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bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France

Abstract

The gate assignment problem (GAP) is an important task in airport management.
This study investigates an original probability learning based heuristic algorithm
for solving the problem. The proposed algorithm relies on a mixed search strat-
egy exploring both feasible and infeasible solutions with the tabu search method
and employs a reinforcement learning mechanism to guide the search toward new
promising regions. The algorithm is compared with several reference algorithms on
three sets of real-world benchmark instances in the literature. Computational re-
sults show the high competitiveness of the algorithm in terms of solution quality
and computation time. Especially, it reports improved best solutions (new upper
bounds) for all the 180 tested real-world benchmark instances in the literature. The
key components of the algorithm are analyzed. The code of the algorithm will be
publicly available.

Keywords: Heuristics; gate assignment; probability learning; feasible and infeasi-
ble tabu search.

1 Introduction

The rapid development of the international transportation market has signif-
icantly increased the volume of air traffic over the past decades. According
to the prediction of the International Air Transport Association (IATA), the
number of air passengers is anticipated to be over 7.2 billion in 2035, which
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nearly doubles the number of 3.8 billion passengers in 2016 [32]. The consid-
erable rise in air traffic leads to air traffic congestion on the airport surface,
which increases airborne delays and air pollutants. Although the expansion
of airport capacity is the most obvious solution for air traffic congestion, it is
unrealistic in some cases due to space limitations. A more practical method
is to utilize highly efficient decision support systems based on sophisticated
optimization methodologies to manage existing resources effectively. Airport
gates are core resources and important operating facilities of airports because
they provide various services, such as passengers boarding and disembarking,
aircraft parking, baggage loading, and aviation transferring. Therefore, opti-
mizing the use of airport gates becomes a key issue in the daily management
of airports.

The task of the airport gate assignment problem (GAP), as an important de-
cision problem that airport professionals must face every day, is to assign each
aircraft to an available gate to meet operational requirements while maximiz-
ing the convenience for passengers and airport operation efficiency [4, 14, 33].
Gate assignment is a complex airline planning problem due to various stake-
holders involved and multiple objectives considered, some of which are even in
conflict. By focusing on different perspectives, the objectives of GAP can be
mainly classified into two classes: the airline/airport- and passenger-oriented
objectives. For the airline/airport-oriented objectives, the goals mainly include
maximizing the utilization of the available gates and terminal [8, 9, 25], mini-
mizing aircraft towing activities (cost) [5, 19, 22, 23, 36, 44, 47, 61], maximizing
the total gate preferences [5,22–24,36,47], minimizing the number of un-gated
aircraft [16, 21–24], minimizing the flights delay [13, 37, 54], and minimizing
the deviations in the schedules [5,9,44,50]. Meanwhile, the passenger-oriented
objectives mainly involve minimizing the total passenger walking distance
to improve customer satisfaction [2, 12, 13, 21, 29, 40, 57]. The reason is that
metropolitan airports are usually very large; thus, traveling within the airport
may take a significant amount of time and effort for a passenger [1,33]. Other
studies aim to minimize alternative objectives, such as the passenger waiting
time [58,59], the passenger transit time [34,35], and the baggage transferring
distance [5].

GAP is an NP-hard problem because it can be reduced to the classic quadrat-
ic assignment problem [48]. Considering its relevance and complexity, sev-
eral solution methods have been proposed to solve the problem in the lit-
erature, which can be mainly classified into exact approaches and heuris-
tic/metaheuristic methods. Exact approaches have the advantage of provable
optimal guarantee to the found solutions but generally need a computation
time that grows exponentially with the problem size. Nevertheless, many ef-
forts have been made to develop powerful exact approaches for GAP. Earlier
exact approaches are generally based on the branch and bound (B&B) method
and its variants [2,8,9]. Furthermore, various integer programming and mixed
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integer programming (MIP) formulations have been studied and solved either
by standard solvers or dedicated exact algorithms [6, 28, 39, 40, 58]. Very re-
cently, Karsu et al. [33] proposed a GAP model aiming to minimize the total
walking distance of all passengers subject to the minimum number of aircraft
assigned to the apron. They proposed a B&B algorithm, a beam search (B-
S), and a filtered beam search (FBS) that showed excellent performances for
instances with up to 200 aircraft and 38 gates.

Meanwhile, exact approaches may require a prohibitive time in practice due
to the intrinsic difficulty of the GAP problem. Therefore, in the daily op-
eration of large airports, heuristic/metaheuristic algorithms are typically em-
ployed to produce practical solutions in a given short time. For example, Xu et
al. [57] proposed a simple tabu search (TS) algorithm to solve the model with
the objective of minimizing the overall connection times of passengers. Ding
et al. [20, 21] introduced a GAP model to minimize the number of ungated
flights and total walking distances and designed a hybrid method combining
simulated annealing (SA) and TS. Cheng et al. [12, 13] presented several al-
gorithms to minimize the total walking distance of all passengers, including
genetic algorithm, TS, SA, a hybrid approach based on TS and SA, and TS
with path relinking algorithm. This work also presented an assessment of the
proposed algorithms for the first time using a set of realistic flight data. Yu et
al. [61] designed an adaptive large neighborhood search algorithm to solve a
multi-objective GAP, including the aircraft tow cost, transfer passenger cost,
and the robustness. Yu et al. [60] developed a variable reduce neighborhood
search algorithm based on an MIP model for robust GAP where traditional
approximate models cannot precisely consider the traveling distance of trans-
fer passengers. Benlic et al. [5] proposed a breakout local search algorithm
to optimize a linear combination of nine gate allocation objectives on data
provided by Manchester Airport.

In recent years, as swarm intelligence algorithms demonstrate excellent per-
formances in solving nonlinear problems, black-box model problems, multi-
dimensional, and multi-objective optimization problems, they have gradually
become popular for solving GAP. For example, Deng et al. [16,18] considered a
GAP model which minimizes the total walking distances of passengers, the idle
time variance of each gate, the number of flights at the apron, and the most
reasonable utilization of large gates. They proposed several algorithms based
on particle swarm optimization (PSO) to solve the proposed model, including
an improved adaptive PSO algorithm with alpha-stable distribution and dy-
namic fractional calculus and an improved quantum evolutionary algorithm
based on the niche co-evolution strategy and enhanced PSO. Later, Deng et
al. [17] presented an improved ant colony optimization algorithm for the GAP,
where the initial problem is divided into several subproblems, and the ants in
the population are divided into elite and common ants to improve the conver-
gence rate and avoid local optimum traps. Experiments on the instances from
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Guangzhou Baiyun International Airport shows that their algorithm effective-
ly solves the problem. Marinelli and Dell’Orco with their colleagues [15,41–43]
proposed several methods based on bee colony optimization (BCO) for a GAP
model considering two main objectives, which minimizes the passenger total
walking distance and the remote gate usage. They evaluated their methods
on the instance from Milano-Malpensa International Airport with up to 178
flights and 65 gates. Their experimental results demonstrated the excellent
performance of these BCO-based methods for solving their problem. For a
comprehensive survey of GAP solution methods, the interested readers are
referred to [10,14,51].

In this study, we follow the majority of the works on GAP in the literature
and focus on the passenger-oriented objectives of the problem, which consists
of assigning each arriving and departing aircraft to a gate such that the total
walking distance of passengers is minimized while ensuring that two aircraft
with overlapping time are not allocated to the same gate. Similar to many
other studies [2, 12, 13, 21, 29, 40, 57], we consider three types of passengers,
namely, arriving passengers, departing passengers and transferring passengers;
and three types of walking distances, namely, from a gate to the arrival hall,
from a gate to the departure hall, and from one gate to another.

The presented work can be summarized as follows:

- We introduce an original probability learning based feasible and infeasible
tabu search (PLFITS) algorithm. The algorithm integrates two important
features. First, it employs a probability learning mechanism that adopts the
concept of reinforcement learning to maintain and update a set of probabil-
ity vectors, each probability vector specifying the probability of assigning
an aircraft to a particular gate. The probability learning mechanism gathers
useful information from visited local optima, which is then advantageously
used during the subsequent search process to guide the algorithm toward
new promising regions. Second, the algorithm uses a powerful tabu search
procedure for local improvement, which relies on a mixed search strategy
exploring both feasible and infeasible search spaces due to the following
consideration. By relaxing the gate conflict constraint in a controlled man-
ner, the algorithm can go through feasible and infeasible search spaces to
locate high-quality solutions that are otherwise difficult to reach. Especially,
to prohibit the search from going too far away from the boundary of the
feasible search space, we devise an adaptive penalty-based fitness function
that is applied to guide the local search process for a fruitful examination
of candidate solutions.

- To assess the performance of the proposed algorithm on the GAP models,
we use the flight data collected from Incheon International Airport (ICN)
by Cheng et al. [12], and two other sets of instances generated by Karsu
et al. [33] from Ankara Esenboğa Airport (ESB) and Istanbul Atatürk Air-
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port (ISL). Extensive computational results on the three sets of real-world
benchmark instances show a highly competitive performance of PLFITS
compared with the reference metaheuristic algorithms for GAP. In partic-
ular, PLFITS reports improved best-known solutions (new upper bounds)
for all the 180 real-world instances with improvement ranging from 0.47%
up to 11.85%.

- To the best of our knowledge, existing heuristic approaches for GAP restrict
their search to feasible solutions only. This study is the first to mix feasible
and infeasible searches in the context of solving GAP. We perform compu-
tational assessments to verify the effectiveness of this mixed search strategy
for finding high-quality solutions. Moreover, the code of our algorithm will
be made available online, which can serve as a useful tool for researcher-
s and practitioners in airport planning and scheduling. Finally, given that
the proposed underlying search strategies are of general feature, they can
be beneficially adapted to related GAP variants where other objectives and
constraints are considered.

The rest of the paper is organized as follows. Section 3 provides the general
framework of PLFITS and its key algorithmic components. Section 4 presents
the computational results and comparisons with the reference algorithms. Sec-
tion 5 analyzes some significant characteristics of the proposed algorithm be-
fore conclusions are shown in Section 6.

2 Problem statement and mathematical formulation

Many GAP formulations and models have been proposed in the literature by
considering different objectives and constraints [10, 14]. Following the main-
stream research on GAP, we consider GAP as a single objective problem and
focus on improving passenger comfort. Precisely, we adopt a GAP definition
similar to that proposed in [12,13,57]. The model assigns each aircraft (flight)
to an available gate while ensuring that two aircraft with overlapping times
are not assigned to the same gate. The objective of the problem is to mini-
mize the total walking distance of the passengers. Three types of passengers
are considered in the problem, namely, the departing, arriving, and transfer
passengers. Three types of walking distances of the passengers are calculat-
ed, namely, the distance between a gate and exit, the distance between a
gate and the check-in desks, and the distance between two gates. The above-
mentioned model is a basis of many GAP variants and is widely extended
in the literature to other GAP formulations including single-objective GAP
and multi-objective GAP [15–18,41–43,60,61]. To formulate the problem as a
mixed integer nonlinear program, the following notations are used:

Parameters
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G: The set of airport gates;
F : The set of aircraft (flights);
ai: The arrival time of aircraft i;
di: The departure time of aircraft i;
c0i: The number of passengers departing from aircraft i;
ci0: The number of passengers arriving on aircraft i;
cij: The number of passengers transferring from aircraft i to aircraft j;
wlm: The walking distance between gates l and m;
wl0: The walking distance between gate l and the check-in desks;
w0l: The walking distance between gate l and exit;

Variables

xil: A binary decision variable taking the value of 1 if aircraft i is assigned
to gate l, and it is 0 otherwise.

On the basis of the abovementioned parameters and decision variables, GAP
can be formulated as the following mixed integer nonlinear program:

min Z(S) =
∑
i∈F

∑
j∈F

∑
l∈G

∑
m∈G

cijwlmxilxjm +
∑
i∈F

∑
l∈G

(ci0wl0 + c0iw0l)xil (1)

s.t.
∑
l∈G

xil = 1, ∀i ∈ F (2)

xilxjl(dj − ai)(di − aj) ≥ 0, ∀i, j ∈ F, ∀l ∈ G (3)

xi,l ∈ {0, 1}, ∀i ∈ F, ∀l ∈ G (4)

where the objective is to minimize the total walking distance for all passengers.
This objective function has been widely adopted in several studies, such as
[12,13,57]. The quadratic part of the objective function (1) is the total walking
distance for all transfer passengers, while the linear part is the total walking
distance for the arriving and departing passengers. Constraints (2) ensure
that each aircraft is assigned to exactly one gate. Constraints (3) guarantee
that two aircraft’s time cannot overlap if they are assigned to the same gate.
Constraints (4) indicate that the decision variables are binary.

3 The probability learning based feasible and infeasible tabu search
algorithm for GAP

In this section, we present our probability learning based feasible and infeasi-
ble tabu search for GAP. The proposed PLFITS algorithm integrates several
prominent ingredients responsible for its effectiveness, including a probability
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learning strategy to generate high-quality solutions, and a feasible and infea-
sible search with popular tabu technique to further improve the quality of
solutions.

Algorithm 1: Pseudo-code of PLFITS for GAP
Input: An instance, the number of available gates k, and the max running time

tmax.
Output: The best solution Sbest found so far.

1 Obest ← +∞; //Records the objective value of Sbest
2 for i = 1, 2, ..., n do
3 for j = 1, 2, ..., k do
4 pij ← 1/k;

5 while Time() < tmax do
6 Sinitial ← Gate Selection(P );
7 Starget ← Feasible And Infeasible Tabu Search(Sinitial);
8 if Z(Starget) < Obest then
9 Obest ← Z(Starget);

10 Sbest ← Starget;

11 P ← Probability Updating(Sinitial, Starget);
12 P ← Probability Smoothing(P );

13 return Sbest;

3.1 General Scheme

The PLFITS algorithm integrates a feasible and infeasible tabu search pro-
cedure [26] within the general learning based framework designed for the
well-known graph coloring problem [62]. During the PLFITS search process,
problem-specific knowledge is learned via its probability learning procedure.
The learned information, recorded in a probability matrix, is in turn applied
to guide the algorithm toward promising search regions. As such, PLFITS iter-
atively explores the given search space by alternating between the probability
learning procedure and the feasible and infeasible tabu search procedure to
attain a better balance of search diversification and intensification. Its gen-
eral scheme is summarized in Algorithm 1, which is composed of four main
components: a feasible and infeasible tabu search procedure, a gate selection
strategy, a probability smoothing technique, and a probability updating rule.

We adopt the probability matrix P of size n × k, where n is the number of
aircraft and k is the number of gates (i.e., n = |F |, k = |G|). Each element
pij (i ∈ F , j ∈ G) indicates the probability that aircraft i is assigned to gate
j. Thus, the i-th row in matrix P , denoted by pi, forms a probability vector
indicating the probability of an aircraft i ∈ F selecting each gate (refer to
Fig. 1 as an example). At the beginning of PLFITS, all the elements in the
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Fig. 1. Probability Matrix.

probability matrix are set to 1
k
, which means that all the aircraft are assigned

to a gate from the set of all available gates with equal probability.
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Select the gate for each aircraft 
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Met stop 

condition?

Yes
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Fig. 2. Schematic of PLFITS for GAP.

As shown in Algorithm 1, PLFITS first initializes the probability matrix P by
setting each element in P with equal probability. Then, the algorithm enters
its main search procedure in the “while” loop (lines 5–12 in Algorithm 1).
Each iteration of PLFITS consists of first assigning aircraft i ∈ F to a gate
j ∈ G according to a gate selection strategy (Section 3.2) that is based on
the probability matrix P . Once all the aircraft are assigned to a gate forming
an initial solution Sinitial, this solution is then further improved by the feasi-
ble and infeasible tabu search procedure to reach a local optimum denoted as
Starget (Section 3.3). Moreover, the best found solution Sbest is updated by the
resulting solution Starget if Starget is better than Sbest in terms of the objec-
tive function (Equation (1)). Thereafter, the probability matrix P is updated
by comparing Sinitial and Starget using the probability updating rule (Section
3.4), which rewards, penalizes, or compensates a gate. Finally, a probability
smoothing technique (Section 3.5) is applied to smooth each aircraft’s proba-
bility vector for forgetting some old decisions. The abovementioned process is
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repeated until a given time limit has been reached, and the best solution Sbest

found is returned as the final result of the PLFITS approach. The schematic
of PLFITS for GAP is depicted in Fig. 2. The four main components of the
PLFITS algorithm are described in detail in the following subsections.

3.2 Gate selection

At the beginning of each iteration of PLFITS, the gate selection procedure
is applied to construct an initial solution Sinitail, which is then submitted to
the feasible and infeasible tabu search for further improvement. In the gate
selection procedure, each aircraft i ∈ F needs to select a gate j ∈ G from
the k available gates according to the probability matrix P . Different selec-
tion strategies have been proposed in the literature, such as greedy selection,
random selection, hybrid selection, and roulette wheel selection [62].

After experimenting with the abovementioned selection strategies, we use the
hybrid selection strategy, a combination of greedy selection and random se-
lection. Specifically, it assigns the aircraft one by one. For each considered
aircraft i ∈ F , it is assigned to a gate selected at random with a probability ε,
while with probability 1− ε, it is assigned to the gate j having the maximum
associated probability in pi (i.e., j = argmaxm∈{1,...,k}{pim}). Such a hybrid
scheme is expected to take advantage of the greedy selection rule favoring the
gate j having the maximum associated probability and the random selection
rule bringing considerable randomness into the search to prevent the algorithm
from being too greedy.

Notably, the resulting solution produced by the gate selection procedure is not
necessarily a feasible one given that it may violate the gate conflict constraint,
which requires that the time for two aircraft assigned to the same gate cannot
overlap. Starting from such an initial solution, the feasible and infeasible tabu
search is launched to find an improved feasible solution.

3.3 Feasible and infeasible tabu search procedure

Once the gate selection phase obtains an initial starting solution S, the fea-
sible and infeasible tabu search procedure is invoked to further improve S
with the aim of finding a high-quality feasible solution. The proposed feasible
and infeasible tabu search shares a similar idea to the more general strate-
gic oscillation strategy [27], which permits the visit of the infeasible search
space to bring more search freedom. From this point of view, our local search
method can be viewed as an oscillation-based tabu search procedure. As shown
in several studies on strongly constrained problems [49, 52, 64], visiting inter-
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mediary infeasible solutions during the search process can efficiently enhance
the performance of neighborhood-based local search because it may facilitate
transitions between structurally different feasible solutions. Fig. 3 illustrates
such a situation in the case of GAP. As shown in the figure where {F1, F2, F3}
is the set of aircraft waiting for gate assignment, {Gate1, Gate2} is the set of
gates, and the X-axis indicates the arrival time and the departure time for
each aircraft, the solutions S1 and S4 in Fig. 3(a) are two feasible solutions,
and we assume that the objective value of solution S4 is better than that
of the solution S1. Owing to the presentation of the gate conflict constraint,
considering only feasible solutions can easily make a neighborhood-based local
search blocked. The reason is that any move operation in a local search, typ-
ically defined as re-assigning an aircraft or swapping two aircraft in different
gates, can lead to infeasible solutions. In such cases, constraint relaxation is
an attractive strategy. By relaxing the gate conflict constraint and visiting two
intermediary infeasible solutions S2 and S3 as shown in Fig. 3(b), the high-
quality feasible solution S4 can be easily accessed from the feasible solution
S1.
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Fig. 3. Example of feasible and infeasible tabu search.

Following the abovementioned idea, the proposed feasible and infeasible tabu
search procedure explores an enlarged search space including both feasible and
infeasible solutions. To allow the search to oscillate between the feasible and
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infeasible search spaces effectively, we design an extended evaluation function
f that combines the objective function of GAP (the total walking distance, re-
fer to Section 2) with a penalty function associated with the degree of solution
infeasibility (Section 3.3.1).

Algorithm 2: Pseudo-code of feasible and infeasible tabu search
Input: An instance; Sinitial: an initial solution; ω: the search depth, up: the

frequency of updating the penalty parameter.
Output: The local optimum feasible solution Starget found so far.

1 ϕ← 0;//Penalty parameter
2 Iter ← 0; //Iteration counter
3 NI ← 0; //Counts the consecutive iterations Starget is not improved
4 Sc ← Sinitial;//Solution of the current iteration
5 S ← Sinitial;//Solution with the best objective value
6 Otarget ← +∞; //Objective value of the feasible solution Starget
7 while NI < ω do
8 Choose a best admissible neighboring solution S′ ∈ N(Sc);
9 Sc ← S′;

10 NI ← NI + 1;
11 Iter ← Iter + 1;
12 if Sc is a feasible solution and f(Sc) < Otarget then
13 Otarget ← f(Sc);
14 Starget ← Sc;
15 NI ← 0;

16 if f(Sc) < f(S) then
17 S ← Sc;
18 NI ← 0;

19 if Iter mod up = 0 then
20 Update penalty parameter ϕ;

21 return Starget;

The general scheme of the feasible and infeasible tabu search is summarized in
Algorithm 2, while its main components are presented in detail in the following
sections. Starting from an initial solution Sinitial, which can be feasible or
infeasible, each iteration of the tabu search procedure consists of determining
an overall best admissible solution (with a maximum extended evaluation
function value) from the neighborhood of the current solution Sc produced by
the Re-assigning move operator. During the search process, the best-found
solution Starget is updated with Sc if Sc is feasible, and if its quality in terms of
the total walking distance is better than that of Starget. If an improvement in
terms of the objective function is not achieved during ω consecutive iterations,
then the best feasible solution Starget found during the search is returned as
the final output of the feasible and infeasible tabu search procedure.
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3.3.1 Search space and penalty-based evaluation function

A candidate solution to GAP is to partition all aircraft into k subsets S1, S2,
... , Sk, such that each subset includes all aircraft assigned to the same gate.
Then, the search space explored by our proposed algorithm, composed of both
feasible and infeasible solutions, is formally defined as follows:

Ω = {{S1, S2, ..., Sk} :
k⋃

i=1

Si = F, Si ∩ Sj = ∅, i 6= j, 1 ≤ i, j ≤ k} (5)

Given a candidate solution S ∈ Ω in the enlarged search space, its quality
is evaluated by an extended evaluation function (fitness) f which is a linear
combination of the basic objective function Z considering the walking distance
(Equation. (1) in Section 2) with a penalty function considering the degree of
solution infeasibility:

f(S) =
∑
i∈F

∑
j∈F

cijwr(i)r(j) +
∑
i∈F

(ci0wr(i)0 + c0iw0r(i)) + ϕ
∑
i∈F

tir(i) (6)

where r(i) (i ∈ F ) represents the gate assigned to aircraft i, and tir(i) de-
notes the number of aircraft which are allocated to the same gate as aircraft
i and have overlapping time with i. Thus,

∑
i∈F tir(i) evaluates the total in-

feasibility degree of the solution S by considering the number of conflicting
aircraft. ϕ is a parameter used to control the relative importance of the penal-
ty function

∑
i∈F tir(i). In general, increasing the value of ϕ will decrease the

attractiveness of infeasible solutions, while decreasing the value of ϕ makes in-
feasible solutions more attractive. In our feasible and infeasible tabu search, ϕ
is adaptively adjusted according to the search history. Precisely, ϕ is increased
by setting ϕ = ϕ+ τ if up consecutively visited solutions are all feasible ones
(up is a parameter). Meanwhile, ϕ is decreased by setting ϕ = ϕ − τ if up
consecutively visited solutions are all infeasible ones (ϕ = 0, if ϕ < 0). The
motivation behind this adaptive strategy is to keep a search balance between
feasible and infeasible search spaces. If the search is confined too much in the
feasible search spaces, then it is encouraged to move into an infeasible search
space by reducing ϕ. Conversely, if too many infeasible solutions are visited,
then the search is forced to move back to feasible search spaces by increasing
ϕ.

3.3.2 Move operator and neighborhood

To move from one solution to another in the search space, the feasible and
infeasible tabu search procedure employs the Re-assigning move, which dis-
places a single aircraft a ∈ A from its current gate i to another gate j.
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To efficiently calculate the move gain of a Re-assigning move denoted by
< s, i, j >, which indicates the variation in the fitness value f induced by the
Re-assigning move, we adopt a matrix T of size of n× k (n = |F |, k = |G|)
where element tij (i ∈ F , j ∈ G) indicates the number of aircraft which are
allocated to gate j and have overlapping time with aircraft i. With this T , the
move gain value of a Re-assigning move can be computed in O(n) time by

∆(< s, i, j >) = ϕ(tsj−tsi)−css(wjj−wii)+
n∑

u=1

(csu+cus)(wr(u)j−wr(u)i) (7)

Notably, the arrival and departure aircraft of some transferring passengers
could be the same, and passengers need to get off the arrival aircraft first and
then board the same aircraft in this situation. Therefore, we have css ≥ 0 (s ∈
F ) and wii ≥ 0 (i ∈ G).

After a Re-assigning move < s, i, j > is performed, the matrix T is updated
in O(n) time by amending the value of the elements affected by the move.
Specifically, for each aircraft v ∈ F \ {s}, if it has overlapping time with s,
then the value of the element tvj is increased by one, while the element tvi is
decreased by one. An illustrative example for this updating is given in Fig. 4,
where the left and middle parts respectively present a solution of GAP and
its associated matrix T , and the right part gives the updated matrix T after
re-assigning aircraft F2 from Gate3 to Gate2.
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Fig. 4. Illustrative example for move gain matrix update: (a) a given solution, (b)
its associated matrix T , and (c) updated matrix T after moving F2 from Gate3 to
Gate2.

3.3.3 Tabu list and tabu tenure management

To prevent the search from short-term cycling, each time an aircraft s is moved
from its original gate i to another gate j, it is forbidden to move the aircraft
s back to gate j for the next tt iterations (tt is a parameter called the tabu
tenure) [11,26]. However, the tabu status of a move is overridden if this move

13



leads to a solution of better quality (in terms of f) than the best solution
found during the search (aspiration criterion).

3.4 Probability updating

After the feasible and infeasible tabu search procedure is applied to improve
the initial solution Sinitial, the probability learning procedure is triggered to
update the probability matrix P by comparing the starting solution Sinitial

and the improved solution Starget for checking whether an aircraft was moved
from its original gate to another gate or if it stayed in the same gate as in
Sinitial.

Specifically, for each aircraft i ∈ F , if its gate l ∈ G is not changed, then we
reward its original gate l and update its probability vector pi as follows (t is
the current generation number):

pij(t+ 1) =

α + (1− α)pij(t) j = l

(1− α)pij(t) otherwise.
(8)

where α (0 < α < 1) is a reward factor.

If the aircraft i ∈ F is moved from its original gate l ∈ G to another gate
m ∈ G \ {l} in the improved solution Starget, then we penalize its former gate
l, compensate the new gate m, and update its probability vector pi as follows:

pij(t+ 1) =



(1− γ)(1− β)pij(t) j = l

γ + (1− γ)
β

k − 1
+ (1− γ)(1− β)pij(t) j = m

(1− γ)
β

k − 1
+ (1− γ)(1− β)pij(t) otherwise.

(9)

where β (0 < β < 1) is a penalization factor and γ (0 < γ < 1) is a compen-
sation factor.

With the help of the learning schemes (8) and (9) applied in each iteration
of the algorithm, the probability for an aircraft to select a correct gate is
expected to increase gradually. The probability updating scheme is based on
the reinforcement learning mechanism proposed by Zhou et al. [62, 63] which
is inspired by the learning automata (LA) [46]. The LA is a policy iteration
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method where the optimal policy is directly determined in the space of can-
didate policies [53]. An action probability vector is maintained and updated
in LA according to a specific probability learning technique or reinforcemen-
t scheme. Well-known reinforcement schemes include linear reward-penalty
and linear reward-inaction and aim to increase the probability of selecting
an action in the event of success and decrease the probability in the case of
failure [55].

3.5 Probability smoothing

After the probability learning procedure is applied to update the probability
matrix P , we employ a probability smoothing technique to further smooth
each aircraft’s probability vector due to the following consideration. Old de-
cisions made long ago can become useless and may even mislead the search.
Therefore, these aged decisions are considered less critical and should be erased
periodically.

The probability smoothing technique adopted in our PLFITS algorithm is
based on work of [62,63] inspired by the forgetting mechanisms in local search
algorithms for satisfiability [31]. It works as follows. For each element pim
(i ∈ A, m ∈ G), if its value achieves a given predefined threshold p0, then it is
reduced by multiplying a smoothing coefficient ρ (0 < ρ < 1) to forget some
earlier decisions. To ensure that the probability vector pi for each aircraft i
has a sum value of one after probability smoothing, we scale all k probabilities
pij(1 ≤ j ≤ k) by dividing them with a coefficient 1− (1−ρ)∗pim. Additional
details about the probability smoothing technique can be found in [62,63].

4 Computational assessment

In this section, we report extensive computational results of the proposed
PLFITS algorithm on three sets of real-world benchmark instances. Compar-
isons are made with several reference algorithms.

4.1 Benchmark instances and parameter setting

The first set contains 20 benchmark instances collected by Cheng et al. [12]
arising from ICN, South Korea. ICN is the largest airport in South Korea, and
it has two terminals. Following the work of [12] we only consider the gates and
exits of Terminal 1, as shown in Fig. 5. Terminal 1 has 74 gates and 14 exits.
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In these 20 instances, all 74 fixed gates are used, and all gates can handle the
largest aircraft. The number of flights varies from 279 to 304. ICN daily flight
data are obtained from FlightStats 1 .

The 20 instances can be classified into three groups by setting the percentage
of transfer passengers π respectively to 0.1, 0.3, and 0.5.

• Group 1 includes seven instances (one instance per weekday) with π = 0.1
(Unfortunately, the instance corresponding to Thursday is no more available
in the literature).
• Group 2 includes seven instances with π = 0.3.
• Group 3 includes seven instances with π = 0.5.
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Fig. 5. Gates and exits at Terminal 1 of ICN (Source: http-
s://www.airport.kr/ap/ch/map/mapInfo.do. Accessed on October 12, 2021).

The two other sets of real-world instances are generated by Karsu et al. [33]
and are respectively based on ESB and ISL. The two airports respectively
have 18 gates (nine domestic, nine international) and 38 gates (12 domestic,
26 international). The numbers of aircraft in these instances are set to be 50,
100, 150, and 200. According to the apron (remote gate) requirement, the 160
instances can be classified into the following two types:

• Low apron requirement: this group includes instances where the arrival time

1 http://www.flightstats.com/.
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ai of flight i is randomly taken in the interval [0, 300], while the departure
time di is randomly taken in the interval [ai + 30, ai + 60].
• High apron requirement: this group includes instances where the arrival time
ai of flight i is randomly taken in the interval [0, 150], while the departure
time di is randomly taken in the interval [ai + 60, ai + 120].

The proposed PLFITS algorithm is implemented in C++ and compiled by
GNU g++ with the -O3 option flag 2 . All experiments are conducted on a 2.6
GHz Intel E5-2670 computer with 2G RAM, running Linux.

Table 1
Parameter setting.

Parameter Section Description Considered values Final value

ε 3.2 noise probability {0.1, 0.2, 0.3, 0.4, 0.5} 0.3

ω 3.3 search depth of the local search {100, 200, 300, 400, 500} 200

up 3.3 frequency of updating the penalty parameter {3, 5, 7, 9, 11} 5

τ 3.3 adjustment to the value of the penalty parameter {5000, 10000, 15000, 20000, 25000} 10000

α 3.4 reward factor {0.05, 0.10, 0.15, 0.20, 0.25} 0.10

β 3.4 penalization factor {0.2, 0.3, 0.4, 0.5, 0.6} 0.5

γ 3.4 compensation factor {0.1, 0.2, 0.3, 0.4, 0.5} 0.3

ρ 3.5 smoothing coefficient {0.1, 0.3, 0.5, 0.7, 0.9} 0.5

p0 3.5 smoothing threshold {0.80, 0.85, 0.90, 0.95, 0.99} 0.99

The PLFITS algorithm requires nine parameters (Table 1). To tune these
parameters, we utilize the IRACE tool, which employs the iterated racing
method [3, 7, 38] to automatically determine the required parameters from a
set of finite parameter configurations. IRACE is run on five randomly selected
instances, and the tuning budget is set to be 2000 PLFITS executions with
a time limit of 200 seconds. The setting of the parameters recommended by
IRACE is shown as the final value in Table 1 and used for our experiments.

4.2 Computational results and comparisons with reference methods

Although various heuristic approaches have been proposed in the literature
to solve GAP, most of these approaches were tested on different benchmark
instances. Furthermore, most of these instances are not publicly available. For
this reason, we use those algorithms reporting results on the three sets of
real-world instances as the reference algorithms. These reference algorithms
include a simulated annealing tabu search (SATS) [12], a tabu search with
path relinking (TSPR) [13], and a filtered beam search (FBS) [33]. We also re-
implement two recent cutting-edge swarm intelligence algorithms, namely, an
improved ant colony optimization (REICMPACO) algorithm [17], and a fuzzy
bee colony optimization (REFBCO) algorithm [15]. As shown in [17] and [15],
REICMPACO and REFBCO achieve excellent performances for GAP. Thus,

2 The code of our algorithm will be publicly available at http-
s://github.com/MINGJIE666/GAP.

17



the two algorithms can be considered the cutting-edge algorithms for GAP.
Following the same experimental protocol of SATS and TSPR, we run PLFIT-
S, REICMPACO, and REFBCO independently with ten runs per instance,
each run is limited to 200 seconds. For the computational comparisons, given
that the source codes of SATS, TSPR, and FBS are unavailable, the numerical
results reported by the two algorithms are directly compiled from the original
papers.

Notably, the stopping conditions of these compared algorithms are different.
Specifically, TSPR terminates when 1100 iterations are reached. The termi-
nation criterion of SATS is that the cooling temperature attained a given
predefined threshold T = 0.01. FBS is set a time limit of one hour. Moreover,
these compared algorithms are executed under different computing platforms.
For instance, PLFITS, REICMPACO, and REFBCO are executed on a 2.6
GHz Intel E5-2670 computer, the TSPR and SATS are conducted on a Pen-
tium 4 2.8 GHz computer, and FBS is conducted on an Intel Core i7 2.70
GHz computer. By applying the Standard Performance Evaluation Corpora-
tion tool (www.spec.org) to compare the speeds of different processors [56],
the obtained scale ratios (2.6

2.8
= 0.93, 2.6

2.7
= 0.96) of the CPU frequencies in-

dicate that the processor used by our algorithm is slightly slower than those
used by the three other reference algorithms. Conducting an absolutely fair
comparison between PLFITS and the reference algorithms is difficult due to
the differences in computing platforms and termination conditions. The com-
parison mainly focuses on the solution quality in terms of the objective values,
while the timing information is provided only for indicative purposes.

4.2.1 Computational results on the ICN instances

Tables 2–4 summarize the comparative results of our PLFITS algorithm with
the four reference algorithms on the three groups of 20 benchmark instances
with π = 0.1, 0.3, 0.5, respectively. Column ‘fbk’ presents the best-known re-
sults obtained with the five reference algorithms. Columns ‘fbest’, ‘favg’ and
‘tavg’ respectively show the best objective value, average objective value, and
average running time in seconds to reach the final objective value across the ten
independent runs. Notably, that the average objective values of the reference
algorithms are unavailable. Column ‘Gap’ presents the percent gap between
the best objective value attained with PLFITS and the best-known result ‘fbk’,
which is computed as 100 ∗ (fbest− fbk)/fbk. A negative gap value indicates an
improved best result. In addition, the row ‘p-value’ presents the results from
the non-parametric Friedman test applied to the results of PLFITS and each
reference algorithm, where a p-value smaller than 0.05 implies a statistically
significant difference between the compared results.

From the results reported in Tables 2–4, we can make the following observa-
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tions.

First, the proposed PLFITS algorithm competes very favorably with the ref-
erence algorithms in terms of solution quality. For the fbest indicator, the
algorithm improves the current best-known results for the instances (as in-
dicated by the negative gap values). With the increase in π, the difficulty of
the instance also increases because the network of transferring passengers be-
comes more complex. The improvement ranges from at least 2.6% for all the
instances with π = 0.1 up to 11.85% for the instances with π = 0.5. Given
that π = 0.5 implies that half of the passengers are transit passengers, these
results indicate that the PLFITS algorithm is particularly effective for han-
dling this most challenging situation. The small p-values (less than 0.05) from
the non-parametric Friedman test further confirm the significant differences
between PLFITS and the compared algorithms on this group of instances.

Second, in terms of computational efficiency, the PLFITS algorithm also re-
mains very competitive. In fact, compared with the reference algorithms, our
algorithm requires less computation time to attain better solutions for all
the instances. This comparative assessment shows high competitiveness of the
proposed PLFITS algorithm on the ICN instances.

To further confirm the effectiveness of the proposed algorithm, we report the
comparative results of PLFITS with FBS, REICMPACO, and REFBCO on
the ESB and ISL instances in the next section.

4.2.2 Computational results on the ESB and ISL instances

To further evaluate the performance of the proposed PLFITS algorithm, we al-
so test our PLFITS algorithm on an extended GAP model proposed by Karsu
et al. [33] very recently. In this model, the number of fixed gates is insuffi-
cient to accommodate all aircraft. In this case, an aircraft will be assigned to
the apron (remote gate) as long as no gate nearing the terminal is available.
Usually, passengers from the gates arrive at their terminal by walking, while
passengers from the apron are brought to the terminal by transfer buses or
people movers. Thus, assigning an aircraft to the apron will increase passen-
gers’ discomfort and airport’s operating burden. The objective of this GAP
model is first to minimize the number of aircraft assigned to the apron and
then to minimize the total passenger walking distance among the solutions
with the minimum apron usage.

In general, the distance to the apron is significantly larger than that to any
fixed gate. As a result, assigning an aircraft to an apron will also lead to
solutions with a much larger objective value in terms of the total walking
distance traveled by all passengers. Thus, even if our PLFITS algorithm only
simply considers the objective of minimizing the passenger walking distance,
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it can also potentially minimize the number of apron assignments. Therefore,
we can adapt the proposed PLFITS algorithm directly to solve the extended
GAP model proposed by Karsu et al. [33].

Tables 5 and 6 show the computational results of PLFITS and the three
reference algorithms FBS, REICMPACO, and REFBCO on the ESB and ISL
instances. In Tables 5 and 6, each row includes ten instances of the same
size indicated by m × n, where m is the numbers of aircraft and n is the
number of fixed gates. Columns ‘Avg fbest’ and ‘Avg tbest’ respectively report
the average value of the minimum passenger walking distance obtained by
each algorithm on each set of ten instances and the average running time
in seconds required by these reference algorithms to reach their minimum
passenger walking distance on the ten instances. Column ‘#Apron’ reports the
number of instances for which the minimum number of apron usage is achieved
out of the ten instances. Notably, the number of minimum apron usage can be
obtained by solving the maximum cost network flow model [33]. However, the
assignment of the aircraft to the gate (apron) cannot be determined by this
model, and other exact or heuristic methods are needed for this assignment.

From Tables 5 and 6, we observe that the results obtained by our PLFITS
algorithm are highly competitive with those obtained by FBS, REICMPACO,
and REFBCO in terms of the passenger walking distance and the number of
minimum apron usage. Specifically, in terms of the walking distance, PLFITS
can achieve the new best solutions for all the 160 instances, with a reduction
rate to the total walking distance ranging from 0.47% up to 5.22%. In terms of
the number of minimum apron usage, PLFITS can reach the minimum number
on 123 cases out of the 160 instances (56 ESB instances and 67 ISL instances),
while this performance can be done by FBS, REICMPACO, and REFBCO,
respectively on 78, 90, and 87 cases. Furthermore, the small p-values (less
than 0.05) from the non-parametric Friedman test confirm the statistically
significant differences between PLFITS and the reference algorithms in terms
of the passenger walking distance and the number of minimum apron usage.

In summary, this comparative assessment further confirms the effectiveness
and robustness of the proposed PLFITS algorithm on different GAP models
and different data sets. In the next section, we show additional experiments
to analyze several vital algorithmic components of the PLFITS algorithm to
shed light on the understanding of its performance.
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Table 2
Comparative results on the 7 ICN instances with π = 0.1.

SATS TSPR REICMPACO REFBCO PLFITS

Date Instance size fbk fbest tavg fbest tavg fbest favg tavg fbest favg tavg fbest favg tavg Gap

Friday 294x74 26945560 27091415 170 26945560 185 26958710 27011620.50 176.53 26883430 27012830.00 185.65 25926530 26081164.50 114.82 -3.78

Saturday 290x74 26800315 27001350 174 26800315 185 26925450 27019545.00 159.43 26879255 26943900.50 174.65 25966585 26087735.00 95.25 -3.11

Sunday 304x74 29764555 30016505 193 29764555 201 29672665 29868690.50 169.63 29784010 29900010.50 165.32 28910295 29053005.00 104.92 -2.87

Monday 297x74 27554290 27554290 185 27668210 207 27370585 27435915.50 158.52 27054520 27210995.00 186.65 26699195 26852055.50 122.00 -3.10

Tuesday 290x74 25780535 26055045 180 25780535 196 25740330 25870370.00 189.98 25682365 25835390.00 179.53 24906875 24983420.50 122.11 -3.39

Wednesday 279x74 24875240 25092430 151 24875240 173 24552775 24689300.00 198.92 24883320 25087735.00 200.01 24227945 24315138.00 127.04 -2.60

Thursday* 289x74 27155365 27515505 168 27155365 190

p-value 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

* The data of Thursday instance is no more available in the literature.

Table 3
Comparative results on the 7 ICN instances with π = 0.3.

SATS TSPR REICMPACO REFBCO PLFITS

Date Instance size fbk fbest tavg fbest tavg fbest favg tavg fbest favg tavg fbest favg tavg Gap

Friday 294x74 29274210 29325270 184 29274210 196 28452540 28754265.00 185.45 29330105 29609035.50 175.65 27158465 27269086.00 143.94 -7.23

Saturday 290x74 28904000 29378545 194 29272310 224 29020050 29128185.00 167.14 28940975 29058645.00 165.41 26977360 27130970.50 117.11 -6.67

Sunday 304x74 31642165 31690910 199 31642165 226 31745625 31846000.50 178.63 31578310 31668465.00 184.63 29673555 29788407.00 136.52 -6.22

Monday 297x74 29798700 29798700 219 30025230 228 29837770 29965120.00 163.21 29413050 29601815.00 145.32 27739185 27887095.50 155.72 -6.91

Tuesday 290x74 27588135 28050095 189 27898320 211 27894450 27984420.50 167.58 27596960 27645165.00 167.34 25712685 25807973.00 131.25 -6.80

Wednesday 279x74 27588215 27816840 156 27588215 174 27577455 27605650.50 192.36 27605650 27711180.50 187.65 25456930 25637756.50 145.80 -7.73

Thursday 289x74 29402315 29472105 186 29402315 205 28509725 28798030.50 132.02 28347840 28696670.00 196.54 27056815 27218636.50 145.57 -7.98

p-value 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Table 4
Comparative results on the 7 ICN instances with π = 0.5.

SATS TSPR REICMPACO REFBCO PLFITS

Date Instance size fbk fbest tavg fbest tavg fbest favg tavg fbest favg tavg fbest favg tavg Gap

Friday 294x74 31304880 31679360 199 31304880 213 31816275 32139090.00 185.65 31519750 31816275.50 156.57 27879920 28099215.00 121.33 -10.94

Saturday 290x74 31337070 31436665 195 31337070 213 30738010 30913920.00 134.61 30868875 30868875.50 168.32 27971855 28036805.00 155.17 -10.74

Sunday 304x74 35011240 35011240 217 35050585 261 35403830 36070405.50 147.32 34260520 34434270.00 175.63 30861150 30981396.00 166.91 -11.85

Monday 297x74 31900725 31989310 213 31900725 234 30875445 31177835.50 169.31 29872170 30403815.00 197.47 28559395 28692073.50 165.01 -10.47

Tuesday 290x74 29858750 30112340 198 30069210 223 29224860 29442845.50 184.23 28912285 29113960.00 179.32 26664255 26782922.00 120.78 -10.70

Wednesday 279x74 29667010 29751435 175 29667010 201 27259495 27512960.00 173.65 28135610 28393500.00 185.65 26457175 26615683.50 134.41 -10.82

Thursday 289x74 31725500 31896375 194 31755335 228 29323555 29707640.50 197.61 29274900 29420465.00 163.54 28087180 28266150.00 155.12 -11.47

p-value 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
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Table 5
Comparative results on 80 ESB instances.

FBS REICMPACO REFBCO PLFITS

Apron requirement Instance size Avg fbest Avg tbest #Apron Avg fbest Avg tbest #Apron Avg fbest Avg tbest #Apron Avg fbest Avg tbest #Apron Avg Gap

Low 50x18 25482.2 0.54 10/10 27896.3 154.13 10/10 26879.3 96.64 10/10 25123.6 72.62 10/10 -1.96

100x18 91566.9 7.20 2/10 93256.8 114.65 3/10 91641.3 112.87 4/10 87640.2 85.21 10/10 -4.40

150x18 174984.3 30.84 0/10 181234.5 135.63 0/10 184631.2 97.32 0/10 173854.3 76.32 0/10 -0.57

200x18 344250.2 91.32 0/10 365953.1 126.74 0/10 354213.6 73.21 0/10 342005.3 115.65 0/10 -0.58

High 50x18 81056.4 0.36 4/10 85214.6 102.52 6/10 83542.4 85.62 5/10 78345.6 76.27 10/10 -2.47

100x18 210763.8 4.71 5/10 232564.5 95.65 6/10 225634.3 114.21 5/10 209135.5 85.32 10/10 -0.47

150x18 297333.2 21.10 5/10 325745.1 89.72 5/10 315263.4 164.96 6/10 295213.3 99.14 9/10 -0.67

200x18 494978.9 67.63 5/10 548564.3 73.25 5/10 536254.7 189.56 6/10 494635.9 112.62 7/10 -0.48

#Best 0/80 31/80 0/80 35/80 0/80 36/80 80/80 56/80

p-value 4.7e-3 4.7e-3 4.7e-3

Table 6
Comparative results on 80 ISL instances.

FBS REICMPACO REFBCO PLFITS

Apron requirement Instance size Avg fbest Avg tbest #Apron Avg fbest Avg tbest #Apron Avg fbest Avg tbest #Apron Avg fbest Avg tbest #Apron Avg Gap

Low 50x38 36178.8 4.30 10/10 38645.8 185.21 10/10 37925.3 54.65 10/10 35420.2 118.32 10/10 -2.76

100x38 84792.7 71.58 10/10 86452.3 146.45 10/10 88126.5 113.21 10/10 83820.9 105.21 10/10 -1.18

150x38 124072.7 361.24 10/10 135483.1 139.69 10/10 128362.2 184.62 10/10 120532.1 65.85 10/10 -3.22

200x38 249024.6 1094.92 4/10 276532.9 95.54 5/10 254563.2 129.63 6/10 236523.2 95.32 7/10 -5.22

High 50x38 58165.0 4.24 10/10 61235.6 182.32 10/10 57698.5 132.52 10/10 56127.5 78.58 10/10 -3.44

100x38 278693.7 60.91 1/10 294652.1 132.52 3/10 280321.3 179.32 1/10 268432.1 87.12 9/10 -3.60

150x38 443563.6 281.09 0/10 463252.3 112.87 3/10 456325.6 185.62 2/10 435216.3 76.53 8/10 -2.25

200x38 798524.5 804.25 2/10 812369.5 142.37 2/10 823641.2 156.27 2/10 796231.2 143.95 3/10 -0.50

#Best 0/80 47/80 0/80 55/80 0/80 51/80 80/80 67/80

p-value 4.7e-3 4.7e-3 4.7e-3
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5 Analysis

In this section, we analyze the two essential ingredients of the proposed al-
gorithm to verify their impacts on the algorithm’s performance, namely, the
probability learning strategy and the feasible and infeasible search strategy.
Then, we perform the sensitivity analysis to show the impact of parameters.

5.1 Effect of the probability learning strategy

Table 7
Comparative results between FITS and PLFITS on the 20 ICN instances with
π = 0.1, 0.3, 0.5.

fbest favg ts

Instance size π FITS PLFITS FITS PLFITS FITS PLFITS

Friday 294x74 0.1 26325490 25926530 26555265.0 26081164.5 163.29 114.82

Saturday 290x74 0.1 26213935 25966585 26474211.5 26087735.0 182.02 95.25

Sunday 304x74 0.1 29024365 28910295 29348397.5 29053005.0 135.40 104.92

Monday 297x74 0.1 27053175 26699195 27339034.0 26852055.5 153.23 122.00

Tuesday 290x74 0.1 25211755 24906875 25443803.0 24983420.5 164.61 122.11

Wednesday 279x74 0.1 24555800 24227945 24718988.0 24315138.0 159.13 127.04

Friday 294x74 0.3 27831740 27158465 28007535.5 27269086.0 149.63 143.94

Saturday 290x74 0.3 27317185 26977360 27534134.5 27130970.5 152.89 117.11

Sunday 304x74 0.3 29910640 29673555 30352146.5 29788407.0 156.58 136.52

Monday 297x74 0.3 28133755 27739185 28588243.5 27887095.5 163.97 155.72

Tuesday 290x74 0.3 25944565 25712685 26279554.0 25807973.0 173.36 131.25

Wednesday 279x74 0.3 26109645 25456930 26288654.5 25637756.5 181.38 145.80

Thursday 289x74 0.3 27535070 27056815 27984739.5 27218636.5 159.91 145.57

Friday 294x74 0.5 28544040 27879920 28815379.0 28099215.0 179.67 121.33

Saturday 290x74 0.5 28232265 27971855 28751689.0 28036805.0 135.93 155.17

Sunday 304x74 0.5 31186605 30861150 31690562.5 30981396.0 123.37 166.91

Monday 297x74 0.5 29026455 28559395 29645604.5 28692073.5 156.76 165.01

Tuesday 290x74 0.5 27205970 26664255 27428849.5 26782922.0 160.22 120.78

Wednesday 279x74 0.5 26705795 26457175 27183861.0 26615683.5 168.00 134.41

Thursday 289x74 0.5 28567675 28087180 29000327.5 28266150.0 149.06 155.12

#Best 0 20 0 20 4 16

Average 27531796.25 27144667.50 27871549.00 27279334.43 158.42 134.04

p-value 8e-6 8e-6 7e-3

The probability learning strategy is a significant component of our PLFITS
algorithm. To shed light on the benefit of this strategy, we compare PLFITS
with a PLFITS variant (named by FITS), where (i) the probability learning
strategy is removed from PLFITS and (ii) the initial solution for each round
of the algorithm is randomly constructed instead of relying on the probability
matrix P .

This study is based on the 20 instances used in Section 4. PLFITS and its
variant version FITS are run ten runs independently with a time limit of 200
seconds per run to solve each instance. The comparative results are summa-
rized in Table 7 with the same information as in Section 4.2. In addition, the
row ‘#Best’ shows the number of instances for which each compared algorithm
attains the best results between the two compared approaches.

Table 7 indicates that, in terms of the best and average objective values,
PLFITS dominates FITS for all the instances. In terms of the running time,
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PLFITS is more efficient for 16 out of the 20 instances. Furthermore, the
p-values from the non-parametric Friedman test confirm a statistically sig-
nificant difference between PLFITS and FITS in terms of the best objective
values, average objective values, and average computation times. This ex-
periment indicates that the probability learning strategy is important to the
performance of the proposed algorithm.

5.2 Usefulness of the feasible and infeasible search

As introduced in Section 3.3, the PLFITS algorithm employs a feasible and
infeasible search mechanism to explore the search space of GAP. PLFITS
is compared with an algorithmic variant (called PLFTS), where only feasible
solutions are allowed to verify the importance of this mixed search mechanism.
To achieve this, we strongly penalize any infeasible solution by setting the
penalty coefficient ϕ of the extended evaluation function (Eq. 6, Section 3.3.1)
to an extremely large value. We run both methods using the same instances
and the same experimental protocol as described in Section 5.1.

Table 8
Comparative results between PLFTS and PLFITS on the 20 ICN instances with
π = 0.1, 0.3, 0.5.

fbest favg ts

Instance size π PLFTS PLFITS PLFTS PLFITS PLFTS PLFITS

Friday 294x74 0.1 26102510 25926530 26146190.5 26081164.5 105.53 114.82

Saturday 290x74 0.1 26041120 25966585 26232517.5 26087735.0 107.38 95.25

Sunday 304x74 0.1 29161050 28910295 29280455.0 29053005.0 153.67 104.92

Monday 297x74 0.1 26931095 26699195 27010025.5 26852055.5 134.74 122.00

Tuesday 290x74 0.1 24873590 24906875 25097676.5 24983420.5 103.51 122.11

Wednesday 279x74 0.1 24317780 24227945 24428795.0 24315138.0 110.41 127.04

Friday 294x74 0.3 27258735 27158465 27398108.0 27269086.0 138.54 143.94

Saturday 290x74 0.3 27210570 26977360 27307298.5 27130970.5 120.47 117.11

Sunday 304x74 0.3 29879825 29673555 30029998.0 29788407.0 108.55 136.52

Monday 297x74 0.3 27973160 27739185 28072872.5 27887095.5 130.23 155.72

Tuesday 290x74 0.3 25887825 25712685 25959695.0 25807973.0 148.83 131.25

Wednesday 279x74 0.3 25607065 25456930 25802067.0 25637756.5 110.66 145.80

Thursday 289x74 0.3 27262465 27056815 27390705.0 27218636.5 144.28 145.57

Friday 294x74 0.5 28122755 27879920 28298139.0 28099215.0 124.26 121.33

Saturday 290x74 0.5 28045115 27971855 28201434.5 28036805.0 106.60 155.17

Sunday 304x74 0.5 30996540 30861150 31194997.5 30981396.0 150.79 166.91

Monday 297x74 0.5 28740995 28559395 28898781.0 28692073.5 133.58 165.01

Tuesday 290x74 0.5 26791695 26664255 26994782.0 26782922.0 132.90 120.78

Wednesday 279x74 0.5 26525680 26457175 26672817.0 26615683.5 113.21 134.41

Thursday 289x74 0.5 28215415 28087180 28405748.5 28266150.0 145.97 155.12

#Best 1 19 0 20 12 8

Average 27297249.25 27144667.50 27441155.18 27279334.43 126.21 134.04

p-value 6e-6 8e-6 0.18

Table 8 summarizes the comparative results between PLFITS and PLFTS.
From Table 8, one observes that PLFITS fully dominates PLFTS in terms
of the best and average objective values, and the statistically significant dif-
ference between PLFITS and the variant PLFTS is confirmed by the small
p-values from the non-parametric Friedman test. In terms of the average com-
putation time, PLFITS needs slightly more time than PLFTS (134.04 seconds
vs. 126.21 seconds) to reach their best solutions, which may be of different
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quality. This experiment clearly demonstrates that the feasible and infeasible
search mechanism positively contributes to the performance of the algorithm.

5.3 Sensitivity analysis of the parameters

The PLFITS algorithm requires nine parameters as shown in Table 1, includ-
ing ε (noise probability), ω (search depth of the local search), up (frequency
of updating the penalty parameter), τ (adjustment to the value of the penal-
ty parameter), α (reward factor), β (penalization factor), γ (compensation
factor), p0 (smoothing threshold), and ρ (smoothing coefficient).

We first perform a 2-level full factorial experiment [45] to test the interaction
effects among these nine parameters. The low and high levels of each parame-
ter are respectively set as the smallest and largest values in Table 1. Given that
each parameter has two levels, this leads to a total of 512 (29 = 512) combina-
tions for the nine parameters. The experiment is conducted on five randomly
selected instances used in Sections 4.1. Each instance is independently solved
20 times under a time limit of 200 seconds per run for each combination of
parameters. Then the average results of the best objective values obtained on
the five instances are considered for each parameter combination. The Fried-
man test indicates no statistically significant difference (p-values > 0.05) in
terms of the considered average results, implying that the interaction effects
among these nine parameters are not statistically significant.

Then for each single parameter, we perform a one-at-a-time sensitivity analysis
[30] to analyze the influence of the parameter on the performance of PLFITS
and to determine its most suitable value. To achieve this, we test its value
within the range of possible values as listed in Column 4 of Table 1 while
fixing the other parameters to their default values in Table 1. The PLFITS
algorithm is independently run 20 times under a time limit of 200 seconds
per run for each parameter value. We report the obtained best objective value
(denoted by Φbest) and the average objective value (denoted by Φavg) across
the 20 runs on the five instances in Fig. 6, where the X-axis indicates the
values of each parameter, and the Y -axis presents the best/average gaps to
the best-known results over the five instances. From Fig. 6, we observe that
the recommended parameter values from this calibration experiment are the
same as those recommended by IRACE.

Furthermore, we employ the Friedman test to determine whether there exists
a statistically significant difference in solution qualities for different values of
a given parameter. The Friedman test indicates that the PLFITS algorithm
is sensitive to the setting of ε (with p-value = 0.008), and α (with p-value =
0.038), while this is not the case for the other parameters. The PLFITS algo-
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rithm is sensitive to ε, possibly due to the fact that a too small/large εmay lead
to a too greediness/randomness into the probability learning procedure. Sim-
ilarly, increasing/decreasing the value of α means strengthening/weakening
the power of the probability matrix, making the probability learning proce-
dure more greedy/random. Thus, suitable values for the ε and α parameters
are critical to the performance of the PLFITS algorithm. To sum up, there
are no significant interaction effects among the nine parameters required by
PLFITS. Meanwhile, PLFITS is sensitive to the settings of ε and α. Therefore,
if the user needs to tune the parameters, more effort should be devoted to ε
and α.
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Fig. 6. Sensitivity analysis of the parameters with the significance level of 0.05.
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6 Conclusion

We proposed an effective heuristic algorithm for the airport gate assignment
problem, which is one complex and vital decision problem in airport facility
management. The algorithm relies on a probability learning strategy to build
initial assignments, which are improved by a feasible and infeasible tabu search
procedure. The probability learning component uses the idea of reinforcement
learning to gain useful information from past solutions to create new promising
solutions. The feasible and infeasible tabu search component explores both
feasible and infeasible candidate solutions to attain high-quality solutions.

We assessed the performance of the proposed algorithm on three sets of 180
real-world GAP benchmark instances collected from ICN [12], ESB [33], and
ISL [33]. Experimental evaluations demonstrate that the algorithm competes
very favorably with reference GAP methods in the literature by finding im-
proved best-known results (i.e., new upper bounds) for all the 180 real-world
instances. We also conducted additional experiments to study the impacts of
the probability learning strategy and the feasible and infeasible search mech-
anism. The code of the algorithm will be publicly available. Practitioners and
researchers working on GAP and related problems can benefit from the code
to solve their problems.

The proposed algorithm benefits from the probability learning and the mixed
feasible-infeasible search strategies. Given that these strategies are rather gen-
eral and contribute significantly to the performance of the proposed algorithm,
it would be very interesting to investigate their interest in tackling other air-
port gate assignment problems with different objectives and constraints or
other problems with complex constraints. We also realize that the proposed
algorithm has several weaknesses. First, given that it is a heuristic algorithm,
how far the solutions attained by the algorithm are from the optimal solution-
s cannot be determined. As a result, more efforts are needed to investigate
exact and approximation methods with quality guarantees. Second, the pro-
posed algorithm requires nine parameters, which makes the task of parameter
tuning delicate. Therefore, efforts on reducing the number of parameters and
designing methods for automatic parameter tuning are of great interest.
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