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aCockrell School of Engineering, The University of Texas at Austin, 301 E Dean
Keeton St, 78712 Austin, United States

bSchool of Management, Northwestern Polytechnical University,127 Youyi West
Road, 710072 Xi’an, China

cBusiness School, University of Colorado Denver, 1201 Larimer St, 80204 Denver,
United States

dDepartment of Computer Science, Huazhong University of Science & Technology,
1037 Luoyu Road, 430074 Wuhan, China
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Abstract

In recent years, quantum computing has driven significant excitement and in-
novation, with the Quadratic Unconstrained Binary Optimization (QUBO) model
at its core. This paper introduces SATPR, a new open-source metaheuristic algo-
rithm that combines scatter search, adaptive tenure tabu search, and path-relinking.
The adaptive nature of the tabu tenure, achieved by integrating different heuristic
components, enables SATPR to effectively solve different types of QUBO problem
instances. Additionally, SATPR utilizes parallelism to fully leverage multi-threading
capabilities, further enhancing its computational efficiency. We conducted extensive
evaluations on large and challenging problem instances from four benchmark sets,
including well-known QUBO and Max-Cut instances, as well as less explored ran-
dom graph structures. Our results show that SATPR is highly competitive in both
solution quality and computational efficiency when compared to leading metaheuris-
tic QUBO solvers and the quantum-inspired Fixstars Amplify Annealing Engine.
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1 Introduction

In recent years, there has been a great deal of excitement about quantum computing,
primarily driven by its ability to optimize the Ising spin glass model and its broader
potential for addressing general combinatorial optimization problems, as outlined in
Parekh (2023) and Abbas et al. (2023). At the heart of the excitement is the QUBO
model, because of its equivalence to the spin glass model and its established capacity
to function as a unified framework for combinatorial optimization, as documented in
studies such as Kochenberger et al. (2004), Kochenberger et al. (2014), Lucas (2014)
and Anthony et al. (2017), Aramon et al. (2019), Glover et al. (2022a) and Glover et
al. (2022b). In this context, quantum computers distinguish themselves as one of the
primary platforms for running QUBO formulations.

Mathematically, the QUBO model is represented by

max
x∈{0,1}n

xTQx = max
x∈{0,1}n

(
n∑

i=1

ci · xi +
n∑

i=1

n∑
j=1

dij · xi · xj)

where x is a vector of binary variables x ∈ {0, 1}n and Q is a symmetric matrix of
constants. Let ci be the coefficients on the matrix Q diagonal, Let dij be the coefficients
off the matrix Q diagonal. The equivalent Ising problems replace x vector by x′ ∈
{−1, 1}n and can be put in the QUBO form by defining xj′ = (xj + 1)/2 and then
redefining xj to be xj′ . To put it simply, QUBO represents a quantum-ready modeling
framework.

The QUBO solver is a powerful computational tool that can be used to address com-
plex optimization problems in various domains. It belongs to the family of optimization
techniques that deal with discrete variables, specifically binary variables, to find the
optimal solutions for a given objective function. QUBO solvers have gained prominence
due to their versatility and applicability in diverse fields and applications, ranging from
operations research to machine learning and quantum computing. In particular, QUBO
finds utility in classical combinatorial optimization problems, including but not limited
to max cut, graph coloring, capital budgeting, task allocation, product distribution,
number partitioning, max sat, clique partitioning, clustering, sat packing, assignment,
and knapsack problems. Additionally, emerging applications extend into diverse fields
such as machine learning, deep learning, biotechnology, supply chains, logistics, portfolio
analysis, and various other domains, holding the potential to drive future advancements
(see details in Glover et al. (2022a) and Glover et al. (2022b)).

To solve the QUBO model or the Ising spin glass model, there are well-known quan-
tum annealing, quantum gate-circuit optimization algorithms, coherent ising machines,
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and other quantum inspired algorithms. Quantum annealing is a computational tech-
nique that leverages principles of quantum physics to solve optimization problems. It
is different from universal quantum computing in that it’s specifically designed to solve
optimization problems by finding the lowest energy state (minimizing a cost function)
of a given system. D-Wave Systems stands out as one of the prominent companies in the
development of quantum annealers (Bunyk et al. , 2014). Their machines are designed to
solve specific types of problems known as quadratic unconstrained binary optimization
(QUBO) problems. These problems can be mapped onto the hardware of a quantum
annealer, which then explores the potential optimal configurations, according to Boixo
et al. (2014). Moreover, Fujitsu offers cloud services for solving QUBO models through
Digital Annealers (Fujitsu , 2021). Fixstars Amplify Anealer Engine is a digital annealer
running on a cluster of Graphics Processing Units (GPUs), with a capacity of 65,536
bits connected by a complete graph. It can run more complex models than D-Wave
and Fujitsu because it has a complete connection graph topology between bits (Fisxtar
Amplify , 2021) . Quantum Approximation Optimization Algorithm (QAOA) is a type
of hybrid quantum-classical variational algorithm for solving combinatorial optimization
problems, seeking approximate solutions. QAOA constructs an approximate solution by
combining classical and quantum computation techniques proposed by Barak et al.
(2015) and Farhi et al. (2014). But the hyperparameter search is difficult.

Metaheuristic algorithms are practically used to produce approximate solutions for large
QUBO problem instances that cannot be solved exactly due to the high computational
complexity (Kochenberger et al. , 2014; Punnen , 2022). The adaptive memory tabu
search algorithm (AMTS) was designed by Glover et al. (1998), which innovatively
uses recency and frequency information to affect the move selection. It is the first tabu
search algorithm that outperforms the best exact and heuristic methods previously re-
ported. Glover et al. (2010) presented a diversification-driven tabu search algorithm
that alternates between a basic tabu search procedure and a memory-guided perturba-
tion procedure. The perturbation operates on a set of elite solutions and favors moves
with low flipping frequency and high consistency. The path relinking (PR) algorithm
was proposed by Wang et al. (2012), which is composed of a reference set initialization
method, a solution improvement method, a reference set update method, a relinking
method and a path solution selection method. The PR algorithm showed a high perfor-
mance when solving extensive instance sets including QUBO, Max-Cut and minimum
sum coloring problems. Lately, An automatic algorithmic selection approach was pro-
posed by Dunning et al. (2018). It generates a random forest model to predict the
probability of a heuristic among 37 Max-Cut and QUBO heuristics that will perform
the best for a given problem instance and constructs an algorithm portfolio to select
a set of heuristics with the highest predicted probability. Another automatic algorithm
by combining problem-specific heuristic components was designed by Souza and Ritt
(2018). This automatic algorithm employs a grammar in Backus-Naur form to model the
space of heuristic strategies categorized into construction methods, search methods and
recombination methods and their parameters. Recently, Hanafi et al. (2023) introduced
a novel alternating ascent search framework. This framework incorporates an innovative
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adaptive memory, employing exponential extrapolation to prevent selected moves from
reaching a specified number of recently encountered local optima. The emphasis is on
the basic version of the Tabu Search metaheuristic, leveraging local optimality in binary
optimization.

In this paper, we introduce a novel metaheuristic algorithm named SATPR, designed
to serve as a bridge between operations research specialists and quantum or quantum-
inspired optimization. Our objective is to develop an enhanced tabu search algorithm
capable of effectively addressing challenging problem instances with diverse structures.
In contrast to recent high-performance QUBO solvers that achieve outstanding results
through the construction of a portfolio comprising state-of-the-art algorithms from the
literature (Dunning et al., 2018; Souza and Ritt , 2018), our approach benefits from a
novel scatter search structure, that successfully combines adaptive tenure tabu search
and path-relinking (Glover et al. , 2003, 2004; Marti et al. , 2006; Molina et al. , 2007)
in parallelism. Beyond tailored designs for the QUBO problem, we also develop new
scatter search strategies that are applicable to solve various combinatorial optimization
problems. Our main contributions are summarized as follows:

• We introduce a two-phase reference set initialization method that combines scatter
search and tabu search to balance solution quality and diversity. The first phase in-
volves a large population of initial solutions, each with a randomized tabu tenure,
performing a short run of tabu search. In the second phase, a small population of
initial solutions, each with a dispersed tabu tenure around the best-found solution,
undergoes a longer run of tabu search.
• We propose a novel method for updating the reference set E when a pool of solutions
P is obtained after executing tabu search in parallel. This method utilizes a weighted
measure of solution quality and diversity, sequentially evaluating each newly generated
solution. By adopting this approach, the method avoids expensive calculations on the
distance between each member within the set E+P and achieves a well-balanced trade-
off between intensification and diversification compared to classical implementations.
• An innovative tabu tenure adaptation strategy is introduced to address the challenges
associated with the time-consuming fine-tuning procedure and the typical tuning ap-
proach that is tailored to fit specific instances but may not generalize well to new
instances. In essence, our tabu search method determines the best tenure by effec-
tively utilizing and learning information gathered from the paralleled scatter search
framework.
• We conduct systematic experiments to evaluate both solution quality and compu-
tational time across four sets of instances, comparing our algorithm with five best
performing algorithms in the literature. These experiments include QUBO instances
of varying properties and sizes, with a particular emphasis on challenging cases to
demonstrate the robustness and efficiency of our approach. Additionally, we perform
comparative tests to analyze the novel components of SATPR, validating the effec-
tiveness and improvements introduced by these new features.
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The remainder of this paper is structured as follows: Section 2 delves into the details of
our SATPR algorithm. In Section 3, we conduct comprehensive assessments on large-
scale problem instances to evaluate the performance of SATPR, comparing the results
with state-of-the-art metaheuristic algorithms and Fixstars Amplify Digital Annealer.
The effectiveness of the major novel features in the algorithm is also analyzed. Finally,
Section 4 summarizes our findings, draws conclusions, and outlines potential avenues for
future research.

2 SATPR Algorithm

Our proposed SATPR algorithm could be seen as an enhanced scatter search framework
by combining adaptive tenure tabu search and path relinking. In particular, we integrate
the diversification generation component with adaptive tabu search to produce an initial
reference set with good quality and diversity. In the following subsections, we present
the main scheme of SATPR and the involved search components.

2.1 Main Scheme of SATPR Algorithm

We show the main scheme of SATPR in Algorithm 1, including the initial reference set
generation, reference set update, subset generation, solution combination, and solution
improvement methods.

We design a two-phase method to obtain the initial reference set equipped with high-
quality and well-diversified solutions. In the first phase (Lines 3 to 5), p0 tabu tenures (or
simply tenures) are initiated to perform tabu search for a large population of randomized
solutions P r. The random tenures are bounded by an upper limit ur. Line 6 selects
the tenure of the current best solution t∗. In the second phase, shown in Lines 7 to
10, we generate a new small-sized population P f by using p1 tenures scattered around
the best tabu tenure t∗ with radius d. These centralized tenures further improve the
best random tenure and settle down some good solutions to construct the reference
set. We note that the first phase uses fewer tabu search iterations but a much larger
population size compared to the second phase. Hence, the first phase pays more attention
to diversification, while the second phase focuses more on intensification.

After producing the initial reference set, SATPR performs scatter search iterations as
described in Lines 12 to 19. During each iteration, pair-finding in the reference set
is first used to generate subsets. Then, the solution combination, tabu search-based
solution improvement, and reference set update methods are performed sequentially.
The reference set reconstruction is a simple procedure that retains information about
the best solution and regenerates other members of the reference set. This procedure is
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Algorithm 1 Main Scheme

1: Input: Random solutions P r = {x1, ..., xp0} with objective values V r and random
tenures T r = {t1, ..., tp0}, reference set E = ∅ with objective values V E and tenure
TE of size |E|, 2nd phase tenure diameter d

2: Output: The best solution x∗

3: for i = 1 to p0 in parallel do
4: (P r

i , V
r
i )← TabuSearch(P r

i , T
r
i )

5: RefSetUpdate(P r, V r, T r, E, V E, TE)
6: Set t∗ ← TE

e∗ ; e
∗ : Ee∗ = max

e
Ee

7: Generate tenures T f = {t1, ..., tp1} where ∀tk ∈ T f : tk = t∗ − d
2
+ k · d

p1
, random

solutions P f = {x1, ..., xp1} and objective values V f

8: for i = 1 to p1 in parallel do
9: (P f

i , V
f
i )← TabuSearch(P f

i , T
f
i )

10: RefSetUpdate(P f , V f , T f , E, V E, TE)
11: S ← {1}|E|

12: while stop criterion is not satisfied do
13: A← PairFind(E, S); P ← ∅; V ← ∅; T ← ∅
14: for i = 1 to |A| in parallel do
15: (x, t)← PathRelink(E, V E, TE, Ai)
16: (Pi, Vi)← TabuSearch(x, t); Ti ← t
17: S ← RefSetUpdate(P, V, T, E, V E, TE)
18: if S = {0}|E| then
19: S ← {1}|E|; RefSetRecontruct(E, V E, TE)
20: return x∗ ← max

e
Ee

invoked when the scatter search fails to improve the reference set in one iteration. It is
important to note that the tenure is updated through the combination method in each
round of scatter search.

The design of this adaptive tenure addresses a significant issue with tabu search—its sen-
sitivity to tenure, which necessitates tuning and can vary significantly across different
problem instances. Specifically, ”adaptive tenure” refers to the mechanism that dynami-
cally adjusts the duration for which moves remain in the tabu list based on the evolving
state of the search process. This adaptation is refined through the combination method
in each round of scatter search, which evaluates the performance of various tenures and
selects the most effective one. When solving QUBO, tenures can differ based on the
problem structure and matrix density. The adaptive tenure will automatically adjust
the tabu search to its optimal configuration for a given instance, thus improving the
robustness and efficiency of the algorithm.

Moreover, parallelism is implemented during all the SATPR search procedures using
OpenMP (OpenMP ARB , 2018). In the reference set initialization phase, the individ-
ual solutions in the reference set are mutually exclusive and naturally lead themselves
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to parallel processing. Similarly, in the subsequent reference set update phase, all can-
didates can be treated simultaneously. OpenMP creates individual threads to handle
each substructure independently, without interfering with each other. Each thread takes
on an initial solution and performs tabu search in parallel. Afterward, all threads are
paused until they complete their processing because the unified update procedure is then
invoked before the next round of parallelism. The number of threads used and the size
of the reference set can significantly impact the algorithm’s performance.

2.2 Tabu Search based Solution Improvement

Algorithm 2 Solution Improvement

1: function TabuSearch(x, t)
2: Input: Inital solution x ∈ {0, 1}|N |, tabu tenure t
3: Output: Improved solution x∗ ∈ {0, 1}|N |, improved value vB

4: it← 0; tlist← {0}|N |; vB ← x’s objective value
5: for itn = 0 to ITmax do
6: for j ∈ N do
7: if tlistj < iter then
8: if Flipping j updates the best non-tabued solution then
9: Select j as the best non-tabued solution

10: else
11: if Flipping j updates the best solution vB then
12: Select j as the best aspiration solution
13: Pick the best operation flipping j∗ from aspiration or non-tabued
14: Set xj∗ ← 1− xj∗ ; tlistj∗ ← iter + t+ rand()%10; iter ← iter + 1
15: x∗ ← x; itn ← 0 if vB has been updated

Tabu search is one of the most important procedures for handling large scale QUBO
problem instances (Wang et al. , 2012; Kochenberger et al. , 2013; Dunning et al., 2018).
Hence, our SATPR algorithm also adopts tabu search to perform solution improvement.
However, the performance of tabu search depends on fine-tuned tabu tenures. For the
unified QUBO model, different tenures are actually used for solving the QUBO and Max-
Cut instances due to distinct problem structures. An adaptive setting of tabu tenure
is especially important for the unified QUBO model since a variety of optimization
problems can be reformulated as QUBO. For this purpose, our tabu search method
attains the best tenure by utilizing and learning information collected from the scatter
search framework. In this way, SATPR is able to work effectively without spending effort
on preliminary experiments as in previous studies.

Recall that tabu search is applied for both randomized solutions in the initial reference
set generation and the solutions generated from the solution combination. For the former
case, we first use a large number of random tenures to perform a sequence of short tabu
search trials to coarsely fetch a reasonable tenure from the best-found solution. Then,
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we set a fewer number of fine-grained tenures around this referred tenure to perform a
sequence of long tabu search trials. Meantime, each solution in the reference set along
with the used tenure is recorded. For the latter case, the tabu tenure is simply set as
the average of the tabu tenures of the selected solutions in the solution combination.

The tabu search based improvement method employs the classical 1-flip move operator
for solving QUBO problems, which consists of flipping a single binary variable at each
iteration. The tabu list is constructed based on the position of this flipping operation.
By maintaining a list that records the objective difference when a flip is selected, Lines
5 to 15 in Algorithm 2 can be executed efficiently. This list is incrementally updated
once the best operation is performed. It’s important to note that the aspiration criterion,
meaning that a tabu operation will still be taken if it updates the best recorded solution,
is also implemented in tabu search. It’s noteworthy that by using an adjacency list
data structure to store matrix information and perform incremental maintenance, the
complexity for each tabu search iteration will be kept within the number of non-zero
indices of the Q matrix. The described tabu search yields satisfactory results when the
tenure is adaptively converged to a reasonable range for a specific instance. The simple
structure and quadratic nature of QUBO facilitate the implementation of the flipping
operation and the construction of the straightforward tabu list. ITmax, the maximum
number of iterations for non-improving rounds, also known as improvement cutoff, will
determine when to terminate the tabu search procedure. To speed up the initial phase,
a smaller ITmax will be used for randomly generated tenures to quickly scout those
desirable values.

2.3 Path-Relinking inspired Solution Combination

The subset generation method follows the traditional pair-finding procedure that es-
sentially selects all pairs of candidates from the reference set for solution combination.
Following the reference set update procedure, a list S indicating the update state of the
reference set members is constructed. In each round, the pairs to be combined are se-
lected from all the newly generated reference set members and all possible combinations
between new members and old members. The pair-finding procedure leads to a thorough
inspection of all new combinations in parallel without revisiting any of the old solutions.

For each generated subset, the solution combination method employs the pair of reference
solutions to create new solutions. Given that path linking has been found to be quite
effective for generating promising solutions when solving challenging QUBO problem
instances (Wang et al. , 2012), we propose a path relinking inspired solution combination
method, as outlined in Algorithm 3. Unlike the previous path relinking method that
starts with one of the two selected solutions, we employ the simultaneous relinking
approach starting with both solutions. Specifically, it initially identifies the common
index set, denoted as js, from the two selected solutions and alternately inherits the
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Algorithm 3 Solution Combination

1: function Pathrelinking(E, V E, TE, ⟨e, e′⟩)
2: Input: Reference set E, elite tenure TE, elite value V E, combination index ⟨e, e′⟩
3: Output: Result solution x∗, result tenure t∗

4: x1 ← Ee; x
2 ← Ee′ ;v

1 ← V E
e ; v2 ← V E

e′ ; t
1 ← TE

e ; t2 ← TE
e′ ; J ← N ; x∗ ← {0}N ;

v∗ ← 0;
5: ∀js ∈ N : x1

js = x2
js ; J ← J\{js}

6: b← rand(0, α|J |)
7: while |J | ≥ b do
8: if |J |%2 = 0 then
9: Pick the best remaining index jr for x1 to flip, x1

jr ← 1− x1
jr ; Update v1

10: else
11: Pick the best remaining index jr for x2 to flip, x2

jr ← 1− x2
jr ; Update v2

12: if |J | ≤ α|J | then
13: Update x∗ to x1 if v∗ > v1; Update x∗ to x2 if v∗ > v2

14: J ← J\{jr}
15: t∗ ← (t1 + t2)/2

indices that differ in the two solutions to gradually converge to a new solution. In
particular, starting from the reference solutions x1 and x2, the uncommon index set
J = N − {js} of them is analyzed iteratively. For solution x1, an index jr is selected
such that x1

jr ̸= x2
jr , and flipping jr will create the maximum objective increment.

Subsequently, jr is removed from J , and another jr is selected based on the maximum
objective increment if x2

jr is updated to 1 − x2
jr . The combination method will also

produce a new tabu tenure for this offspring solution by taking the average of those of
the reference solutions.

This path-relinking inspired combination method not only incorporates the favorable
aspects of the pair of reference solutions but also introduces diversification based on the
uncommon parts. The alternating adoption from each reference solution is terminated by
a randomly generated parameter b, ranging from 0 to α times the uncommon indices. α
is a distance scale parameter that controls the minimum distance of the newly generated
solution to each reference solution. This ensures that the resulting solution will be at
least α distance away from either of the reference solutions. Additionally, it guarantees
a high-quality solution by consistently choosing the index with the maximum objective
increment and selecting the best solution along the relinking path.

2.4 Reference Set Update Method

The reference set update method, as shown in Algorithm 4, aims to maintain a set of
elite solutions with a good objective value and high diversity. It is triggered each time a
population of solutions is generated, which occurs during the reference set initialization
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Algorithm 4 Reference Set Update

1: function RefSetUpdate(P, V, T, E, V E, TE)
2: Input: New population P with value V and tenure T , reference set E with value

V E and tenure TE

3: Output: Update state S ∈ {0, 1}|E|

4: Calculate the distance between each member e in E and the reference set E, i.e.,
de ← min

e′ ̸=e
∥Ee − Ee′∥

5: for k ∈ P do
6: Calculate the distance between the solution Pk and the reference set E, i.e.,

d∗E+1 ← min
e
∥Ee − Pk∥; d∗e ← min(de, ∥Ee − Pk∥)

7: dmin ← min
e∈E+1

d∗e; d
max ← max

e∈E+1
d∗e

8: vmin ← min(Vk,min
e

V E
e ); vmax ← max(Vk,max

e
V E
e )

9: for e ∈ E do
10: se ← β dmin

e

dmax−dmin + (1− β) V E
e

vmin−vmax

11: sE+1 ← β
dmin
E+1

dmax−dmin + (1− β) Vk

vmin−vmax

12: if sE+1 > min
e

se then

13: e′ ← e∗ : se∗ = min
e

se; Ee′ ← Pk; V
E
e′ ← Vk; T

E
e′ ← Tk; Se′ ← 1

14: ∀e, de ← d∗e; de′ = d∗E+1

and in each iteration of the scatter search. Unlike the update strategy covered in past
literature (Marti et al. , 2009; Sanchez et al. , 2015), this new strategy strives to maintain
a reference set E when inserting new solutions into population P . This is different from
other studies where only a single solution is inserted typically. By examining the new
solutions iteratively, rather than collectively, the algorithm avoids expensive calculations
on the distance between each member within the combined set E + P . The proposed
strategy involves evaluating and potentially inserting each new solution from P into the
reference set E one by one. This ensures that each solution is assessed individually for
its contribution to the overall objective value and diversity, maintaining the quality of
the reference set without the computational burden of handling the entire population
simultaneously.

The specific procedure is described as follows. After obtaining a new population of
solutions through the combination and improvement methods for each candidate pair
of elite solutions, each solution in this population is sequentially assessed based on its
objective value and its distance from the current reference set. The measures for a specific
solution are initially standardized and then combined using a linear combination with
a weight parameter β to derive a score. If the score of the new solution is higher than
that of the member with the lowest score in the reference set, the reference set member
is replaced. The standardized scoring rules, considering solution quality and diversity,
contribute to maintaining a favorable reference set for the algorithm to enhance solution
improvement. In coordination with the pair-finding procedure, each modified index is
recorded and output upon evaluating each of the new solutions. It’s worth noting that
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when the set remains unchanged afterward, a reconstruction of the reference set becomes
important. The reconstruction procedure simply flips half of the variables randomly
across all reference set members to explore local optima that are far from the current
search area.

3 Numerical experiments

In this section, we first present the experimental protocols and provide computational
comparisons with the leading metaheuristic solvers in the literature, as well as Quantum
Digital Annealer Fixstars Amplify Engine. Then we perform experimental analysis to
reveal the effectiveness of three novel features in the proposed algorithm, including the
adaptive tabu tenure strategy, the new reference set update method, and the two-way
path-relinking strategy.

3.1 Experimental protocols

To provide a comprehensive evaluation of our algorithms, we use the following four
benchmark sets:

• Palubeckis Instances: This set includes 21 of the largest instances from Palubeckis,
named p3000.1 through p7000.3, with problem sizes ranging from n = 3000 to 7000.
These randomly generated instances are particularly challenging when the number of
variables exceeds 5000.
• Max-Cut Instances: This set comprises the 17 largest instances derived from the Max-
Cut problem, named G55 through G81, with variable sizes ranging from n = 5000 to
20000. These instances are generated using a machine-independent graph generator
and include toroidal, planar, and random weighted graphs with weights of 1, 0, or -1.
Both the Palubeckis and Max-Cut instances are widely used as QUBO benchmarks
in the literature for testing algorithm performance.
• QPLIB Instances: This set contains 15 nonconvex quadratic binary instances from
QPLIB, with sizes ranging from n = 231 to 1225.
• Culberson Instances: This set consists of 10 of the largest instances from the “cul-
berson” type, selected from 3,296 instances generated by Dunning et al. (2018), with
variable sizes ranging from n = 4000 to 5000.

In total, these 63 instances provide a comprehensive evaluation of algorithm performance.

Our proposed algorithm is programmed in C++ and compiled using GNU GCC 10.2.0
with a −O3 flag. We run experiments on a server cluster equipped with an Intel(R)
Xeon(R) Gold 6226R (2.90GHz) processor and a Linux operating system. Each task is
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allocated with 10 threads, allowing a maximum of 10 parallel threads. For each instance,
our SATPR algorithm was executed in 10 independent runs, with each run having a
time limit of 1800 seconds. The source code of our SATPR solver will be publicly avail-
able upon the publication of the paper. We run the reference algorithms in the same
environment and under the same stopping condition for a fair comparison.

A comprehensive description of all the parameters used in the proposed algorithm is
provided in Table 1. The reference set size |E|, improvement cutoff ITmax, and distance
scale α are acquired from Wang et al. (2012). The specific values of p0, ur, p1, and d
are determined through separate experiments conducted during the initial two phases
of the main scheme. These experiments contribute to tailoring these parameters to the
characteristics of the two phases. Additionally, the parameter β undergoes tuning across
the entire algorithm, ensuring its adaptability and optimization for various instances.
The comprehensive set of parameters and their individualized adjustments reflect the
hybrid and adaptive nature of the proposed algorithm, making it well-suited for a diverse
range of problem instances.

Table 1
Parameter settings

Parameters Description Section Value

|E| Reference set size 2.1 10

p0 Population size of the first phase 2.1 12 · |E|

ur Upper bound of random tenures 2.1 0.2 · n

p1 Population size of the second phase 2.1 3 · |E|

d Radius of scattering tenure 2.1 0.05 · n

ITmax Improvement cutoff 2.2 5 · n (0.6 · n for ran-
dom tenures)

α Distance scale 2.3 1
3

β Scoring weight 2.4 0.9

3.2 Experimental comparison with leading metaheuristic solvers

We compare our SATPR algorithm against the following leading reference methods:

• CLPR19: The clustering-driven evolutionary algorithm for solving QUBO problems
proposed by Samorani et al. (2019).
• Dunning: The open-source algorithm portfolio developed by Dunning et al. (2018),
which uses a random forest model to select the best algorithm from 37 state-of-the-
art heuristics based on the characteristics of each problem instance (Dunning et al.,
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2018). This method intelligently integrates various heuristics published in the litera-
ture, making it a powerful QUBO solver.
• LU2010: The path relinking algorithm proposed by Lü et al. (2010), one of the top-
ranked population-based evolutionary algorithms among the 37 heuristics.
• MERZ04: The algorithm proposed by Merz and Katayama (2004), another top-ranked
population-based evolutionary algorithm selected from the 37 heuristics.

We will use these standard names consistently throughout the rest of this paper.

The summarized comparison results for the four sets of benchmarks are presented in
Table 2, while Table 3 to 6 provide detailed results, including the best and average
objective values and the average CPU running time. In Table 2, the first column lists
the benchmarks. Columns BestOvj and AvgObj summarize the best and average objec-
tive values achieved across 10 independent runs. The columns “#Wins”, “#Ties”, and
“#Losses” indicate the number of instances where our proposed algorithm performed
better than, equal to, and worse than the reference algorithm, respectively.

The results in Table 2 clearly show that our proposed algorithm is highly competitive
compared to the reference algorithms in terms of both best results and average results.
Overall, our algorithm found better solutions for 21 out of 63 instances and matched the
best solutions for 36 instances, and found worse solutions for 6 instances. Specifically,
for the Palubeckis instances set, our algorithm matched the best-known solutions for all
21 instances. For the Max-Cut instances set, our algorithm found the better solutions
for 13 out of 17 instances, and for the culberson instances set, it found the new best
solutions for 8 out of 10 instances. In the QPLib set, all algorithms excepted for Dunning
et al. (2018) matched the optimal solutions reported. It should be noted that this well-
known QUBO dataset was not included in the training set of Dunning et al. (2018). This
result suggests that the hyper-heuristic algorithm of Dunning et al. (2018) struggles with
these untrained instance types, as both LU2010 and MERZ04, included in its repository,
found the optimal solution for 15 instances. Similar performance trends were observed
regarding the average objective value.

Tables 3 to 6 present the detailed comparison results obtained by the five algorithms.
The best-known solution values (BKS ) were reported in the second column. For the
Palubeckis and Max-Cut instances sets, the BKS were directly taken from Goudet et
al. (2024), in which the current BKS were reported. Goudet et al. (2024) proposed
an evolutionary algorithm with a very large population organized in different islands
with a population size of up to 64,000. The algorithm reported some new BKS results
on Max-cut instances, but the solving time for large-scale instances reached as high
as 66,600 seconds. Therefore, this algorithm was not included as a comparison in our
study; only the BKS results they provided for the max-cut instances were used. For the
QPLib instances set, the BKS were taken from Furini et al. (2019) which has been
proved to be optimal. For the Culberson instances set, the BKS was first reported in
this study since Dunning et al. (2018) does not include these instances in their paper.
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The best objective value (column Best), the average objective value (column AvgObj ),
and the average time to best solution (column AvT ) for each instance corresponding
to each algorithm were reported respectively. From Tables 3 to 6, it can be seen that
on the three instances sets Max-Cut, QPLib, and Culberson, our proposed algorithm
can obtain better results in a shorter time. For the Palubeckis instances set, there is no
obvious difference in computation time.

Table 2
Summarized comparison results of SATPR against reference algorithms on four instance sets.

Instances Pair algorithms
BestObj AvgObj

#Wins #Ties #Losses #Wins #Ties #Losses

Palubeckis

SATPR vs. CLPR19 0 21 0 6 12 3
SATPR vs. Duning 0 21 0 3 12 6
SATPR vs. LU2010 1 20 0 6 12 3
SATPR vs. MERZ04 3 18 0 14 7 0
SATPR vs. Total 0 21 0 1 13 7

Max-Cut

SATPR vs. CLPR19 17 0 0 17 0 0
SATPR vs. Duning 13 0 4 15 1 1
SATPR vs. LU2010 17 0 0 17 0 0
SATPR vs. MERZ04 17 0 0 17 0 0
SATPR vs. Total 13 0 4 15 1 1

QPLib

SATPR vs. CLPR19 0 15 0 0 15 0
SATPR vs. Duning 7 8 0 7 10 0
SATPR vs. LU2010 0 15 0 2 13 0
SATPR vs. MERZ04 0 15 0 3 12 0
SATPR vs. Total 0 15 0 0 15 0

Culberson

SATPR vs. CLPR19 10 0 0 10 0 0
SATPR vs. Duning 9 0 1 8 0 2
SATPR vs. LU2010 9 0 1 9 0 1
SATPR vs. MERZ04 10 0 0 10 0 0
SATPR vs. Total 8 0 2 7 0 3
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Table 3
Detailed comparison results on Palubeckis instances set

Instances BKS SATPR CLPR19 Dunning LU2010 MERZ04

Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT

3000.1 3931583 3931583 3931583 13.2 3931583 3931583 9.8 3931583 3931583 12.3 3931583 3931583 10.7 3931583 3931583 86.7
3000.2 5193073 5193073 5193073 15.5 5193073 5193073 7.7 5193073 5193073 17.7 5193073 5193073 7.8 5193073 5193073 18.3
3000.3 5111533 5111533 5111533 32.1 5111533 5111533 35.2 5111533 5111533 86.8 5111533 5111533 12 5111533 5111533 318.3
3000.4 5761822 5761822 5761822 26.7 5761822 5761822 16.5 5761822 5761822 32.6 5761822 5761822 15.8 5761822 5761822 117
3000.5 5675625 5675625 5675625 58.1 5675625 5675625 107 5675625 5675625 52.4 5675625 5675625 49.7 5675625 5675386 328.6
4000.1 6181830 6181830 6181830 16.2 6181830 6181830 18.6 6181830 6181830 19.8 6181830 6181830 10.8 6181830 6181830 39
4000.2 7801355 7801355 7801355 49.2 7801355 7801355 165.9 7801355 7801355 155.8 7801355 7801355 168.8 7801355 7801146 518.1
4000.3 7741685 7741685 7741685 45.6 7741685 7741685 71.5 7741685 7741685 57.8 7741685 7741685 27 7741685 7741652.6 120.2
4000.4 8711822 8711822 8711822 87.6 8711822 8711822 79.2 8711822 8711822 59.5 8711822 8711822 27.6 8711822 8711822 45.7
4000.5 8908979 8908979 8908979 81.2 8908979 8908979 154.3 8908979 8908979 194.2 8908979 8908979 199.5 8908979 8908979 191.8
5000.1 8559680 8559680 8559582.5 905 8559680 8559600.5 776.8 8559680 8559647.5 562.8 8559680 8559490.1 792.3 8559680 8559280.8 496.9
5000.2 10836019 10836019 10836019 759.1 10836019 10836019 334.3 10836019 10836019 151.9 10836019 10836019 157.1 10836019 10835346.2 213.1
5000.3 10489137 10489137 10489137 312.9 10489137 10489127.6 768.2 10489137 10489132.3 526.6 10489137 10489101.6 845 10489137 10488708.9 462.6
5000.4 12252318 12252318 12252147.2 725.7 12252318 12252193.5 850.1 12252318 12251938.1 899 12252318 12252091.2 1016 12251710 12250704.4 815.6
5000.5 12731803 12731803 12731803 248.3 12731803 12731803 234.3 12731803 12731790.4 463 12731803 12731803 186.5 12731803 12731085.5 147.7
6000.1 11384976 11384976 11384916.1 578.6 11384976 11384859.8 913.1 11384976 11384956.3 879.7 11384976 11384957.9 565.6 11384976 11384598.5 414.4
6000.2 14333855 14333855 14333842.2 665.9 14333855 14333792.2 1291 14333855 14333846.2 843.8 14333855 14333846.2 638.4 14333767 14332998.6 477.4
6000.3 16132915 16132915 16132792.8 836.8 16132915 16132778.5 1220.7 16132915 16132915 559 16132915 16132904.6 1271.8 16132915 16130553 727.2
7000.1 14478676 14478676 14478289.4 854 14478676 14478242.4 947.1 14478676 14478590.2 729.6 14478655 14478161.2 1244 14478676 14475963.5 702.7
7000.2 18249948 18249948 18249238.2 984.6 18249948 18249239.2 1230.1 18249948 18249380.5 944.1 18249948 18249113.8 1152.7 18249844 18246439.3 851.4
7000.3 20446407 20446407 20446407 319.3 20446407 20446253.4 832.8 20446407 20446407 373 20446407 20445397.6 1030.9 20446407 20443759.7 635.6
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Table 4
Detailed comparison results on Gset instances set

Instances BKS SATPR CLPR19 Dunning LU2010 MERZ04

Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT

G55 10299 10290 10284 81.2 10269 10249.7 1613.2 10273 10260.7 1557.8 10213 10201.9 422.1 10235 10214.9 1477.7
G56 4017 4013 4002.3 282.5 3988 3966.9 1335.8 3989 3976.4 1451.1 3942 3922.6 365.1 3950 3936.1 1245.5
G57 3494 3490 3484.2 554.8 3462 3458 1380.4 3480 3474 668.2 3480 3474.4 1062.9 3446 3437.8 1270.2
G58 19293 19248 19235.4 162.6 19210 19191.5 1465.7 19251 19237.2 1218.2 19200 19189.9 540 19193 19172.4 1623.6
G59 6087 6051 6038.6 590.8 6046 6010.5 1516.8 6053 6038.6 1273.5 5999 5974.1 398.9 6012 5977 1456
G60 14190 14176 14167.6 277.5 14129 14106.3 1360.8 14145 14137.3 572 14090 14064.9 728.8 14096 14054.7 1655.2
G61 5798 5778 5772.1 271.6 5743 5717.7 1287.5 5755 5746.3 802.9 5684 5671.7 712.6 5678 5661.9 1439.5
G62 4870 4866 4860.8 595.1 4816 4809 1550.4 4846 4838.4 1702.4 4842 4833.8 1708.8 4794 4783.8 1370.3
G63 27045 26969 26957.5 122.7 26889 26869.9 1316 26970 26956 1161.6 26917 26900.9 1091.8 26900 26870.1 1477.7
G64 8751 8703 8674.5 123.2 8648 8613.4 1670.1 8711 8666.4 1423.7 8612 8577.5 848.7 8600 8575.5 1669.4
G65 5562 5552 5547 592.5 5494 5485.2 1505.4 5528 5516.6 1667.3 5518 5500.2 1739.5 5466 5456.8 1417.5
G66 6364 6350 6341.2 341.7 6274 6266.4 1596.9 6250 6237 667.9 6294 6273.2 1670.4 6240 6227 1232.1
G67 6950 6936 6929.4 735.2 6854 6844.2 1799.3 6824 6800.2 1441.4 6854 6839.6 1645.6 6830 6808 1277.4
G70 9591 9556 9544.5 792.8 9343 9323.5 1663.7 9539 9527.8 748.8 9504 9480.1 1758.5 9422 9398.8 1673.3
G72 7006 6986 6980 579.9 6896 6891.6 1621.6 6878 6858.2 1545.3 6906 6890 1686 6878 6865.6 1323.1
G77 9938 9910 9899.8 917.6 9780 9768.6 1465.4 9762 9750 803.9 9756 9741.2 1560.5 9742 9725.2 1405.1
G81 14048 14014 13999.6 1104.7 13824 13816.2 2047.6 13782 13772 730.3 13756 13724.8 1327.4 13776 13736.8 1655.5
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Table 5
Detailed comparison results on QPLib instances set

Instances BKS SATPR CLPR19 Dunning LU2010 MERZ04

Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT

QPLIB 3506 478 478 478 0 478 478 0.1 478 478 0.9 478 478 0.3 478 478 0.2
QPLIB 3565 282 282 282 0 282 282 0 282 282 0.7 282 282 0.1 282 282 0
QPLIB 3642 1034 1034 1034 0.2 1034 1034 1.7 916 907.2 33.9 1034 1034 16.6 1034 1033.8 12.2
QPLIB 3650 922 922 922 0.3 922 922 1.5 828 815.6 31.3 922 922 28.5 922 922 9.1
QPLIB 3693 1154 1154 1153.8 4.6 1154 1153.8 15.2 1014 1005 33.2 1154 1152.6 23.5 1154 1151.2 9.1
QPLIB 3705 384 384 384 0 384 384 0 384 384 0.7 384 384 0.1 384 384 0
QPLIB 3706 682 682 682 0.1 682 682 0.4 632 625.6 24.1 682 682 1.6 682 682 2
QPLIB 3738 422 422 422 0 422 422 0.1 422 422 1.9 422 422 0.7 422 422 1.9
QPLIB 3745 334 334 334 0 334 334 0 334 334 0.8 334 334 0.1 334 334 0.1
QPLIB 3822 850 850 850 0.1 850 850 0.2 776 767.4 38.3 850 850 2.1 850 850 1.9
QPLIB 3832 554 554 554 0.1 554 554 0.2 554 554 2 554 554 7.7 554 554 1.7
QPLIB 3838 746 746 746 0.2 746 746 1.3 678 676.2 21.8 746 746 19.7 746 746 6.4
QPLIB 3850 1198 1198 1198 0.4 1198 1198 3.2 1040 1026.6 32.5 1198 1197.2 25.8 1198 1196.4 22.1
QPLIB 3852 234 234 234 0 234 234 0 234 234 0.7 234 234 0 234 234 0
QPLIB 3877 602 602 602 0.1 602 602 0.3 602 602 2.3 602 602 3.6 602 602 2.7

Table 6
Detailed comparison results on culberson instances set

Instances BKS SATPR CLPR19 Dunning LU2010 MERZ04

Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT Best AvgObj AvgT

culberson26 14049.776 14049.776 14013.967 277.7 13989.41 13950.531 1504.8 13237.449 13191.333 1033.2 13949.27 13924.783 437.8 14020.74 13972.329 1663.1
culberson107 4281.57 4281.57 4273.494 794.6 4269.14 4265.094 1503.3 4278.51 4275.141 877 4250.511 4241.332 681.4 4268.476 4259.242 1713.9
culberson15 60570.791 60570.791 60505.236 258.3 60460.63 60374.362 1310 58406.789 58342.968 963 60142.641 60054.136 393.6 60326.749 60273.895 1657.4
culberson85 12479180.12 12478573.96 12476446.98 1106.2 12474012.77 12471101.19 1595.1 12477814.2 12474935.47 987.5 12479180.12 12477044.96 1264.3 12477793.51 12473275.84 1063.7
culberson93 444592 444592 444522.9 563 444361 444235.6 1708 444569 444450.9 1125.4 444518 444468.7 799.9 444498 444365.3 908
culberson74 6637.796 6631.927 6618.997 521.3 6615.47 6605.327 1282.3 6637.796 6632.715 747.4 6579.478 6566.951 461.4 6617.221 6604.728 1684.4
culberson23 195433.075 195433.075 195317.88 1308.6 195292.5 195092.085 1381.2 194090.243 193845.212 842 194749.242 194548.574 898.9 195198.133 194960.2 1421.2
culberson30 141397 141397 141184.8 276.2 141031 140839.7 1478.2 141179 141019.6 934.7 140490 140317.5 387.5 141019 140798.4 1377.9
culberson91 654236.086 654236.086 653713.372 112.5 653121.62 652341.357 1493.6 653786.109 653336.424 797.8 650432.547 649670.678 989.5 653272.995 652002.222 1139.1
culberson68 1043 1043 1039.8 80.5 1006 994.9 1439.3 1025 968.6 1587.4 963 932.6 174 994 934.3 1353.5
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3.3 Experimental comparison with Fixstars Amplify Digital Annealer

Our initial aim was to compare our algorithm with the D-Wave quantum computer.
However, due to the large size of the tested instances, the D-Wave Advantage System’s
architecture cannot handle these instances. As a result, we turned to the Fixstars Am-
plify Annealing Engine (Fisxtar Amplify , 2021), which can run more complex models
and more variables than D-Wave because it has a complete connection graph topology
between bits (i.e., QUBO variables). Fixstars Amplify offers a free software develop-
ment kit (SDK) for evaluation and testing, with a QUBO scale limit of n = 16, 000 and
a time limit of 100 seconds on a V100 GPU. Since Fixstars Amplify can only deal with
integer inputs and cannot return results for the Culberson datasets, we compared the
two algorithms using the Palubeckis, Max-Cut and QPLib instance sets. For large-scale
Palubeckis and Max-Cut instance sets, the time limit was set to 100 seconds for Fixstars
Amplify. For the QPLib instance set, the time limit was reduced to 5 seconds, as our
SATPR consistently found the best objective value with an average runtime of no more
than 5 seconds.

Table 7 presents the detailed comparison results of our algorithm and Fixstars Amplify
on the Palubeckis, Max-Cut and QPLib instance sets. Since Fixstars Amplify returns a
solution without specifying the time taken to find the best solution, we do not report
its computation time. For Palubeckis instances, we observe that our proposed algorithm
yields highly competitive results compared to Fixstars Amplify in terms of the best and
average objective values. Specifically, both algorithms achieve the best-known solutions.
In terms of the average solutions, our algorithm matches the best solutions with Fixstars
on 13 instances, performs better on 3 instances, and worse on 5 instances.

A similar performance pattern is observed for Max-Cut instances. Our proposed algo-
rithm achieves better results for 9 out of 17 instances, while Fixstars Amplify performs
better on the remaining 8 instances in terms of the best objective values. In terms
of the average objective values, our algorithm achieves better results for 8 instances
and worse results for 9 instances. Regarding QPLib instances, both algorithms reach
the best-known solutions and produce identical average objective values across all 15
instances.

The effectiveness of our proposed algorithm is clearly demonstrated by the comparisons
with quantum computing algorithm on these three instance sets. It’s worth noting that
Fixstars Amplify is running on superior hardware with a V100 GPU, while our algorithm
runs only on a CPU. Despite this, the performance is similar.
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Table 7
Experimental comparison between SATPR and Fixstars Amplify on three instance sets

Instances SATPR Fixstars Amplify

Best AvgObj Best AvgObj
3000.1 3931583 3931583 3931583 3931583
3000.2 5193073 5193073 5193073 5193073
3000.3 5111533 5111533 5111533 5111533
3000.4 5761822 5761822 5761822 5761822
3000.5 5675625 5675625 5675625 5675625
4000.1 6181830 6181830 6181830 6181830
4000.2 7801355 7801355 7801355 7801355
4000.3 7741685 7741685 7741685 7741685
4000.4 8711822 8711822 8711822 8711822
4000.5 8908979 8908979 8908979 8908979
5000.1 8559680 8559582.5 8559680 8559411.4
5000.2 10836019 10836019 10836019 10835930
5000.3 10489137 10489137 10489137 10489137
5000.4 12252318 12252147.2 12252318 12251978.8
5000.5 12731803 12731803 12731803 12731803
6000.1 11384976 11384916.1 11384976 11384976
6000.2 14333855 14333842.2 14333855 14333846.2
6000.3 16132915 16132792.8 16132915 16132915
7000.1 14478676 14478289.4 14478676 14478676
7000.2 18249948 18249238.2 18249948 18249941.5
7000.3 20446407 20446407 20446407 20446407
G55 10290 10284 10294 10291.8
G56 4013 4002.3 4016 4011.5
G57 3490 3484.2 3486 3482.4
G58 19248 19235.4 19251 19243.3
G59 6051 6038.6 6073 6060.8
G60 14176 14167.6 14175 14169.9
G61 5778 5772.1 5796 5783.9
G62 4866 4860.8 4852 4845.6
G63 26969 26957.5 26975 26964.8
G64 8703 8674.5 8744 8698.2
G65 5552 5547 5538 5531.2
G66 6350 6341.2 6334 6322.4
G67 6936 6929.4 6914 6906.8
G70 9556 9544.5 9582 9573.6
G72 6986 6980 6970 6961.6
G77 9910 9899.8 9856 9841.6
G81 14014 13999.6 - -
QPLIB 3506 478 478 478 478
QPLIB 3565 282 282 282 282
QPLIB 3642 1034 1034 1034 1034
QPLIB 3650 922 922 922 922
QPLIB 3693 1154 1153.8 1154 1153.8
QPLIB 3705 384 384 384 384
QPLIB 3706 682 682 682 682
QPLIB 3738 422 422 422 422
QPLIB 3745 334 334 334 334
QPLIB 3822 850 850 850 850
QPLIB 3832 554 554 554 554
QPLIB 3838 746 746 746 746
QPLIB 3850 1198 1198 1198 1198
QPLIB 3852 234 234 234 234
QPLIB 3877 602 602 602 602

3.4 Effectiveness of the Adaptive Tabu Tenure Strategy

Tabu tenure is a crucial parameter in tabu search algorithms and is typically tuned to
fit specific instances. However, due to the nature of QUBO problems, where instances
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may vary significantly, the tuning procedure is time-consuming and may not be suitable
for each individual instance. To verify the effectiveness of the tabu tenure strategy in
our proposed algorithm, we refer to the tabu tenure settings in the algorithm designed
by Wang et al. (2012), which are 0.01n for the Palubeckis instances set and 0.1n for the
Max-Cut instances set. We generate a variant, Fixed Tenure, for comparison by fixing
the tabu tenure. For fairness, this variation skips the first two phases probing the tabu
tenure and dives into the scatter search directly, as it already presumably has the best
tenure to perform tabu search. Representative instances were selected from the previous
two instance sets: 11 instances with sizes n ≥ 5000 from the Palubeckis instance set and
the 9 largest Max-Cut instances.

Table 8
Experimental comparison between Adaptive Tenure and Fixed Tenure

Instances Adaptive Tenure Fixed Tenure

Best AvgObj AvgT Best AvgObj AvgT
5000.1 8559680 8559582.5 905.0 8559680 8559452.5 288.1
5000.2 10836019 10836019 759.1 10836019 10835902.6 454.2
5000.3 10489137 10489137 312.9 10489137 10489101.6 582.5
5000.4 12252318 12252147.2 725.7 12252318 12252108.8 1098.6
5000.5 12731803 12731803 248.3 12731803 12731803 153.6
6000.1 11384976 11384916.1 578.6 11384976 11384959.1 688.0
6000.2 14333855 14333842.2 665.9 14333855 14333855 529.5
6000.3 16132915 16132792.8 836.8 16132915 16132696.6 461.6
7000.1 14478676 14478289.4 854 14478676 14478243.1 963.8
7000.2 18249948 18249238.2 984.6 18249948 18249655.4 502.8
7000.3 20446407 20446407 319.3 20446407 20445673.1 1023.6
G63 26969 26957.5 122.7 26930 26912.2 634.1
G64 8703 8674.5 123.2 8693 8659.4 412.9
G65 5552 5547 592.5 5546 5537.8 1057.7
G66 6350 6341.2 341.7 6338 6330 915.2
G67 6936 6929.4 735.2 6930 6914.8 849.3
G70 9556 9544.5 792.8 9488 9465.5 222.2
G72 6986 6980 579.9 6974 6964.6 1236.5
G77 9910 9899.8 917.6 9894 9884.2 1147.3
G81 14014 13999.6 1104.7 13978 13965 1153.4

Table 8 shows detailed comparison results obtained by the two algorithms for solving the
20 representative instances. Column 1 again gives the instance name, and the following
columns list the best and average objective values, and average time to the best. From
the table, we can see that our proposed algorithm with the adaptive tabu tenure performs
significantly better than the variant with the fixed tabu tenure. Specifically, regarding
the best objective values, our algorithm performs better for 9 out of 20 instances and
no worse instance. In terms of the average objective values, our algorithm performs
better for 16 instances and worse for 3 instances. Among them, the Fixed Tenure variant
performs as good as SATPR on the Palubeckis instances in terms of the best and average
objectives and is significantly worse on the Max-cut instances set.

In conclusion, the adaptive tenure will be at least as effective as the previously tuned
tenure and can surpass it when instances are not perfectly tuned or exhibit high sensi-
tivity. Tuning on the entire set may not be sufficient in such cases.
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3.5 Effectiveness of the RefSet Update Method

The new reference set update method evaluates the weighted value based on both so-
lution quality and variation, maintaining the best |E| solutions. This is in contrast to

many scatter search implementations, which split the whole set into two portions: |E|
2

solutions with the best objective values and the other |E|
2

with the largest distances
from all reference set members. The classical implementations will tend to create more
diverse offspring, but their poor solution value and tabu tenure can also pose challenges
in finding the best solution when doing solution combination. Therefore, we replaced
our Weighted Update method with the half-half updating strategy and created Splitted
Update variation to distinguish between those two strategies.

Table 9
Experimental comparison between Weighted Update and Splitted Update

Instances Weighted Update Splitted Update

Best AvgObj AvgT Best AvgObj AvgT
5000.1 8559680 8559582.5 905.0 8559680 8559647.5 886.6
5000.2 10836019 10836019 759.1 10836019 10836019 387.7
5000.3 10489137 10489137 312.9 10489137 10489101.6 914.6
5000.4 12252318 12252147.2 725.7 12252318 12252171.8 893.1
5000.5 12731803 12731803 248.3 12731803 12731803 336.6
6000.1 11384976 11384916.1 578.6 11384976 11384976 237
6000.2 14333855 14333842.2 665.9 14333855 14333704.2 1095.8
6000.3 16132915 16132792.8 836.8 16132915 16130771.3 1301
7000.1 14478676 14478289.4 854.0 14478676 14478384.4 1125.2
7000.2 18249948 18249238.2 984.6 18249948 18249183.1 1134.5
7000.3 20446407 20446407 319.3 20446407 20446407 813.2
G63 26969 26957.5 122.7 26959 26944.9 98.3
G64 8703 8674.5 123.2 8684 8656 85.1
G65 5552 5547 592.5 5540 5533 419.7
G66 6350 6341.2 341.7 6342 6323.8 324.2
G67 6936 6929.4 735.2 6920 6914.8 137.5
G70 9556 9544.5 792.8 9539 9525.4 235.7
G72 6986 6980 579.9 6978 6967.8 319.3
G77 9910 9899.8 917.6 9894 9889.6 346.7
G81 14014 13999.6 1104.7 13984 13970.6 1341.4

The detailed comparison results of these update strategies are given in Table 9. It can
be seen that, in terms of the best objective values, compared with the Splitted Update
variant, our algorithm performs better for 9 instances. In terms of the average objective
values, our algorithm performs better for 13 instances and worse for 4 instances. From
the instance set perspective, SATPR ties with the variant on the Palubeckis set and out-
performs the variant on the Max-Cut set where higher demands on tenure and reference
set quality are required. This aligns with our primary evaluations of the old reference set
maintenance strategy. As a result, the new weighted update strategy is preferred, as it
performs better across all kinds of instances by maintaining a relatively quality-focused
reference set and better tabu tenure.

21



3.6 Effectiveness of the Two-way Path-relinking Strategy

Table 10
Experimental comparison between Two-way and One-way Path-relinking

Instances Two-way Path-relinking One-way Path-relinking

Best AvgObj AvgT Best AvgObj AvgT
5000.1 8559680 8559582.5 905.0 8559680 8559517.5 826.1
5000.2 10836019 10836019 759.1 10836019 10836019 722.7
5000.3 10489137 10489137 312.9 10489137 10489106.2 434.2
5000.4 12252318 12252147.2 725.7 12252318 12252182.2 678.9
5000.5 12731803 12731803 248.3 12731803 12731803 308.4
6000.1 11384976 11384916.1 578.6 11384976 11384976 855.1
6000.2 14333855 14333842.2 665.9 14333855 14333802.2 525.5
6000.3 16132915 16132792.8 836.8 16132915 16132450.6 771.1
7000.1 14478676 14478289.4 854.0 14478676 14478305.1 901.6
7000.2 18249948 18249238.2 984.6 18249948 18249116.3 1032.6
7000.3 20446407 20446407 319.3 20446407 20446407 708.1
G63 26969 26957.5 122.7 26973 26942.1 723.1
G64 8703 8674.5 123.2 8689 8667.6 793.4
G65 5552 5547 592.5 5548 5538.2 258.8
G66 6350 6341.2 341.7 6342 6332.8 983.7
G67 6936 6929.4 735.2 6930 6919.2 403.4
G70 9556 9544.5 792.8 9541 9525.5 996.3
G72 6986 6980 579.9 6984 6974.2 269.3
G77 9910 9899.8 917.6 9902 9889 382.1
G81 14014 13999.6 1104.7 13998 13981.4 1254.2

The last experiment concentrates on the path-relinking-inspired solution combination
method. In this method, the variables to flip are alternately selected from both reference
solutions, as opposed to choosing from only one solution. This Two-way Path-relinking
strategy generally creates better new solutions as it evaluates the properties of the other
reference solution while branching on one side. This prevents the path from flipping
some of the crucial variables by elementary local search. A new algorithmic variant,
which replaces the alternative path-relinking with the previously employed One-way
Path-relinking strategy, was implemented. The detailed results of these two strategies
are provided in Table 10. It is evident that, in terms of the best objective values, our
algorithm outperforms the One-way Path-relinking variation for 8 instances and performs
worse for only 1 instance. Regarding the average objective values, our algorithm exhibits
superior performance for 13 instances and inferior performance for 3 instances. The
consistently better performance across all three sets strongly emphasizes the superiority
of the proposed alternative path-relinking strategy.

4 Conclusions and Future Work

The QUBO model has proven to be very successful for many important problems in the
classical computing field. We demonstrate in this paper that our new open-source solver
SATPR is capable of competing favorably with the leading metaheuristics and quantum
solvers on very large-scale QUBO instances of different structures. Specifically, compared
to other metaheuristics, our algorithm found better solutions for 21 out of 63 instances,
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matched the best solutions for 36 instances, and performed worse on 6 instances. Addi-
tionally, compared to the Fixstars Amplify digital annealer, our algorithm found better
solutions for 9 out of 38 instances, matched the best solutions for 21 instances, and found
worse solutions for 8 instances. Moreover, as our solver is open-source, individuals have
the opportunity to contribute to its development, enhancing the algorithm’s robustness
for benchmarking different QUBO applications.

For future research, we intend to incorporate preprocessing procedures to enhance algo-
rithm’s efficiency. These procedures aim to substantially reduce the size of the QUBO
matrix by identifying variables whose optimal values can be predetermined. Another
forthcoming project is to run benchmarks with exact solvers such as Gurobi (2023)
and SCIP (Rehfeldt et al. , 2023) and to compare our solvers on various applications
such as support vector machines, feature selections, clique partitioning, graph coloring,
scheduling problems and so on. Finally, it is important to develop new solvers to solve
other QUBO related models such as PUBO and QUBO-Plus models (Du et al. , 2024,
2025).
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