + 1, ev ← ev + 1
16: end if
17: if ev > |CV (s)| then
18: ev = 1
19: end if
20: end while
21: return sb

This is especially true when the given graph is dense, because in this case,
any partition will have a high number of cut edges, thus implying many crit-
ical vertices. Moreover, as discussed in [7,28], unlike the conventional graph
k-way partitioning problem where examining all ‘Relocate’ neighbor solutions
can be performed in O(1), no technique is known to ensure such an efficiency
for performing ‘Relocate’ for MC-GPP. This implies that the cost of exam-
ining neighbor solutions is proportionally correlated to the number of critical
vertices and becomes prohibitive for large graphs.

To cope with this difficulty, we devise the following progressive and elastic
neighborhood exploration strategy which dynamically increases or decreases
the number of examined critical vertices according to a well-defined condition
(see Algorithm 3). Specifically, we start with one critical vertex (indicated by
ev = 1, ev is a counter indicating the number of the critical vertices to be
examined). If relocating this vertex at the current iteration does not lead to
a solution better than the recorded local best solution (sb), we increase ev by
one, implying that during the next iteration, one more critical vertex will be
examined. As a result, as long as no improved local best solution is found,
a still larger neighborhood exploration is enabled by increasing ev (i.e., the
number of candidate critical vertices) during the next iteration. During the
search, ev is reset to one as soon as the recorded local best solution (sb) is

11

updated or ev reaches its upper limit |CV (s)|. The progressive constrained
neighborhood tabu search procedure thus explores an elastic neighborhood
NAC(s) whose size is dynamically adjusted by the counter ev according to the
search state.

NAC(s) = {s′ = s⊕Relocate(v) : v ∈ CV (s, ev), 1 ≤ ev ≤ |CV (s)|} (13)

where CV (s, ev) ⊂ CV (s) is the set of critical vertices to be examined.

Thus, by examining the neighborhood NAC(s) induced by CV (s, ev) instead
of the whole neighborhood induced by CV (s), the PCNTS procedure increases
its computational efficiency considerably.

For a given neighbor solution s′ in the neighborhood NAC(s), it is necessary
to quantify the conductance variation (called move gain) δ(v) = Φ(s′)− Φ(s)
with Φ(s) already known. This can be performed in O(1) time by simply
calculating |cut(s′)|, vol(A′), vol(Ā′) as follows [7,28].

|cut(s′)| = |cut(s)|+ degA(v)− degĀ(v) (14)

vol(A′) = vol(A)− deg(v) (15)

vol(Ā′) = vol(Ā) + deg(v) (16)

where s′ = {A′, Ā′} with A′ = A \ {v}, Ā′ = Ā ∪ {v} is the neighbor solution
after relocating v from A to Ā of the solution s = (A, Ā).

To explore the progressive constrained neighborhood NAC(s), the PCNTS
procedure first identifies the set CV (s, ev) with one critical vertex (Algorithm
3, line 5). This can be achieved in O(1) time. Then at each iteration, PCNTS
selects one best vertex v in terms of move gain achieved in O(|CV (s, ev)|) time
among the eligible critical vertices (ties are broken randomly) and relocates v
to obtain a neighbor solution. A vertex qualifies as eligible if it is not forbidden
by the tabu list (see below). Note that if a vertex leading to a solution better
than the recorded best solution sb is always selected, even if it is forbidden by
the tabu list (this is called the aspiration criterion in tabu search).

It is possible that the above search procedure revisits a previously encountered
solution, thus leading to search cycling. To prevent this, we use a memory H
(called tabu list) to record each displaced vertex and forbid the vertex to be
relocated again during a specific number tt of iterations (called tabu tenure).
Thus, each time a vertex v ∈ CV is relocated to generate a neighbor solution,
the PCNTS procedure adds v in H (an integer vector in our case) and will
ignore this vertex for next tt(v) iterations. In practice, when v is relocated,

12

H[v] is set to iter+ tt where iter represents the current number of iterations.
Then during the next iterations, if iter < H[v], v is forbidden by the tabu list;
otherwise, v is not prohibited by the tabu list.

For the tabu tenure, we adopt the dynamic technique introduced in [13] which
has proven to be quite robust and effective for graph partitioning problems
[28,43]. This technique varies tt with a periodic step function F defined over
the current iteration number iter. For each period, it takes p = 15 successive
values (also called intervals). The values are separated by the interval margins
which are defined by x1 = 1, and xi+1 = xi + 100. tt equals F (iter), which is
given by (yi)i=1,2,...,15 = α×(10, 20, 10, 40, 10, 20, 10, 80, 10, 20, 10, 40, 10, 20, 10)
(α is a parameter). Therefore, tt equals 10× α between iterations 1 and 100,
20 × α between iterations 101 and 200, etc. Our experiments confirmed that
this technique makes the algorithm quite robust across the tested instances
and avoids the difficulties of manually tuning the tabu tenure.

3.5 Distance-and-quality based pool updating procedure

Population diversity is critical to avoid a premature convergence of an evo-
lutionary algorithm. To maintain a healthy population of our algorithm, we
employ a diversification preserving strategy [26] to update the population
with each new offspring solution. This strategy considers not only the quality
of each offspring solution, but also its distance to the existing solutions of the
population.

Following [33], we use the well-known set-theoretic partition distance [16]
to measure the distance dab between two solutions sa and sb. The partition
distance is the minimum number of one-move steps necessary to transform
one solution to another solution. For the given population Pop, we calculate
Di,Pop = min{dij|sj ∈ Pop, j 6= i, i, j = 1, . . . , |Pop|}.

Then, we determine the ‘worst’ solution in the population, according to the
following goodness score function which considers both quality and distance:

g(si, Pop) = γÃ(Φ(si)) + (1− γ)Ã(Di,pop) (17)

where γ is a parameter set to 0.6 according to [26] and Φ(si) is the objective
function value (conductance) of solution si and Ã(·) is the normalized function:

Ã(y) =
y − ymin

ymax − ymin + 1
(18)

13

Algorithm 4 Distance-and-quality based updating procedure

Require: Graph G = (V,E), offspring solution s0, size of population p, population
Pop = {s1, s2, . . . , sp}.
Ensure: The updated population Pop = {s1, s2, . . . , sp}.
1: Pop′ ← Pop∪{s0} /* Create a temporary population Pop′ */
2: for i = 0, . . . , p do
3: Calculate the distance Di,Pop′ between si and Pop′

4: Calculate the goodness score g(si, Pop′) of si according to Eq. (17)
5: end for
6: sw ← arg max{g(si, Pop′) : i = 0, 1, . . . , p} /* sw is the worst solution sw in
Pop′ */

7: if sw 6= s0 then
8: Pop← Pop \ {sw}∪ {s0} /* Replace sw with s0 in Pop */
9: else

10: if rand(0, 1) < 0.5 then
11: ssw ← arg max{g(si, Pop′) : i = 0, 1, . . . , p, si 6= sw} /* Identify the second

worst solution ssw in Pop′ */
12: Pop← Pop \ {ssw}∪{s0} /*Replace ssw with s0 in Pop */
13: end if
14: end if
15: return Pop

where ymin and ymax are respectively the minimum and maximum of y in the
population Pop. “+1” is used to avoid the possibility of a 0 denominator.

Based on the above goodness score function, the population Pop is updated
with the given offspring solution s0 according to the following procedure (Al-
gorithm 4). The new offspring s0 is first inserted into Pop = {s1, s2, . . . , sp}
to create a temporary population Pop′ = {s0, s1, . . . , sp} (line 1). Then for
each solution of Pop′, its distance to Pop′ and goodness score are calculated
(lines 2-5). After that the worst solution sw in Pop′ is identified according to
the score function (17) (line 6). Finally, if sw is different from the offspring s0,
s0 replaces the worst solution sw in the population (line 7-8). Otherwise, s0

replaces the second worst solution ssw is replaced by s0 with a probability of
0.5 (lines 10-13).

4 Computational studies

In this section, we first assess the proposed MAMC algorithm for solving MC-
GPP based on two sets of 60 benchmark graphs from various applications, and
then apply MAMC to detect communities of 3 real-world complex networks.

14

4.1 Benchmark instances

The two sets of benchmarks include 60 large and massive graphs which are
from two sources and have 60,005 to 23,947,347 vertices.

The 10th DIMACS Implementation Challenge Benchmark.This dataset
contains 50 graphs which are dedicated to two related problems of graph par-
titioning and graph clustering. These graphs belong to 6 families: Cluster-
ing instances, Delaunay graphs, Redistricting, Walshaw’s graph partitioning
archive, Co-author and citation networks, and Sparse matrices. They are avail-
able at: https://www.cc.gatech.edu/dimacs10/downloads.shtml.

The Network Data Repository online. This dataset contains 10 mas-
sive real-world network graphs [34]. This dataset can be found at: http:

//networkrepository.com/index.php.

Additionally, we also test our approach for community detection on 3 popular
real-world complex networks (Zachary’s Karate Club, College Football Net-
work and Bottlenose Dolphin Social Network) available at: http://www-personal.
umich.edu/~mejn/netdata/.

4.2 Experimental setting

The proposed MAMC algorithm was coded in C++ 1 and compiled using GNU
g++ 6.3.0 compiler with the “-O3” flag. The experiments were conducted on
a computer running Ubuntu Linux 16.04, using 6 cores of AMD Opteron 4184
CPU @ 2.80GHz and 32GByte RAM.

To evaluate our results, we adopt as our references the following four state-of-
the-art algorithms in the literature.

• Metis [20]: This is a general and popular graph partitioning package which
has been used to generate partitions in several studies on MC-GPP [1,21,24].
As shown in [28], even if Metis does not directly optimize the conductance
criterion (it minimizes the number of cut edges), it can produce partitions
of relatively low conductance within a very short computation time. In our
study, Metis is used to serves as a baseline reference, as well as to create
initial partitions of the MQI and SaBTS methods (see below). For this
work, we used the latest release Metis 5.1.0 available at: http://glaros.
dtc.umn.edu/gkhome/metis/metis/overview.

1 The code of our MAMC algorithm will be available at: http://www.info.

univ-angers.fr/~hao/mamc.html

15

Table 2
Settings of parameters.

Parameter Section Description Value

p 3.2 population size 20

α 3.4 tabu tenure management factor 10

d 3.4 depth of tabu search 6000

• MQI [21]: This is a max-flow quotient-cut improvement algorithm which
refines a given initial partition. In previous studies and this work, MQI
starts with a partition provided by the fast Metis tool. To our knowl-
edge, MQI is one of the best algorithms for MC-GPP. We used the lat-
est implementation of MQI available at: https://github.com/kfoynt/

LocalGraphClustering.
• SaBTS [28]: This is the most recent metaheuristic algorithm for MC-GPP,

which combines a dedicated tabu search procedure and a self-adaptive per-
turbation procedure. The intensive experiments reported in [28] show that
SaBTS is able to consistently improve a partition provided by Metis and can
also reduce the conductance of partitions given by MQI (see below). The
code of SaBTS is available at: http://www.info.univ-angers.fr/~hao/
mcgpp.html.
• MQI+SaBTS [28]: This hybrid approach uses SaBTS to refine a partition

produced by MQI. Thanks to the combination of these two powerful ap-
proaches (MQI and SaBTS), MQI+SaBTS performs the best compared to
other existing approaches.

The proposed MAMC algorithm requires 3 parameters: population size p, tabu
tenure management factor α and depth of tabu search d. Following previous
studies [13,43], we adopted a small population size and set p = 20. For α and
d, they were fixed according to the analysis reported in Section 5.1. For our
experiments, we consistently used the parameter setting shown in Table 2 to
run our MAMC algorithm to solve all instances. This parameter setting can
also be considered to be the default setting of MAMC.

For a fair comparison, we run, on the same computer, our MAMC algorithm
and the above reference algorithms with their respective default parameter
setting under the same time limit of 60 minutes per run and per instance.

4.3 Computational results and comparison on the benchmark instances

In this section, we report the results of the proposed MAMC algorithm as
well as the four reference algorithms (Metis [20], MQI [21], SaBTS [28] and
MQI+SaBTS [28]) on the 60 benchmark instances. It is worth noting that
MQI, SaBTS and MQI+SaBTS all start from an initial partition provided by

16

Metis. Tables 3 and 4 provide the detailed results of the compared algorithms,
while Table 5 shows a summary.

In Tables 3 and 4, columns 1-2 indicate the name (Graph) and the number
of vertices (|V |) for each instance. The remaining columns show the results
of Metis, MQI, SaBTS, MQI+SaBTS and MAMC according to the following
performance indicators: the best conductance (Φbest) found among 20 runs, the
average conductance (Φavg), the success rate (hit) over 20 runs to reach Φbest,
the average CPU time in seconds (t(s)) of 20 runs to attain the best results,
and the standard deviation (σ) of Φbest. It is worth noting that computation
times are provided only for indicative purposes, since it is not meaningful
to compare two computation times if the corresponding algorithms lead to
solutions of different quality.

In Table 5, column 1 indicates the pairs of compared algorithms. Column 2
gives the total number of instances (#Instance). Column 3 shows the quality
indicators in terms of the best and average conductance (Φbest and Φavg).
Columns 4-6 count the number of instances on which MAMC achieves a better,
equal or worse result compared to each reference algorithm (#Wins, #Ties and
#Losses). Column 7 reports the p-value from the non-parametric Wilcoxon
signed-rank test with a confidence level of 99%.

The results of Tables 3–5 show that MAMC performs remarkably well on all
60 benchmark instances. Compared to Metis and MQI and in terms of the
main performance indicators Φbest (Φavg), MAMC finds 54 (60) better and 6
(0) equal results with respect to Metis, and 27 (60) better and 33 (0) equal
results with respect to MQI. MAMC also competes very favorably with SaBTS
and MQI+SaBTS in terms of Φbest (Φavg) with 53 (58) wins, 7 (1) ties and
0 (1) losses compared to SaBTS, and 27 (58) wins, 32 (2) ties and 1 (0)
losses compared to MQI+SaBTS. The small p-values (p-value � 0.01) from
the Wilcoxon signed-rank further confirm the dominance of MAMC over the
reference algorithm in terms of Φbest and Φavg.

Moreover, in terms of the other performance indicators, we observe that to
reach the same Φbest value, MAMC has always a higher success rate and a
shorter computation time. In many cases, MAMC is even able to find a better
solution with a higher hit and a shorter time.

To complete these results, we additionally provide a performance assessment
of the algorithms in a visual way by using a generic benchmarking tool called
performance profiles [11] (the reader is referred to [11] for details). Performance
profiles enable a rigorous comparison of different algorithms over a large set of
benchmark instances with regard to a specific performance metric (in our case,
Φbest and Φavg respectively). Basically, to compare a set of algorithms S over a

set of problems P , we define the performance ratio by rs,p = Φs,p
min{Φs,p:s∈S} . If an

17

algorithm s does not solve a problem p, then we simply set rs,p = +∞. Thus,

the performance function of an algorithm s is given by Ps(τ) = |{p∈P | rs,p≤τ}|
|P| .

The value Ps(τ) computes the fraction of problems algorithm s can solve with
at most τ many times the cost of the best algorithm. Ps(1) corresponds to
the number of problems that algorithm s solved faster than, or as fast as the
other algorithms in S. The value Ps(rf), for a large enough rf , corresponds to
the maximum number of problems that algorithm s has solved. The quantities
Ps(1) and Ps(rf) are called efficiency and robustness of s respectively.

Fig. 3 shows the performance profiles of our MAMC algorithm as well as the
reference algorithms which have been drawn with the software perprof-py

[38]. From the figure, we observe that MAMC has a very good performance,
surpassing the four reference algorithms in terms of conductance value. In-
deed, MAMC has the highest value of Ps(1) among the compared algorithms,
meaning that MAMC can quickly find the lowest conductance for the tested
instances. Besides, MAMC also attains a good robustness by quickly solving
all the instances (corresponding to the fact that MAMC arrives at Ps(rf)
first).

This experiment thus demonstrates the competitiveness of the proposed MAMC
algorithm for solving MC-GPP compared to the 4 state-of-the-art reference
methods.

18

T
ab

le
3

D
et

ai
le

d
co

m
p

u
ta

ti
on

al
re

su
lt

s
of

M
A

M
C

w
it

h
tw

o
st

at
e-

of
-t

h
e-

ar
t

al
go

ri
th

m
s

M
et

is
[2

0]
,

M
Q

I
[2

1]
on

50
la

rg
e

g
ra

p
h

s
fr

o
m

th
e

1
0
th

D
IM

A
C

S
C

h
al

le
n

ge
an

d
10

la
rg

e
gr

ap
h

s
fr

om
th

e
N

et
w

or
k

D
at

a
R

ep
os

it
or

y
on

li
n

e.
T

h
e

b
es

t
of

th
e

Φ
be
st

va
lu

es
fo

r
ea

ch
in

st
a
n

ce
is

h
ig

h
li

gh
te

d
in

b
ol

d
fa

ce
,

w
h

il
e

th
e

b
es

t
of

th
e

Φ
a
v
g

va
lu

es
fo

r
ea

ch
in

st
an

ce
is

in
d

ic
at

ed
in

it
al

ic
.

In
st

a
n
c
e

M
e
ti

s
[2

0
]

M
Q

I
[2

1
]

M
A

M
C

G
ra

p
h

|V
|

Φ
b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ

p
re

fe
re

n
ti

a
l

A
tt

a
c
h
m

e
n
t

1
0
0
0
0
0

0
.3

1
1
3
6
2
0
8

0
.3

3
1
7
9
6
9
9

1
/
2
0

0
8
.4

5
e
-0

3
0
.3

1
1
3
2
9
9
7

0
.3

3
0
3
9
8
5
3

1
/
2
0

4
7
.9

1
e
-0

3
0
.2

8
7
1
7
3
1
8

0
.2
8
8
0
4
9
4
0

1
/
2
0

2
8
8
6

6
.1

7
e
-0

4

sm
a
ll
w

o
rl

d
1
0
0
0
0
0

0
.1

1
3
5
3
6
4
8

0
.1

1
6
2
5
5
9
2

1
/
2
0

0
1
.7

2
e
-0

3
0
.1

1
3
2
2
1
4
1

0
.1

1
6
0
4
8
6
1

1
/
2
0

9
1
.7

2
e
-0

3
0
.0

9
9
4
8
2
5
9

0
.1

0
3
2
1
5
3
1

1
/
2
0

2
7
3
9

1
.2

7
e
-0

3

c
n
r-

2
0
0
0

3
2
5
5
5
7

0
.0

0
0
1
4
4
9
9

0
.0

0
0
4
5
3
1
6

1
/
2
0

0
2
.3

0
e
-0

4
0
.0

0
0
0
0
1
5
6

0
.0

0
0
0
0
6
4
9

1
2
/
2
0

2
4

6
.7

6
e
-0

6
0
.0

0
0
0
0
1
5
6

0
.0
0
0
0
0
1
5
6

2
0
/
2
0

1
0

e
u
-2

0
0
5

8
6
2
6
6
4

0
.0

0
1
8
0
4
6
5

0
.0

0
2
9
7
2
1
0

1
/
2
0

4
8
.4

5
e
-0

4
0
.0

0
0
0
4
9
3
0

0
.0

0
0
6
4
9
6
3

5
/
2
0

2
2
4

8
.7

5
e
-0

4
0
.0

0
0
0
4
9
3
0

0
.0
0
0
0
4
9
3
0

2
0
/
2
0

1
1

0

ro
a
d

c
e
n
tr

a
l

1
4
0
8
1
8
1
6

0
.0

0
0
0
1
0
0
0

0
.0

0
0
0
1
3
9
9

1
/
2
0

3
8

1
.5

2
e
-0

6
0
.0

0
0
0
1
0
0
0

0
.0

0
0
0
1
3
9
9

1
/
2
0

3
6
2
0

1
.5

2
e
-0

6
0
.0

0
0
0
1
0
0
0

0
.0
0
0
0
1
1
2
8

9
/
2
0

2
7
2

1
.2

1
e
-0

6

ro
a
d

u
sa

2
3
9
4
7
3
4
7

0
.0

0
0
0
0
5
8
4

0
.0

0
0
0
0
7
4
3

1
/
2
0

4
6

8
.7

0
e
-0

7
0
.0

0
0
0
0
5
8
4

0
.0

0
0
0
0
7
4
3

1
/
2
0

3
6
2
5

8
.7

0
e
-0

7
0
.0

0
0
0
0
5
8
4

0
.0
0
0
0
0
6
0
6

1
1
/
2
0

4
9
3

2
.8

0
e
-0

7

d
e
la

u
n
a
y

n
1
6

6
5
5
3
6

0
.0

0
2
4
5
4
8
5

0
.0

0
2
5
5
6
5
6

1
/
2
0

0
5
.0

8
e
-0

5
0
.0

0
2
3
3
0
8
3

0
.0

0
2
3
9
4
4
4

1
/
2
0

3
7

4
.4

0
e
-0

5
0
.0

0
2
2
6
3
7
6

0
.0
0
2
2
9
3
7
1

1
/
2
0

1
2
9
2

2
.4

4
e
-0

5

d
e
la

u
n
a
y

n
1
7

1
3
1
0
7
2

0
.0

0
1
7
6
2
6
0

0
.0

0
1
8
0
8
8
0

1
/
2
0

0
3
.1

5
e
-0

5
0
.0

0
1
6
1
7
0
3

0
.0

0
1
6
6
8
0
0

1
/
2
0

1
0
9

1
.9

1
e
-0

5
0
.0

0
1
5
6
8
5
7

0
.0
0
1
6
1
8
1
9

1
/
2
0

2
0
0
0

2
.2

2
e
-0

5

d
e
la

u
n
a
y

n
1
8

2
6
2
1
4
4

0
.0

0
1
2
2
7
1
2

0
.0

0
1
2
8
7
2
1

1
/
2
0

0
2
.5

0
e
-0

5
0
.0

0
1
1
3
7
3
1

0
.0

0
1
1
7
2
3
8

1
/
2
0

2
5
1

1
.8

9
e
-0

5
0
.0

0
1
1
3
3
3
2

0
.0
0
1
1
4
3
8
1

1
/
2
0

7
6
2

8
.0

3
e
-0

6

d
e
la

u
n
a
y

n
1
9

5
2
4
2
8
8

0
.0

0
0
8
7
9
3
2

0
.0

0
0
9
0
6
2
3

1
/
2
0

1
1
.8

6
e
-0

5
0
.0

0
0
7
8
9
6
6

0
.0

0
0
8
1
7
9
4

1
/
2
0

1
8
0
7

1
.1

6
e
-0

5
0
.0

0
0
7
8
6
9
3

0
.0
0
0
8
0
0
1
7

1
/
2
0

7
2
9

9
.7

3
e
-0

6

d
e
la

u
n
a
y

n
2
0

1
0
4
8
5
7
6

0
.0

0
0
6
2
0
8
6

0
.0

0
0
6
4
5
0
8

1
/
2
0

1
1
.2

6
e
-0

5
0
.0

0
0
5
5
8
9
1

0
.0

0
0
5
7
3
9
0

1
/
2
0

3
6
0
1

9
.5

9
e
-0

6
0
.0

0
0
5
5
8
9
1

0
.0
0
0
5
6
1
2
8

9
/
2
0

2
7

3
.5

0
e
-0

6

d
e
la

u
n
a
y

n
2
1

2
0
9
7
1
5
2

0
.0

0
0
4
3
7
4
2

0
.0

0
0
4
5
5
5
7

1
/
2
0

3
8
.3

9
e
-0

6
0
.0

0
0
3
9
2
9
3

0
.0

0
0
4
1
8
1
3

1
/
2
0

3
6
0
3

3
.0

1
e
-0

5
0
.0

0
0
3
9
2
9
3

0
.0
0
0
3
9
3
9
7

8
/
2
0

4
5

1
.3

5
e
-0

6

d
e
la

u
n
a
y

n
2
2

4
1
9
4
3
0
4

0
.0

0
0
3
1
3
5
2

0
.0

0
0
3
2
5
3
2

1
/
2
0

8
6
.4

2
e
-0

6
0
.0

0
0
3
1
3
5
2

0
.0

0
0
3
2
5
3
2

1
/
2
0

3
6
0
5

6
.4

2
e
-0

6
0
.0

0
0
3
1
3
5
2

0
.0
0
0
3
1
5
0
4

1
3
/
2
0

2
8
6

2
.6

1
e
-0

6

d
e
la

u
n
a
y

n
2
3

8
3
8
8
6
0
8

0
.0

0
0
2
2
4
4
3

0
.0

0
0
2
3
2
2
0

1
/
2
0

1
6

4
.0

8
e
-0

6
0
.0

0
0
2
2
4
4
3

0
.0

0
0
2
3
2
2
0

1
/
2
0

3
6
1
1

4
.0

8
e
-0

6
0
.0

0
0
2
2
4
4
3

0
.0
0
0
2
2
5
5
2

8
/
2
0

5
2
6

1
.3

0
e
-0

6

d
e
la

u
n
a
y

n
2
4

1
6
7
7
7
2
1
6

0
.0

0
0
1
6
1
8
0

0
.0

0
0
1
6
5
0
9

1
/
2
0

3
1

2
.3

2
e
-0

6
0
.0

0
0
1
6
1
8
0

0
.0

0
0
1
6
5
0
9

1
/
2
0

3
6
2
1

2
.3

2
e
-0

6
0
.0

0
0
1
6
1
8
0

0
.0
0
0
1
6
2
0
8

1
1
/
2
0

1
2
5
6

3
.2

0
e
-0

7

c
o
2
0
1
0

2
0
1
0
6
2

0
.0

0
0
6
7
9
7
4

0
.0

0
0
7
3
3
3
3

1
/
2
0

0
3
.2

9
e
-0

5
0
.0

0
0
5
3
7
0
1

0
.0

0
0
6
1
1
6
3

1
/
2
0

1
1
6

4
.9

8
e
-0

5
0
.0

0
0
5
3
4
4
2

0
.0
0
0
5
3
4
5
3

1
9
/
2
0

5
6
4

4
.8

0
e
-0

7

la
2
0
1
0

2
0
4
4
4
7

0
.0

0
0
3
7
0
1
5

0
.0

0
0
4
2
8
7
9

1
/
2
0

0
5
.7

0
e
-0

5
0
.0

0
0
1
7
7
8
9

0
.0

0
0
2
8
1
0
6

3
/
2
0

1
5
0

7
.3

8
e
-0

5
0
.0

0
0
1
7
7
8
9

0
.0
0
0
1
7
7
8
9

2
0
/
2
0

4
0

ia
2
0
1
0

2
1
6
0
0
7

0
.0

0
0
6
7
6
2
8

0
.0

0
0
7
2
4
7
4

1
/
2
0

0
2
.4

5
e
-0

5
0
.0

0
0
6
0
1
0
3

0
.0

0
0
6
2
5
8
8

1
/
2
0

1
9
2

1
.8

8
e
-0

5
0
.0

0
0
5
9
1
4
7

0
.0
0
0
6
0
0
4
6

1
/
2
0

1
2
3
9

4
.6

2
e
-0

6

k
s2

0
1
0

2
3
8
6
0
0

0
.0

0
0
5
8
5
0
9

0
.0

0
0
6
3
7
6
4

1
/
2
0

0
2
.3

6
e
-0

5
0
.0

0
0
5
1
4
7
1

0
.0

0
0
5
4
1
2
2

1
/
2
0

2
2
6

1
.5

8
e
-0

5
0
.0

0
0
5
1
4
7
0

0
.0
0
0
5
1
8
7
5

1
0
/
2
0

9
8
0

4
.5

4
e
-0

6

tn
2
0
1
0

2
4
0
1
1
6

0
.0

0
0
4
3
5
5
8

0
.0

0
0
4
8
9
9
5

1
/
2
0

0
3
.4

3
e
-0

5
0
.0

0
0
3
3
6
7
1

0
.0

0
0
3
9
1
1
7

7
/
2
0

2
5
7

4
.4

5
e
-0

5
0
.0

0
0
3
3
6
7
1

0
.0
0
0
3
3
6
7
1

2
0
/
2
0

4
0

a
z
2
0
1
0

2
4
1
6
6
6

0
.0

0
0
5
7
0
2
8

0
.0

0
0
6
3
0
1
2

1
/
2
0

0
3
.3

6
e
-0

5
0
.0

0
0
4
4
3
5
8

0
.0

0
0
5
1
4
0
0

1
/
2
0

1
6
4

4
.1

4
e
-0

5
0
.0

0
0
4
3
8
3
9

0
.0
0
0
4
5
1
8
3

1
/
2
0

9
4

1
.9

0
e
-0

5

a
l2

0
1
0

2
5
2
2
6
6

0
.0

0
0
5
9
0
5
6

0
.0

0
0
6
5
3
6
7

1
/
2
0

0
3
.5

7
e
-0

5
0
.0

0
0
5
1
3
4
5

0
.0

0
0
5
4
5
0
4

1
/
2
0

2
2
1

2
.7

0
e
-0

5
0
.0

0
0
5
0
7
3
2

0
.0
0
0
5
1
1
5
4

2
/
2
0

1
2
9
5

4
.0

1
e
-0

6

w
i2

0
1
0

2
5
3
0
9
6

0
.0

0
0
5
3
3
6
1

0
.0

0
0
6
3
0
8
7

1
/
2
0

0
7
.2

6
e
-0

5
0
.0

0
0
4
9
1
0
4

0
.0

0
0
5
3
6
0
8

1
/
2
0

2
2
5

4
.7

3
e
-0

5
0
.0

0
0
4
8
2
4
7

0
.0
0
0
4
8
5
8
1

3
/
2
0

1
3
7
4

4
.7

8
e
-0

6

m
n
2
0
1
0

2
5
9
7
7
7

0
.0

0
0
6
1
8
8
0

0
.0

0
0
6
6
6
8
1

1
/
2
0

0
2
.2

8
e
-0

5
0
.0

0
0
5
3
5
7
6

0
.0

0
0
5
5
7
1
3

1
/
2
0

2
5
1

1
.3

5
e
-0

5
0
.0

0
0
5
3
4
9
1

0
.0
0
0
5
3
9
2
6

1
/
2
0

8
2
8

3
.5

9
e
-0

6

in
2
0
1
0

2
6
7
0
7
1

0
.0

0
0
5
4
6
2
2

0
.0

0
0
6
0
6
2
0

1
/
2
0

0
2
.9

3
e
-0

5
0
.0

0
0
4
5
1
9
9

0
.0

0
0
4
7
7
7
5

7
/
2
0

2
3
3

3
.1

9
e
-0

5
0
.0

0
0
4
5
1
9
9

0
.0
0
0
4
5
1
9
9

2
0
/
2
0

2
0

o
k
2
0
1
0

2
6
9
1
1
8

0
.0

0
0
5
4
7
9
5

0
.0

0
0
6
0
3
1
2

1
/
2
0

0
3
.2

1
e
-0

5
0
.0

0
0
4
6
0
3
1

0
.0

0
0
5
0
6
4
3

1
/
2
0

2
3
6

2
.1

5
e
-0

5
0
.0

0
0
4
6
0
3
0

0
.0
0
0
4
6
6
7
7

2
/
2
0

5
0
1

9
.0

9
e
-0

6

v
a
2
0
1
0

2
8
5
7
6
2

0
.0

0
0
6
0
4
2
8

0
.0

0
0
6
6
7
6
1

1
/
2
0

0
3
.8

6
e
-0

5
0
.0

0
0
5
0
6
2
9

0
.0

0
0
5
4
9
5
8

4
/
2
0

2
8
7

3
.4

3
e
-0

5
0
.0

0
0
5
0
6
2
9

0
.0
0
0
5
0
8
1
0

1
7
/
2
0

3
6
.2

3
e
-0

6

n
c
2
0
1
0

2
8
8
9
8
7

0
.0

0
0
3
3
1
9
2

0
.0

0
0
3
6
1
7
9

1
/
2
0

0
2
.1

5
e
-0

5
0
.0

0
0
2
9
1
3
0

0
.0

0
0
3
0
4
1
1

1
/
2
0

2
6
7

8
.4

5
e
-0

6
0
.0

0
0
2
9
0
7
9

0
.0
0
0
2
9
2
1
5

1
/
2
0

1
2
1
8

2
.4

4
e
-0

6

g
a
2
0
1
0

2
9
1
0
8
6

0
.0

0
0
4
1
8
3
5

0
.0

0
0
4
7
5
0
6

1
/
2
0

0
4
.0

9
e
-0

5
0
.0

0
0
3
6
4
8
8

0
.0

0
0
3
9
2
4
9

1
/
2
0

2
2
4

2
.2

8
e
-0

5
0
.0

0
0
3
5
9
3
5

0
.0
0
0
3
6
3
5
3

1
/
2
0

1
0
8
3

2
.9

3
e
-0

6

m
i2

0
1
0

3
2
9
8
8
5

0
.0

0
0
5
0
3
6
0

0
.0

0
0
5
5
2
3
1

1
/
2
0

0
2
.5

8
e
-0

5
0
.0

0
0
0
9
2
4
7

0
.0

0
0
2
2
2
7
0

1
2
/
2
0

2
1
7

1
.7

7
e
-0

4
0
.0

0
0
0
9
2
4
7

0
.0
0
0
0
9
2
4
7

2
0
/
2
0

1
0

19

T
ab

le
3:

C
on

ti
n
u

ed

In
st

a
n
c
e

M
e
ti

s
[2

0
]

M
Q

I
[2

1
]

M
A

M
C

G
ra

p
h

|V
|

Φ
b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ

m
o
2
0
1
0

3
4
3
5
6
5

0
.0

0
0
5
5
7
9
5

0
.0

0
0
6
2
2
5
4

1
/
2
0

0
4
.5

8
e
-0

5
0
.0

0
0
4
4
0
1
0

0
.0

0
0
5
1
0
1
2

1
/
2
0

3
1
0

4
.1

5
e
-0

5
0
.0

0
0
4
4
0
1
0

0
.0
0
0
4
4
3
3
4

1
3
/
2
0

4
8
1

1
.2

5
e
-0

5

o
h
2
0
1
0

3
6
5
3
4
4

0
.0

0
0
5
5
9
5
1

0
.0

0
0
6
0
0
6
3

1
/
2
0

0
2
.1

7
e
-0

5
0
.0

0
0
4
7
0
5
2

0
.0

0
0
5
0
9
1
7

1
/
2
0

3
5
8

2
.2

7
e
-0

5
0
.0

0
0
4
5
0
3
0

0
.0
0
0
4
7
8
0
9

1
/
2
0

3
1
2

9
.8

8
e
-0

6

p
a
2
0
1
0

4
2
1
5
4
5

0
.0

0
0
3
4
3
1
4

0
.0

0
0
3
9
0
1
5

1
/
2
0

0
3
.8

7
e
-0

5
0
.0

0
0
2
6
6
1
6

0
.0

0
0
2
8
2
2
8

1
0
/
2
0

3
9
8

2
.5

2
e
-0

5
0
.0

0
0
2
6
6
1
6

0
.0
0
0
2
6
6
1
6

2
0
/
2
0

2
0

il
2
0
1
0

4
5
1
5
5
4

0
.0

0
0
2
9
5
0
3

0
.0

0
0
3
1
6
7
9

1
/
2
0

0
1
.6

1
e
-0

5
0
.0

0
0
2
5
2
0
4

0
.0

0
0
2
6
7
4
6

1
/
2
0

4
3
6

9
.2

6
e
-0

6
0
.0

0
0
2
4
9
9
7

0
.0
0
0
2
5
2
6
0

2
/
2
0

5
1
5

1
.7

4
e
-0

6

tx
2
0
1
0

9
1
4
2
3
1

0
.0

0
0
2
8
3
2
7

0
.0

0
0
3
2
2
8
3

1
/
2
0

1
1
.9

9
e
-0

5
0
.0

0
0
2
4
2
5
8

0
.0

0
0
2
5
2
8
9

1
/
2
0

2
3
8
6

9
.5

0
e
-0

6
0
.0

0
0
2
4
2
2
1

0
.0
0
0
2
4
2
7
4

2
/
2
0

1
7
6

4
.6

0
e
-0

7

t6
0
k

6
0
0
0
5

0
.0

0
0
8
8
1
7
8

0
.0

0
1
0
3
1
8
7

1
/
2
0

0
8
.5

2
e
-0

5
0
.0

0
0
6
9
3
8
5

0
.0

0
0
7
3
5
1
4

1
6
/
2
0

4
5

9
.6

6
e
-0

5
0
.0

0
0
6
9
3
8
5

0
.0
0
0
6
9
3
8
5

2
0
/
2
0

1
0

w
in

g
6
2
0
3
2

0
.0

0
7
0
9
3
8
3

0
.0

0
7
3
4
3
3
5

1
/
2
0

0
1
.5

2
e
-0

4
0
.0

0
6
6
8
6
3
0

0
.0

0
6
9
0
1
0
3

1
/
2
0

2
6

1
.3

7
e
-0

4
0
.0

0
6
5
4
9
0
6

0
.0
0
6
6
2
0
7
8

1
/
2
0

1
9
5
3

6
.6

9
e
-0

5

b
ra

c
k
2

6
2
6
3
1

0
.0

0
1
9
9
4
2
2

0
.0

0
2
0
7
3
3
1

1
/
2
0

0
4
.2

8
e
-0

5
0
.0

0
1
8
5
3
3
2

0
.0

0
1
8
5
4
2
5

1
9
/
2
0

3
6

4
.0

5
e
-0

6
0
.0

0
1
8
5
3
3
2

0
.0
0
1
8
5
3
3
2

2
0
/
2
0

1
0

0

fi
n
a
n
5
1
2

7
4
7
5
2

0
.0

0
0
6
2
0
4
0

0
.0

0
0
6
2
0
4
1

8
/
2
0

0
1
.0

0
e
-0

8
0
.0

0
0
6
2
0
4
0

0
.0

0
0
6
2
0
4
1

8
/
2
0

1
5

1
.0

0
e
-0

8
0
.0

0
0
6
2
0
4
0

0
.0
0
0
6
2
0
4
0

2
0
/
2
0

3
0

fe
to

o
th

7
8
1
3
6

0
.0

0
9
0
8
1
8
7

0
.0

0
9
5
5
8
5
1

1
/
2
0

0
2
.3

5
e
-0

4
0
.0

0
8
7
8
7
0
6

0
.0

0
9
0
3
4
4
8

1
/
2
0

3
7

2
.3

0
e
-0

4
0
.0

0
8
4
3
1
4
7

0
.0
0
8
4
6
6
9
9

1
/
2
0

2
0
3
2

8
.1

3
e
-0

5

fe
ro

to
r

9
9
6
1
7

0
.0

0
3
2
3
8
5
6

0
.0

0
3
3
1
8
1
0

1
/
2
0

0
4
.0

8
e
-0

5
0
.0

0
3
0
7
5
3
3

0
.0

0
3
1
4
1
8
8

1
/
2
0

5
0

1
.8

0
e
-0

5
0
.0

0
3
0
2
4
8
8

0
.0
0
3
0
3
4
1
1

1
4
/
2
0

5
4
2

2
.5

9
e
-0

5

5
9
8
a

1
1
0
9
7
1

0
.0

0
3
3
2
5
4
4

0
.0

0
3
3
6
4
2
0

1
/
2
0

0
3
.7

0
e
-0

5
0
.0

0
3
2
5
6
7
3

0
.0

0
3
2
7
1
8
4

1
/
2
0

8
0

1
.5

0
e
-0

5
0
.0

0
3
2
3
2
0
9

0
.0
0
3
2
3
8
1
6

2
/
2
0

2
1
4
5

5
.0

2
e
-0

6

fe
o
c
e
a
n

1
4
3
4
3
7

0
.0

0
0
8
6
9
8
5

0
.0

0
1
2
0
1
3
9

1
/
2
0

0
1
.7

2
e
-0

4
0
.0

0
0
7
8
2
2
3

0
.0

0
0
9
0
8
2
5

3
/
2
0

6
5

1
.5

0
e
-0

4
0
.0

0
0
7
8
2
2
3

0
.0
0
0
7
8
2
2
3

2
0
/
2
0

4
7

0

1
4
4

1
4
4
6
4
9

0
.0

0
6
2
0
4
8
1

0
.0

0
6
3
6
6
0
8

1
/
2
0

0
7
.5

7
e
-0

5
0
.0

0
6
1
1
9
9
4

0
.0

0
6
2
2
0
3
9

1
/
2
0

9
9

6
.4

7
e
-0

5
0
.0

0
6
0
5
3
0
5

0
.0
0
6
0
7
3
7
4

1
/
2
0

2
6
9
0

9
.0

0
e
-0

6

w
a
v
e

1
5
6
3
1
7

0
.0

0
8
5
3
3
2
5

0
.0

0
8
6
5
1
7
2

1
/
2
0

0
1
.0

6
e
-0

4
0
.0

0
8
3
0
2
8
7

0
.0

0
8
4
5
7
4
2

1
/
2
0

8
1

1
.2

0
e
-0

4
0
.0

0
8
1
9
1
0
1

0
.0
0
8
2
3
6
3
0

1
/
2
0

2
8
6
7

2
.2

5
e
-0

5

m
1
4
b

2
1
4
7
6
5

0
.0

0
2
3
3
4
3
4

0
.0

0
2
3
9
0
6
3

1
/
2
0

0
3
.6

5
e
-0

5
0
.0

0
2
3
0
3
8
1

0
.0

0
2
3
2
8
6
6

1
/
2
0

2
0
1

1
.9

0
e
-0

5
0
.0

0
2
2
8
4
6
6

0
.0
0
2
2
9
8
6
7

1
/
2
0

1
8
6
5

5
.4

7
e
-0

6

a
u
to

4
4
8
6
9
5

0
.0

0
3
1
4
9
6
0

0
.0

0
3
2
1
2
1
8

1
/
2
0

1
4
.2

8
e
-0

5
0
.0

0
2
9
8
5
7
1

0
.0

0
3
0
1
4
5
4

3
/
2
0

4
1
2

6
.3

1
e
-0

5
0
.0

0
2
9
8
5
7
1

0
.0
0
2
9
8
5
7
9

1
7
/
2
0

4
7
6

2
.0

0
e
-0

7

c
o
A

u
th

o
rs

D
B

L
P

2
9
9
0
6
7

0
.0

5
0
5
6
6
6
1

0
.0

5
1
9
4
1
9
5

1
/
2
0

0
9
.0

4
e
-0

4
0
.0

0
4
1
1
5
2
2

0
.0

0
4
9
4
9
1
3

2
/
2
0

2
9

5
.2

2
e
-0

4
0
.0

0
4
1
1
5
2
2

0
.0
0
4
1
1
5
2
2

2
0
/
2
0

1
0

0

th
e
rm

a
l2

1
2
2
7
0
8
7

0
.0

0
0
2
7
4
7
5

0
.0

0
0
2
8
0
6
9

1
/
2
0

1
3
.9

9
e
-0

6
0
.0

0
0
2
5
2
9
6

0
.0

0
0
2
5
6
8
7

1
/
2
0

3
6
0
1

6
.4

2
e
-0

6
0
.0

0
0
2
5
2
9
6

0
.0
0
0
2
5
3
3
9

1
0
/
2
0

2
2
3

4
.9

0
e
-0

7

G
3

c
ir

c
u
it

1
5
8
5
4
7
8

0
.0

0
0
4
0
8
5
9

0
.0

0
0
4
4
4
4
3

1
/
2
0

1
1
.6

1
e
-0

5
0
.0

0
0
3
6
3
2
8

0
.0

0
0
3
8
0
7
6

1
/
2
0

3
5
9
5

1
.5

1
e
-0

5
0
.0

0
0
3
6
3
2
8

0
.0
0
0
3
6
3
9
3

8
/
2
0

3
3
5

1
.0

1
e
-0

6

c
a
-c

o
a
u
th

o
rs

-
d
b
lp

5
4
0
4
8
6

0
.0

4
0
6
9
9
2
0

0
.0

4
3
1
0
4
2
6

1
/
2
0

4
1
.5

4
e
-0

3
0
.0

0
2
2
6
7
5
7

0
.0

0
2
4
4
8
4
1

1
5
/
2
0

2
2
1

3
.1

4
e
-0

4
0
.0

0
2
2
6
7
5
7

0
.0
0
2
2
6
7
5
7

2
0
/
2
0

5
0

in
f-

ro
a
d
N

e
t-

P
A

1
0
8
7
5
6
2

0
.0

0
0
1
1
4
6
7

0
.0

0
0
1
2
3
5
3

1
/
2
0

1
6
.3

9
e
-0

6
0
.0

0
0
0
8
2
2
1

0
.0

0
0
0
8
7
8
9

2
/
2
0

3
5
9
3

7
.5

7
e
-0

6
0
.0

0
0
0
8
2
2
1

0
.0
0
0
0
8
2
3
0

1
5
/
2
0

4
1
.6

0
e
-0

7

sc
-n

a
sa

sr
b

5
4
8
7
0

0
.0

0
3
3
8
9
6
1

0
.0

0
3
5
6
6
0
8

1
/
2
0

0
8
.2

9
e
-0

5
0
.0

0
3
2
5
4
8
9

0
.0

0
3
3
5
2
7
3

2
/
2
0

8
9

5
.8

6
e
-0

5
0
.0

0
3
2
5
4
8
9

0
.0
0
3
2
5
4
8
9

2
0
/
2
0

1
4

0

sc
-p

k
u
st

k
1
3

9
4
8
9
3

0
.0

0
9
3
0
9
9
5

0
.0

0
9
7
3
7
8
5

1
/
2
0

0
2
.7

9
e
-0

4
0
.0

0
9
2
1
1
2
8

0
.0

0
9
5
2
5
3
3

1
/
2
0

1
9
2

2
.5

6
e
-0

4
0
.0

0
9
0
5
8
0
5

0
.0
0
9
0
6
6
3
4

1
5
/
2
0

1
7
2
9

2
.8

6
e
-0

5

so
c
-g

o
w

a
ll

a
1
9
6
5
9
1

0
.0

6
6
8
8
1
7
3

0
.0

6
9
1
2
2
2
1

1
/
2
0

0
1
.0

5
e
-0

3
0
.0

1
2
3
4
5
6
7

0
.0

1
2
4
7
3
9
4

1
6
/
2
0

1
5

2
.5

7
e
-0

4
0
.0

1
2
3
4
5
6
7

0
.0
1
2
3
4
5
6
7

2
0
/
2
0

0
0

so
c
-t

w
it

te
r-

fo
ll
o
w

s
4
0
4
7
1
9

0
.0

8
8
1
8
6
8
7

0
.0

9
0
6
8
6
3
8

1
/
2
0

1
1
.2

9
e
-0

3
0
.0

0
5
4
0
5
4
0

0
.0

1
5
2
2
0
2
4

1
/
2
0

1
9

6
.2

6
e
-0

3
0
.0

0
5
4
0
5
4
0

0
.0
0
5
4
0
5
4
0

2
0
/
2
0

3
8

0

so
c
-y

o
u
tu

b
e

4
9
5
9
5
7

0
.0

7
4
1
6
6
0
6

0
.0

7
6
5
7
5
6
4

1
/
2
0

2
1
.5

2
e
-0

3
0
.0

0
8
9
2
8
5
7

0
.0

1
1
3
4
0
1
1

1
2
/
2
0

5
8

3
.2

5
e
-0

3
0
.0

0
8
9
2
8
5
7

0
.0
0
8
9
2
8
5
7

2
0
/
2
0

2
0

so
c
-fl

ic
k
r

5
1
3
9
6
9

0
.0

7
1
3
2
0
5
9

0
.1

1
1
5
3
5
0
7

1
/
2
0

3
3
.2

8
e
-0

2
0
.0

0
4
4
4
4
4
4

0
.0

0
5
6
5
1
9
8

1
3
/
2
0

4
3

1
.6

6
e
-0

3
0
.0

0
4
4
4
4
4
4

0
.0
0
4
4
4
4
4
4

2
0
/
2
0

1
0

so
c
-F

o
u
rS

q
u
a
re

6
3
9
0
1
4

0
.3

4
7
8
9
7
9
8

0
.3

4
9
8
7
8
8
0

1
/
2
0

3
1
.1

5
e
-0

3
0
.2

6
5
3
0
6
1
2

0
.2

6
5
6
4
6
2
5

1
5
/
2
0

4
0

5
.8

9
e
-0

4
0
.2

6
5
3
0
6
1
2

0
.2
6
5
3
0
6
1
2

2
0
/
2
0

4
0

w
e
b
-a

ra
b
ic

-
2
0
0
5

1
6
3
5
9
8

0
.0

0
0
0
0
5
5
6

0
.0

0
0
0
3
3
8
9

1
/
2
0

0
9
.1

0
e
-0

5
0
.0

0
0
0
0
3
0
6

0
.0

0
0
0
0
3
2
3

1
0
/
2
0

2
8

5
.4

0
e
-0

7
0
.0

0
0
0
0
3
0
6

0
.0
0
0
0
0
3
0
6

2
0
/
2
0

1
0

20

T
ab

le
4

D
et

ai
le

d
co

m
p

u
ta

ti
on

al
re

su
lt

s
of

M
A

M
C

w
it

h
tw

o
re

fe
re

n
ce

al
go

ri
th

m
s

S
aB

T
S

an
d

M
Q

I+
S

aB
T

S
[2

8]
on

50
la

rg
e

g
ra

p
h

s
fr

o
m

th
e

1
0
th

D
IM

A
C

S
C

h
al

le
n

ge
an

d
10

la
rg

e
gr

ap
h

s
fr

om
th

e
N

et
w

or
k

D
at

a
R

ep
os

it
or

y
on

li
n

e.
T

h
e

b
es

t
of

th
e

Φ
be
st

va
lu

es
fo

r
ea

ch
in

st
a
n

ce
is

h
ig

h
li

gh
te

d
in

b
ol

d
fa

ce
,

w
h

il
e

th
e

b
es

t
of

th
e

Φ
a
v
g

va
lu

es
fo

r
ea

ch
in

st
an

ce
is

in
d

ic
at

ed
in

it
al

ic
.

In
st

a
n
c
e

S
a
B

T
S

[2
8
]

M
Q

I+
S
a
B

T
S

[2
8
]

M
A

M
C

G
ra

p
h

|V
|

Φ
b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ

p
re

fe
re

n
ti

a
l

A
tt

a
c
h
m

e
n
t

1
0
0
0
0
0

0
.2

9
4
6
8
1
4
2

0
.2

9
5
7
5
4
2
2

1
/
2
0

1
7
9
0

7
.2

2
e
-0

4
0
.2

9
4
5
7
8
8
3

0
.2

9
5
8
4
7
2
5

1
/
2
0

2
2
6
4

1
.0

4
e
-0

3
0
.2

8
7
1
7
3
1
8

0
.2
8
8
0
4
9
4
0

1
/
2
0

2
8
8
6

6
.1

7
e
-0

4

sm
a
ll
w

o
rl

d
1
0
0
0
0
0

0
.1

0
0
4
8
4
4
0

0
.1
0
1
4
3
1
3
4

1
/
2
0

3
1
9
1

6
.7

9
e
-0

4
0
.1

0
1
0
5
8
6
0

0
.1

0
3
8
7
4
6
2

1
/
2
0

3
1
8
1

1
.9

9
e
-0

3
0
.0

9
9
4
8
2
5
9

0
.1

0
3
2
1
5
3
1

1
/
2
0

2
7
3
9

1
.2

7
e
-0

3

c
n
r-

2
0
0
0

3
2
5
5
5
7

0
.0

0
0
1
4
4
9
9

0
.0

0
0
4
5
2
8
6

1
/
2
0

1
7
9

2
.3

0
e
-0

4
0
.0

0
0
0
0
1
5
6

0
.0

0
0
0
0
6
4
9

1
2
/
2
0

0
7
.0

0
e
-0

6
0
.0

0
0
0
0
1
5
6

0
.0
0
0
0
0
1
5
6

2
0
/
2
0

1
0

e
u
-2

0
0
5

8
6
2
6
6
4

0
.0

0
1
8
0
4
6
5

0
.0

0
2
9
6
1
7
8

1
/
2
0

1
1
8

8
.5

4
e
-0

4
0
.0

0
0
0
4
9
3
0

0
.0

0
0
6
4
9
6
3

5
/
2
0

1
2
1
9

8
.7

5
e
-0

4
0
.0

0
0
0
4
9
3
0

0
.0
0
0
0
4
9
3
0

2
0
/
2
0

1
1

0

ro
a
d

c
e
n
tr

a
l

1
4
0
8
1
8
1
6

0
.0

0
0
0
1
0
0
0

0
.0

0
0
0
1
3
9
9

1
/
2
0

0
2
.0

0
e
-0

6
0
.0

0
0
0
1
0
0
0

0
.0

0
0
0
1
3
9
9

1
/
2
0

3
2
4
0

1
.5

2
e
-0

6
0
.0

0
0
0
1
0
0
0

0
.0
0
0
0
1
1
2
8

9
/
2
0

2
7
2

1
.2

1
e
-0

6

ro
a
d

u
sa

2
3
9
4
7
3
4
7

0
.0

0
0
0
0
5
8
4

0
.0

0
0
0
0
7
4
3

1
/
2
0

0
1
.0

0
e
-0

6
0
.0

0
0
0
0
5
8
4

0
.0

0
0
0
0
7
4
3

1
/
2
0

3
4
2
0

8
.7

0
e
-0

7
0
.0

0
0
0
0
5
8
4

0
.0
0
0
0
0
6
0
6

1
1
/
2
0

4
9
3

2
.8

0
e
-0

7

d
e
la

u
n
a
y

n
1
6

6
5
5
3
6

0
.0

0
2
4
4
1
8
2

0
.0

0
2
5
4
5
9
0

1
/
2
0

0
5
.3

0
e
-0

5
0
.0

0
2
3
2
6
4
1

0
.0

0
2
3
9
0
0
2

1
/
2
0

0
4
.3

0
e
-0

5
0
.0

0
2
2
6
3
7
6

0
.0
0
2
2
9
3
7
1

1
/
2
0

1
2
9
2

2
.4

4
e
-0

5

d
e
la

u
n
a
y

n
1
7

1
3
1
0
7
2

0
.0

0
1
7
4
2
2
2

0
.0

0
1
8
0
3
2
1

1
/
2
0

0
3
.3

0
e
-0

5
0
.0

0
1
6
1
6
8
3

0
.0

0
1
6
6
6
6
6

1
/
2
0

0
1
.9

0
e
-0

5
0
.0

0
1
5
6
8
5
7

0
.0
0
1
6
1
8
1
9

1
/
2
0

2
0
0
0

2
.2

2
e
-0

5

d
e
la

u
n
a
y

n
1
8

2
6
2
1
4
4

0
.0

0
1
2
2
7
1
1

0
.0

0
1
2
8
2
3
0

1
/
2
0

4
8

2
.4

0
e
-0

5
0
.0

0
1
1
3
7
2
4

0
.0

0
1
1
7
1
4
4

1
/
2
0

0
1
.8

0
e
-0

5
0
.0

0
1
1
3
3
3
2

0
.0
0
1
1
4
3
8
1

1
/
2
0

7
6
2

8
.0

3
e
-0

6

d
e
la

u
n
a
y

n
1
9

5
2
4
2
8
8

0
.0

0
0
8
7
9
3
1

0
.0

0
0
9
0
4
7
7

1
/
2
0

2
4
9

1
.8

0
e
-0

5
0
.0

0
0
7
8
7
5
7

0
.0

0
0
8
1
7
1
7

1
/
2
0

4
7

1
.1

7
e
-0

5
0
.0

0
0
7
8
6
9
3

0
.0
0
0
8
0
0
1
7

1
/
2
0

7
2
9

9
.7

3
e
-0

6

d
e
la

u
n
a
y

n
2
0

1
0
4
8
5
7
6

0
.0

0
0
6
2
0
8
5

0
.0

0
0
6
4
5
0
4

1
/
2
0

6
5

1
.3

0
e
-0

5
0
.0

0
0
5
5
8
9
0

0
.0

0
0
5
7
3
8
9

1
/
2
0

9
9
7

9
.5

9
e
-0

6
0
.0

0
0
5
5
8
9
1

0
.0
0
0
5
6
1
2
8

9
/
2
0

2
7

3
.5

0
e
-0

6

d
e
la

u
n
a
y

n
2
1

2
0
9
7
1
5
2

0
.0

0
0
4
3
7
4
2

0
.0

0
0
4
5
5
5
3

1
/
2
0

4
4

8
.0

0
e
-0

6
0
.0

0
0
3
9
2
9
3

0
.0

0
0
4
1
8
1
2

1
/
2
0

1
8
5
4

3
.0

1
e
-0

5
0
.0

0
0
3
9
2
9
3

0
.0
0
0
3
9
3
9
7

8
/
2
0

4
5

1
.3

5
e
-0

6

d
e
la

u
n
a
y

n
2
2

4
1
9
4
3
0
4

0
.0

0
0
3
1
3
5
2

0
.0

0
0
3
2
5
2
9

1
/
2
0

2
2
5

6
.0

0
e
-0

6
0
.0

0
0
3
1
3
5
2

0
.0

0
0
3
2
5
3
0

1
/
2
0

2
2
7
2

6
.4

2
e
-0

6
0
.0

0
0
3
1
3
5
2

0
.0
0
0
3
1
5
0
4

1
3
/
2
0

2
8
6

2
.6

1
e
-0

6

d
e
la

u
n
a
y

n
2
3

8
3
8
8
6
0
8

0
.0

0
0
2
2
4
4
3

0
.0

0
0
2
3
2
1
9

1
/
2
0

3
3
5

4
.0

0
e
-0

6
0
.0

0
0
2
2
4
4
3

0
.0

0
0
2
3
2
1
9

1
/
2
0

2
9
0
6

4
.0

8
e
-0

6
0
.0

0
0
2
2
4
4
3

0
.0
0
0
2
2
5
5
2

8
/
2
0

5
2
6

1
.3

0
e
-0

6

d
e
la

u
n
a
y

n
2
4

1
6
7
7
7
2
1
6

0
.0

0
0
1
6
1
8
0

0
.0

0
0
1
6
5
0
9

1
/
2
0

0
2
.0

0
e
-0

6
0
.0

0
0
1
6
1
8
0

0
.0

0
0
1
6
5
0
9

1
/
2
0

3
4
2
0

2
.3

2
e
-0

6
0
.0

0
0
1
6
1
8
0

0
.0
0
0
1
6
2
0
8

1
1
/
2
0

1
2
5
6

3
.2

0
e
-0

7

c
o
2
0
1
0

2
0
1
0
6
2

0
.0

0
0
6
7
3
8
2

0
.0

0
0
7
2
9
3
7

1
/
2
0

0
3
.4

0
e
-0

5
0
.0

0
0
5
3
7
0
0

0
.0

0
0
6
1
0
6
0

1
/
2
0

0
5
.0

0
e
-0

5
0
.0

0
0
5
3
4
4
2

0
.0
0
0
5
3
4
5
3

1
9
/
2
0

5
6
4

4
.8

0
e
-0

7

la
2
0
1
0

2
0
4
4
4
7

0
.0

0
0
3
6
5
9
5

0
.0

0
0
4
2
0
6
3

1
/
2
0

2
8

4
.8

0
e
-0

5
0
.0

0
0
1
7
7
8
9

0
.0

0
0
2
8
1
0
4

3
/
2
0

3
5

7
.4

0
e
-0

5
0
.0

0
0
1
7
7
8
9

0
.0
0
0
1
7
7
8
9

2
0
/
2
0

4
0

ia
2
0
1
0

2
1
6
0
0
7

0
.0

0
0
6
7
6
0
7

0
.0

0
0
7
1
5
0
3

1
/
2
0

0
2
.5

0
e
-0

5
0
.0

0
0
6
0
1
0
2

0
.0

0
0
6
2
4
5
0

1
/
2
0

0
1
.9

0
e
-0

5
0
.0

0
0
5
9
1
4
7

0
.0
0
0
6
0
0
4
6

1
/
2
0

1
2
3
9

4
.6

2
e
-0

6

k
s2

0
1
0

2
3
8
6
0
0

0
.0

0
0
5
7
9
3
8

0
.0

0
0
6
3
0
1
2

1
/
2
0

0
2
.4

0
e
-0

5
0
.0

0
0
5
1
4
7
0

0
.0

0
0
5
4
0
8
0

1
/
2
0

0
1
.6

0
e
-0

5
0
.0

0
0
5
1
4
7
0

0
.0
0
0
5
1
8
7
5

1
0
/
2
0

9
8
0

4
.5

4
e
-0

6

tn
2
0
1
0

2
4
0
1
1
6

0
.0

0
0
4
3
0
5
1

0
.0

0
0
4
8
4
1
5

1
/
2
0

0
3
.0

0
e
-0

5
0
.0

0
0
3
3
6
7
1

0
.0

0
0
3
8
6
5
4

8
/
2
0

0
4
.1

0
e
-0

5
0
.0

0
0
3
3
6
7
1

0
.0
0
0
3
3
6
7
1

2
0
/
2
0

4
0

a
z
2
0
1
0

2
4
1
6
6
6

0
.0

0
0
5
7
0
2
2

0
.0

0
0
6
2
6
5
4

1
/
2
0

1
3
.4

0
e
-0

5
0
.0

0
0
4
4
3
5
8

0
.0

0
0
5
1
3
9
8

1
/
2
0

1
3
0

4
.1

0
e
-0

5
0
.0

0
0
4
3
8
3
9

0
.0
0
0
4
5
1
8
3

1
/
2
0

9
4

1
.9

0
e
-0

5

a
l2

0
1
0

2
5
2
2
6
6

0
.0

0
0
5
7
5
6
7

0
.0

0
0
6
5
1
1
0

1
/
2
0

0
3
.7

0
e
-0

5
0
.0

0
0
5
0
9
8
2

0
.0

0
0
5
4
4
6
9

1
/
2
0

6
9

2
.7

0
e
-0

5
0
.0

0
0
5
0
7
3
2

0
.0
0
0
5
1
1
5
4

2
/
2
0

1
2
9
5

4
.0

1
e
-0

6

w
i2

0
1
0

2
5
3
0
9
6

0
.0

0
0
5
3
1
8
5

0
.0

0
0
6
2
4
7
5

1
/
2
0

0
7
.3

0
e
-0

5
0
.0

0
0
4
9
0
9
9

0
.0

0
0
5
3
5
0
5

1
/
2
0

1
0
6

4
.7

0
e
-0

5
0
.0

0
0
4
8
2
4
7

0
.0
0
0
4
8
5
8
1

3
/
2
0

1
3
7
4

4
.7

8
e
-0

6

m
n
2
0
1
0

2
5
9
7
7
7

0
.0

0
0
6
1
7
0
9

0
.0

0
0
6
6
0
5
8

1
/
2
0

0
2
.3

0
e
-0

5
0
.0

0
0
5
3
5
3
5

0
.0

0
0
5
5
5
5
2

1
/
2
0

1
6
1

1
.3

0
e
-0

5
0
.0

0
0
5
3
4
9
1

0
.0
0
0
5
3
9
2
6

1
/
2
0

8
2
8

3
.5

9
e
-0

6

in
2
0
1
0

2
6
7
0
7
1

0
.0

0
0
5
4
6
1
4

0
.0

0
0
6
0
0
8
1

1
/
2
0

1
2
.7

0
e
-0

5
0
.0

0
0
4
5
1
9
9

0
.0

0
0
4
7
7
6
6

7
/
2
0

5
1

3
.2

0
e
-0

5
0
.0

0
0
4
5
1
9
9

0
.0
0
0
4
5
1
9
9

2
0
/
2
0

2
0

o
k
2
0
1
0

2
6
9
1
1
8

0
.0

0
0
5
4
1
8
5

0
.0

0
0
5
9
9
2
4

1
/
2
0

1
3
.3

0
e
-0

5
0
.0

0
0
4
6
0
3
1

0
.0

0
0
5
0
5
9
7

1
/
2
0

1
9
2

2
.1

0
e
-0

5
0
.0

0
0
4
6
0
3
0

0
.0
0
0
4
6
6
7
7

2
/
2
0

5
0
1

9
.0

9
e
-0

6

v
a
2
0
1
0

2
8
5
7
6
2

0
.0

0
0
6
0
1
3
0

0
.0

0
0
6
6
4
3
1

1
/
2
0

1
3
.7

0
e
-0

5
0
.0

0
0
5
0
6
2
9

0
.0

0
0
5
4
5
2
6

6
/
2
0

1
2
9

3
.6

0
e
-0

5
0
.0

0
0
5
0
6
2
9

0
.0
0
0
5
0
8
1
0

1
7
/
2
0

3
6
.2

3
e
-0

6

n
c
2
0
1
0

2
8
8
9
8
7

0
.0

0
0
3
3
0
4
5

0
.0

0
0
3
5
8
2
6

1
/
2
0

1
2
.1

0
e
-0

5
0
.0

0
0
2
9
1
2
9

0
.0

0
0
3
0
3
8
1

1
/
2
0

7
9

9
.0

0
e
-0

6
0
.0

0
0
2
9
0
7
9

0
.0
0
0
2
9
2
1
5

1
/
2
0

1
2
1
8

2
.4

4
e
-0

6

g
a
2
0
1
0

2
9
1
0
8
6

0
.0

0
0
4
1
6
9
2

0
.0

0
0
4
7
2
4
9

1
/
2
0

7
4

4
.1

0
e
-0

5
0
.0

0
0
3
6
4
8
8

0
.0

0
0
3
9
2
0
4

1
/
2
0

4
4
5

2
.3

0
e
-0

5
0
.0

0
0
3
5
9
3
5

0
.0
0
0
3
6
3
5
3

1
/
2
0

1
0
8
3

2
.9

3
e
-0

6

m
i2

0
1
0

3
2
9
8
8
5

0
.0

0
0
5
0
3
4
7

0
.0

0
0
5
4
8
7
4

1
/
2
0

1
2
.5

0
e
-0

5
0
.0

0
0
0
9
2
4
7

0
.0

0
0
2
0
5
0
6

1
3
/
2
0

7
2

1
.7

1
e
-0

4
0
.0

0
0
0
9
2
4
7

0
.0
0
0
0
9
2
4
7

2
0
/
2
0

1
0

21

T
ab

le
4:

C
on

ti
n
u

ed

In
st

a
n
c
e

S
a
B

T
S

[2
8
]

M
Q

I+
S
a
B

T
S

[2
8
]

M
A

M
C

G
ra

p
h

|V
|

Φ
b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ
Φ

b
e
s
t

Φ
a
v
g

h
it

t(
s
)

σ

m
o
2
0
1
0

3
4
3
5
6
5

0
.0

0
0
5
4
9
3
2

0
.0

0
0
6
1
9
3
9

1
/
2
0

1
4
.6

0
e
-0

5
0
.0

0
0
4
4
0
1
0

0
.0

0
0
5
0
9
8
0

1
/
2
0

8
2

4
.2

0
e
-0

5
0
.0

0
0
4
4
0
1
0

0
.0
0
0
4
4
3
3
4

1
3
/
2
0

4
8
1

1
.2

5
e
-0

5

o
h
2
0
1
0

3
6
5
3
4
4

0
.0

0
0
5
5
7
0
1

0
.0

0
0
5
9
5
4
3

1
/
2
0

2
2
.2

0
e
-0

5
0
.0

0
0
4
7
0
5
2

0
.0

0
0
5
0
8
7
3

1
/
2
0

1
1
6

2
.2

0
e
-0

5
0
.0

0
0
4
5
0
3
0

0
.0
0
0
4
7
8
0
9

1
/
2
0

3
1
2

9
.8

8
e
-0

6

p
a
2
0
1
0

4
2
1
5
4
5

0
.0

0
0
3
4
3
0
9

0
.0

0
0
3
8
6
9
2

1
/
2
0

1
3
.8

0
e
-0

5
0
.0

0
0
2
6
6
1
6

0
.0

0
0
2
7
7
3
1

1
1
/
2
0

0
2
.3

0
e
-0

5
0
.0

0
0
2
6
6
1
6

0
.0
0
0
2
6
6
1
6

2
0
/
2
0

2
0

il
2
0
1
0

4
5
1
5
5
4

0
.0

0
0
2
9
3
2
4

0
.0

0
0
3
1
3
7
2

1
/
2
0

1
1
.6

0
e
-0

5
0
.0

0
0
2
5
2
0
4

0
.0

0
0
2
6
7
3
6

1
/
2
0

5
9
.0

0
e
-0

6
0
.0

0
0
2
4
9
9
7

0
.0
0
0
2
5
2
6
0

2
/
2
0

5
1
5

1
.7

4
e
-0

6

tx
2
0
1
0

9
1
4
2
3
1

0
.0

0
0
2
8
3
2
6

0
.0

0
0
3
2
2
6
9

1
/
2
0

5
2
.0

0
e
-0

5
0
.0

0
0
2
4
2
5
8

0
.0

0
0
2
5
2
8
9

1
/
2
0

2
6
9
2

9
.5

1
e
-0

6
0
.0

0
0
2
4
2
2
1

0
.0
0
0
2
4
2
7
4

2
/
2
0

1
7
6

4
.6

0
e
-0

7

t6
0
k

6
0
0
0
5

0
.0

0
0
8
2
8
7
6

0
.0

0
0
9
8
6
3
0

1
/
2
0

9
1
.0

7
e
-0

4
0
.0

0
0
6
9
3
8
5

0
.0

0
0
7
3
3
4
4

1
7
/
2
0

6
9
.4

0
e
-0

5
0
.0

0
0
6
9
3
8
5

0
.0
0
0
6
9
3
8
5

2
0
/
2
0

1
0

w
in

g
6
2
0
3
2

0
.0

0
7
0
8
2
9
6

0
.0

0
7
3
1
6
1
4

1
/
2
0

0
1
.5

6
e
-0

4
0
.0

0
6
6
8
2
1
9

0
.0

0
6
8
9
3
4
8

1
/
2
0

0
1
.3

6
e
-0

4
0
.0

0
6
5
4
9
0
6

0
.0
0
6
6
2
0
7
8

1
/
2
0

1
9
5
3

6
.6

9
e
-0

5

b
ra

c
k
2

6
2
6
3
1

0
.0

0
1
8
5
3
3
2

0
.0

0
1
9
2
2
4
8

1
/
2
0

1
7
6
7

4
.8

0
e
-0

5
0
.0

0
1
8
5
3
3
2

0
.0
0
1
8
5
3
3
2

2
0
/
2
0

7
0

0
.0

0
1
8
5
3
3
2

0
.0
0
1
8
5
3
3
2

2
0
/
2
0

1
0

0

fi
n
a
n
5
1
2

7
4
7
5
2

0
.0

0
0
6
2
0
4
0

0
.0
0
0
6
2
0
4
0

2
0
/
2
0

0
0

0
.0

0
0
6
2
0
4
0

0
.0
0
0
6
2
0
4
0

2
0
/
2
0

0
0

0
.0

0
0
6
2
0
4
0

0
.0
0
0
6
2
0
4
0

2
0
/
2
0

3
0

fe
to

o
th

7
8
1
3
6

0
.0

0
8
5
4
4
1
3

0
.0

0
9
2
0
3
1
3

1
/
2
0

2
0
0
8

3
.2

3
e
-0

4
0
.0

0
8
5
7
0
6
8

0
.0

0
8
9
3
2
5
7

1
/
2
0

7
3
5

2
.0

9
e
-0

4
0
.0

0
8
4
3
1
4
7

0
.0
0
8
4
6
6
9
9

1
/
2
0

2
0
3
2

8
.1

3
e
-0

5

fe
ro

to
r

9
9
6
1
7

0
.0

0
3
1
9
5
8
0

0
.0

0
3
2
2
4
4
8

1
/
2
0

2
0
8
1

2
.0

0
e
-0

5
0
.0

0
3
0
3
1
3
2

0
.0

0
3
1
3
9
6
7

1
/
2
0

0
2
.7

0
e
-0

5
0
.0

0
3
0
2
4
8
8

0
.0
0
3
0
3
4
1
1

1
4
/
2
0

5
4
2

2
.5

9
e
-0

5

5
9
8
a

1
1
0
9
7
1

0
.0

0
3
2
3
8
8
3

0
.0

0
3
2
7
0
7
8

1
/
2
0

1
7
0
7

1
.9

0
e
-0

5
0
.0

0
3
2
5
6
6
6

0
.0

0
3
2
6
8
8
0

1
/
2
0

1
5
1

9
.0

0
e
-0

6
0
.0

0
3
2
3
2
0
9

0
.0
0
3
2
3
8
1
6

2
/
2
0

2
1
4
5

5
.0

2
e
-0

6

fe
o
c
e
a
n

1
4
3
4
3
7

0
.0

0
0
7
9
4
3
6

0
.0

0
0
9
5
1
2
4

1
/
2
0

2
0
6
9

1
.1

3
e
-0

4
0
.0

0
0
7
8
2
2
3

0
.0

0
0
8
3
7
1
3

7
/
2
0

1
2
5
5

7
.9

0
e
-0

5
0
.0

0
0
7
8
2
2
3

0
.0
0
0
7
8
2
2
3

2
0
/
2
0

4
7

0

1
4
4

1
4
4
6
4
9

0
.0

0
6
1
1
7
8
7

0
.0

0
6
2
0
9
7
7

1
/
2
0

1
4
4
4

5
.2

0
e
-0

5
0
.0

0
6
1
0
6
6
0

0
.0

0
6
2
0
8
9
3

1
/
2
0

2
0
6

6
.0

0
e
-0

5
0
.0

0
6
0
5
3
0
5

0
.0
0
6
0
7
3
7
4

1
/
2
0

2
6
9
0

9
.0

0
e
-0

6

w
a
v
e

1
5
6
3
1
7

0
.0

0
8
2
8
0
7
0

0
.0

0
8
3
8
1
6
6

1
/
2
0

2
3
1
5

7
.0

0
e
-0

5
0
.0

0
8
2
8
6
9
2

0
.0

0
8
3
8
0
3
0

1
/
2
0

7
6
4

7
.8

0
e
-0

5
0
.0

0
8
1
9
1
0
1

0
.0
0
8
2
3
6
3
0

1
/
2
0

2
8
6
7

2
.2

5
e
-0

5

m
1
4
b

2
1
4
7
6
5

0
.0

0
2
3
0
1
9
4

0
.0

0
2
3
1
4
9
3

1
/
2
0

8
1
8

5
.0

0
e
-0

6
0
.0

0
2
2
9
9
0
1

0
.0

0
2
3
2
5
3
4

1
/
2
0

4
1
6

1
.9

0
e
-0

5
0
.0

0
2
2
8
4
6
6

0
.0
0
2
2
9
8
6
7

1
/
2
0

1
8
6
5

5
.4

7
e
-0

6

a
u
to

4
4
8
6
9
5

0
.0

0
3
1
4
0
9
3

0
.0

0
3
1
8
4
1
8

1
/
2
0

1
1
9
6

3
.5

0
e
-0

5
0
.0

0
2
9
8
5
7
1

0
.0

0
3
0
1
2
5
6

4
/
2
0

1
2
0

6
.0

0
e
-0

5
0
.0

0
2
9
8
5
7
1

0
.0
0
2
9
8
5
7
9

1
7
/
2
0

4
7
6

2
.0

0
e
-0

7

c
o
A

u
th

o
rs

D
B

L
P

2
9
9
0
6
7

0
.0

4
9
9
4
3
2
3

0
.0

5
1
5
6
2
1
8

1
/
2
0

2
5
2

8
.4

0
e
-0

4
0
.0

0
4
1
1
5
2
2

0
.0

0
4
9
4
9
1
3

2
/
2
0

1
6

5
.2

2
e
-0

4
0
.0

0
4
1
1
5
2
2

0
.0
0
4
1
1
5
2
2

2
0
/
2
0

1
0

0

th
e
rm

a
l2

1
2
2
7
0
8
7

0
.0

0
0
2
7
4
4
8

0
.0

0
0
2
8
0
6
0

1
/
2
0

1
5
6
8

3
.9

9
e
-0

6
0
.0

0
0
2
5
2
9
6

0
.0

0
0
2
5
6
8
7

1
/
2
0

8
6
4

6
.4

2
e
-0

6
0
.0

0
0
2
5
2
9
6

0
.0
0
0
2
5
3
3
9

1
0
/
2
0

2
2
3

4
.9

0
e
-0

7

G
3

c
ir

c
u
it

1
5
8
5
4
7
8

0
.0

0
0
4
0
7
9
3

0
.0

0
0
4
4
4
2
4

1
/
2
0

1
2
8
3

1
.6

1
e
-0

5
0
.0

0
0
3
6
3
2
8

0
.0

0
0
3
8
0
7
5

1
/
2
0

7
4
1

1
.5

1
e
-0

5
0
.0

0
0
3
6
3
2
8

0
.0
0
0
3
6
3
9
3

8
/
2
0

3
3
5

1
.0

1
e
-0

6

c
a
-c

o
a
u
th

o
rs

-
d
b
lp

5
4
0
4
8
6

0
.0

4
0
6
2
1
1
1

0
.0

4
2
9
7
0
0
1

1
/
2
0

8
1
0

1
.5

1
e
-0

3
0
.0

0
2
2
6
7
5
7

0
.0

0
2
4
4
8
4
1

1
5
/
2
0

1
0
8

3
.1

4
e
-0

4
0
.0

0
2
2
6
7
5
7

0
.0
0
2
2
6
7
5
7

2
0
/
2
0

5
0

in
f-

ro
a
d
N

e
t-

P
A

1
0
8
7
5
6
2

0
.0

0
0
1
1
4
6
7

0
.0

0
0
1
2
3
4
3

1
/
2
0

1
4
0
9

6
.2

5
e
-0

6
0
.0

0
0
0
8
2
2
1

0
.0

0
0
0
8
7
8
9

2
/
2
0

4
1
8

7
.5

7
e
-0

6
0
.0

0
0
0
8
2
2
1

0
.0
0
0
0
8
2
3
0

1
5
/
2
0

4
1
.6

0
e
-0

7

sc
-n

a
sa

sr
b

5
4
8
7
0

0
.0

0
3
3
1
9
2
4

0
.0

0
3
4
4
5
2
1

1
/
2
0

2
2
4
4

8
.1

3
e
-0

5
0
.0

0
3
2
5
4
8
9

0
.0

0
3
3
4
0
8
9

2
/
2
0

2
7
2
8

5
.0

5
e
-0

5
0
.0

0
3
2
5
4
8
9

0
.0
0
3
2
5
4
8
9

2
0
/
2
0

1
4

0

sc
-p

k
u
st

k
1
3

9
4
8
9
3

0
.0

0
9
1
6
5
9
6

0
.0

0
9
5
2
1
6
5

1
/
2
0

2
1
8
2

2
.5

6
e
-0

4
0
.0

0
9
1
6
9
3
3

0
.0

0
9
4
6
3
6
0

1
/
2
0

1
6
3
7

2
.4

3
e
-0

4
0
.0

0
9
0
5
8
0
5

0
.0
0
9
0
6
6
3
4

1
5
/
2
0

1
7
2
9

2
.8

6
e
-0

5

so
c
-g

o
w

a
ll

a
1
9
6
5
9
1

0
.0

5
3
9
4
5
5
4

0
.0

5
5
4
8
4
0
6

1
/
2
0

2
1
6
0

8
.5

1
e
-0

4
0
.0

1
2
3
4
5
6
7

0
.0

1
2
4
7
3
9
4

1
6
/
2
0

3
2
8
6

2
.5

7
e
-0

4
0
.0

1
2
3
4
5
6
7

0
.0
1
2
3
4
5
6
7

2
0
/
2
0

0
0

so
c
-t

w
it

te
r-

fo
ll
o
w

s
4
0
4
7
1
9

0
.0

7
4
4
7
6
3
9

0
.0

7
6
6
1
0
0
0

1
/
2
0

2
9
8
6

1
.0

1
e
-0

3
0
.0

0
5
4
0
5
4
0

0
.0

1
5
1
5
0
6
0

1
/
2
0

1
2
6
0

6
.2

1
e
-0

3
0
.0

0
5
4
0
5
4
0

0
.0
0
5
4
0
5
4
0

2
0
/
2
0

3
8

0

so
c
-y

o
u
tu

b
e

4
9
5
9
5
7

0
.0

5
8
9
0
7
9
6

0
.0

5
9
9
1
5
8
4

1
/
2
0

1
9
1
5

1
.0

6
e
-0

3
0
.0

0
8
9
2
8
5
7

0
.0

1
1
3
4
0
1
1

1
2
/
2
0

5
5
0

3
.2

5
e
-0

3
0
.0

0
8
9
2
8
5
7

0
.0
0
8
9
2
8
5
7

2
0
/
2
0

2
0

so
c
-fl

ic
k
r

5
1
3
9
6
9

0
.0

6
1
1
4
3
0
0

0
.0

9
7
3
1
5
6
1

1
/
2
0

3
3
1
9

2
.9

6
e
-0

2
0
.0

0
4
4
4
4
4
4

0
.0

0
5
6
5
1
9
8

1
3
/
2
0

6
5
8

1
.6

6
e
-0

3
0
.0

0
4
4
4
4
4
4

0
.0
0
4
4
4
4
4
4

2
0
/
2
0

1
0

so
c
-F

o
u
rS

q
u
a
re

6
3
9
0
1
4

0
.3

2
3
5
5
2
4
5

0
.3

2
5
0
8
6
4
4

1
/
2
0

1
5
0
8

7
.1

4
e
-0

4
0
.2

6
5
3
0
6
1
2

0
.2

6
5
6
4
6
2
5

1
5
/
2
0

7
4
3

5
.8

9
e
-0

4
0
.2

6
5
3
0
6
1
2

0
.2
6
5
3
0
6
1
2

2
0
/
2
0

4
0

w
e
b
-a

ra
b
ic

-
2
0
0
5

1
6
3
5
9
8

0
.0

0
0
0
1
7
7
3

0
.0

0
0
0
3
8
0
8

1
/
2
0

2
5
5
5

3
.6

0
e
-0

5
0
.0

0
0
0
0
4
0
6

0
.0

0
0
0
0
4
0
8

1
6
/
2
0

3
1
8
9

6
.0

0
e
-0

8
0
.0

0
0
0
0
3
0
6

0
.0
0
0
0
0
3
0
6

2
0
/
2
0

1
0

22

100 100.2 100.4 100.6 100.8 101 101.2 101.4 101.6 101.8
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

(Φ
b
e
s
t
)

Performance Profile

MAMC
MQI

MQI+SaBTS
Metis
SaBTS

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

(Φ
a
v
g
)

Performance Profile

MAMC
MQI

MQI+SaBTS
Metis
SaBTS

Fig. 3. Performance profiles of the proposed MAMC algorithm and the four reference
algorithms Metis [20], MQI [21], SaBTS [28] and MQI+SaBTS [28] on the set of
60 benchmark instances. The left part corresponds to the best conductance Φbest

values, and the right part is for the average conductance Φavg values.

Table 5
Summary of comparative results between the proposed MAMC algorithm and each
of the four reference algorithms Metis [20], MQI [21], SaBTS [28] and MQI+SaBTS
[28].

Algorithm pair #Instance Indicator #Wins #Ties #Losses p-value

MAMC vs. Metis [20] 60 Φbest 54 6 0 1.63e-10

Φavg 60 0 0 1.63e-11

MAMC vs. MQI [21] 60 Φbest 27 33 0 5.60e-06

Φavg 60 0 0 1.63e-11

MAMC vs. SaBTS [28] 60 Φbest 53 7 0 2.39e-10

Φavg 58 1 1 2.93e-10

MAMC vs. MQI+SaBTS [28] 60 Φbest 27 32 1 4.46e-06

Φavg 58 2 0 3.51e-11

4.4 Application to complex network analysis

As indicated in the literature (e.g., [6,8,25,27]), conductance minimization is
an useful tool for complex network analysis. As an additional benchmark as-
sessment, we illustrate in this section the interest of the MAMC algorithm for
the problem of community identification in complex networks. For this pur-
pose, we consider 3 popular social networks: two with known (ground truth)
community structures (Zachary’s Karate Club and College Football Network)
and one with unknown community structure (Bottlenose Dolphin Social Net-
work).

Zachary’s Karate Club [45]. This social network (Fig. 4) is from the well-

23

2

1

3

4

5

6

7

8

9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

26

24 30

25

27

Fig. 4. Karate Club friendship network and the communities detected by the MAMC
algorithm.

known karate club studied by Zachary, which represents the 34 members
(nodes) and the 78 pairwise friendship relations (edges) between members
observed over a period of three years. Due to a conflict between the admin-
istrator (node 34) and the instructor (node 1), the club members are divided
into two groups (communities), each with half of the members. Fig. 4 shows
the members (nodes) of the two groups in red and blue respectively. Running
our MAMC algorithm on this network led to the partition indicated by the
dash line with a conductance value of Φ(s) = 0.12820512. As one can observe,
the identified communities almost perfectly reflect the two groups observed
by Zachary, with only 2 nodes (9 and 10) ”incorrectly” assigned to the oppos-
ing group. This is reasonable and can be explained by the observations from
Zachary. In fact, individual 9 is a weak political supporter of the club adminis-
trator before the fission, and individual 10 supports neither the administrator
nor the instructor. As a result, none of individual 9 or 10 is solidly a member
of either group. Finally, the partition identified by MAMC has the minimal
conductance value (Φ(s) = 0.12820512), while Zachary’s partition has a larger
conductance of Φ(s) = 0.14666666.

College Football Network [14]. This social network (Fig. 5) is more com-
plex and represents the schedule of American football games between Division
IA colleges during the regular-season in Fall 2000. The network is composed
of 115 nodes representing the teams and 613 links representing regular-season
games between the two connected teams. The known communities are defined
by the conferences with their composing teams and marked with different col-
ors. In principle, teams from one conference are more likely to play games with
each other than with teams from other conferences. There also exist some in-
dependent teams that do not belong to any conference, and these teams are
marked with a dark blue color. The communities identified by the MAMC
algorithm are represented by clusterings in Fig. 5. In general, MAMC cor-
rectly clusters teams of each conference. The independent teams are clustered

24

Fig. 5. College Football Network. The colors indicate different conferences, and
clusterings show the communities identified by the MAMC algorithm.

with conferences with which they played games most frequently, because the
independent teams seldom play games between themselves. The clusters de-
tected by MAMC deviate slightly from the conference partition in several
ways. First, the Sun Belt conference, marked in red, is split into two parts,
which are grouped with Western Athletic and Independents conference due to
the fact that there was only one game involving teams from these two parts.
Second, one team from Conference USA (colored in pink) is clustered with
teams from the Western Athletic conference. This team played no games with
other teams from the Conference USA, but played games with every team
from the Western Athletic conference. Third, two teams from the Western
Athletic conference are isolated from other teams from this conference. The
team at the upper position had no intra-conference game, and the team at the
lower position had only 2 intra-conference games, but both teams had inter-
conference games with every member of the cluster they are assigned to. In
summary, our MAMC algorithm perfectly identified the community structures
established in the regular-season-game association, and in addition, detected
the lack of intra-conference association that the known community structure
fails to represent.

Bottlenose Dolphin Social Network [29]. This social network (Fig. 6) is

25

Fish

Beak

Grin

Haecksel

SN9

SN96

TR77

Jet
Beescratch

Knit

Notch

Number1 Oscar

SN100

SN90

Upbang

Bumper

Thumper

Zipfel

Double

CCL

Zap

Trigger

Cross

Feather

DN16

Gallatin

Wave
Web

DN21

DN63

PL
Kringel

SN4

Topless

Ripplefluke

Patchback

Five

Scabs

Fork

Hook

MN83

ShmuddelSN63

Stripes

TR99

TSN103

Jonah

Vau

MN23

Mus

Quasi

MN105

MN60

SMN5

Zig

TR88

SN89

Whitetip

TR120

TSN83

TR82

Fig. 6. Bottlenose Dolphin Social Network. The nodes are colored based on the
groups observed in the study by Lusseau et al. [29]. The clusterings represent com-
munities detected by the MAMC algorithm.

composed of 62 bottlenose dolphins living off Doubtful Sound, New Zealand.
The 159 social associations between dolphin pairs are established based on
direct observations conducted during a period of seven years by Lusseau et
al. [29]. In this network, nodes represent dolphins and links represent social
associations. The 3 groups of 40 dolphins observed by Lusseau et al. tend to
spend more time together than with others, and are colored in green, red and
blue respectively, while the dolphins with yellow color are not involved in the
clustering analysis. The dash line denotes the community division found by
our MAMC algorithm. We can see that the achieved division matches well the
observed groups, separating the red and blue groups into two communities.
The green group is split evenly between the two detected communities, because
this group is a weak group and is not well represented by the social network
since most of its members share no social associations [29].

5 Analysis

In this section, we first analyze the key parameters of the proposed algorithm,
and the impacts of the progressive constrained neighborhood, the pool initial-
ization procedure, and the pool updating procedure.

26

5 10 15 20 25 30 35 40 45 50
Parameter α

0.0198

0.0200

0.0202

0.0204

0.0206

0.0208
Co

nd
uc

ta
nc

e
va

lu
e

Φavg

Φbest

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Parameter d

0.0198

0.0200

0.0202

0.0204

0.0206

0.0208

0.0210

0.0212

0.0214

Co
nd

uc
ta

nc
e

va
lu

e

Φbest

Φavg

Fig. 7. Average values of Φbest and Φavg on six hard instances obtained by executing
MAMC with different values of parameters α and d. The left part concerns the
parameter α with values α ∈ {5, 10, . . . , 45, 50}, and the right part concerns the
parameter d with values d ∈ {1000, 2000, . . . , 9000, 10000}.

5.1 Study of the parameters for tabu search

The progressive constrained neighborhood tabu search (PCNTS) of MAMC
requires two parameters (tabu tenure management factor α and depth of tabu
search d). To study the effect of these parameters and determine a proper
value, we performed the following experiment. For each parameter, we varied
its values within a reasonable range, while maintaining the other parameter
to their default values as shown in Table 2. Specifically, α varied its values
in {5, 10, . . . , 45, 50}, while d takes its values in {1000, 2000, . . . , 9000, 10000}.
The experiment in this section was carried out on six hard instances with
different characteristics (smallworld, delaunay n18, oh2010, wave, sc-pkustk13,
web-arabic-2005). We ran our algorithm with each value of these parameters
20 times to solve each instance with a cutoff time of 60 minutes. Fig. 7 shows
the average values of Φbest and Φavg over these six instances, where the X-axis
indicates the parameter values and the Y-axis shows the best and average
conductance values.

From Fig. 7, we observe that the performance of MAMC is significantly influ-
enced by the setting of each parameter. For α, the best performance is attained
when α = 10, and a too small or too large α value leads to a poor performance
of MAMC. This can be explained by the fact that a small (or large) α value
makes the prohibited time too short (or too long). For d, the value of 6000
is the best choice, and a too large or too small d value deteriorates MAMC
performance. Thus, we set α = 10 and D = 6000 in our experiment.

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Instances

0%

20%

40%

60%

80%

100%
Co

nd
uc

ta
nc

e
ga

p
(%

)

(a) Best results
InitialRandom1
InitialRandom2
InitialMixed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Instances

0%

20%

40%

60%

80%

100%

Co
nd

uc
ta

nc
e

ga
p

(%
)

(b) Average results
InitialRandom1
InitialRandom2
InitialMixed

Fig. 8. Comparison of the quality-and-diversity based population initialization (Ini-
tialMixed) with two random initialization variants (InitialRandom1 and InitialRan-
dom2).

5.2 Quality-and-diversity based initialization v.s. random initialization

The MAMC algorithm uses a mixed population initialization strategy that
takes into account both quality and diversity (see Section 3.2). We study the
effect of this strategy by comparing it with two random initializations. The
first one is a pure random initialization (denoted by InitialRandom1), while
the second one uses the progressive constrained neighborhood tabu search of
Section 3.4 to improve each random seeding solution (denoted by InitialRan-
dom2). We tested these two variants within our MAMC algorithm based on 15
instances arbitrarily chosen from the benchmark set and compared the results
with the quality-and-diversity based initialization (denoted by InitialMixed).
The plots of their best and average conductance gaps are shown in Fig. 8,
where the X-axis indicates the instances (named by numbers from 1 to 15)
and the Y-axis shows the best (or average) conductance gap in percentage.
The best (or average) conductance gap is calculated as (ΦInitialRandomK −
ΦMAMC)/ΦInitialRandomK×100% (K = 1, 2) where ΦInitialRandomK and ΦMAMC

are the best (or average) conductance values of the variant (InitialRandomK)
and MAMC respectively. From Fig. 8, we observe that MAMC with the
quality-and-diversity initialization outperforms the two random initializations.
Moreover, the pure random initialization led to the worst results. This exper-
iment confirms the usefulness of our designed mixed initialization procedure.

28

1 5 10 15 20 25 30 35 40 45 50 55 60
time (min)

0.104

0.106

0.108

0.110

0.112

0.114
Co

nd
uc
ta
nc
e
va
lu
e

(a) smallworld
CNTS
PCNTS

1 5 10 15 20 25 30 35 40 45 50 55 60
time (min)

0.000480

0.000482

0.000484

0.000486

0.000488

0.000490

0.000492

Co
nd

uc
ta
nc
e
va
lu
e

(b) oh2010
CNTS
PCNTS

1 5 10 15 20 25 30 35 40 45 50 55 60
time (min)

0.0082

0.0083

0.0084

0.0085

0.0086

0.0087

Co
nd

uc
ta

nc
e

va
lu

e

(c) wave
CNTS
PCNTS

1 5 10 15 20 25 30 35 40 45 50 55 60
time (min)

0.00910

0.00915

0.00920

0.00925

0.00930

0.00935
Co

nd
uc

ta
nc

e
va

lu
e

(d) sc-pkustk13
CNTS
PCNTS

Fig. 9. Comparison of MAMC with the progressive constrained neighborhood (de-
noted by PCNTS) and its variant with the whole neighborhood (denoted by CNTS)
according to their running profiles (convergence graphs).

5.3 Effectiveness of the progressive constrained neighborhood

As described in Section 3.4, the MAMC algorithm employs a progressive con-
strained neighborhood in its PCNTS procedure. To assess the usefulness of
this progressive constrained neighborhood, we created a MAMC variant (de-
noted by CNTS) where the tabu search procedure of Algorithm 3 examines
at each iteration the whole constrained neighborhood induced by the whole
set of critical vertices CV (s) (i.e., by setting ev = |CV (s)| in Algorithm 3).
To compare MAMC and this variant, we ran both algorithm on four selected
instances (smallworld, oh2010, wave, sc-pkustk13) and show their running pro-
files (convergence graphs) in Fig. 9.

We observe that thanks to the progressive constrained neighborhood, the
MAMC algorithm has a better convergence throughout the search from the

29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Instances

0.00%

1.00%

2.00%

3.00%

4.00%
Co

nd
uc

ta
nc

e
ga

p
(%

)

(a) Best results
PoolOld
PoolNew

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Instances

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

Co
nd

uc
ta

nc
e

ga
p

(%
)

(b) Average results
PoolOld
PoolNew

Fig. 10. Comparison of the distance-and-quality based pool updating procedure
(PoolNew) and its variant only based on solution quality (PoolOld).

beginning to the end of the given time budget. This holds for all four instances.
This experiment confirms the relevance of the adopted progressive constrained
neighborhood within the tabu search based local optimization procedure.

5.4 Effectiveness of the distance-and-quality based pool updating procedure

MAMC uses a distance-and-quality based pool updating procedure (see Sec-
tion 3.5) to maintain a healthy population. We present an experiment to assess
the effectiveness of this pool updating strategy (denoted by PoolNew) by mak-
ing a comparison with the traditional quality based pool updating strategy
(denoted by PoolOld) which replaces the worst solution in the population with
the offspring solution.

We tested both strategies within our MAMC algorithm based on 15 instances
randomly taken from the benchmark set. Fig. 10 provides the plots of their
best and average conductance gap. The X-axis indicates the name of instances
(named by numbers from 1 to 15). The Y-axis shows the best (or average) con-
ductance gap in percentage, calculated as (ΦPoolOld−ΦMAMC)/ΦPoolOld×100%
where ΦPoolOld is the best (or average) conductance value of the algorithm
variant (PoolOld) and ΦMAMC is the best (or average) conductance value of
MAMC.

From Fig. 10, we observe that the MAMC algorithm performs generally bet-
ter with the distance-and-quality based pool updating procedure than with
the traditional quality pool updating procedure. This outcome confirms that
the distance-and-quality strategy plays a positive role and contributes to the
performance of the MAMC algorithm.

30

6 Conclusion and prospective

The minimum conductance partitioning problem has a number of significant
applications in various domains. In this work, we introduced an effective hybrid
evolutionary algorithm for finding low conductance for large graphs. Based on
the population memetic search framework, the proposed algorithm integrates
some important features. First, to ensure an effective and efficient intensifi-
cation of its local optimization component on large and massive graphs, the
algorithm adopts an original progressive neighborhood whose size is dynam-
ically adjusted according to the search state. Second, to maintain a healthy
population of high diversity and good quality, the algorithm uses a proven
distance-and-quality pool updating strategy for its population management.
Finally, to further diversify the search, a conventional crossover is applied to
generate offspring solutions.

We showed that the proposed algorithm competes very favorably with the
current best-performing algorithms when it is assessed on 60 large-scale real-
world benchmark instances (including 50 graphs from the 10th DIMACS Im-
plementation Challenge and 10 graphs from the Network Data Repository
online, with up to 23 million vertices). The computational results led to the
main conclusions that 1) our algorithm dominates the reference algorithms
for the tested instances, and 2) it is able to further improve the solutions
obtained by the popular max-flow quotient-cut improvement algorithm. As
an application example, we showed the proposed algorithm can be used to
detect meaningful community structures in complex networks. Finally, we in-
vestigated the essential components of the algorithm, leading to the findings
that 1) the progressive neighborhood used by the local optimization proce-
dure plays an important role of ensuring a fast convergence of the algorithm,
and 2) the quality-and-diversity pool initialization and distance-and-quality
pool management help the algorithm to maintain a healthy population, which
contributes to its performance.

For future work, several potential research lines can be followed. First, the
idea of the progressive neighborhood strategy is of general interest, it would
be interesting to test the idea in other settings, in particular related to large
graph optimization. Second, it would also be worth studying the combination
of max-flow methods like MQI and multilevel optimization. Third, few studies
exist on exact approaches for MC-GPP. Research in this area is clearly needed.

31

Acknowledgment

We are grateful to the reviewers for their useful comments and suggestions
which helped us to significantly improve the paper. Support from the China
Scholarship Council (CSC) for the first author is also acknowledged.

References

[1] Andersen, R., & Lang, K. J. An algorithm for improving graph partitions. In
Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, 651-660, 2008.

[2] Arora, S., Rao, S., & Vazirani, U. O(
√
logn) approximation to sparsest cut in

õ(n2) time. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 238-247, 2004.

[3] Arora, S., Rao, S., & Vazirani, U. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2), 5:1-5:37, 2009.

[4] Benlic, U., & Hao, J. K. Una Benlic and Jin-Kao Hao. A multilevel memetic
approach for improving graph k-partitions. IEEE Transactions on Evolutionary
Computation, 15(5): 624-642, 2011.

[5] Benlic, U., & Hao, J. K. Memetic search for the quadratic assignment problem.
Expert Systems with Applications, 42(1): 584-595, 2015.

[6] Benson, A. R., Gleich, D. F., & Leskovec, J. Higher-order organization of complex
networks. Science, 353(6295), 163-166, 2016.

[7] Chalupa, D. A memetic algorithm for the minimum conductance graph
partitioning problem. arXiv preprint arXiv: 1704.02854, 2017.

[8] Chalupa, D., Hawick, K. A., & Walker, J. A. Hybrid bridge-based memetic
algorithms for finding bottlenecks in complex networks. Big Data Research, 14,
68-80, 2018.

[9] Cheeger J. A lower bound for the smallest eigenvalue of the Laplacian. In
Proceedings of the Princeton Conference in Honor of Professor S. Bochner, pages
195-199, 1969.

[10] Cheng, D., Kannan, R., Vempala, S., & Wang, G. A Divide-and-Merge
Methodology for Clustering. ACM Transactions on Database Systems, 31(44),
1499-1525, 2006.

[11] Dolan, E. D., & Moré, J. J. enchmarking optimization software with
performance profiles. Mathematical Programming, 91(2), 201-213, 2002.

[12] Fortunato, S. Community detection in graphs. Physics Reports, 486(3-5), 75-
174, 2010.

32

[13] Galinier, P., Boujbel, Z., & Fernandes, M. C. An efficient memetic algorithm
for the graph partitioning problem. Annals of Operations Research, 191(1), 1-22,
2011.

[14] Girvan, M., & Newman, M. E. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826,
2002.

[15] Guerrero, C., Lera, I., & Juiz, C. Evaluation and efficiency comparison of
evolutionary algorithms for service placement optimization in fog architectures.
Future Generation Computer Systems, 97, 131-144, 2019.

[16] Gusfield, D. Partition-distance: A problem and class of perfect graphs arising
in clustering. Information Processing Letters, 82(3), 159-164, 2002.

[17] Hao, J. K. Memetic Algorithms in Discrete Optimization. In Neri, F., Cotta, C.,
&Moscato P. (Eds.) Handbook of Memetic Algorithms. Studies in Computational
Intelligence 379, Chapter 6, pages 73-94, 2012.

[18] Hochbaum, D. S. Polynomial time algorithms for ratio regions and a variant
of normalized cut. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(5), 889-898, 2010.

[19] Hochbaum, D. S. A polynomial time algorithm for rayleigh ratio on discrete
variables: Replacing spectral techniques for expander ratio, normalized cut, and
cheeger constant. Operations Research, 61(1), 184-198, 2013.

[20] Karypis G., & Kumar V. MeTiS 5.1.0: Unstructured graphs partitioning and
sparse matrix ordering system. Technical Report, Department of Computer
Science, University of Minnesota, 1998.

[21] Lang, K., & Rao, S. A flow-based method for improving the expansion or
conductance of graph cuts. In International Conference on Integer Programming
and Combinatorial Optimization, 325-337, Springer, Berlin, Heidelberg, 2004.

[22] Leighton, T., & Rao, S. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46(6), 787-832,
1999.

[23] Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. Statistical
properties of community structure in large social and information networks. In
Proceedings of the 17th International Conference on World Wide Web, pages
695-704, ACM, 2008.

[24] Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. Community
structure in large networks: Natural cluster sizes and the absence of large well-
defined clusters. Internet Mathematics, 6(1), 29-123, 2009.

[25] Li, P., & Milenkovic, O. (2017). Inhomogeneous hypergraph clustering with
applications. In Advances in Neural Information Processing Systems, pp. 2308-
2318, 2017.

33

[26] Lü, Z., Glover, F., & Hao, J. K. A hybrid metaheuristic approach to solving the
UBQP problem. European Journal of Operational Research, 207(3), 1254-1262,
2002.

[27] Lu, Z., Wahlström, J., & Nehorai, A. Community detection in complex networks
via clique conductance. Scientific Reports, 8(1), 5982, 2018.

[28] Lu, Z., Hao, J. K., & Zhou, Y. Stagnation-aware breakout tabu search for
the minimum conductance graph partitioning problem. Computers & Operations
Research, 111, 43-57, 2019.

[29] Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson,
S. M. The bottlenose dolphin community of Doubtful Sound features a large
proportion of long-lasting associations. Behavioral Ecology and Sociobiology,
54(4), 396-405, 2003.

[30] Moalic, L., & Gondran, A. Variations on memetic algorithms for graph coloring
problems. Journal of Heuristics, 24 (1), 124, 2018.

[31] Moura, D. L. L., Cabral, R. S., Sales, T., & Aquino, A. L. L. An
evolutionary algorithm for roadside unit deployment with betweenness centrality
preprocessing. Future Generation Computer Systems, 88, 776-784, 2018.

[32] Neri, F., Cotta, C., & Moscato, P. (Eds.). Handbook of memetic algorithms
(Vol. 379). Berlin: Springer, 2012.

[33] Porumbel, D. C., Hao, J. K., Kuntz, P. An Evolutionary Approach with
Diversity Guarantee and Well-Informed Grouping Recombination for Graph
Coloring. Computers & Operations Research, 37(10), 1822-1832, 2010.

[34] Rossi, R., & Ahmed, N. The network data repository with interactive graph
analytics and visualization. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 4292-4293, 2015.

[35] Schaeffer, S. E. Graph clustering. Computer Science Review, 1(1), 27-64, 2007

[36] Shi, J., & Malik, J. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888-905, 2000.

[37] Š́ıma, J., & Schaeffer, S. E. On the NP-completeness of some graph cluster
measures. In Proceedings of the 32nd Conference on Current Trends in Theory
and Practice of Computer Science, Lecture Notes in Computer Science book
series, volume 3831, pages 530-537, Springer, Berlin, Heidelberg, 2006.

[38] Siqueira, A. S., da Silva, R. C., & Santos, L. R. Perprof-py: A python package
for performance profile of mathematical optimization software. Journal of Open
Research Software, 4(1), 2016.

[39] Spielman, D. A., & Teng, S. H. A local clustering algorithm for massive graphs
and its application to nearly linear time graph partitioning. SIAM Journal on
Computing, 42(1), 1-26, 2013.

34

[40] Teylo, L., de Paula, U., Frota, Y., de Oliveira, D., & Drummond, L. M. A. A
hybrid evolutionary algorithm for task scheduling and data assignment of data-
intensive scientific workflows on clouds. Future Generation Computer Systems,
76, 1-17, 2017.

[41] Van Laarhoven, V. T., & Marchiori, E. Local network community detection with
continuous optimization of conductance and weighted kernel k-means. Journal
of Machine Learning Research, 317(1), 5148-5175, 2016.

[42] Voevodski, K., Teng, S. H., & Xia, Y. Finding local communities in protein
networks. BMC Bioinformatics, 10(1), 297, 2009.

[43] Wu, Q., & Hao, J. K. Memetic search for the max-bisection problem. Computers
& Operations Research, 40(1), 166-179, 2013.

[44] Yang, J., & Leskovec, J. Defining and evaluating network communities based
on ground-truth. Knowledge and Information Systems, 42(1), 181-213, 2015.

[45] Zachary, W. W. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4), 452-473, 1977.

[46] Zhu, Z. A., Lattanzi, S., & Mirrokni, V. S. A local algorithm for finding
well-connected clusters. In Proceedings of the 30th International Conference on
Machine Learning, pages 396-404, 2013.

35

