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Abstract

Patient admission scheduling (PAS) consists of assigning patients to beds over a
planning horizon to maximize treatment efficiency, patient satisfaction, and hos-
pital utilization while meeting all necessary medical constraints and considering
patient preferences as much as possible. There are several different variants of the
PAS problem in the literature, which differ mainly in the constraints that must be
satisfied (hard) or can be violated (soft). Due to the intrinsic difficulty of the PAS
problem, solving large integer programming (IP) models to optimality is challeng-
ing. In this paper, we consider the widely studied variant of the PAS problem that
has the maximum number of soft constraints, and focus on how to reduce the size
of IP formulations of the PAS problem to improve the solving efficiency. We em-
ploy a two-stage optimization method where the first stage builds reduced models
by constraint aggregation to improve the typical formulation of the PAS problem.
Experimental results on the 13 benchmark instances in the literature indicate that
our method can obtain new improved solutions (new upper bounds) for 6 instances,
including one proven optimal solution. For the 5 other instances whose optimal
solutions are known, our approach can reach these known optimal solutions in a
shorter computation time compared to the existing methods. In addition, we ap-
ply our method to the original PAS problem, which has the maximum number of
hard constraints, and perform computational experiments on the same 13 bench-
mark instances. Our method yields 5 new best solutions and proves optimality for
6 instances.
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1 Introduction

The demand for high-quality health services continues to increase year after
year, while hospitals encounter more and more difficulties in terms of limited
medical resources (Zhang et al. (2021)). Among the numerous difficulties faced,
hospital admission management is a fundamental challenge of many hospital
departments. One key issue is to optimize the use of bed resources as much
as possible, given that beds are a critical and limited resource in a hospital
(Litvak & Bisognano (2011)). An effective bed management is also essential
to promote the successful flow of patients through a health service.

The Patient Admission Scheduling (PAS) problem, first introduced by De-
meester et al. (2008), consists of assigning patients (whose admission dates
and length of stay are known in advance) to beds in specific departments on
each day of their hospitalization while satisfying a number of hard constraints
and as many soft constraints as possible. Over the past few years, this prob-
lem has received increasing attention in the literature. As a result, several
different variants of the PAS problem have been proposed, differing mainly in
the treatment of some constraints as hard or soft. These constraints include
gender policy, age policy, mandatory equipment, single room requirement, and
patient transfer. In the literature, a widely studied variant of the PAS problem,
which we refer to as the standard PAS problem, considers these constraints as
soft constraints (Ceschia & Schaerf, 2011; Bastos et al., 2019). Moreover, vari-
ous optimization approaches, both heuristic and exact methods, have been
proposed to address this problem. The most successful heuristic methods
include simulated annealing-based metaheuristics (Ceschia & Schaerf, 2011,
2012, 2016; Lusby et al., 2016) and mixed integer programming (MIP)-based
matheuristics (Range et al., 2014; Turhan & Bilgen, 2017; Guido et al., 2018).
These heuristics can provide high-quality solutions in a short time. However,
the best results on most benchmark instances have been achieved using exact
mathematical programming techniques, as reported in Bastos et al. (2019).
Nevertheless, the MIP model proposed in Bastos et al. (2019) becomes too
large to be solved to optimality in a reasonable time for large instances.

The integer programming (IP) model of Ceschia & Schaerf (2011) is more
compact, but it is still too large to be solved to optimality on most large
benchmark instances. A promising way to improve the efficiency of the solution
process is to reduce the size of this model. Constraint aggregation (CA) can
help reduce the number of constraints of the optimization model, which is a
widely used technique in mathematical programming (Trapp & Prokopyev,
2015; Benchimol et al., 2012). Based on this idea, we focus on how better
formulations – in this case, through reducing the IP model of Ceschia & Schaerf
(2011) by aggregating constraints – can help further improve the efficiency in
solving the IP model of the PAS problem.
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The contribution of this paper is twofold. First, we propose two aggregated
gender policy constraints and one aggregated patient transfer constraint to
reduce the size of the IP model of Ceschia & Schaerf (2011), and evaluate the
effectiveness of the proposed aggregated constraints through computational
experiments. Second, we apply a two-stage optimization approach using the
reduced IP models to obtain optimal solutions. Specifically, for the standard
PAS problem, we generate new best solutions for 6 out of the 13 benchmark
instances commonly used in the literature, including one with proven opti-
mality. Moreover, we prove the optimality of the solutions for the remaining
5 instances in a short time. Additionally, for the original PAS problem, using
the same 13 benchmark instances, we obtain 5 new best solutions, 6 new best
lower bounds, and proven optimality of solutions for 6 instances.

The rest of the paper is organized as follows: Section 2 provides a review of
the relevant literature on the PAS problem and the CA technique. Section 3
presents the definition of the standard PAS problem and the mathematical
model. Section 4 describes our solution method. Section 5 presents compu-
tational results of our IP formulations and comparisons with state-of-the-art
results. Section 5 also describes our solution method for the original PAS
problem and reports the computational results. Finally, conclusions and fu-
ture research opportunities are addressed in Section 6.

2 Literature Review

This section presents an overview of existing works in the literature related to
the PAS problem and constraint aggregations techniques.

2.1 Patient Admission scheduling problem

The PAS problem has undergone multiple extensions over the years and can be
classified into static and dynamic variants. In the static variants, only elective
patients are considered and all patient admission and discharge requirements
are assumed deterministic. Additionally, patient admissions in these static
variants are scheduled in advance. The primary difference in studies that fo-
cus on static variants lies in their treatment of soft constraints that can be
violated at the cost of incurring a penalty. These constraints include gender
policy, age policy, mandatory equipment, single-room requirements, and pa-
tient transfer. In the original PAS problem only the patient transfer constraint
was described as a soft constraint, while the first 4 constraints were described
as hard constraints, which are not allowed to be violated. However, Demeester
et al. (2010) also considered these 4 constraints as soft constraints. As a result,
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only Range et al. (2014); Hammouri & Alweshah (2017); Guido et al. (2018)
treated the first 4 constraints or part of them as hard constraints, while others
considered them as soft constraints or ignored some of them. Moreover, except
for Ceschia & Schaerf (2011); Range et al. (2014); Turhan & Bilgen (2017);
Bastos et al. (2019), most studies treated the patient transfer constraint as
a hard constraint. Considering patient transfer as a hard constraint can sim-
plify the problem by narrowing the search space, but it may also result in only
finding sub-optimal solutions for those variants that consider patient transfer
as a soft constraint.

The dynamic variants (DPAS), also known as the PASU (U for uncertainty),
extend the static PAS problem by considering several real-world features, such
as the presence of urgent and emergency patients whose arrival dates are un-
certain, uncertainty in the length of stay, and the possibility of delayed ad-
missions (Ceschia & Schaerf, 2016; Zhu et al., 2019; Guido, 2023). The above
uncertainty information is gradually revealed on a day-to-day basis, so that
the DPAS problem is solved through the use of daily rescheduling. Similar to
the static variants, the main difference among the dynamic variants is that
some soft constraints (e.g. age policy, mandatory equipment, department spe-
cialism) are considered as hard constraints. Furthermore, in order to make
the problem suitable for practical applications, some studies considered more
realistic constraints such as constraints related to operating room scheduling
(Ceschia & Schaerf, 2016; Zhu et al., 2019).

The PAS problem is known to be NP-hard (Vancroonenburg et al. (2011)).
As a result, solving the problem is computationally challenging. In the follow-
ing sections, we provide a comprehensive review of the solution approaches
proposed in the literature for both the static and dynamic PAS problems,
including heuristic and exact methods. Table 1 provides a summary of the
existing research on the PAS problem along with the problem type, problem
constraints and solution approach. We indicate both the type of PAS problem-
static or dynamic-as well as specify which constraints are considered as hard or
soft in each study. The symbols “X” and “-” are used to respectively indicate
the problem type and absence of the optimization model. Moreover, Section
3.3 provides detailed differences of IP/MIP models among those proposed in
the literature for the static PAS problem.

2.1.1 Heuristic methods

Heuristic algorithms for solving the PAS problem aim to find good-enough so-
lutions in a reasonable time. Existing heuristic algorithms are based either
on single-trajectory search or population-based search. Among the single-
trajectory search, Demeester et al. (2010) proposed an IP model to assign
patients to rooms while allowing violations of some soft constraints. They ap-
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Table 1
Summary of the PAS research

Reviewed Literature

Problem type Problem constraints Solution approach

Static Dynamic Hard Soft
Optimization

model
Algorithm

Heuristic methods
Demeester et al. (2010) X 1-8 (5-8)∗, 9-13 IP H-TS
Ceschia & Schaerf (2011) X X 1-4, 14 5-13 IP SA
Ceschia & Schaerf (2012) X 1, 2-3, 6-7,

10, 14
5, 9, 12-14 IP SA

Bilgin et al. (2012) X 1-4, 13∗∗ 5, 7-9, 11-12 MINLP H-H
Hammouri & Alrifal (2014) X 1-4, 13∗∗ 5-12 - BBO
Range et al. (2014) X 1-7 9-13 IP CG
Kifah & Abdullah (2015) X 1-4, 13∗∗ 5-12 MINLP ANLGD
Ceschia & Schaerf (2016) X 1, 3-4, 14 5-7, 9-14 - SA
Lusby et al. (2016) X 1, 3-4, 6-7,

10, 14
5, 9, 12-14 MIP ALNS

Hammouri & Alweshah (2017) X 1-5, 13∗∗ 7-12 - BBO-GBS
Turhan & Bilgen (2017) X 1-4 5-13 IP F&R, F&O
Abu Doush et al. (2018) X 1-4, 13 5-7, 9-12 MINLP HS
Guido et al. (2018) X 1-7, 13 5(partly soft),

6-7, 9-12
MIP FiNeMath

Bolaji et al. (2018) X 1-4, 13∗∗ 5, 7-12 MINLP LAHC
Bolaji et al. (2022) X 1-4, 13∗∗ 5, 7-12 MINLP ABC
Hammouri (2022) X 1-4, 13 5-7, 9-10, 12 MINLP MBBO-GBS
Abdalkareem et al. (2022) X 1-4, 13∗∗ 5-7, 9-10, 12 MINLP DFP
Guido (2023) X 1, 3-4, 6-7,

14
5, 9-10, 12-14 MIP FiNeMath-

PASU
Exact methods
Vancroonenburg et al. (2016) X 1, 2-3, 6-7,

10, 14
5, 9, 12-14 IP MIP solver

Bastos et al. (2019) X 1-4 5-13 MIP WS
Zhu et al. (2019) X 1, 3-4, 14 5-7, 9-14 MIP MIP solver
This paper X 1-4 5-13 IP WS, CA

Problem constraints: 1 - complete assignment; 2 - unchangeable date; 3 - continuous schedule; 4 - non-overlapping allo-
cation; 5 - gender policy; 6 - age policy; 7 - mandatory equipment; 8 - single room requirement; 9 - room type preference;
10 - departmental specialism; 11 - room specialism priority; 12 - perferred room properties; 13 - patient transfer; 14 - others
* The constraints 5-8 are also incorporated into the objective function as penalties in their H-TS algorithm.
** Although the author describle the patient transfer constraint as ’soft’, however, they do not provide mechanisms for

transferring patients in their method. Thus, the patient transfer constraint would never be violated in their method.

plied Hybrid Tabu Search (H-TS) algorithm blended with a token-ring and
a variable neighborhood descent procedure. They generated and made pub-
licly available a set of 13 realistic benchmark instances for the PAS problem,
which were largely adopted in the literature. Ceschia & Schaerf (2011) pro-
posed an IP model, considering all soft constraints, to compute various lower
bounds. Moreover, a simulated annealing (SA) algorithm is developed, which
significantly improved the previous upper bounds.

Bilgin et al. (2012) proposed a hyper-heuristic (H-H) involving multiple heuris-
tic selection and move acceptance criteria. Range et al. (2014) proposed a
column generation-based (CG) heuristic, which decomposes the PAS prob-
lem into a set-partitioning problem as the master problem, and a set of room
scheduling problems as the pricing problem. Kifah & Abdullah (2015) pro-
posed an adaptive non-linear great deluge (ANLGD) algorithm, which accepts
worse solutions of satisfying a given threshold. Turhan & Bilgen (2017) utilized
the IP model developed by Ceschia & Schaerf (2011) and proposed two mixed
integer programming-based heuristics, namely Fix-and-Relax (F&R) and Fix-
and-Optimize (F&O), to obtain solutions with optimality gaps of 5-15% in less
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than three minutes. Bolaji et al. (2018) introduced a late acceptance hill climb-
ing (LAHC) algorithm, which first generates an initial feasible solution and
then iteratively improves the solution by applying a local search procedure.
Guido et al. (2018) developed three IP models and proposed a matheuristic
FiNeMath, combining the F&O heuristic, neighborhood search, and IP solvers.
Their method was able to produce good results for all benchmark instances
presented in Demeester et al. (2010).

For population-based methods, Hammouri & Alrifal (2014) first reported the
biogeography based optimization (BBO) algorithm for the static PAS problem,
which failed to improve the state-of-the-art. Later on, to improve the perfor-
mance of the algorithm, the authors proposed a BBO algorithm with guided
bed selection mechanism (BBO-GBS) (Hammouri & Alweshah, 2017), and a
modified BBO algorithm with guided bed selection mechanism (MBBO-GBS)
(Hammouri, 2022). Moreover, several researchers have attempted to improve
the performance of population-based algorithms for tackling the static PAS
problem, including Harmony search (HS) algorithm (Abu Doush et al., 2018),
artificial bee colony (ABC) algorithm (Bolaji et al., 2022), discrete flower polli-
nation (DFP) algorithm (Abdalkareem et al., 2022). However, these algorithms
were unable to produce competitive results on the benchmark instances.

Apart from the research mentioned above, only a few studies addressed the
dynamic PAS problem. Ceschia & Schaerf (2011) first introduced a dynamic
case of the PAS problem in which admission and discharge dates are uncer-
tain. They adapted their SA algorithm to solve this problem. Later, Ceschia
& Schaerf (2012) formally introduced the dynamic PAS problem to account
for uncertain length of stay, admission delays, and non-elective patients. This
variant was solved using the SA algorithm and subsequently extended to incor-
porate operating room resources (Ceschia & Schaerf, 2016). Lusby et al. (2016)
developed an adaptive large neighborhood search (ALNS) procedure combined
with the SA framework. Their method showed superior results compared to
the method suggested by Ceschia & Schaerf (2012) in most cases. Recently,
Guido (2023) proposed an optimization model that plans patient admissions
and patient stays considering fluctuations, and does not allow overcrowded
rooms, as typically required in real-world cases. They proposed a matheurisitic
FiNeMath-PASU, which is based on the FiNeMath (Guido et al., 2018).

2.1.2 Exact methods

In addition to the heuristic algorithms reviewed previously, Bastos et al. (2019)
studied an exact method to solve the static PAS problem exactly. To the best
of our knowledge, this is the only existing exact algorithm for the static PAS
problem. The method was based on a new mathematical model, which incor-
porated all restrictions from the original model of Demeester et al. (2010), and
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applied a warm start (WS) approach to solve it with the maximum running
time set to 24 hours. They reported new best upper bounds for 9 out of the 13
benchmark instances introduced in Demeester et al. (2010). Note that while
Range et al. (2014), Turhan & Bilgen (2017), and Guido et al. (2018) incorpo-
rated MIP formulations into heuristic methods, these methods only improved
the bounds of the optimal solution and failed to find optimal solutions.

For the dynamic PAS problem, Vancroonenburg et al. (2016) developed two IP
models and considered the impact of emergency patients and patient length of
stay estimates. Zhu et al. (2019) studied the compatibility of short term and
long term objectives in the dynamic PAS problem, and developed multiple
MIP formulations, which were solved by a MIP solver. Their approach was
shown to be significantly better than the available results for 26 out of 30
benchmark instances introduced in Ceschia & Schaerf (2016).

2.2 Constraint Aggregation technique

Using CA can reduce the number of constraints of the optimization model,
thereby simplifying its formulation and reducing its computational complex-
ity. Specifically, CA involves replacing original constraints with a set of ag-
gregated constraints, which are linear combinations of the original constraints
by multipliers (Ram et al., 1988). Note that the aggregated constraints are
a relaxation of the original constraints, which means that the solution space
of the original constraints is a subset of the solution space of the aggregated
constraints. Choices of the multipliers directly affect the strength of the aggre-
gated constraints. In addition, the CA can suffer from poor performance when
the aggregated constraints have very large coefficients, either in scale (Poirion,
2019) or in numerical values (Khurana & Murty, 2012). Thus, a crucial ques-
tion of CA is how to determine the multipliers of the aggregated constraints
to produce the strongest possible constraints. In this regard, researchers have
proposed multiple methods such as aggregation of diophantine equations, ir-
rational multipliers method, maximum entropy method, P-norm method, etc
(Alidaee, 2014).

It is worth noting that the above CA technique, also known as static con-
straint aggregation (SCA) (Trapp & Prokopyev, 2015; Ermoliev et al., 1997;
Rogers et al., 1991; Ram et al., 1988), aggregates constraints before the opti-
mization process. In contrast to SCA, dynamic constraint aggregation (DCA)
(Porumbel & Clautiaux, 2017; Range et al., 2014; Benchimol et al., 2012;
Elhallaoui et al., 2005), in which aggregated constraints contain a subset of
solutions to the original constraints, dynamically aggregates constraints dur-
ing the solution process to obtain the optimal solutions. Moreover, DCA is
always implemented within a column generation algorithm to solve a large set
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partitioning problem. The CA has been applied with success to a variety of op-
timization problems including multicommodity transportation (Evans, 1983),
wing aero-structural optimization (Zhang et al., 2019), integrated airline crew
scheduling (Saddoune et al., 2011), and set partitioning Elhallaoui et al. (2008,
2005). For a comprehensive survey of CA in optimization, see Alidaee (2014);
Glover (2003); Rogers et al. (1991). In this paper, we concentrate on SCA to
obtain reduced IP models for the PAS problem.

3 Problem description and mathematical model

In this section, we provide a detailed description of the standard static PAS
problem and its mathematical model.

3.1 Problem constraints

The PAS problem (Demeester et al. (2010)) aims to assign patients to a set of
beds during patients’ hospitalizations within a given planning horizon, where
the preference and the requirement of each patient are assumed to be known
in advance. Specifically, each patient p has an admission date ADp when a
room is assigned to this patient and a discharge date DDp when this pa-
tient is released from the medical treatment. The Length of Stay (LOS) of
each patient is the duration between the admission and the discharge dates,
which is expressed in nights. Patients who stay at least one night, termed
elective patient, are eligible to be scheduled. Patients pursue medical treat-
ments during their hospitalization, termed specialisms. Most of the patients
need one single specialism for their entire treatment. Only a small number of
patients need more than one specialism, termed multi-spec. Each patient is
assigned to a bed and each bed belongs to a room. One of the most important
features of the room is the gender policy. Rooms that require patients to be
of the same gender enforce policy M (only Male) or policy F (only Female).
In contrast, rooms where both genders are allowed enforce policy N (mixed
gender) or policy D (on any given night, only patients of the same gender are
allowed, and the gender is defined by the first patient to be scheduled in that
room). There are three types of room capacity: single (one bed), twin (two
beds) and ward (four beds), and each patient has a preference for a certain
type of room, termed room preference. Each room has a different available
equipment, such as oxygen and telemetry, termed room properties. Patients
may require or prefer to be allocated to a room with the specific equipment
depending on their treatment. Each room belongs to a department and each
department is correlated with the specialisms they offer. Moreover, each de-
partment and room has its own priority degree for those specialisms. Patients
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must be treated at the departments where the specialism they need is offered.
Each department has an age policy which imposes a maximum or minimum
age limit for acceptance. Patients can change rooms during their hospitaliza-
tion, termed transfers.

Based on the above problem definition, a solution is feasible if all patients are
assigned to a bed such that no hard constraint of types HC1 - HC4, given
below, is violated.

HC1: During the planning period, each patient must be assigned to a room.
HC2: Admission and discharge days for each patient can not be adjusted.
HC3: Patient LOS is continuous, and a patient is scheduled until his/her

discharge date.
HC4: Beds allocated to patients should not overlap on any given night.

The quality of a feasible solution depends on the satisfaction of 9 types of soft
constraints. If a soft constraint is violated by a solution, a penalty (a positive
integer) is induced. These soft constraints SC1 - SC9 are defined as follows.

SC1: Gender policy is satisfied for each room.
SC2: Age policy is satified for each room.
SC3: A patient is assigned to a room with the required room properties for

his/her treatment.
SC4: Some patients is allocated to a single room due to clinical reasons.
SC5: The room type preference for each patient is met.
SC6: A patient is allocated to a department that attends to his/her specialism.
SC7: A patient is allocated to a room that attends to his/her specialism in

the first degree of priority.
SC8: A patient is assigned to a room with his/her preferred room properties.
SC9: Transfers should not be allowed.

3.2 Objective

The optimization objective of the PAS problem is to find a feasible assignment
satisfying constraints HC1 - HC4 while minimizing a weighted sum of all the
penalties of the unsatisfied soft constraints SC1 - SC9 (see Table 2). Formally,
let Ω be the set of all feasible solutions (patient-to-bed assignments). For each
x ∈ Ω, its cost is defined by:

Z(x ) =
9∑

i=1

Wi · Vi(x ) (1)

where Vi(x ) represents the number of times the i-th soft constraint is vio-
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lated in solution x , and Wi is the penalty weight corresponding to that soft
constraint. The value of Wi are given in Table 2. Thus, the goal of the PAS
problem is to find a feasible solution x ∗ such that for all x ∈ Ω, Z(x ∗) ≤ Z(x ).

Table 2
Weights of the constraints.

Constraint SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9
Weight 5 10 5 10 0.8 1 1 2 11

3.3 Mathematical model

In this section, we first compare the differences of optimization models among
those proposed in the literature for the static PAS problem. Taking into ac-
count the fact that beds in the same room have indistinguishable features and
constraints, researchers generally formulate the PAS problem as a patient-
room assignment (PRA) problem, which involves assigning each patient to a
specific room. The main differences of the proposed MIP/IP models in the
literature are the hard and soft constraints in the models with respect to the
original problem statement. As mentioned in Section 2.1, Demeester et al.
(2010) first proposed a IP model considering the soft constraint SC1, SC2,
SC3, SC4 as hard constraints and not allowing their violations. In contrast,
Guido et al. (2018) proposed two IP models where HMPBA does not allow the
soft constraint SC1, SC2, SC3, SC4, SC9 to be violated, and SMPBA relaxes
the restrictions of SC1 (gender policy N,D), SC2, SC3, SC9 (patient transfer
are restricted to at most one for those who have two stays). Both Ceschia
& Schaerf (2011) and Bastos et al. (2019) proposed IP/MIP models which
allowed all soft constraints SC1 - SC9 to be violated. However, the former
is more simplified than the latter, as it merges penalties associated with the
patient-room assignment, including SC1 (gender policy M, F, N), SC2, SC3,
SC4, SC5, SC6, SC7, and SC8, into a single penalty Cpr and avoids the gen-
eration of too many constraints and variables. Moreover, it is evident that the
optimal solutions, in some instances, obtained by solving the IP/MIP mod-
els of Ceschia & Schaerf (2011) and Bastos et al. (2019) outperform those of
Demeester et al. (2010) and Guido et al. (2018), since the latter two models
only allowed a subset of soft constraints. Based on the comparative analysis
of the existing literature, it can be concluded that the IP model proposed by
Ceschia & Schaerf (2011) is more flexible compared to the other models since
it allows all soft constraints to be violated.

Since our work is based on the IP model proposed by Ceschia & Schaerf (2011),
we summarize their reformulation below while the used notation is shown in
Table 3. The objective function, denoted by (2), aims to minimize the total
penalties associated with assigning patients to rooms for the duration of their
hospitalization period. The first part of the objective function corresponds to
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the cost of assigning patients to rooms, which is determined by the combined
penalty of soft constraints SC1 (gender policy M, F, N), SC2, SC3, SC4, SC5,
SC6, SC7, and SC8. The second part of the objective function incorporates
the cost of violating the room gender policy, while the last part of the function
captures the cost associated with patient transfer.

Table 3
Notation used for the PRA model.

Symbol Description

Sets
P Set of patients (p = 1, · · · , |P|)
D Set of days (d = 1, · · · , |D|)
R Set of rooms (r = 1, · · · , |R|)
Dp ⊂ D Set of days of patient p stay in hospital (Dp = {ADp, · · · , DDp − 1})
PM ⊂ P Set of male patients
PF ⊂ P Set of female patients
RD ⊂ R Set of dependent rooms
Parameters
Qr Number of beds in room r
LOSp Length of stay of patient p (LOSp = DDp −ADp)
Cpr the penalty of assigning patient p to room r. All the room penalties are

incorporated into the value except SC1 (gender policy D) and SC9
WRG Weight of gender policy constraint
WTr Weight of transfers constraint
Variables
xprd 1 if patient p is assigned to room r in day d, 0 otherwise
frd 1 if there is at least one female patient in room r in day d, 0 otherwise
mrd 1 if there is at least one male patient in room r in day d, 0 otherwise
brd 1 if there are both male and female patients in room r in day d, 0 otherwise
tprd 1 if patient p is transferred from room r in day d, 0 otherwise

PRA: Min
∑

p∈P,r∈R,d∈Dp

Cpr · xprd +
∑

r∈RD,d∈D
WRG · brd +

∑
p∈P,r∈R,d∈D

WTr · tprd (2)

s.t.
∑
r∈R

xprd = 1, ∀p ∈ P , d ∈ Dp (3)∑
p∈P|d∈Dp

xprd ≤ Qr, ∀d ∈ D, r ∈ R (4)

frd ≥ xprd, ∀p ∈ PF , d ∈ D, r ∈ R (5)

mrd ≥ xprd, ∀p ∈ PM , d ∈ D, r ∈ R (6)

brd ≥ mrd + frd − 1, ∀d ∈ D, r ∈ R (7)

tprd ≥ xprd − xpr,d+1, ∀p ∈ P , d ∈ D, r ∈ R (8)

xprd ∈ {0, 1} ∀p ∈ P , d ∈ Dp, r ∈ R (9)

brd ∈ {0, 1} ∀d ∈ D, r ∈ R (10)

frd ∈ {0, 1} ∀d ∈ D, r ∈ R (11)
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mrd ∈ {0, 1} ∀d ∈ D, r ∈ R (12)

tprd ∈ {0, 1} ∀p ∈ P , d ∈ Dp, r ∈ R (13)

Constraint (3) refers to complete assignment constraint which enforces ev-
ery patient to be assigned to a room between admission and discharge dates.
Constraint (4) refers to capacity constraint which ensures number of patients
assigned to a room for a specific day cannot exceed the capacity of the room.
Constraints (5)-(7) refer to gender policy constraints (GC0). Variable brd, mrd,
frd and tprd are all dependent on the different circumstances of the xprd vari-
ables, which define the actual search space. If there is a female in a room,
Constraint (5) forces the auxiliary variable frd to be equal to 1 to reflect the
female existence in that room. A similar approach is taken for constraint (6)
to reflect that there is a male in a room. If both genders exist in a room,
Constraint (7) ensures that brd becomes 1 and gender penalty in the objec-
tive value is reflected accordingly. Constraint (8) refers to patient transfer
constraint (TC), which ensures the auxiliary variable tprd becomes 1 if a pa-
tient changes room on two consecutive days. Constraints (9) - (13) define the
domain of the variables.

4 Solution approach

To solve the PAS problem, we employ a two-stage optimization approach,
which decomposes the given problem into two separate subproblems: a patient-
room assignment (PRA) subproblem and a patient-bed assignment (PBA)
subproblem. Fig. 1 illustrates the general framework of our proposed solution
approach. As demonstrated by Ceschia & Schaerf (2011), the optimal solutions
derived from these two subproblems can be integrated to achieve the optimal
solution for the original problem. Our approach first generates a partial so-
lution by solving an advanced PRA (APRA) model, which is based on the
IP model of Ceschia & Schaerf (2011). However, it is challenging to solve the
APRA model directly because of the huge search space resulting from patient-
room-day assignment variables. Thus, we employ a warm start approach in
which we solve the APRA model without transfers constraint (APRAWT) to
generate a high-quality feasible solution and then use the obtained solution
as an initial solution to the APRA model. It is worth noting that using the
above warm start approach can yield better results for the tested benchmark
instances than directly solving the APRA model, as demonstrated in Bastos
et al. (2019). Secondly, our approach solves the PBA subproblem to allocate
patients to beds of specific rooms according to the PRA solution, which is val-
idated by an application made available online 1 by Demeester et al. (2010).

1 https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/
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Begin

Optimize PBA model

End

Validate solution

Optimize APRAWT model

Optimize APRA model

Stage 1:

Solve PRA subproblem

Stage 2:

Solve PBA subproblem

Fig. 1. Framework of two-stage optimization approach for the PAS problem.

4.1 APRA Model

Large IP models are incapable of finding a high-quality solution within an
acceptable time due to their large sizes. Let the parameter Gr represent the
gender policy of room r, with the values 0, 1, 2, and 3 corresponding to the
policies D, M, F, and N, respectively. The variables and constraints of the
IP model of Ceschia & Schaerf (2011) can be decreased by considering the
following rules:

(1) Variables xprd can be omitted from the model when LOSp = 0.
(2) Variables frd, mrd and brd can be omitted from the model when Qr = 1

or Gr = 1, 2, 3.
(3) Variables tprd can be omitted from the model when LOSp < 2 and d =

DDp − 1.
(4) Constraints (3) and (9) can be omitted from the model when LOSp = 0.
(5) Constraints (5), (6) and (7) can be omitted from the model when LOSp =

0 , or when either Qr = 1 or Gr = 1, 2, 3.
(6) Constraint (8) can be omitted from the model when Qr = 1 or Gr =

1, 2, 3.

In order to better apply the above rules, we introduce some notations presented
in Table 4. It should be noted that a patient may have multiple specialisms
in some instances, which means that during a patient’s stay, the patient is
assigned in the first part of his/her stay to a specialism, and the second part
of his/her stay to another specialism. Also, the use of the parameter Cpr may
lead to incorrect results when patients have multiple specialisms during their
hospital stay. We therefore introduce a new parameter Cprd which is defined
as the penalty of assigning patient p to room r on day d.
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Table 4
Notation used for the APRA model.

Symbol Description

Sets
PE ⊂ P Set of elective patients with LOSp ≥ 1
M⊂ PE Set of male elective patients
F ⊂ PE Set of female elective patients
RM

D ⊂ R Set of dependent rooms with more than one bed
Parameter
Cprd Penalty of assigning patient p to room r on day d. All the room penalties

are incorporated into the parameter except SC1 (gender policy D) and SC9

To avoid confusion, we refer to the APRA model under the gender policy
constraint GC0 and the transfer constraint TC as APRAGC0&TC , which can
be formulated as follows:

APRAGC 0&TC : Min S =
∑

p∈PE ,r∈R,d∈Dp

Cprd · xprd
∑

r∈RM
D

, d ∈ DWRG · brd+
∑

p∈PE |LOSp≥2,r∈R,d∈Dp\{DDp−1}
WTr · tprd (14)

s.t.
∑
r∈R

xprd = 1, ∀p ∈ PE, d ∈ Dp (15)∑
p∈PE |d∈Dp

xprd ≤ Qr, ∀d ∈ D, r ∈ R (16)

frd ≥ xprd, ∀p ∈ F , d ∈ Dp, r ∈ RM
D (17)

mrd ≥ xprd, ∀p ∈M, d ∈ Dp, r ∈ RM
D (18)

brd ≥ frd +mrd − 1, ∀d ∈ D, r ∈ RM
D (19)

tprd ≥ xprd − xpr,d+1, ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1}, r ∈ R (20)

xprd ∈ {0, 1} ∀p ∈ PE, d ∈ Dp, r ∈ R (21)

brd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (22)

frd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (23)

mrd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (24)

tprd ∈ {0, 1} ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1}, r ∈ R (25)

Regarding gender policy constraints, we can modify the formulas presented in
Bastos et al. (2019) to obtain alternative formulations (GC1). We define a new
binary variable urd, which has the value 1 if room r is reserved for females on
day d, and 0 otherwise. The constraints GC1 can be written as follows:

(GC1) xprd ≤ urd + brd ∀p ∈ F , d ∈ Dp, r ∈ RM
D (26)

xprd ≤ (1− urd) + brd ∀p ∈M, d ∈ Dp, r ∈ RM
D (27)

urd ∈ {0, 1} ∀d ∈ D, r ∈ RM
D (28)

Constraint (26) enforces female patient restrictions and (27) enforces male pa-
tient restrictions. Both constraints seek to avoid the assignment of two distinct
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genders to the same room, penalizing allocations in which different genders
share a room. Thus, we refer the APRA model under constraints GC1 and TC
as APRAGC1&TC .

4.2 APRA model without transfers constraint

It is quite challenging to solve the above two APRA models directly due to the
large search space defined by the patient-room-day assignment variables. By
prohibiting patient transfer during their stay, we limit the scope of the search
space defined by patient-room assignment variables, resulting in a special case
of the APRA model, as used in Bastos et al. (2019); Guido et al. (2018);
Ceschia & Schaerf (2011). In our APRAWT model, transfers are not allowed
so that a patient must stay in the same room during his/her entire length of
stay. The solution of APRAWT model will always be feasible to the APRA
model since the solution space of the former is contained in that of the latter.
Moreover, since transfers are associated with the highest penalty weight, it
is reasonable to expect that the solution of APRAWT models would be close
to the optimal solution of APRA models. Hence, we first solve an APRAWT

model to obtain a feasible solution, which is used as the initial solution of the
APRA model for further improvement.

Our APRAWT models are inherited from the APRA models by removing vari-
able tprd and replacing variable xprd by xpr, a binary variable taking the value
of 1 if patient p is allocated to room r, and 0 otherwise. Moreover, parameter
Cprd is replaced by parameter C ′pr =

∑
d∈Dp

Cprd. Thus, the model APRAWT
GC0

is formulated as follows:

APRAWT
GC 0

: Min S =
∑

p∈PE

∑
r∈R

C ′prxpr +
∑
d∈D

∑
r∈RM

D

WRGbrd (29)

s.t. constraints (19), (22), (23)∑
r∈R

xpr = 1 ∀p ∈ PE (30)∑
p∈PE |d∈Dp

xpr ≤ Qr ∀d ∈ D, r ∈ R (31)

frd ≥ xpr ∀p ∈ F , d ∈ Dp, r ∈ RM
D (32)

mrd ≥ xpr ∀p ∈M, d ∈ Dp, r ∈ RM
D (33)

xpr ∈ {0, 1} ∀p ∈ PE, r ∈ R (34)

Like the APRA model, constraint (30) refers to complete assignment con-
straint, constraint (31) refers to capacity constraint and constraints (19),(32)-
(33) refer to gender policy constraints (GC0). Furthermore, model APRAWT

GC1
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can be obtained by replacingGC0 withGC1 (28), (35)-(36) in modelAPRAWT
GC0

.

(GC1) Constraint (28)

xpr ≤ urd + brd ∀p ∈ F , d ∈ Dp, r ∈ RM
D (35)

xpr ≤ (1− urd) + brd ∀p ∈M, d ∈ Dp, r ∈ RM
D (36)

4.3 Constraint aggregation

Despite using the rules we proposed in Section 4.1 to reduce the model size,
the APRA and APRAWT models are still large and hard to solve. To further
accelerate the solution process, we propose constraint aggregation to reduce
the number of gender policy constraints GC0, GC1 and patient transfer con-
straint TC considering that these constraints account for more than 95% of
the total number of constraints in the APRA and APRAWT models (see Sec-
tion 5.1). Since the APRAWT models are inherited from the APRA models,
we take the APRA models as example to illustrate our aggregation method.

4.3.1 Aggregated gender policy constraint

For gender policy constraints GC1, we propose aggregated gender policy con-
straints AGC1 (28), (37)-(38) by aggregating the constraints (26)-(27) of dif-
ferent patients with the same gender for the same day and room.

(AGC1) Constraint (28)∑
p∈F|d∈Dp

xprd ≤ λFrd(urd + brd) ∀r ∈ RM
D , d ∈ D (37)

∑
p∈M|d∈Dp

xprd ≤ λMrd(1− urd + brd) ∀r ∈ RM
D , d ∈ D (38)

where λFrd = min{Qr, |Fd|} and λMrd = min{Qr, |Md|} are coefficients, |Fd|
and |Md| are the number of female/male elective patients in day d. Thus,
the aggregated model APRAAGC1&TC can be obtained by replacing GC1 with
AGC1 in model APRAGC1&TC .

The APRAGC1&TC is equivalent to the APRAAGC1&TC (see the proof of The-
orem 1) under the following two conditions: (i) if (x , u , b, t) is a feasible
solution to the APRAGC1&TC , then it must be feasible to the APRAAGC1&TC ;
(ii) if (x , u , b, t) is a feasible solution to the APRAAGC1&TC , then it must be
feasible to the APRAGC1&TC .

Theorem 1 The aggregated model APRAAGC1&TC is equivalent to the origi-
nal model APRAGC1&TC.
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Proof. The difference between the models APRAAGC1&TC and APRAGC1&TC

is the constraints (26)-(27) and (37)-(38). Thus, the other constraints are
omitted in the following proof. It is worth noting that the variables of (26)
and (27) are consistent, and the structure of these two constraints are similar,
the method used to prove the equivalence between (26) and (37) can be applied
to prove the equivalence between (27) and (38). Consequently, we will only
present the proof of the equivalence of constraints (26) and (37).

Proof of condition (i): By summing up the inequalities indexed by p in con-
straint (26), we get inequality (39).

|Fd|(brd + urd) ≥
∑

p∈F|d∈Dp

xprd ∀r ∈ RM
D , d ∈ D (39)

According to the domains of the variables brd, urd, xprd, we consider the fol-
lowing two cases for the inequality (39):
Case 1: If brd+urd = 0, then

∑
p∈F|d∈Dp

xprd = 0, which implies that constraint
(37) is satisfied.
Case 2: If brd + urd > 0, then we can rewrite (39) as:∑

p∈F|d∈Dp
xprd

brd + urd
≤ |Fd| ∀r ∈ RM

D , d ∈ D (40)

Since the number of female elective patients assgined to room r on day d
is no more than the capacity of room r, and the number of female elective
patients on day d, i.e.,

∑
p∈F|d∈Dp

xprd ≤ min{Qr, |Fd|} = λFrd,∀r ∈ RM
D , d ∈ D,

it follows that the left-hand side of (40) is no more than λFrd. As a result,
constraint (37) is also satisfied in this case. Thus, condition (i) is proved.

Proof of condition (ii): By rewriting the constraint (37), we have:

brd + urd ≥
∑

p∈F|d∈Dp
xprd

λFrd
≥ xprd ∀p ∈ F , d ∈ Dp, r ∈ RM

D (41)

Obviously, the constraint (26) is satisfied. Thus, we have proved condition (ii).
Therefore, we have proved the equivalence of the two models. �

The gender policy constraints GC0 (17)-(19) can be reformulated by AGC0

(19), (42)-(43) as follows:

(AGC0) Constraint (19)

λFrdfrd ≥
∑

p∈F|d∈Dp

xprd ∀d ∈ D, r ∈ RM
D (42)

λMrdmrd ≥
∑

p∈M|d∈Dp

xprd ∀d ∈ D, r ∈ RM
D (43)

Thus, the aggregated model APRAAGC0&TC can be obtained by replacing GC0

with AGC0 in model APRAGC0&TC . With reference to the proof of Theorem
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1, it is easy to see that the aggregated model APRAAGC0&TC is equivalent to
the original model APRAGC0&TC .

To obtain the aggregated gender policy constraints used in the APRAWT

models, we can replace the variable xprd,∀p ∈ PE, d ∈ Dp, r ∈ R with
xpr,∀p ∈ PE, r ∈ R. This allows us to create two APRAWT models, de-
noted as APRAWT

AGC0
and APRAWT

AGC1
. Additionally, the aggregated models

APRAWT
AGC0

and APRAWT
AGC1

are equivalent to the original models APRAWT
GC0

and APRAWT
GC1

, respectively.

4.3.2 Aggregated patient transfer constraint

To aggregate patient transfer constraint, variable tprd,∀p ∈ PE, d ∈ Dp, r ∈ R
is replaced by aggregated variable zpd,∀p ∈ PE, d ∈ Dp, a binary variable
taking the value of 1 if patient p is transferred to a new room in day d, and
0 otherwise. With this new aggregated variable, the objective function (4.1)
need to be modified by (44).

Min S =
∑

p∈PE ,r∈R,d∈Dp

Cprd · xprd +
∑

r∈RM
D

, d ∈ DWRG · brd+
∑

p∈PE |LOSp≥2,d∈Dp\{DDp−1}
WTr · zpd

(44)

Aggregate patient transfer constraint can be achieved by comparing the room
number RNr of two consecutive days to determine whether the patient is
transferred. Therefore, aggregated patient transfer constraint ATC (45) - (47)
can be reformulated as follows:

(ATC) |R|zpd ≥
∑
r∈R

RNrxprd −
∑
r∈R

RNrxpr,d+1

∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1} (45)

|R|zpd ≥
∑
r∈R

RNrxpr,d+1 −
∑
r∈R

RNrxprd

∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1} (46)

zpd ∈ {0, 1} ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1} (47)

Four APRA models can be generated by combining the objective function
(44), the complete assignment constraint, the capacity constraint, along with
different formulations of the (aggregated) gender policy constraint and the ag-
gregated patient transfer constraint, namely APRAGC0&ATC , APRAGC1&ATC ,
APRAAGC0&ATC , APRAAGC1&ATC . Furthermore, each of these aggregated
APRA models is equivalent to its corresponding APRA model under the
constraint TC. For instance, APRAGC0&ATC is equivalent to APRAGC0&TC ,
APRAGC1&ATC is equivalent to APRAGC1&TC , APRAAGC0&ATC is equivalent
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to APRAAGC0&TC , APRAAGC1&ATC is equivalent to APRAAGC1&TC . See the
proof of Theorem 2 for details.

Theorem 2 The APRA model under the aggregated constraint ATC is equiv-
alent to its corresponding APRA model under the constraint TC.

Proof. Given two APRA models, i.e. APRAGC1&TC and APRAGC1&ATC . In
order to prove the equivalence of the two models, we need to prove the follow-
ing two conditions: (i) if (x ,u , b, t) is a feasible solution to the APRAGC1&TC ,
then, there exists a vector z such that (x ,u , b, z ) is feasible to theAPRAGC1&ATC

with objective value SAPRAGC1&ATC
(x ,u , b, z ) = SAPRAGC1&TC

(x ,u , b, t). (ii)
if (x ,u , b, z ) is a feasible solution to the APRAGC1&ATC , then, there exists
a vector t such that (x ,u , b, t) is feasible to the APRAGC1&TC with objec-
tive value SAPRAGC1&TC

(x ,u , b, t) = SAPRAGC1&ATC
(x ,u , b, z ). The difference

between the two models is the objective function and the constraints TC
and ATC. Thus, the other constraints are omitted in the following proof. For
∀p ∈ PE|LOSp ≥ 2, d ∈ D, let a(p, d) be the room index r where xprd = 1.

Proof of condition (i): Since complete assignment constraint (15) holds, the
right-hand side of (45) gives RNa(p,d) − RNa(p,d+1) ∈ [1 − |R|, |R| − 1] and
the right-hand side of (46) gives RNa(p,d+1) − RNa(p,d) ∈ [1 − |R|, |R| − 1].
If a(p, d) 6= a(p, d + 1), then zpd = 1. If a(p, d) = a(p, d + 1), then both
zpd = 0 and zpd = 1 can satisfy (45) and (46). Hence, z can be determined.
SAPRAGC0&ATC

(x ,u , b, z ) = SAPRAGC1&TC
(x ,u , b, t) is proved by observing

that each patient can only change room on two consecutive days once. Thus,∑
r∈R tprd = zpd, ∀p ∈ PE|LOSp ≥ 2, d ∈ Dp \ {DDp − 1}. Therefore, the

objective of the two models are the same. This proves the condition (i).

Proof of condition (ii): We discuss the proof of condition (ii) by considering
two cases. Case 1: a(p, d) = a(p, d + 1). In this case, based on the domain of
the variable xprd, the right-hand side of (20) gives 0. Therefore, both tprd = 0
and tprd = 1 can satisfy the constraint (20). Case 2: a(p, d) 6= a(p, d + 1). In
this case, tp,a(p,d),d = 1, and for ∀r ∈ R\{a(p, d)}, both tprd = 0 and tprd = 1
can satisfy the constraint (20). Hence, t can be determined. Similar to the
proof of condition (i), the two models have the same the objectives. Thus, we
have proved condition (ii).

Therefore, we have proved the equivalence of the two models. �

4.3.3 An illustrative example

To illustrate our proposed aggregation method, consider an illustrative exam-
ple of the PRA subproblem with 3 elective patients, 3 rooms, and 2 nights,
as shown in Figure 2. Room 1, with 2 beds, follows policy D. Rooms 2 and 3
are both 1-bed rooms and follow policy M and F, respectively. The table on
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the top left lists the input data related to the patients, where the meaning of
the symbols corresponds to the definition in Tables 3 and 4. The lower part
of the table lists the constraints related to gender policy and patient transfer.
The gender policy constraint GC0 consists of 6 inequalities, whereas its ag-
gregated counterpart AGC0 contains 5 inequalities. Similarly, GC1 involves 4
inequalities, while AGC1 contains 3. For patient transfer, TC has 3 inequal-
ities, while ATC has 2 inequalities. All 8 APRA models can be obtained by
combining different formulations of the (aggregated) gender policy constraint
and the (aggregated)patient transfer constraint, as well as the objective func-
tion, the complete assignment constraint, and the capacity constraint (here,
the objective function, the complete assignment constraint, and the capacity
constraint are omitted for brevity). All these APRA models have the same
optimal solution, which is shown in the figure on the top right. The optimal
objective function value is S = 13.6.

Instance

x1,1,2 ≤ u1,2 + b1,2

x3,1,1 ≤ 1− u1,1 + b1,1

x1,1,1 ≤ u1,1 + b1,1
x2,1,1 ≤ u1,1 + b1,1
x1,1,2 ≤ u1,2 + b1,2

x3,1,1 ≤ 1− u1,1 + b1,1

AGC1

GC1

t1,1,1 ≥ x1,1,1 − x1,1,2

t1,2,1 ≥ x1,2,1 − x1,2,2

t1,3,1 ≥ x1,3,1 − x1,3,2

TC

ATC

f1,1 ≥ x1,1,1

f1,2 ≥ x1,1,2

f1,1 ≥ x2,1,1

m1,1 ≥ x3,1,1

b1,1 ≥ f1,1 +m1,1 − 1
b1,2 ≥ f1,2 +m1,2 − 1

f1,2 ≥ x1,1,2

m1,1 ≥ x3,1,1

b1,1 ≥ f1,1 +m1,1 − 1

b1,2 ≥ f1,2 +m1,2 − 1

GC0

AGC0

Original

Aggregation

Optimal Solution:S = 13.6

(Aggregated) gender policy constraints and (aggregated) patient transfer constraints

x1,1,1 + x2,1,1 ≤ 2(u1,1 + b1,1)2f1,1 ≥ x1,1,1 + x2,1,1

Night 1

Night 2

Room 1 Room 2 Room 3

patient1

patient1

patient2 patient3

!"#$% &
!'% (%)( "*+ ,"-".%)%-( -%$")%+ )/ ,")0%*)(

1")0%*) 2%*+%- Dp LOSp

Cprd

r = 1 r = 2 r = 3

3 4 53678 7 5&6 &8 5396 398 5:6 :8
7 4 538 3 59;:8 5&8 578
< = 538 3 5<8 57;:8 5&;:8

3z1,1 ≥x1,1,1 + 2x1,2,1 + 3x1,3,1−
x1,1,2 − 2x1,2,2 − 3x1,3,2

3z1,1 ≥x1,1,2 + 2x1,2,2 + 3x1,3,2−
x1,1,1 − 2x1,2,1 − 3x1,3,1

Fig. 2. An illustrative example of PRA subproblem

It is worth noting that using the above aggregated constraint AGC0, AGC1

and ATC can reduce the number of constraints of APRA models, but it may
also bring some disadvantages when solving the aggregated models using the
Branch-and-Bound (B&B) approach. The B&B approach uses a lower bound-
ing strategy based on linear program (LP) relaxation. However, aggregation
enlarges the set of feasible solutions of the LP relaxation, thereby leading to
weaker lower bounds. The weakened lower bounds may reduce the effective-
ness of the B&B approach. The related detailed discussion can be found in
Khurana & Murty (2012), where the authors studied the effects of aggregation
on the computational ease of the model. Therefore, to verify the effectiveness
of the proposed aggregated constraints, we will compare the computational
results of the models with and without aggregated constraints in Section 5.1.
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4.4 PBA model

The PBA subproblem is created based on the outputs of the PRA subproblem
to generate the patient-bed assignments. To build the PBA model, the hospital
stay segment is introduced to indicate the patient transfer. If the room assigned
to patient p in day d is the same as the room in consecutive hospitalization
days, these days belong to the same hospital stay segment s. The sets of
hospital stay segments for all patients can be easily calculated according to
the results of the PRA subproblem. The PBA is a feasibility problem, which
is solved with a constant objective function set to zero, as shown in (48). The
notation for the PBA is provided in Table 5, and its formulation is as follows:

Table 5
PBA Notation

Symbol Description

Sets
B Set of beds (b = 1, · · · , |B|)
Sp Set of hospital stay segements of patient p (s = 1, · · · , |Sp|)
Br ⊂ B Set of beds in room r
Prd ⊂ P Set of patients assigned to room r in day d
Dps ⊂ D Set of days in hospital stay segement s of patient p
Parameters
Gps Room assigned to patient p in his/her hospital stay segment s
Variables
ypbs 1 if patient p is assigned to bed b in hospital stay segment s, 0 otherwise

Min 0 (48)

s.t.
∑

b∈BGps

ypbs = 1 ∀p ∈ P , s ∈ Sp (49)

∑
p∈Prd

∑
s∈Sp|d∈Dps,r=Gps

ypbs ≤ 1 ∀r ∈ R, b ∈ Br, d ∈ D (50)

ypbs ∈ {0, 1} p ∈ P , s ∈ Sp, b ∈ BGps (51)

Constraint (49) ensures every patient to be assigned to a bed for each segment.
Constraint (50) limits assignments to the capacity of each bed for each night.
Constraint (51) define the domain of the decision variable.

5 Results and comparisons

In this section, we present computational results of our proposed solution
method on the 13 instances provided by Demeester et al. (2008). Table 6
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shows the details of these 13 instances in terms of the number of rooms (|R|),
dependent rooms with more than one bed (|RM

D |), total patient (|P|), elective
patient (|PE|), room properties (Prop.), beds (|B|), specialisms (S), the length
of the planning horizon (|D|), and departments (K). In addition, only three
room sizes are considered in this benchmark, i.e. 1, 2 and 4 beds.

The first six instances benefit from better patient-room compatibility com-
pared with instances 7-13. In addition, the planning horizon is 14 days for
instances 1-7, which is smaller than instances 8-13, where the planning hori-
zon is between 21 days to 91 days. Therefore, instances 8-13 are more complex.
It is worth mentioning that the total number of patients includes elective pa-
tients as well as patients whose LOS is zero, and patients whose discharge
date lies beyond the planning horizon are scheduled until the last planning
day. Moreover, only instance 13 has multi-spec patients. Specifically, all the
202 multi-spec patients require two specialisms, and no patient requires more
than two specialisms in this benchmark dataset.

Our model was implemented and solved using Gurobi Optimizer 9.0.3 with its
default parameter settings. Branch-and-cut (B&C) is the default algorithm of
Gurobi to solve the MIP models. Experiments are run on a cluster with each
node running Linux with Inter(R) Xeon(R) Gold 6226R 2.90GHz CPU and
256Gb RAM. The number of CPU cores used was set to be 10. Experiments
revealed that the average time to generate patient-room penalty matrix takes
no more than 10 seconds, and solving the PBA model takes no more than 1
second. Thus, given a total time limit, we set 50 % of the run time to solve the
APRAWT model and set the remaining time to solve the PRA model, which
is the same as Bastos et al. (2019).

Table 6
Characteristics of the problem instances.

Instance |R| |RM
D | |P| |PE | Prop. |B| S |D| K

1 98 82 693 652 2 286 4 14 4
2 151 132 778 755 2 465 6 14 6
3 131 114 757 708 2 395 5 14 5
4 155 136 782 746 2 471 6 14 6
5 102 93 631 587 2 325 4 14 4
6 104 93 726 685 2 313 4 14 4
7 162 32 770 519 4 472 6 14 6
8 148 34 895 895 4 441 6 21 6
9 105 18 1400 1400 4 310 4 28 4
10 104 20 1575 1575 4 308 4 56 4
11 107 21 2514 2514 4 318 4 91 4
12 105 28 2750 2750 4 310 4 84 4
13 125 30 907 907 4 368 5 28 5
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5.1 Evaluating the performance of different models for PRA subproblem

We generate 8 APRA models as well as 4 APRAWT models, aiming to answer
two critical questions: (i) do different models perform differently? (ii) if yes,
which model performs the best for solving the PRA subproblem and why? In
the following, we assess which model best suits the PRA subproblem using the
benchmark sets. As described in Section 4, we use a warm start approach to
solve the PRA subproblem, in which an APRAWT model is solved in the initial
step and then an APRA model is solved in the subsequent step. Specifically,
the type of formula used for the gender policy constraint remains consistent
between the APRAWT model and the APRA model. As a result, this yields 8
different warm start procedures.

Model size can be used to roughly infer the performance of the solution. In
general, a smaller model (with less constraints and variables) would be easier to
handle. Thus, we first compare the average number of constraints and variables
of all APRAWT/APRA models we proposed as well as MIP models of Bastos
et al. (2019), which generated most of the best known solutions and lower
bounds, for 13 benchmark instances, as shown in Table 7. Notice that Bastos
et al. (2019) also used the warm start approach to solve the PRA subproblem,
and refereed to the model used in the initial step as the simplified model
(SM) and the model used in the subsequent step as complete model (CM).
Additionally, the SM is a special case of the CM forbidding patient transfer.

From Table 7, firstly, we can observe that our proposed models are signifi-
cantly smaller than the MIP models of Bastos et al. (2019) in both initial
and subsequent steps. Secondly, the model sizes of our proposed models are
also significantly different. Specifically, in the initial step, the average number
of variables and constraints of APRAWT

GC1
/ APRAWT

AGC1
decreases by 103 com-

pared to APRAWT
GC0

/ APRAWT
AGC0

. It is also clear that using the aggregated
gender policy constraints can significantly decrease the model size. Compared
to APRAWT

GC0
/ APRAWT

GC1
, the average number of constraints of APRAWT

AGC0
/

APRAWT
AGC1

decreases by 97% after aggregating the gender policy constraints.
Additionally, in the subsequent step, we can observe that the average number
of constraints decreases by 33% after using AGC0(AGC1) and the average
number of constraints decreases by 65% after using ATC in APRA. If both
aggregated constraints AGC0(AGC1) and ATC are used, the average number
of constraints decreases by 97%. Moreover, the average number of variables
decreases 44% after using ATC in APRA.

Next, we present a comparative results by using the above warm start proce-
dures to solve the PRA subproblem. Due to the challenge of the PAS problem,
we are more concerned with the solution-quality than proven-optimality. In
order to assess the performance of the above warm start procedures under dif-
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Table 7
Comparison of different models used in warm start procedures over all benchmark
instances

Warm start
procedure

Initial step Subsequent step

Model Var. Con. Model Var. Con.

Bastos et al. (2019)
WS0 SM 5.20×106 6.60×106 CM 5.70×106 7.00×106

This paper
WS1

APRAWT
GC0

1.41×105 2.65×105
APRAGC0&TC 1.27×106 7.87×105

WS2 APRAGC0&ATC 6.58×105 2.78×105

WS3
APRAWT

AGC0
1.41×105 8.65×103

APRAAGC0&TC 1.27×106 5.30×105

WS4 APRAAGC0&ATC 6.58×105 2.19×104

WS5
APRAWT

GC1
1.40×105 2.64×105

APRAGC1&TC 1.17×106 7.85×105

WS6 APRAGC1&ATC 6.57×105 2.77×105

WS7
APRAWT

AGC1
1.40×105 7.35×103

APRAAGC1&TC 1.17×106 5.29×105

WS8 APRAAGC1&ATC 6.57×105 2.06×104

ferent solution time limits, two sets of results for each constraint combination
were generated. The first was obtained with a short run time limit of 700 sec-
onds. The second was obtained with a long run time limit of 3600 seconds (or
until an optimal solution is found). For each warm start procedure, we sum-
marize the average percentage gap AveObjGap(%) =

∑
i∈N

Obji−BKSi

BKSi∗N ∗ 100 of
the best objective values Obj obtained by our approach from the best known
objective values BKS reported in (Bastos et al., 2019; Guido et al., 2018)
over the N benchmark instances (N = 13 in our case) and illustrate the re-
sults in Figure 3(a). Similarly, the average percentage gap AveLBGap(%) =∑

i∈N
BLBi−LBi

BLBi∗N ∗ 100 of the best lower bounds LB from the best known lower
bounds BLB (Bastos et al., 2019) are summarized in Figure 3(b). To make
the results more readable, we properly scaled the vertical axis of the figures.
From Figure 3(a), we observe that under the short and long run times, the

(a) Solution quality (b) Lower bound (LB) quality

Fig. 3. Performance of different models in solving the PRA subproblem

model under the aggregated gender policy constraint AGC0 and AGC1 (WS3,
WS4, WS7, WS8) can significantly improve the solution quality, while using
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the aggregated patient transfer constraint ATC (WS2, WS6) fails to improve
the solution quality. Furthermore, the models under constraint GC0 (WS1,
WS2) perform similarly to the models under constraint GC1 (WS5, WS6),
whereas the models under constraints AGC1 always perform better than the
models under AGC0.

From Fig. 3(b), we observe that the more aggregation constraints are used,
the better LBs are generated in a short run time. On the contrary, the more
aggregation constraints are used, the worse LBs are generated in a long run
time. Specifically, the LB quality generated by warm start procedures in a long
run time are as follows: WS1 (0.35%) < WS5 (0.38%) < WS3 (0.60%) = WS7

(0.60%) < WS2 (6.93%) < WS6 (7.03%) < WS4 (7.09%) < WS8 (7.14%).
Moreover, the LBs generated by solving the models under the constraint ATC
(WS2, WS4, WS6, WS8) are difficult to improve for a longer run time, while
LBs generated by solving the models under the constraint TC (WS1, WS3,
WS5, WS7) are easy to improve in comparison.

These results indicate that the impact of using the aggregated constraints
is two-fold. First, using constraint aggregation can significantly reduce the
model size and using appropriate aggregated method can make the model
easier to solve. Second, solving the model under aggregated constraints may
quickly generate a lower bound for the minimization problem, but the quality
of the lower bound is difficult to improve in a long run time. The reason for
this phenomenon can be explained as Section 4.3. In summary, this experi-
ment demonstrates that 1) appropriate formulas of gender policy constraints
are essential for solving the APRAWT model, and 2) the APRA model as
the core component of the first stage of our two-stage optimization method
and APRAAGC1&TC (WS7) using constraints AGC1 and TC perform the best
among all the models we examined.

5.2 Comparison with state-of-the-art results

In order to compare our best results with those obtained in previous works, we
perform additional experiments by running warm start procedure WS7 for a
time limit of 24 hours as the previous works (Ceschia & Schaerf, 2011; Bastos
et al., 2019). Due to the differences in computers and Gurobi versions between
our work and previous studies, we implement the MIP models of Bastos et al.
(2019) with warm start WS0 to solve the PRA subproblem and use Gurobi
Optimizer 9.0.3 with its default settings to solve the model.

To compare our results with previous studies, we adjusted the reported run
times to account for CPU performance. We followed the approach used in
Bastos et al. (2019), which is based on the approach proposed in Da Silva et al.
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(2012). The performance ratings of different CPUs have been obtained online 1

and are shown in the table 8. In our study, we used 10 of 16 available cores
(20 of 32 threads) on the Intel Xeon Gold 6226R 2.90 gigahertz processor. To
the best of our knowledge, no public performance data exists for this specific
configuration. Given that CPU performance does not scale linearly with the
number of cores, we first calculated the ratio of the performance degradation
as follows: Average CPU mark

Total threads×Single thread rating
= 26240

2294×32 ≈ 0.357. Then, we calculate
the estimated CPU mark for 10 cores by 20 threads × single thread rating ×
ratio of the performance degradation, i.e., 20 × 2294 × 0.357 ≈ 16379. The
above approach was used to adjust the run times reported in Bastos et al.
(2019) and Guido et al. (2018).

Table 9 contrasts the best known results in the literature with our best results.
Under the header “Literature Results”, we present the best known objective
values BKS and best known lower bounds BLB for each of the 13 benchmark
instances. Moreover, the reference papers and computational times (adjusted
following the procedure detailed previously) associated with these values have
been reported. We show the results generated by the two-stage approach with
the literature’s MIP model under the header “Warm start WS0 (MIP models
of Bastos et al. (2019))”, and report our results generated by the two-stage
approach using the best model we proposed under the header “Warm start
WS7”. For each approach, we record the best objective (Obj), the total compu-
tation time to find the best solution, the total computation time when Gurobi
either proves the optimality or reaches the time limit (24 hours), the best
lower bound (LB) and the number of branch-and-bound nodes visited after
the root node in SM, CM, APRAWT and APRA models. We compute the per-
centage gaps GAP (%) = Obj−LB∗

LB∗ × 100 of the best objective value found by
each approach from the best lower bound LB∗, which is the maximum value
among the lower bounds reported in the literature as well as those obtained
in our study. Furthermore, we present the objective values, total computation
time and the lower bounds as reported by Bastos et al. (2019), which were
obtained using the warm start approach.

Table 8
Optimization solvers and performance evaluation of CPU

Reference Solver Processor Single thread
rating

Average CPU
mark

Used cores/
Total cores

Used threads/
Total threads

Guido et al. (2018) Cplex 15.5.1
Intel Xeon E5-1620 3.60 gigahertz
32 gigabytes RAM

1774 5863 4*/4 8*/8

Bastos et al. (2019) Gurobi 7.5
Intel i7-3960 × 3.3 gigahertz
64 gigabytes RAM

1793 8390 6*/6 12*/12

This paper Gurobi 9.0.3
Intel Xeon Gold 6226R 2.90 gigahertz
256 gigabytes RAM

2294
26240

(16379**)
10/16 20/32

* The authors did not set the specific number of cores. By default, Gurobi and Cplex generally use all of the cores and threads of
the machine.

** Estimated CPU mark for 10 cores.

We first compare the solution generated by our reproduced MIP models with

1 https://www.passmark.com/
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the solution presented in Bastos et al. (2019). From the perspective of the
solution quality (best objective value), the results of 5 instances (9,10,11,12,13)
are worse than those in the literature, 6 instances (1,3,4,5,6,7) are the same as
in the literature and 2 instances (2,8) are better than those in the literature.
From the perspective of the quality of the lower bounds, the LB of instance 4
are worse than it in the literature, 4 instances (1,3,5,6) are same to literature
and 8 instances (2,7,8,9,10,11,12,13) are better than those in the literature.
The reasons of above results are due to the used Gurobi version and the
performance difference of the computing machines.

Second, we note that our approach generated new best solutions for 6 out of the
13 tested benchmark instances (2,4,8,9,10,13, note that solutions obtained for
instances 1,3,5,6 and 7 are the same as the best known solutions reported in the
literature; nevertheless, they were proven to be optimal by our APRAAGC1&TC

model within an hour). Furthermore, our approach improved the best lower
bound for 6 out of the 13 instances (2,3,4,7,8,13). It is worth noting that the
optimality of the solution was also proven for instance 2. Although we have
not proven the optimality of instances 4 and 8, the gaps are very low (¡ 1%). In
particular, although our approach fails to improve the best known solutions for
instances 11 and 12 within a running time limit of 24 hours, it outperformed
the method proposed in Bastos et al. (2019). The failure of our approach
to improve upon the best known solutions for instances 11 and 12 can be
attributed to the significantly larger number of patients and planning periods
in these instances. Specifically, these instances have approximately 2-5 times
more patients and 2-6 times more planning periods compared to the others.
We also note that our approach is outperformed by the method proposed in
Bastos et al. (2019) in terms of the lower bounds for instances 9, 10, 11 and
12. This can be attributed to the fact, as mentiond in Section 4.3.3., that
the quality of the linear program (LP) relaxation bound for aggregated model
after constraint aggregation is usally poor compared to the LP relaxation of
the original model.

Third, we analyze the performance of various models in terms of the number
of branch-and-bound nodes visited after the root node. Specifically, we focus
on the APRAWT

AGC1
and APRAAGC1&TC models from our WS7, and the SM

and CM models from WS0. On the one hand, we can observe that for the
instances that are solved to optimality by WS7, the number of nodes in the
B&C procedure for WS7 is generally less than WS0. Specifically, for the in-
stances 1,5,6,7 which are also solved to optimality by WS0, WS0 generated
on average 27395 nodes in SM and 31727 nodes in CM , while WS7 generated
on average 2790 nodes in APRAWT and 3529 nodes in APRA. For instances 2
and 3 which can not be solved to optimality by the WS0, WS0 generated on
average 327014 nodes in SM and 44423 nodes in CM , while WS7 generated
on average 16790 nodes in APRAWT and 36808 nodes in APRA. On the other
hand, for the instances 4,8,9,10,11,12,13 which can not be solved to optimality
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by both WS0 and WS7, the number of nodes in the B&C procedure for WS7

is generally more than WS0. In particular, WS0 generated on average 71348
nodes in SM and 68 nodes in CM , while WS7 generated on average 117003
nodes in APRAWT and 46772 nodes in APRA. These results are explained by
the fact that the B&C procedure for APRAWT

AGC1
and APRAAGC1&TC leads to

considerably smaller branch-and-bound trees.

The above comparisons demonstrate that our proposed two-stage optimization
approach, featuring the APRAWT and APRA models, is able to significantly
reduce the computation time compared to the MIP model proposed by Bastos
et al. (2019). The APRAWT and APRA models, refined from the IP model
proposed by Ceschia & Schaerf (2011) by our proposed 6 rules and constraint
aggregation, have fewer variables and constraints than those of Bastos et al.
(2019). In particular, APRAWT

AGC1
and APRAAGC1&TC , the best version of our

proposed models, achieve reductions by 97.29% and 79.47% for variables, and
99.89% and 92.44% for constraints, respectively. This substantial simplifica-
tion aligns with the general principle that smaller models are typically easier
to solve than their larger counterparts. Consequently, the number of nodes in
the B&C procedure is less than that of Bastos et al. (2019), which leads to a
significant reduction in the computation time.

Finally, we present a breakdown of the cost of our best solutions into differ-
ent objective components in Table 10. It reports for each instance, the total
penalty (Cost), the penalty associated with gender policy violations (Gen.),
the penalty associated with age policy violations (Age), the penalty not at-
tending to the needed treatment properties (Ned. prop.), the penalty related
to single policy violations (Sng.), the penalty for failing to assign a patient to
a room with his/her preferred capacity (Room pref.), the penalty incurred by
not assigning a patient to the appropriate department (Dept.), the penalty in-
curred by not accounting for the prioritized specialism (Spec.), the penalty not
attending to the preferred treatment properties (Pref. prop.), and the penalty
related to transfers policy violations (Trs.).

Most penalties in instances 1-6 are caused by not being able to satisfy room
capacity preferences, and specialisms and room properties preferences also
contribute in the same cases, as reported by Range et al. (2014); Bastos et al.
(2019). In addition to the above penalties, department violations appeared
for instance 7. For instances 8-13, preferred treatment properties violations
account for most of the cost, and department, Specialism, and preferred room
capacity violations have been consistently detected. Moreover, age policy vi-
olations appeared for instance 9 and 13, and gender violations appear for
instances 9, 10, 11, 12 and 13. Finally, we note that the transfer violations
were reported in instances 8, 9 and 13.
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Table 10
Breakdown of the cost components for the best solutions.

Instance Cost Gen. Age
Ned.
pref.

Sng.
Room

pref.
Dept. Spec.

Pref.
prop.

Trs.

1 651.2 0.0 0.0 0.0 0.0 651.2 0.0 0.0 0.0 0.0
2 1125.6 0.0 0.0 0.0 0.0 1113.6 0.0 12.0 0.0 0.0
3 761.6 0.0 0.0 0.0 0.0 753.6 0.0 8.0 0.0 0.0
4 1151.0 0.0 0.0 0.0 0.0 1040.0 0.0 75.0 36.0 0.0
5 624.0 0.0 0.0 0.0 0.0 624.0 0.0 0.0 0.0 0.0
6 792.6 0.0 0.0 0.0 0.0 789.6 0.0 3.0 0.0 0.0
7 1176.4 0.0 0.0 0.0 0.0 730.4 20.0 158.0 268.0 0.0
8 4058.6 0.0 0.0 0.0 0.0 1433.6 212.0 869.0 1522.0 22.0
9 20677.4 340.0 4500.0 1010.0 0.0 2702.4 282.0 1124.0 10554.0 165.0
10 7799.8 15.0 0.0 0.0 0.0 2964.8 2.0 486.0 4332.0 0.0
11 11630.2 10.0 0.0 5.0 0.0 4327.2 9.0 959.0 6320.0 0.0
12 23234.2 585.0 0.0 195.0 0.0 4823.2 280.0 1751.0 15600.0 0.0
13 9102.2 25.0 30.0 35.0 0.0 2091.2 655.0 1730.0 4470.0 66.0

5.3 Application to the original PAS problem

As mentioned in Section 2.1, various static PAS problems have been studied
in the literature. The differences are the treatment of SC1-SC4 and SC9 con-
straints. Our proposed method can solve these static variants by decreasing the
number of the soft constraint and adjusting the domain of the patient-room as-
signment variables according to the specific problem definition. Different with
the standard PAS problem we solved, in the original PAS problem proposed by
Demeester et al. (2010), the former four constraints are hard constraints, which
are not allowed to be violated. In order to solve the original PAS problem, we
use our proposed two-stage optimization approach and modify the APRAWT

and APRA models by limiting the set of rooms that can be assigned to each
patient. Specifically, we use Rp ∈ R, which is defined as the set of rooms that
can be assigned to patient p without violating the constraints SC1-SC4. The
modified APRAWT and APRA models are formulated as follows:

Modified APRAWT: Min S =
∑

p∈PE

∑
r∈Rp

C ′prxpr (52)

s.t. Constraints (30), (34), where Rp is used instead of R
Constraints (23)∑

p∈P|d∈Dp,r∈Rp

xpr ≤ Qr, ∀d ∈ D, r ∈ R (53)

λFrdfrd ≥
∑

p∈F|d∈Dp,r∈Rp

xpr ∀d ∈ D, r ∈ RM
D (54)

λMrd(1− frd) ≥
∑

p∈M|d∈Dp,r∈Rp

xpr ∀d ∈ D, r ∈ RM
D (55)
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Modified APRA : Min S =
∑

p∈PE ,r∈Rp,d∈Dp

Cprd · xprd +

∑
p∈PE |LOSp≥2,r∈Rp,d∈Dp\{DDp−1}

WTr · tprd (56)

s.t. Constraints (15), (20), (21), (25), where Rp is used instead of R
Constraints (53), (54), (55), where xprd is used instead of xpr

Constraints (23)

The computational results are summarized in Table 11. Since SC1-SC4 are
considered to be hard constraints, the corresponding penalties (Gen., Age, Sng.
and Ned. Pref.) are equal to zero and are not reported. Note that most studies
treat SC1-SC4 as soft constraints, and therefore the corresponding problems
are relaxations of the original PAS problem. Consequently, the best lower
bounds in those studies can be used as the best known lower bounds BLB
of the original PAS problem. The best known solutions BKS are similarly
derived from the results in the literature without incurring penalties of SC1-
SC4. The symbol “-” is used to indicate that the instance is infeasible for the
original PAS problem, or the result is not available in the literature.

Table 11
Results on the benchmark instances for the original PAS problem (new best solutions
and new best lower bounds in bold, proven optimal solutions in star *).

Instance

Literature results Two-stage optimization approach

BKS
(Time to end∗∗)

BLB
(Time to end∗∗)

Obj
Time

to
best

Time
to

end
LB

GAP
(%)

Node
of

APRAWT

Node
of

APRA

Breakdown of the Obj components

Room
pref.

Dept. Spec.
Pref.
prop.

Trs.

1 651.20 (21,226[1]) 651.20 (21,226[1]) 651.20* 272 5,370 651.20 0.00 5,872 6,732 651.2 0.0 0.0 0.0 0.0

2
1,128.00 (44,258[1],

2,577[2])
1,115.80 (44,258[1]) 1,125.60* 7,638 24,372 1,125.60 0.00 10,447 8,356 1,113.6 0.0 12.0 0.0 0.0

3
761.60 (44,258[1],

2,577[2])
758.60 (44,258[1]) 761.60* 2,021 12,864 761.60 0.00 46,752 62,533 753.6 0.0 8.0 0.0 0.0

4 1,151.60 (44,258[1]) 1,143.20 (44,258[1]) 1,151.00 35,818 86,400 1,150.00 0.09 144,679 553,384 1040.0 0.0 75.0 36.0 0.0

5
624.00 ( 4,227[1],

62[2])
624.00 ( 4,227[1]) 624.00* 199 752 624.00 0.00 670 5,603 624.0 0.0 0.0 0.0 0.0

6
792.60 (10,082[1],

2,577[2])
792.60 (10,082[1]) 792.60* 462 1,019 792.60 0.00 45 1 789.6 0.0 3.0 0.0 0.0

7
1,176.40 ( 6,209[1],

2,577[2])
1,176.40 ( 4,209[1]) 1,176.40* 36 486 1,176.40 0.00 321 5,206 730.4 20.0 158.0 268.0 0.0

8 4,063.00 (44,258[1]) 4,024.41 (44,258[1]) 4,058.60 9,655 86,400 4,039.60 0.47 9,137 3,020 1,433.6 214.0 871.0 1,518.0 22.0

9 - - - - - - - - - - - - - -

10 7,804.60 ( 2,577[2]) 7,687.33 (44,258[1]) 7,793.80 43,200 86,400 7,719.60 0.96 1,298 1 2,948.8 4.0 481.0 4,360.0 0.0

11 11,536.20 ( 654[2]) 10,987.72 (44,258[1]) 11,836.60 43,200 86,400 10727.05 7.73 268 0 4,361.6 16.0 963.0 6,496.0 0.0

12 - - - - - - - - - - - - - -

13 - 8,842.80 (44,258[1]) 9,093.60 67,866 86,400 8,912.40 2.03 66,457 441 2,061.6 627.0 1,695.0 4,556.0 154.0

** Total computation time reported by the corresponding reference, adjusted following the procedure from Da Silva et al. (2012)

[1] - Bastos et al. (2019), [2] - Guido et al. (2018)

From Table 11, we observe that our approach computed 5 out of 13 new
best solutions on the tested benchmark instances (2, 4, 8, 10, 13, solutions
obtained for instances 10, 13 are better than our new found solutions in Table
9). Our approach proved the optimality of 6 out of 13 solutions (1, 2, 3, 5, 6,
7). Moreover, our approach improved the best lower bound for 6 out of the
instances (2, 3, 4, 8, 10, 13, lower bounds obtained for instances 8, 10, 13 are
better than our new found lower bounds in Table 9). Note that instances 9 and
12 are infeasible in the original PAS problem. The reason is that the number
of elective patients exceeds the capacity of the rooms allowed for them.
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6 Conclusion

The patient admission scheduling (PAS) problem is a significant planning task
in hospital management. Due to the high-quality performance of exact algo-
rithms in the literature, in this paper, we focused on ways to improve the
efficiency of solving the IP model of the PAS problem using better model for-
mulations. We employed a two-stage exact method that decomposes the PAS
problem into two separate problems, including the patient-room assignment
(PRA) subproblem and the patient-bed assignment (PBA) subproblem. To
solve the PRA subproblem, we applied a warm start approach in which we
solve the APRAWT model to generate a high-quality feasible solution and then
use the obtained solution as a warm start to the APRA model.

We proposed two aggregated gender policy constraints AGC0, AGC1, and
aggregated patient transfer constraint ATC, and generated 4 APRAWT models
and 8 APRA models. We analyzed the advantages and disadvantages of these
models and found the most appropriate model, using the aggregated gender
constraint AGC0 for APRAWT and APRA, not the ATC constraint for APRA.

Our approach generated new best solutions for 6 out of the 13 benchmark
instances from a publicly available repository, and proved the optimality of
the solution for one of these 6 instances. Moreover, for 5 other instances, we
obtained the known optimal solutions in a short time compared to the methods
in the literature. Finally, we also applied our approach to the original PAS
problem and performed computational experiments on the same 13 benchmark
instances. We obtained 5 new best solutions, 6 new best lower bounds, and
proved optimality for 6 instances.

To further exploit the new reduced models, we suggest the following direc-
tions for future research: (1) Design dedicated branch-and-bound algorithms
to improve solving performance while guaranteeing optimality. (2) Design
matheuristic algorithms that exploit mathematical programming techniques
in a metaheuristic framework. (3) Investigate the dynamic PAS problem by
appropriately adjusting the proposed models to solve real-world situations.
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aggregation principle in convex optimization. Mathematical Programming,
76(3), 353–372.

Evans, J. R. (1983). A network decomposition/aggregation procedure for a
class of multicommodity transportation problems. Networks. An Interna-
tional Journal, 13(2), 197–205.

Glover, F. (2003). Tutorial on surrogate constraint approaches for optimization
in graphs. Journal of Heuristics, 9, 175–227.

Guido, R. (2023). Patient admission scheduling problems with uncertain
length of stay: optimization models and an efficient matheuristic approach.
International Transactions in Operational Research.

Guido, R., Groccia, M. C., & Conforti, D. (2018). An efficient matheuristic
for offline patient-to-bed assignment problems. European Journal of Oper-
ational Research, 268(2), 486–503.

Hammouri, A. & Alweshah, M. (2017). Biogeography based optimization with
guided bed selection mechanism for patient admission scheduling problems.
International Journal of Soft Computing, 12, 103–111.

Hammouri, A. I. (2022). A modified biogeography-based optimization algo-
rithm with guided bed selection mechanism for patient admission scheduling
problems. Journal of King Saud University - Computer and Information
Sciences, 34(3), 871–879.

Hammouri, A. I. & Alrifal, B. (2014). Investigating biogeography-based opti-
misation for patient admission scheduling problems. Journal of Theoretical
& Applied Information Technology, 70(3), 413–421.

Khurana, A. & Murty, K. G. (2012). How effective is aggregation for solving
0–1 models? OPSEARCH, 49(1), 78–85.

Kifah, S. & Abdullah, S. (2015). An adaptive non-linear great deluge algorithm
for the patient-admission problem. Information Sciences, 295, 573–585.

Litvak, E. & Bisognano, M. (2011). More patients, less payment: increasing

34



hospital efficiency in the aftermath of health reform. Health Affairs, 30(1),
76–80.

Lusby, R. M., Schwierz, M., Range, T. M., & Larsen, J. (2016). An adaptive
large neighborhood search procedure applied to the dynamic patient admis-
sion scheduling problem. Artificial intelligence in medicine, 74, 21–31.

Poirion, P.-L. (2019). Optimal constraints aggregation method for ilp. Discrete
Applied Mathematics, 262, 148–157.

Porumbel, D. & Clautiaux, F. (2017). Constraint aggregation in column gener-
ation models for resource-constrained covering problems. INFORMS Jour-
nal on Computing, 29(1), 170–184.

Ram, B., Karwan, M. H., & Babu, A. (1988). Aggregation of constraints
in integer programming. European Journal of Operational Research, 35(2),
216–227.

Range, T. M., Lusby, R. M., & Larsen, J. (2014). A column generation ap-
proach for solving the patient admission scheduling problem. European
Journal of Operational Research, 235(1), 252–264.

Rogers, D. F., Plante, R. D., Wong, R. T., & Evans, J. R. (1991). Aggregation
and disaggregation techniques and methodology in optimization. Operations
Research, 39(4), 553–582.

Saddoune, M., Desaulniers, G., Elhallaoui, I., & Soumis, F. (2011). Integrated
airline crew scheduling: A bi-dynamic constraint aggregation method using
neighborhoods. European Journal of Operational Research, 212(3), 445–454.

Trapp, A. C. & Prokopyev, O. A. (2015). A note on constraint aggregation
and value functions for two-stage stochastic integer programs. Discrete
Optimization, 15, 37–45.

Turhan, A. M. & Bilgen, B. (2017). Mixed integer programming based heuris-
tics for the patient admission scheduling problem. Computers & Operations
Research, 80, 38–49.

Vancroonenburg, W., De Causmaecker, P., & Vanden Berghe, G. (2016). A
study of decision support models for online patient-to-room assignment
planning. Annals of Operations Research, 239(1), 253–271.

Vancroonenburg, W., Goossens, D., & Spieksma, F. (2011). On the com-
plexity of the patient assignment problem. Tech. rep., KAHO Sint-Lieven,
Gebroeders De Smetstraat 1, Gent, Belgium.

Zhang, J., Dridi, M., & Moudni, A. E. (2021). An approximate dynamic pro-
gramming approach to the admission control of elective patients. Computers
& Operations Research, 132(1–2), 105259.

Zhang, K.-S., Han, Z.-H., Gao, Z.-J., & Wang, Y. (2019). Constraint aggrega-
tion for large number of constraints in wing surrogate-based optimization.
Structural and Multidisciplinary Optimization, 59(2), 421–438.

Zhu, Y.-H., Toffolo, T. A. M., Vancroonenburg, W., & Vanden Berghe, G.
(2019). Compatibility of short and long term objectives for dynamic patient
admission scheduling. Computers & Operations Research, 104, 98–112.

35


	Introduction
	Literature Review
	Patient Admission scheduling problem
	Constraint Aggregation technique

	Problem description and mathematical model
	Problem constraints
	Objective
	Mathematical model

	Solution approach
	APRA Model
	APRA model without transfers constraint
	Constraint aggregation
	PBA model

	Results and comparisons
	Evaluating the performance of different models for PRA subproblem
	Comparison with state-of-the-art results
	Application to the original PAS problem

	Conclusion

