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Abstract—In the face of a sudden public health emergency
caused by a new infectious disease, it is necessary to establish a
multi-level emergency medical facility (including primary and
superior facilities) to address the surge in medical needs. In
this context, traditional hospitals are responsible for patient
screening, primary emergency medical facilities are responsi-
ble for treating mild cases, and superior emergency medical
facilities are responsible for treating severe cases. Against the
backdrop of uncertainties such as patient self-referral and the
autonomous progression of the disease, we address an important
problem of integrated emergency medical facility location and
patient dispatching under uncertainty and propose a multi-
stage stochastic programming model to formulate the problem.
For a deterministic model under a given set of scenarios, a
Decomposition-based Dual-level Heuristic (DDH) algorithm is
proposed to efficiently solve the problem, where the upper level
employs tabu search to optimize the location scheme, and the
lower level utilizes a patient allocation heuristic to provide an
optimized patient dispatching solution. Numerical experiments
are conducted using Wuhan, China, the epicenter of the COVID-
19 outbreak, as an example. The results show that the DDH
algorithm achieves high quality solutions close to those obtained
by state-of-the-art solver CPLEX but with significantly reduced
computational overload. The DDH algorithm is also compared
with the progressive hedging algorithm and genetic algorithm,
showing its superior performance in terms of solution quality
and computational efficiency. Through extensive data analysis,
valuable conclusions and managerial insights are obtained, pro-
viding useful references for emergency response in similar public
health emergencies in the future.

Index Terms—Emergency Medical Facility Location; Patient
Dispatching; Uncertainty; Multi-stage Stochastic Programming;
Heuristic Algorithm.

I. INTRODUCTION

Pandemic and epidemic influenzas are public health con-
cerns that have caused major life losses over the past several
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hundred years [1]. Since the 21st century, various epidemic
infectious diseases have broken out worldwide, including
atypical pneumonia, HIN1 influenza, Middle East Respiratory
Syndrome, West African Ebola virus, and the novel coron-
avirus pneumonia (abbreviated as ‘COVID-19’). As an infec-
tious public health emergency, the COVID-19 has a severe and
versatile impact on urban lifestyles. Meanwhile, the demand
for high-quality health services continues to increase year after
year, while hospitals encounter more and more difficulties in
terms of limited medical resources [2]. Roberto Azevédo, the
Director-General of the World Trade Organization, said that
the impact of the COVID-19 is more severe than the financial
crisis twelve years ago, causing global economic downturns
and mass unemployment, challenging socio-economic growth
and public health service systems.

Rapid construction of emergency medical facilities is
needed to provide temporary treatment space and meet ur-
gent medical needs when traditional health facility expansion
methods are unable to meet the surge in medical demand [3].
Emergency medical facilities can be converted from schools,
parks, and gymnasiums, or built as temporary sites using
modular construction methods. Based on the characteristics of
the patient population they mainly serve, these facilities are
categorized into different levels and integrated into a multi-
level healthcare system, forming a tiered medical service net-
work geared towards public health emergencies. The location
and treatment capacity of emergency medical facilities need
to be determined based on their functional positioning and
service coverage [4], thereby improving the overall patient
recovery rate in the region. Research on the location selection
of emergency facilities has significant implications in medical
treatment [5], disaster relief [6], and emergency logistics [7].
Specifically, fully considering the challenges in treating differ-
ent disaster situations helps in designing reasonable locations
for emergency medical facilities, improving the quality and
efficiency of emergency medical services. In the control of the
COVID-19 pandemic, the well-known mobile cabin hospitals
and two specialty field hospitals, namely the Huoshenshan
hospital and Leishenshan hospital [8], constructed in Wuhan
city of China, played a significant role. Building mobile cabin
hospitals and specialty field hospitals became crucial measures
to alleviate the pressure of regional medical treatment.

This study is based on the medical treatment needs of
sudden infectious public health events and considers a tiered
medical service network consisting of three levels of hospi-
tals. Level 3 hospitals refer to primary hospitals capable of
screening infected individuals; level 2 hospitals are primary
emergency medical facilities (i.e., mobile cabin hospitals),
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capable of treating mild-symptom patients; level 1 hospitals
are superior emergency medical facilities (i.e., specialty field
hospitals), capable of treating severe-symptom patients. The
primary and superior emergency medical facilities serve as
supplements to the designated hospitals and intensive care
hospitals, respectively, and need to be established after the
outbreak of a sudden infectious public health event.

Patients with different conditions have varying needs for
medical resources, necessitating the categorization and treat-
ment of patients based on their conditions [9]. In other
words, the functional positioning of medical institutions at
different levels in a tiered medical service network should
be considered, and patients should be assigned to appropriate
medical institutions for treatment. In large-scale disaster relief
scenarios, categorized treatment for patients can improve the
overall treatment efficiency of a given region. Given the
limited treatment capabilities of hospitals, emergency medical
facilities, as a supplement to the existing medical system,
provide additional treatment capacity to handle certain types of
patients [10]. In the tiered medical service network, individuals
can be either non-infected or infected, the latter of which
are further divided into mild and severe cases considering
the conditions of the patients. Thus, one concern is how to
transfer infected patients to appropriate hospitals for treatment
based on their conditions. Moreover, during major public
health emergencies, patients vary in their physical conditions
and preferences for medical treatments. Some choose to be
transferred to appropriate hospitals under the arrangement of
emergency centers (referred to as ‘non-self-directed patients’),
while others opt to go to a hospital of their choice (referred to
as ‘self-directed patients’). Such self-directed choices, which
are made by patients who lack global information, may cause
a surge in medical demand at certain hospitals, leading to an
imbalance in the workload of various hospitals. For example,
after the confirmation of human-to-human transmission of
COVID-19 on January 20, 2020, a surge in suspected and
panic visits occurred in various hospitals in Wuhan. The surge
in medical demand primarily came from self-directed patients.
Thus, the decisions of self-directed patients have a significant
impact for both the patient transfer strategy among various
hospitals, and the site selection of emergency medical facilities
[3], [11]. Therefore, to improve the treatment capability of the
region, it is essential not only to categorize and treat mild and
severe cases, but also to consider the impact of self-directed
patients on patient dispatching.

Under the aforementioned tiered medical service network,
we divides the treatment process of patients into two stages
based on the progression of their conditions. The first stage of
treatment is for patients who are either unknown to be infected
or have mild symptoms. The former will spontaneously go
to the primary or designated hospitals for screening and will
be transferred to Level 2 hospitals if found infected. The
latter will be directly transferred to Level 2 hospitals. The
second stage of treatment requires transferring patients who
have progressed from mild to severe cases to Level 1 hospitals
for treatment.

Based on the above tiered medical service network and
patient treatment process, we study integrated emergency med-

ical facility location and patient dispatching problem under
uncertain environments, which is abbreviated as IEMFLPD_U.
IEMFLPD_U takes into account uncertain factors such as
the scale of patients, the number of self-directed patients at
various demand points, the proportion of mild cases, and the
proportion of severe cases. The goal requires to minimize
the construction cost of emergency medical facilities and the
transfer cost of patient dispatching. The main contributions of
our work are as follows:

(1) We propose a multi-stage stochastic programming
(MSP) model for the IEMFLPD_U, which integrates a two-
level emergency medical facilities location stage for determin-
ing the primary and superior emergency medical facilities,
and patient dispatching stages for allocating patients among
various levels of hospitals, considering representative medical
demand scenarios. Note that the patient dispatching stages are
further divided into two stages to handle mild and severe cases,
respectively, taking into account the evolution of the patient’s
condition and role of different levels of hospitals.

(2) We propose a Decomposition-based Dual-level Heuristic
(DDH) algorithm for solving the IEMFLPD_U problem. The
algorithm seeks a high-quality solution to the IEMFLPD_U
by solving its deterministic model under given scenarios. The
DDH algorithm employs a bi-level optimization framework.
The upper level generates a facility location plan with a tabu
search procedure, where the general solver is used to solve a
reduced and relaxed MSP model to quickly evaluate the so-
lution quality. The lower level generates a patient dispatching
plan, following the obtained facility location plan, for each
scenario with a greedy heuristic.

(3) Numerical experiments based on real-world case data are
conducted, and extensive experiments and analyses have been
performed. The results indicate that compared to the CPLEX
solver, progressive hedging algorithm (PHA) and genetic
algorithm (GA), the DDH algorithm shows higher solving
efficiency, achieving high-quality solutions in a reasonably
short time. Moreover, sensitivity analyses are performed for
the treatment capabilities of existing medical institutions and
the proportion of self-directed patients, providing insights into
real-world applications of the problem.

The remainder of the paper is organized as follows. Section
I reviews the related works in the literature. Section III
presents the problem description and the MSP model. Section
IV elaborates on the DDH algorithm. Section V conducts a
case study analysis on the Wuhan city of China to validate
the effectiveness of the approach and provides management
insights. Section VI presents concluding remarks and some
suggestions for future research.

II. LITERATURE REVIEW

In this section, we review the related literature from facility
location in emergency scenarios, emergency medical location
and patient dispatching, and medical service network design.

A. Facility Location in Emergency Scenarios

For the location of emergency medical facilities in disaster
events, the main research focuses are on the location of
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casualty collection points, emergency medical centers, and
emergency supply warehouses. For example, Drezner et al.
[4] formulated the casualty collection points location problem
as a multi-objective model. They proposed a descent heuristic
algorithm and a tabu search algorithm for solving the problem.
Jia et al. [6] established a general facility location model
for large-scale emergencies, which aims to find the minimum
number of emergency medical facilities required based on
meeting medical needs. Huang et al. [11] proposed a general
facility location model for large-scale emergency disaster
scenarios, considering that residents in some areas cannot rely
on their nearest facilities. They used dynamic programming
approach for the location on a network, and further developed
an efficient algorithm for optimal locations on a general
network. Gu et al. [9] studied the medical relief shelter location
problem considering the severities and geographical locations
of patients. They proposed a mixed integer programming
model and developed a greedy algorithm to solve the problem.
Zhang et al. [12] studied the location problem of emergency
service facilities under uncertainty. They proposed an uncer-
tain set covering model, and transformed it into an equivalent
deterministic location model to solve. Wang et al. [13] studied
the integrated emergency supply planning problem faced by a
regional healthcare coalition. They proposed a multi-objective
two-stage stochastic programming model to solve the problem
and employed a linear weighting method.

In addition, there is abundant research on the location of
emergency medical centers and ambulance stations, which of-
fers considerable guidance for solving the emergency medical
facility location problem. Hashenmi et al. [14] proposed an
integer programming model for locating emergency medical
centers. They used the GAMS software and developed a GA
to solve the problem. Their study indicated that the correct
location of emergency medical center and ambulances can
have a positive impact on service in emergency situations. Su
et al. [15] focused on improving the ambulance deployment
method to optimize the distribution of first-aid resources.
They refined the double coverage model and developed an
ant colony optimization algorithm to solve the problem.
Schmid [16] studied the dynamic ambulance relocation and
dispatching problem. They proposed an approximate dynamic
programming method to solve the problem, and the results
showed a 12.89% reduction in response time. Nickel et al. [17]
investigated the problem of choosing the location and number
of ambulance and their bases in a certain region, considering
the uncertainty of the demand. A scenario-indexed formulation
was proposed, and a sampling approach was developed to
solve the problem.

B. Integrated Emergency Medical Facility Location and Allo-
cation

The research on the emergency medical facility location in
the context of sudden public health events is relatively scarce
and often integrates the emergency medical facility location
problem with other problems, such as casualties allocation,
route planning, emergency supplies allocation, and medical
staff assignment. For example, Caunhye et al. [3] investigated

the problem of integrated alternative care facility location
and casualties allocation, considering casualty classification
and self-evacuation behaviors. They proposed a three-stage
stochastic programming model and developed an algorithm
based on Benders decomposition to solve the problem. Yi and
Ozdamar [18] studied the location-routing problem that inte-
grates vehicle routing with facility location decisions to sup-
port healthcare operations and evacuation in disaster response.
They developed an integrated location-distribution model and
proposed a dynamic programming algorithm to solve the
problem. They conducted a case study of an earthquake
scenario in Istanbul, Turkey. Liu et al. [10] focused on the
facility location and casualty allocation problem, considering
casualty triage, health deterioration conditions, and equitable
distribution of limited medical resources. They proposed a
bi-objective optimization model and developed an iteration
method to solve the problem. Luo et al. [5] studied an
integrated planning problem of deploying emergency hospitals,
allocating emergency medical supplies and managing infected
patients. They proposed a multi-period location-allocation
model considering the dynamic arrival of emergency medical
supplies and infected patients. Lai et al. [19] studied the multi-
period integrated planning problem of vaccination station
location and medical professional assignment, considering the
uncertain demand for multiple types of vaccines over multiple
periods. They proposed a two-stage stochastic mixed integer
linear program, and developed a Benders decomposition-based
heuristic algorithm.

C. Medical Service Network Design

By designing an efficient medical service network that
includes rational partitioning of service areas and strategic
functional positioning of multi-level hospitals, the overall
patient treatment efficiency within the region can be improved.
Zhen et al. [20] studied the facility network design problem for
disaster relief. They proposed an integer programming model
to minimize the total cost of establishing the facility network.
A Lagrangian relaxation method was proposed for solving
the model. Zhang et al. [21] studied the design of preventive
healthcare facility network. They built an M/M/1 queue model
for each facility to capture the level of congestion, and
proposed a location-allocation heuristic solution algorithm to
solve the problem. Zhang et al. [22] studied the impact of
client choice behavior on the configuration of a preventive care
facility network and the resulting level of participation. To this
end, they proposed two alternative models, probabilistic-choice
model and optimal-choice model. Alizadeh et al. [23] studied
the design of a viable healthcare supply chain network for
a pandemic. They proposed a multi-level network, including
health centers, CT scan centers, hospitals, and clinics, for a
pandemic. They developed a MSP method to solve the prob-
lem. Doyen et al. [24] studied a humanitarian relief logistics
problem. They proposed a mixed-integer linear programming
model and designed a Lagrangian relaxation based heuristic
method. Zarrinpoor et al. [25] studied the health service
network design problem, considering the risk of disruptions of
the facilities. They proposed a reliable hierarchical location-
allocation model based on a two-stage robust optimization
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approach. A Benders decomposition based solution procedure
is developed to solve the model.

III. PROBLEM DESCRIPTION AND FORMULATION

This section first presents the problem description, and then
formulates the MSP model for the problem.

A. Problem Description

The hierarchical medical service network considered in
the IEMFLPD_U is shown in Figure 1. Level 1 hospitals,
composed of intensive care hospitals and superior emergency
medical facilities, are mainly responsible for treating severe
cases. Level 2 hospitals, composed of designated hospitals
and primary emergency medical facilities, mainly treat mild
cases. Additionally, designated hospitals allow the unscreened
patients to receive screen for infection detection. Level 3
hospitals refer to primary hospitals, which can only screen
for infections but cannot treat them. Notably, both primary
and superior emergency medical facilities are temporary insti-
tutions. Each level of emergency medical facility has multiple
types, and different types have varying numbers of beds and
construction costs.

Once the hierarchical medical service network is estab-
lished, the treatment process is divided into stages for treating
mild and severe cases based on the development of the
patient’s condition. We assume that at the initial stage of
the public health events, only mild cases were present at the
demand point, with no severe cases. In the stage for treating
mild cases, patients with mild symptoms are allocated to Level
2 hospitals for treatment. In the stage for treating severe cases,
patients who have developed severe symptoms are transferred
from Level 2 hospitals to Level 1 hospitals for treatment. Im-
portantly, the unscreened patients may choose to go to primary
or designated hospitals for screening, potentially leading to
some designated hospitals exceeding their treatment capacity.
Therefore, in addition to allocating patients diagnosed at Level
3 hospitals to Level 2 hospitals during the stage for treating
mild cases, it is also necessary to allocate patients diagnosed
at designated hospitals to other Level 2 hospitals.

In IEMFLPD_U, in addition to the uncertainty in the scale
of the patient population, there are multiple uncertain factors in
the patient treatment process. For instance, uncertain factors in
the stage for treating mild cases include the number of patients
who self-refer to various Level 3 and Level 2 hospitals from
each demand point; the proportion of them who are confirmed
cases; the proportion of patients with confirmed diagnosis
among non-self-referred patients from each demand point.
Uncertain factors in the stage for treating severe cases mainly
concern the proportion of mild-symptom patients who develop
into severe-symptom patients. The IEMFLPD_U requires de-
termining the location and type of emergency medical facilities
at each level in the hierarchical medical service network, as
well as the dispatching plan for mild-symptom patients and
the referral plan for severe-symptom patients. All these must
be considered under the aforementioned uncertainties, aiming
to minimize the expected total construction cost of emergency
medical facility and the total referral cost while satisfying the
patient treatment demands.

B. Multi-Stage Stochastic Programming Model

MSP is a framework for dealing with a set of stochastic
events over time [26]. Specifically, in MSP models, the deci-
sions in each stage are taken for an uncertain future, while the
corrective decisions must be made in the subsequent stages
after the realization of the uncertain events. The decisions
in each stage depend on the information that is available
to the decision-maker at the current time, as well as the
future uncertainties and their possible corresponding decisions.
Therefore, it is suitable for modeling the IEMFLPD_U.

We divide the problem into three stages: Stage 1 involves
dual-level emergency medical facility location, Stage 2 in-
volves the allocation of mild-symptom patients, and Stage 3
involves the referral of severe-symptom patients. A scenario
tree, as shown in Figure 2, is used to represent the uncertain
parameters of this problem. Specifically, w € () represents a
scenario in the stage of treating patients with mild symptoms,
which includes specific patient scale, the proportion of diag-
nosed patients to undiagnosed ones, the proportion of patients
choosing to go to third-level and designated hospitals on their
own, and the proportion of such patients who are diagnosed.
Pw represents the probability that scenario w occurs, and
> weq Plw) = 1. B, € B, represents a scenario in the stage
of treating patients with severe symptoms that occurs after
scenario w, specifically referring to the proportion of mild-
symptom patients in each second-level hospital that turn into
severe-symptom patients. P((,|w) represents the probability
that scenario j3,, occurs, and > 5 i P(B,|w) = 1. The MSP
model P1 is shown below, and the definitions of the relevant
symbols can be found in Table 1.

2
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Fig. 1. Schematic diagram of the hierarchical medical service network and patient treatment process
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Fig. 2. Scenario tree.
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The first-stage objective function (1) aims to minimize
the construction costs and the expected subsequent patient
transfer costs, where the patient transfer cost Q1 (y,w) is the
optimization goal of stage 2. Constraint (2) ensures that at
most one emergency medical facility can be built at each
candidate location. Constraint (3) ensures that the total number
of new primary and superior emergency medical facilities
cannot exceed their planned numbers. Constraint (4) defines
the range of decision variable values for stage 1.

The second-stage objective function (5) aims to minimize
the expected transportation costs for mild patients, as well as
for severe patients, where Q2 (y,x,w, 3,,) is the optimization
goal for stage 3. Constraint (7) calculates the number of
confirmed patients taking non-voluntary treatment from the
demand points to secondary and tertiary hospitals. Constraint
(8) calculates the number of confirmed patients with voluntary
treatments transferred from existing secondary and tertiary
hospitals to other secondary hospitals. Specifically, this study
only allows patients exceeding the treatment capacity of a
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TABLE I
NOTATIONS FOR MSP MODEL

Symbol

Parameter description

Sets

HP

H CH
HE cHP
Ly €L

D

Q

B,

Parameters
Vie

Op

Api

Variables
Ykhl

Zqn(w)
W (W)

2prp (W)

Existing hospital set (h = 1, ..., |H|)

Candidate emergency medical facility locations
(h=1,..,|H"]

Types of emergency medical facilities (I = 1, ..., |L])
Existing hospitals of level k, k = 1,2, 3. Here, H1
refers to Level 1 hospitals, Ha to Level 2, and H3 to
Level 3

Candidate level k£ emergency medical facility
locations, k = 1, 2. Here, "Hf refers to superior
facilities, 7-[5 to basic facilities

Types of level k emergency medical facilities, k = 1,
2. Here, L1 refers to superior facilities, Lo to basic
facilities

Medical demand points (d = 1, ..., |D|)

Scenarios in the stage 2 (w =1, ..., |Q])

Scenarios in the stage 3 corresponding to scenario w

(Bw € Bw)

Maximum number of level £ emergency medical
facilities that can be built

Treatment capacity of existing hospital h, where

h € H3,0, =0

Treatment capacity of type | € L in level k
emergency medical facilities

Cost of building type I € L), emergency medical
facility at candidate location h € Hkp

Transfer cost from location 7 to location j
Probability of scenario w occurring

Probability of subsequent scenario (3., occurring in
scenario w

Number of patients at demand point d in scenario w
Number of self-referred patients from demand point d
to hospital h € Ha U H3 in scenario w

Proportion of diagnosed patients among
non-self-referred patients at demand point d in
scenario w

Proportion of diagnosed patients among self-referred
patients at demand point d in scenario w

Proportion of diagnosed patients developing into
severe cases among non-self-referred patients at
demand point d in scenario w

Proportion of diagnosed patients developing into
severe cases among self-referred patients at demand
point d in scenario w

Proportion of diagnosed patients developing into
severe cases among self-referred patients at existing
Level 2 and Level 3 hospitals h € Ho U H3 in
scenario w where ¢>§E(,Bw =

Zdep <Pd (Buw)F7 ™ (w)agn(w)/ ZdED agp(w)

Binary variable yyp; equals 1 if a level & emergency
medical facility is built at candidate location h € 'Hk{)
for type [ € Ly, and 0 otherwise

Number of diagnosed non-self-referred patients
allocated from demand point d to Level 2 hospital h
in scenario w

Number of diagnosed patients allocated from existing
Level 2 or Level 3 hospital A’ to other Level 2
hospital A in scenario w

Number of severe cases transferred from Level 2
hospital A’ to Level 1 hospital & in scenario w

hospital to be transferred to other hospitals for treatment.
Constraints (9) and (10) specify that the actual number of
patients treated at each secondary hospital cannot exceed its
treatment capacity. Constraints (11) and (12) define the range
of decision variable values for stage 2.

The third-stage objective function (13) aims to minimize the
transportation costs for severe patients. Constraints (14) and
(15) specify that all severe patients at each secondary hospital
need to be transferred to Level 1 hospitals for treatment.
Constraints (16) and (17) specify that the actual number
of patients treated at each Level 1 hospital cannot exceed
its treatment capacity. Constraint (18) defines the range of
decision variable values for stage 3.

To clarify the evolution of decisions across different
stages, we presents an illustrative example of the IEM-
FLPD_U problem with 1 demand point dy and 1 pri-
mary/designated/intensive care hospital (hi, ha, h3). Hospital
ho has 500 beds, while k3 has 100 beds. There are 1 possible
location and 2 types for each primary/superior emergency
medical facility. Moreover, in stage 2, there are 2 scenarios,
and in stage 3, each scenario from stage 2 branches into 2
new scenarios, resulting in 4 scenarios in stage 3. Figure 3
provides detailed information and shows a feasible solution.
The top of the figure illustrates stage 1 decisions, while the
bottom shows decisions for stages 2 and 3.

IV. DECOMPOSITION-BASED DUAL-LEVEL HEURISTIC
ALGORITHM

To solve the IEMFLPD_U, we firstly transform the MSP
model P1 into a deterministic model P2 by using scenario-
based approach. Specifically, the scenarios set {2 and 5, in
model P1 are replaced by a set of representative scenarios,
including stage-2 scenario set S and stage-3 scenario sets S,
(w € §). Then, the model P2 is a mixed-integer linear program
(MILP) and can be solved by general solvers.

2
P2: minz Z Z CrniYrni (19)

k=1 herP leLy

+ Z P(w) Z Z Tunxan (w)

wes deD heHaUHE

+ 0y > Thnwhrn(w)

h! €MHsUH2 heHoUHE |hth!

2P 2.2

Buw €S, h'€HoUHE heH UHT
s.t. Constraints (2) — (4), (7) — (12), (14) — (18)

It is worth noting that we collected real data to generate
representative scenarios, which cover most of the possible
situations. Although these scenarios are not exhaustive and
may omit some low-probability scenarios, they are sufficient
to provide a robust solution for the IEMFLPD_U problem.

While tackling facility location problems with commercial
solvers like CPLEX and Gurobi is challenging, researchers

(Bu|w) Thn(w)znn (Bu)
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Fig. 3. An illustrative example of the IEMFLPD_U.

usually propose metaheuristic algorithms for solutions, includ-
ing evolutionary algorithms [27], [28], and particle swarm
optimization algorithm [29], etc. Therefore, we propose a
Decomposition-based Dual-level Heuristic (DDH) algorithm
to solve the model P2. We decompose the IEMFLPD_U into a
two-level facility location subproblem (TLFLP, corresponding
to stage 1) and a fixed location patient dispatching subproblem
(FLPSP, corresponding to stages 2 and 3). The two subprob-
lems are solved iteratively until a given stopping criterion is
met. The framework of the DDH algorithm is shown in Algo-
rithm 1. Initially, a Two-Level Facility Location Initialization
algorithm (Section IV-A) is used to generate facility location
y©), followed by a Patient Dispatching Heuristic algorithm
(Section IV-C) to initialize the patient dispatching under
this specific facility location (x(9),w(®) z(9) The resulting
objective value is denoted as Obj(o). Afterwards, a Two-Level
Facility Location Local Search algorithm (Section I'V-B) based
on tabu search is used to optimize the facility location for the
TLFLP, and a Patient Dispatching Heuristic algorithm is used
to generate the patient dispatching for the FLPSP. The above
process is repeated until the maximum number of iterations
MaxIter is reached.

A. Initial Solution Generation for Two-Level Facility Location

The purpose of generating an initial solution for the two-
level facility location is to quickly produce a high-quality start-
ing point for the subsequent local search algorithm. In model
P2, the feasibility of the facility location mainly depends
on whether the capacity constraints of the Level 1 hospitals
(9), (10) and the Level 2 hospitals (16), (17) are met. Given
that patient volumes vary in different scenario samples s, the
algorithm for generating the initial solution of the two-level
facility location starts with a feasible facility location under
the scenario with the largest patient volume and then quickly
adjusts to find the least number of facility locations that satisfy
all scenarios.

C )

Patient number
(Proportion of diagnosed patients developing into severe cases )

Algorithm 1 Outline of the proposed DDH algorithm

Require: a given problem instance NP, a set of scenarios S, maxi-
mum iteration number MaxIter

Ensure: the best solution (y*,x*,w*,z") with its objective value
Obj™* found during the search

1 y©@ TwolevelFacﬂltyLocationInitialization(NP, S)
2: (x(o) w<O 7(® Ob_] )<— PatientDispatchingHeuristic(NP, y*,
S)

3: Initialize tabu list TL(O), location selection history PT( >, set
ke 0,y 3@, x* «xO w*  w® z* 20 0Opj* «
Obj(o)

4: while k& < MaxIter do

5. (D, prt+d) TL<k“>2 + TwolevelFacilityLocationLo-

calSearch(NP, S, y®, pT™) L *))

6 (xFFD pk+D) 4D Opi (kD) PpatientDispatchingHe-

uristic(N P,y * 1 8)
7. if Obj* Y < Obj* then

8: Obj* + Obj Ty oy - yx o (b1 e
WD) e 1)
9: end if

10: k+—k+1
11: end while

The framework of the algorithm for generating the initial
solution for two-level facility location is shown in Algorithm
2. It first uses a general MIP solver to obtain the facility
location y’ under the scenario s which has the largest number
of patients. Then, combining this location y’, it calculates
the cost-benefit values of each facility location according to
Equation (20) and sorts them in an ascending order to create
priority sequences R; and Ry for the locations of superior
and primary emergency facilities. Subsequently, locations and
types of facilities are added in sequence from the priority
sequences R and R, until the patient needs of all scenarios
are met. The formula for calculating the cost-benefit value is
shown in Equation (20).

Avg_cofpn = Z Cofxn,— My, Vk =1,2;h € Hy, (20)
leLy
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Algorithm 2 Outline of the TwolevelFacilityLocationInitial-
ization
Require: a given problem instance NP, a set of scenarios S
Ensure: the initial solution y(®
1: y' < GeneralSolver(NP, s¥)
2: Create priority sequences of superior emergency medical facil-
ities R1 and primary emergency medical facility Rz according
to Eq.(20) and solution y’, set y(© «— ()

3: for k=1,2 do

4: repeat

5: h < the first element of R

6: y(o) — y(o) U {ykhl|l = arg min C’offkhl, Zl\%ﬁk y;chl =
1;1 = lL7 ZZEL,C y;ch,l = 0}’ R < Rk \ {h}

7 until the solution y(o) is feasible or Ry, = ()

8: end for

In this case, the parameter M is a very large positive integer,
and the formulas for calculating C'of; p; and Cofs p are
shown in Equation (21) and Equation (22), respectively.

Cim+ >, Tan

dEHzUHéD
COthl = A
1,h

Cont + >
deDUH3UH-

Ao p

The above cost-benefit formula comprehensively considers
the construction costs of facility point h for all types [, the
cost of transferring to facility point &, and the open status of

facility point A under scenario s”.

NVhenPiler,

21

Tan

Cofan = NVheHE: leL, (22

B. Two-Level Facility Location Local Search

The Two-Level Facility Location Local Search algorithm
aims to optimize facility location. Neighborhood structure
plays an important role in the local search method [30]. Specif-
ically, given a facility location y, its neighboring solutions can
be obtained through two types of move operators, including the
facility open operator and the facility modification operator.
First, the facility open operator, denoted as Operator; (y, 1),
is applied for unopened facility locations h. It sequentially
attempts to open facility type [ € Ly, for location h. Second,
the facility shift operator, denoted as Operators(y,l’), is ap-
plied for all the opened facility h with type I’. It tries either to
close this facility location or to change this opened facility to
another type | € L, \ {I'}. Specifically, when Operatora(y, ')
is applied, location h switches to type I’ if originally built as
type I, or closes if originally built as type I’.

The framework of the Two-Level Facility Location Local
Search algorithm is shown in Algorithm 3. Given an initial
facility location y, the algorithm sequentially employs the
Operator; and Operatory to perform neighborhood search on
superior emergency medical facilities h € H and primary
emergency medical facilities h € HZ'. Specifically, the search
for facility locations at each level of emergency medical
facilities is carried out, and the starting facility location h for
each round of search is obtained based on the solution of
the previous round. In this algorithm, the last facility location
h that was searched using the j-th operator for the k-level

emergency medical facilities is recorded using the location
history PT},;. The starting facility location for this round is
h = PTy;+1.1f Hi has been completely searched, the search
will begin from the facility location with the smallest index
in that level. Whenever a new facility location y’ is obtained
and it satisfies the capacity constraints, a general solver is
used to quickly calculate its objective value, which is only an
approximate estimate, used for rapid quality assessment of the
solution. To be specific, we solve a relaxed P2 model, where
the value of ygp,; is fixed and variables x4, (w), wpp(w), and
znn(w) are treated as continuous. It is worth noting that the
algorithm adopts a tabu search strategy to avoid falling into
local optima. The tabu list T'L records the rounds in which
the type [ of emergency medical facility h was modified, with
a tabu tenure of 7', meaning that the modification operation
will not be accepted in the next 7" rounds of search.

Algorithm 3 Outline of the TwolevelFacilityLocationLo-

calSearch

Require: a given problem instance NP, a set of scenarios S, a
solution y, a tabu list T'L, a location selection history PT =
{PTyjlk = 1,2,j = 1,2}, the best objective value Obj*
obtained so far

Ensure: the best solution y* found during the search

1: for k=1,2 do

2. for j=1,2do

3: repeat

4: h < a facility location selected from HZ according to

location selection history PT};

5 for l € L, do

6 y' « Operator;(y, 1)

7: if solution y’ is feasible then

8: Obj’ + GeneralSolver(NP, y', S)

9.

0

end if
if (Obj’ < Obj* and Obj’ < Obj) or (Obj’ < Obj,
while y is not forbidden by the tabu list 7'L) then

11: Obj < Obj', y* «+y'

12: end if

13: end for

14: until all the facility locations in HI are checked or a
feasible solution is found

15: PTy; < Update PTy;

16: end for

17 TL' + Update TL

18: end for

C. Patient Dispatching Heuristic Algorithm

Given a facility location y, in the Two-Level Facility Lo-
cation Local Search, we solve linear programming model to
quickly estimate its objective value. However, this is not suffi-
cient, and we still need to find high-quality patient dispatching
solutions to accurately evaluate the overall solution. Since that
the patient dispatching for each scenario is independent, we
can obtain the patient dispatching for each scenario separately.
Therefore, we propose a Patient Dispatching Heuristic algo-
rithm to optimize patient dispatching for each scenario. Specif-
ically, for scenario s, the algorithm considers the capabilities
of medical facilities at each level and follows the nearest-
transport treatment principle. It makes sequential decisions
for mild patient allocation and severe patient transportation.
Priority is given to treating patients with a confirmed diagnosis
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who sought treatment independently at designated hospitals.
The specific steps of the algorithm are as follows:

* Step 1. Based on the number of confirmed patients among
those who sought treatment on their own at the designated
hospital € H2, update the remaining treatment capacity
of hospital h and calculate the number of mild patients
who have not been treated in Level 2 and Level 3
hospitals;

e Step 2. Sequentially determine the dispatching for con-
firmed patients who did not seek treatment on their own
at each demand point. Patients are primarily allocated to
Level 2 hospitals with smaller transportation costs and
available treatment capacity, generating the decision x;
and updating the remaining treatment capacity of the
Level 2 hospitals;

¢ Step 3. Sequentially determine the dispatching for con-
firmed patients in Level 3 hospitals, and for confirmed
patients who exceed the treatment capacity in Level 2
hospitals. Patients are primarily allocated to Level 2
hospitals with smaller transportation costs and available
treatment capacity, thereby generating the decision wg;

e Step 4. Sequentially decide the transportation scheme
for severe case patients in Level 2 hospitals. Patients are
primarily allocated to level 1 hospitals with smaller trans-
portation costs and available treatment capacity, thereby
generating the decision z.

Once the patient dispatching for each sample scenario s is
obtained, calculate the objective function value Obj for the
given facility location y and patient dispatching (x,w,z).

V. CASE STUDY
A. Experimental Data

To validate our proposed MSP model and DDH algorithms,
we generate problem instances based on the real-world data.
These problem instances consist of scenario features and case
features. Scenario features include patient scale, self-referred
patient ratio, confirmed patient ratio, mild and severe patient
ratios, and occurrence probabilities of each scenario. Case
features include the distribution of healthcare demand points
in the target city, population characteristics, hospital locations
and their treatment capabilities, locations and capabilities
of primary and superior emergency medical facilities. The
scenario features are mainly set based on reported data online,
while case features are sourced from the geographical data of
the target city. We mainly study the experimental results for
Wuhan city of China.

1) Scenario Features: Based on the COVID-19 data in
Wuhan, we set 12 scenarios for the experiment. The specific
settings of the scenarios are as follows.

@ Patient scale. Data on medical demand (patient scale)
are generated randomly. First, we set 12 scenarios according
to the ratio of the number of patients received at fever clinics
in Wuhan to the total population (12,326,518 according to
the seventh census). Then, we randomly generate a number of
patients within given ratio for each scenario. Note that specific
data on daily admissions to fever clinics in Wuhan are difficult

to obtain. We got the rough numbers from the news materials.
Specifically, the number of people received at city-wide fever
clinics was around 2,900-13,000 from late January to mid-
February 2020. Therefore, the proportion of total fever clinic
receptions to the total population is set between 0.0001-0.001,
and for the most severe infection scenario, the patient scale
ratio is expanded to 0.002.

@ Self-referred patients. According to Caunhye and Nie
[3] and the news that reported the number of new patients
in Wuhan a few days after the lockdown on January 24,
2020, we assume that if the proportion of new cases to the
total population exceeds 0.002%, the number of self-referred
patients is zero. Otherwise, the proportion of self-referred
patients is 80%. Self-referred patients are randomly allocated
according to the distance from demand points to primary
and designated hospitals, and it is assumed that self-referred
patients randomly go to the one of nearest ten hospitals.

® Confirmed patient ratio and scenario occurrence proba-
bility. We obtained historical COVID-19 data in Wuhan from
December 1, 2019, to March 19, 2021, from the nCov2019
library (using R programming language). By calculating the
occurrence days corresponding to each new patient number,
and excluding days with no new confirmed patients, we set
the ratio of confirmed patients to the total population and
the occurrence probability of each scenario. Specific data are
shown in Table II and Table III.

@ Severe Patient Ratio. The proportion of severe patients
among confirmed patients is simply set at 0%, 5%, 10%, 15%,
and 20% based on news materials.

The characteristics of the 12 scenarios are shown in Table
IV, and the relationship between the scenarios can be seen in
the Figure 4.

TABLE 11
HisTORICAL COVID-19 DATA IN WUHAN FROM DECEMBER 1, 2019, TO
MARCH 19, 2021

Max new

Ic)ailg new cases/t(?tal Days freglcecnlf;e(ng;
population
0 0 388 82.03
1-40 3.00 x 10—6 34 7.19
41-100 6.50 x 10~6 10 2.11
101-200 1.60 x 10—5 6 1.27
201-400 3.00 x 10~° 9 1.90
401-700 5.00 x 10~° 7 1.48
701-1,300 1.00 x 104 5 1.06
1,301-1,900 1.40 x 104 8 1.69
1,901-3,000 2.50 x 10~4 5 1.06
3,001-13,436  1.00 x 103 1 0.21

2) Instance Features: Instance feature can be divided into
medical resource supply and medical resource demand. The
supply side mainly includes existing medical institution data
and optional field hospital data. The demand side is primarily
based on the population data and street data of the target city.
The settings of the instance are as follows.

@ Treatment capacity of medical institutions. The treatment
capacity of existing hospitals is determined by referring to
hospital bed data and news materials. The treatment capacity
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TABLE III
PROBABILITY OF NEW CASES BASED ON HISTORICAL WUHAN DATA

New cases/ Occurrence probability

total population (%)

3.00 x 1076 40.00

6.50 x 10=6 11.80

1.60 x 107> 7.10

3.00 x 1075 10.60

5.00 x 1075 8.20

1.00 x 10™% 5.90

1.40 x 1074 9.40

2.50 x 1074 5.90

1.00 x 1073 1.20

TABLE IV
SCENARIO SETTINGS

' Self- Confirmed Severe Scenario
Scenario Patient diagnosis cases/total cases/ oceurrence
scale . . confirmed  probability
patients population cases (%) (%)
S1 2,465 1,972 3.00x10=6 0.00 40.00
S2 3,698 2,958  6.50x1076 5.00 12.00
S3 4,931 3,944 1.60x10~° 5.00 7.00
S4 6,163 0 3.00x107° 5.00 11.00
S5 7,396 0 5.00x1075 5.00 4.00
S6 7,396 0 5.00x1075 10.00 4.00
S7 8,629 0 1.00x10~4 10.00 3.00
S8 8,629 0 1.00x10~4 15.00 3.00
S9 9,861 0 1.50x10—* 10.00 4.50
S10 9,861 0 1.50x10~4 15.00 4.50
S11 11,094 0 250x10~4 15.00 6.00
S12 24,653 0 1.00x1073 20.00 1.00

of emergency medical facilities is determined based on the
type of facility. Detailed data is shown in Table V.

@ Existing primary/designated/intensive care hospitals. The
existing primary, designated and intensive care hospitals are
mainly referenced from the official announcements of the State
Council. In detail, in the case of Wuhan, there are 63 hospitals,
including 2 intensive care hospitals, 15 designated hospitals,
and 46 primary hospitals.

® Candidate locations of primary emergency medical facili-
ties. Primary emergency medical facilities are usually modified
from the existing public facilities, such as sports venues,
exhibition centers, factories, warehouses, etc. We obtained

9
2\ N
[ 8 )
NI
1 1
Y 7N\
[ s ((s12)
\_ N/
3% 3% 4.5% 4.5% 6% 1%
TABLE V

CATEGORIES OF EMERGENCY MEDICAL FACILITIES

Maximum bed  Construction cost

Facility type

capacity  (in 10,000 CNY)
Primary emergency medical facilities
1 300 300
2 500 750
3 800 1,200
4 1,000 1,500
5 1,500 2,250
6 2,000 3,000
Superior emergency medical facilities
1 500 4,500
2 1,000 9,000
3 1,500 13,500

all locations of these facilities in Wuhan from the Amap
application. After filtering out the locations which do not have
hospitals within 3 km, 46 candidate locations remain.

@ Candidate locations of superior emergency medical facili-
ties. Superior emergency medical facilities are set up according
to specific guidelines, mainly for the treatment of seriously
and critically ill patients. In Wuhan, 18 suburban parks are
selected as the candidate locations for superior emergency
medical facilities.

® Demand points. The demand points in Wuhan are divided
according to the streets of the city. According to the govern-
ment’s official data, Wuhan is divided into 13 administrative
districts, which include 156 streets.

Figure 5 shows the existing medical service network in
Wuhan composed of these four types of nodes. The real-world
instance of Wuhan city is publicly available for future research
work .

Our DDH algorithm was coded in C++ and compiled by
GNU g++. The C++ API of the CPLEX solver 12.10.0 is
called to solve model. The most difficulty scenario of our
instances is S12, which has the maximum scale of patients
and medical demand. Given this, in our previous experiments,
we found that a tabu tenure of 3 allowed the algorithm to
efficiently navigate the solution space of the facility location
problem without becoming trapped in local optima, given the
problem’s scale and complexity. Thus, we set 7' = 3. More-

Thttps://github.com/NWPU-ORMS/IEMFLPD_U
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Fig. 5. Existing Medical Service Network in Wuhan

over, we set MaxIter = 30. All experiments are executed on
a Xeon E5-2670 processor operating at 2.5GHz with 16GB
RAW, running Linux with a single thread.

B. Experimental Results

We discuss the experimental results of the proposed DDH
algorithm from three aspects. Firstly, we compare the perfor-
mance of DDH alogrithm with Progressive Hedging Algorithm
(PHA), Genetic Algorithm (GA) and CPLEX. Secondly, we
analyze the effectiveness of the Patient Dispatching Heuristic
algorithm on the solution performance. Thirdly, we specifically
analyze the obtained two-level emergency medical facility
locations and summarize the characteristics. Finally, the effec-
tiveness of the stochastic programming approach is verified.

1) Comparisons of DDH, PHA, GA and CPLEX: To assess
the performance of the proposed DDH algorithm, we use the
CPLEX solver as the benchmark. Moreover, we implemented
PHA [31] and GA [27], which are wildly used in solving the
stochastic optimization problems, for comparisons. The details
of these two algorithms are as follows.

e PHA. The PHA tackles the IEMFLPD_U problem by
breaking it into scenario subproblems via augmented
Lagrangian theory and iteratively coordinates their so-
lutions. The procedure initiates by setting Lagrangian
multipliers (¢3,p5,05) to zero and solving all subprob-
lems (s € J,csS.,) via CPLEX to obtain initial so-
lutions (y2, x2, w3, z5). Non-anticipative consensus vari-
ables ¥,41, To, 1, and Wy, ; are computed by averaging
solutions across scenarios. Convergence is evaluated us-
ing metrics Yy, Yz, Vs (e Yy = 3 P)I|y* — Gos]),
with termination thresholds &, = &, = &, = 0.01. If
unconverged, multipliers are updated via ¢; ; = ¢, +
p(Y5 — Yo+1) (similarly for p5_ ; and o, ;) using penalty
parameter p = 5. The objective function of each subprob-
lem is modified by adding linear terms (g, 1¥°, pj,17°,

05, w*) and quadratic penalty terms (5]ly* — Fu41/?,

2l|a* = Zy41]|, §]|w® — Wyq1]|?). Updated subproblems
are resolved iteratively with CPLEX (50-second time
limit per iteration) until convergence or time limit is
reached.

* GA. The GA addresses the IEMFLPD_U problem by
decomposing it into TLFLP and FLPSP subproblems,
solving TLFLP with GA and embedding FLPSP via the
Patient Dispatching heuristic. For TLFLP, GA uses a
population of chromosomes encoded as y = {lp|l €
L,U{0},h € HPUHEY, where 0 indicates no facility at
location h. Starting with a randomized initial population,
the GA iteratively evaluates each chromosome’s fitness
by solving embedded FLPSP subproblems via the Patient
Dispatching Heuristic across all scenarios s € |J,,cs S,

New populations are generated through crossover (ran-

domly selecting two parents with 50% probability of

inheriting each [;, from either parent) and mutation (10%

probability of randomly altering ;). This process repeats

until the time limit is reached.

Using only one real-world instance may not be sufficient
to draw a general conclusion on the performance of the algo-
rithms, we additionally generate 5 artificial instances (Ains_1
- Ains_5) based on the real-world instance (Rins) of Wuhan
city. These instances are generated by randomly increasing or
decreasing the number of patients, existing hospitals, candidate
locations for emergency facilities, and demand points by 5%,
10%, 15% relative to the Rins. All artificial instances are also
publicly available for future research work!.

We run the CPLEX, PHA and GA on the same computing
environment as the DDH algorithm, with a 1-hour time limit
per instance. Table VI report the computational results of the
CPLEX, DDH, PHA, and GA. For each approach, we record
the best found objective values Obj and the running time
Time for the first time to hit this value for solving each
instance. The best objective values among the four approaches
are highlighted in bold. We compute the percentage gaps
Gap(%) = (Obj — LB)/LB x 100 of the best objective value
Obj found by each approach from the best lower bounds (LB)
found by CPLEX. Moreover, the symbol “-” indicates that no
feasible solution is found.

The results show that our DDH algorithm effectively bal-
ances computational efficiency and solution quality. To be spe-
cific, CPLEX achieves the best objective values in 2 instances
(Ains_1, Ains_3), while our DDH algorithm outperforms the
others by obtaining the best solutions in the remaining 4
instances (Rins, Ains_2, Ains_4, Ains_5). Although the DDH
algorithm finds the results with percentage gaps ranging from
6.65% to 23.76%, it significantly reduces computational time
across all instances compared to CPLEX. By comparison, the
GA performs worse by finding feasible solutions with percent-
age gaps ranging from 174.75% to 341.90%. The PHA per-
forms even worse, failing to find feasible solution for Ains_1
and delivering objective values with percentage gaps between
361.30% to 535.47%. The reason for the poor performance of
the PHA may be that it solves quadratic-penalized problems
by CPLEX, which is more time-consuming. In conclusion,
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TABLE VI
COMPUTATIONAL COMPARISONS AMONG DDH, CPLEX, GA, AND PHA

CPLEX GA PHA DDH

Ins LB Obj Time  Gap(%) Obj Time  Gap(%) Obj Time  Gap(%) Obj Time  Gap(%)
Rins 17,066 20974 3508  22.90 75414 3369  341.90 82816 185 38527 20,837 435 2210
Ains_1 18278 22,048 3568  20.63 47,711 3288  161.03 - - - 22620 127 23.76
Ains2 17,308 21314 3537  23.15 61,884 3396  257.55 90,906 310 42523 21,195 153 2246
Ains_3 27,004 30251 3595  11.65 64,483 3,548 138.00 172,175 152 53547 30488 133 12.53
Ains_4 18,662 22,075 3,600  18.29 51273 1,194 17475 86,088 119  361.30 21,943 210 17.58
Ains_5 20921 22,624 3592 8.14 70,986 3,543 23931 105,133 109 402.52 22313 110 6.65

these results demonstrate that our DDH algorithm surpasses
CPLEX, GA, and PHA, offering a good trade-off between
solution quality and computational efficiency.

2) Effectiveness of the Patient Dispatching Method: The
combination of solving the relaxed P2 model and the Patient
Dispatching Heuristic in the DDH algorithm is the key com-
ponent to balance the computational efficiency and solution
quality of the DDH. Specifically, the relaxed P2 model is used
to quickly approximate the quality of each facility location
solution y in the Two-Level Facility Location Local Search
algorithm, while the Patient Dispatching Heuristic is used to
exactly evaluate the quality of each local optimal solution y*.
To verify the effectiveness of combining these two approaches,
two varients of the DDH algorithm, named DDH-V1 and
DDH-V2, are designed. In the DDH-V1, we use CPLEX to
exactly evaluate the quality of each local optimal solution
y*, while in the DDH-V2, we use the Patient Dispatching
Heuristic algorithm rather than solving the relaxed P2 model
to approximate the quality of each facility location solution.

TABLE VII
COMPUTATIONAL COMPARISONS AMONG DDH, DDH-V1 AND DDH-V2

DDH DDH-V1 DDH-V2

Ins
. . Gap . . Gap . . Gap
Obj Time (%) Obj Time (%) Obj Time (%)
Rins 20,837 435 2210 21,788 345 27.67 21,723 189 27.29
Ains_1 22,620 127 2376 27,651 339 51.28 24,590 135 34.54
Ains_2 21,195 153 2246 23,166 306  33.85 22,763 202 3151
Ains_3 30,488 133 12.53 31,837 278 17.50 31,909 267 17.77
Ains_4 21,943 210 17.58 22,572 261 20.95 23,624 276 26.59
Ains_5 22,313 110 6.65 23,798 341 1375 23,501 215 1233
Average 17.51 27.50 25.00

Table VII shows the computational results of the DDH,
DDH-V1 and DDH-V2. The results show that the DDH
achieve better solutions with average percentage gaps of
17.51%, which is superior to DDH-V1 and DDH-V2 with
average percentage gaps of 27.50% and 25.00%, respectively.
Additionally, the DDH requires less computational time than
DDH-V1 and DDH-V2, demonstrating its superior perfor-
mance in terms of both solution quality and computational
efficiency. This suggests that the combination of solving
the relaxed P2 model and the Patient Dispatching Heuristic
approach used in DDH is more suitable for the IEMFLPD_U
problem.

3) Analysis of Two-Level Emergency Medical Facility Lo-
cation: To present and analyze the results of the two-level
emergency medical facility location more directly, we utilized

Python to invoke the Map from the pycharts package to draw
the district map of Wuhan city. The color of each adminis-
trative area is determined by the number of all emergency
medical facilities built in it. The visualizations are shown
in Figure 6, where "Administrative Region (7, j)" represents
the name of the administrative area, the number of superior
emergency medical facilities ¢, and the number of primary
emergency medical facilities j. Furthermore, we use Geo in
the pycharts package to add specific location coordinates of
the emergency medical facilities on the map of Wuhan city,
as shown in Figure 7.

District(i, j)

Huangpi (1,2)

\}

Jiangan(0,2)

Qiaokou(0,1)

Hanyang(0,1 Qingshan(0,1)

Caidian(0,3) Wuchang(0,1)

Hongshan(0,5)

5
4
3 . .
) Jiangxia(1,1)
;
0

Fig. 6. Distribution of emergency medical facilities in each administrative
area

According to the results, from the perspective of geo-
graphical locations of administrative areas where the facilities
are built, primary emergence medical facilities are mainly
constructed in the central administrative area, while superior
emergence medical facilities are built in both the northern
and southern administrative areas, specifically Huangpi and
Jiangxia. As shown in Figure 5, the two intensive care hos-
pitals are located in the eastern and western administrative
areas (Caidian and Hongshan). Together with the newly built
emergence medical facilities, the location enhances the conve-
nience of transferring severe patients. From the perspective of
population size and number of facilities, four administrative
areas out of thirteen have more than two emergency medi-
cal facilities, accounting for approximately 58% of the total
number of facilities and about 31% of the total population.

4) Effectiveness of the Stochastic Programming Approach:
To measure the effect of our stochastic programming approach,
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Fig. 7. Specific locations of emergency medical facilities

we make use of the two widely used indicators: the Expected
Value of Perfect Information (EVPI) and the Value of the
Stochastic Solution (VSS) [32]. For the IEMFLPD_U, an exact
calculation of the EVPI and VSS is not possible. Therefore,
we give a mechanism to estimate these two measures.

The EVPI measures the value loss due to the inability to
accurately predict future scenarios, thus shedding light on
losses caused by incomplete information. Assuming that the
decision-makers have obtained all the information from all the
scenarios, the best solution to the deterministic problem can
be calculated as a basis for evaluating the EVPI value. The
optimal solution to the deterministic model of the stochastic
programming model solved by CPLEX is 20323.37, and the
result for the BC experiment is 20854.65. Hence, EVPI =
20854.65 - 20323.37 = 531.28, EVPI(%) = 5252:25- % 100(%)
=2.61%. The EVPI value is relatively small, indicating that the
cost loss caused by incomplete information is 531.28, which
is 2.61% of the expected total cost. The smaller EVPI value
suggests that our proposed stochastic programming approach
is quite effective for solving the IEMFLPD_U problem.

The VSS measures the value gained by considering un-
certain information when solving the problem with known
distributions of random variables. The calculation of the VSS
is given in (23).

Zggv — ZBEEV

VSS = x 100% (23)

ZEEV

where both Zgggy and Zggy are actual total costs of the
solutions obtained by using our DDH algorithm when applied
to a given scenario. The difference is that the former solves the
model P2, while the latter solves the Expected Value Problem
(EVP). In detail, to create the scenario to be considered in the
EVP, all parameters are set to their expected values.

The VSS assessment results for various scenarios are shown
in Table VIII. The larger the VSS value, the better the solution
obtained by solving the model P2 is compared to the solution

obtained by solving the EVP. According to the results, the
values of V'S'S range from 0.65% to 22.02%. This indicates
that the solution obtained by solving the model P2 is better
than the solution obtained by solving the EVP.

TABLE VIII
VSS INDICATOR ASSESSMENT RESULTS FOR VARIOUS SCENARIOS
Scenario ZBEEV ZEEV VSS(%)
S1 14,443.18 14,596.75 1.06
S2 14,705.47 14,845.89 0.95
S3 15,023.07 15,124.73 0.68
S4 16,759.32 16,960.86 1.20
S5 18,967.71 19,204.04 1.25
S6 19,303.67 19,548.76 1.27
S7 23,885.61 24,211.29 1.36
S8 24,774.04 25,127.99 1.43
S9 31,428.26 31,592.68 0.52
S10 32,954.84 33,152.95 0.60
S11 43,203.31 44,171.94 2.24
S12 140,622.00  171,585.70 22.02

C. Parameter Sensitivity Analysis

This section further analyses the effect of the parameters,
including the treatment capacity of existing hospitals and the
proportion of self-referred patients. By conducting sensitivity
analysis, we aim to quantify how variations in these parameters
influence the overall solution performance and total cost, thus
providing valuable management insights on medical facility
location and patient dispatching. All above experiments are
based on the real-world instance of Wuhan city.

1) The Effect of the Treatment Capacity of Existing Desig-
nated and Intensive Care Hospitals: To analyze the effect of
the treatment capacity of existing designated and intensive care
hospitals for various types of confirmed patients, we consider
four scenarios in addition to the experiment DDH, which are
given below:

e Experiment EC1: Assuming that these hospitals are
opened in batches and some of the medical resources
of these hospitals have already been consumed. The
remaining treatment capacity varies in different scenarios.
Specifically, we set the remaining treatment capacities as
100%, 80%, 60%, and 40% of the original capacity, as
shown in Table IX.

» Experiment EC2: In all scenarios, the treatment capacity
of existing hospitals is set to 120% of the original
capacity.

» Experiment EC3: In all scenarios, the treatment capacity
of existing hospitals is set to 140% of the original
capacity.

Table X presents the results of the above tree comparative
experiments, including the total cost and each component cost.
It is clear that the total cost decreases as the treatment capacity
of existing hospitals increases. To show the change in costs
under different treatment scenarios in a more intuitive way,
we calculated the ratio of total cost difference (calculated
by comparing the total costs of two experiments with simi-
lar treatment capacities), the proportion of construction and
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TABLE IX
REMAINING TREATMENT CAPACITY OF EXISTING DESIGNATED AND
INTENSIVE CARE HOSPITALS IN DIFFERENT SCENARIOS

Percentage of remaining

treatment capacity Scenario
100% S1
80% S2, S3, S4
60% S5, S6, S7, S8
40% S9, S10, S11, S12

transfer costs in each experiment, as shown in Table XI. The
results indicate a marked decrease in total costs: DDH shows
a 41.25% reduction when compared to EC1. Furthermore, the
total cost in EC2 is 27.14% lower than that in DDH, and EC3
achieves an additional cost reduction of 36.50% compared to
EC2. In addition, as the treatment capacity of existing hospitals
increased, the proportion of construction costs in the total costs
decreased, while the proportion of transfer costs increased, and
the rate of increase in transfer costs gradually increased. This
indicates that when the treatment capacity of existing hospitals
for confirmed patients increases, the total cost of regional
emergency medical facility location and patient dispatching
can be significantly reduced.

2) The Effect of the Proportion of Self-Referred Patients: To
examine the effect of the proportion of self-referred patients,
we consider three scenarios with the same total number of
patients, the same total number of confirmed patients, and the
same total number of severe patients. The parameter settings
for the two comparative experiments are as follows:

» Experiment PC1: Assuming that no patient self-refers to
the hospital in all scenarios. All uncertain parameters
related to these patients are set to O in all scenarios.

* Experiment PC2: Assuming that there are self-referred
patients in all scenarios, with a proportion of 80% in sce-
narios S1, S2, and S3. The uncertain parameter settings
in these three scenarios are the same as those in DDH.
In other scenarios, the proportion is set to be 50%, while
the other uncertain parameters are generated following
the methods described in Section V-Al.

Table XII shows the results of the two comparative ex-
periments PC1 and PC2. By comparing experiments DDH
and PC1, under the same medical demands and supplies in
all scenarios, the total cost of PCl1 is slightly higher than
that of DDH. Moreover, we can observe that the transfer
cost of confirmed patients who self-referred to hospitals in
experiment PC1 is 0. Although the construction costs are
the same in experiments DDH and PCI, the other two types
of transfer costs are higher than the corresponding costs in
experiment DDH. Moreover, it can be found that the total
cost of PC2 is significantly lower than that of DDH and PCl,
while the transfer cost of confirmed patients who self-referred
to hospitals in experiment PC2 is significantly higher than that
in experiment DDH and PC1.

From the above results, it can be seen that as more patients
self-refer to hospitals, the total cost paid by governments
and medical institutions in the given region is significantly
reduced, and the transfer cost of self-referred patients is

transferred to the individual. However, this may lead to higher
infection rates due to the wide range of activities of the
confirmed patients.

D. Management Insights

Based on the experimental results and analysis, some man-
agement insights can be obtained as follows.

« Considering various epidemic scenarios, pre-planning the
maximum capacity of existing designated and intensive
care hospitals for treating infected patients can shorten
the emergency response time at various stages of epi-
demic development. This helps in balancing the treatment
work for all types of patients. However, if the available
resources of these existing hospitals for treating infected
patients are not well organized in advance, it may lead
to organizational chaos within the hospital.

o The construction of more smaller emergency medical fa-
cilities is beneficial in reducing the overall costs of emer-
gency medical facility location and patient dispatching, if
the construction cost does not decrease significantly with
the treatment capacity of the facility. It will also help
to reduce the cost of transferring confirmed patients and
improve the efficiency of patient treatment.

« With the help of information technology, the given region
can be divided into different risk levels according to the
epidemic situation. Thus, the medical operating costs can
be reduced by allowing patients to self-refer to hospitals
in regions with a low risk of epidemic transmission, rather
than blocking the entire region.

VI. CONCLUSION

In this paper, we investigated the problem of integrated
emergency medical facility location and patient dispatching
under uncertain environments. We aimed to minimize the
expected construction and transportation costs of two types of
emergency medical facilities by building a multi-stage stochas-
tic programming model, including dual-level emergency med-
ical facility location of Stage 1, mild patient allocation of
Stage 2, and severe patient referral of Stage 3. We obtained an
approximate solution for the original problem by solving its
deterministic model for a set of representative scenarios. To
achieve this goal, we proposed a Decomposition-based Dual-
level Heuristic algorithm. Based on iterative optimization,
DDH first generates the initial dual-level facility location
solution based on the ratio of facility construction costs to
capacity. It then optimizes the facility construction plans
by employing a tabu search for dual-level facility location.
Finally, it optimizes the referral plans for different types of
patients under the given facility location by using a Patient
Dispatching Heuristic algorithm.

We conducted a case study in COVID-19 epidemic in
Wuhan, generating scenario data related to medical demands
and case data related to various types of nodes in a tiered
medical service network. We performed extensive experiments
and analysis to verify the effectiveness of the proposed for-
mulation and algorithm. The results showed that: 1) our DDH
algorithm surpasses CPLEX, GA and PHA, offering a good
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TABLE X
EXPERIMENTAL RESULTS CONSIDERING DIFFERENCES IN TREATMENT CAPACITY OF EXISTING HOSPITALS

Non-self-referred confirmed patient

Self-referred confirmed patient ~ Severe patient

Experiment  Total cost  Construction cost transfer cost transfer cost transfer cost

EC1 35,495.26 28,650.00 5,329.54 33.10 1,482.62

EC2 15,195.51 8,400.00 5,324.23 34.11 1,437.17

EC3 9,648.63 2,400.00 5,609.49 45.00 1,594.14
TABLE XI REFERENCES

SUMMARY RESULTS FOR EXPERIMENTS DDH, EC1, EC2, AND EC3

Total cost Construction Total transfer

Experiment  difference ratio  cost proportion  cost proportion
(%) (%) (%)

EC1 - 80.72 19.28
DDH 41.25 69.77 30.23
EC2 27.14 55.28 44.72
EC3 36.50 24.87 75.13

rade-off between solution quality and computational efciency;
2) expanding the treatment capacity of existing hospitals could
reduce the total emergency medical costs, but the patient
transportation costs increased to some extent; 3) when the
overall proportion of self-referred patients increased, the total
emergency medical costs borne by local governments and
medical institutions significantly decreased, but this might
imply a higher transmission rate. Note that the proposed ap-
proach in this work can be applied to the large scale infectious
pandemic characterized by varying degrees of severity. These
include phases like incubation period (symptoms of the disease
are not yet apparent), mild symptoms and severe symptoms.
Although we only verified on the COVID-19 pandemic, they
can be applied to other large scale infectious pandemic, such
as Tuberculosis, SARS, MERS, etc.

Our model has some limitations and several directions for
future research can be explored. First, we assumed that only
mild cases were present at the demand point, with no severe
cases. However, this assumption may not meet the actual
conditions in some cases. Thus, future work could explore
hybrid scenarios with mild and severe cases at the demand
point. This extension requires future validation due to its
combinatorial complexity under stochastic scenarios. Second,
the static treatment capacity assumption may limit practical
applicability. In reality, treatment capacities can change over
time due to various factors such as staff shifts, equipment
maintenance, or sudden changes in patient inflow. To enhance
the applicability and accuracy of our model, future work could
incorporate mechanisms for dynamic capacity adjustments.
This might involve developing stochastic programming for-
mulations that allow for capacity changes at different time
intervals. Third, integrating the typical compartmental models
(e.g., SEIR) could capture the changes in patient conditions
over time, enabling time-dependent resource allocation poli-
cies. This would enhance coordination with public health
surveillance systems.
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