
Probability learning based tabu search for the
Budgeted Maximum Coverage Problem

Liwen Lia, Zequn Weib, Jin-Kao Haob, Kun Hea,∗

aSchool of Computer Science, Huazhong University of Science and Technology, Wuhan
430074, China

bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, Cedex 01, France

Expert Systems with Applications, 2021
https://doi.org/10.1016/j.eswa.2021.115310

Abstract

The Budgeted Maximum Coverage Problem (BMCP) is a general model with a
number of real-world applications. Given n elements with nonnegative profits,
m subsets of elements with nonnegative weights and a total budget, the BMCP
aims to select some subsets such that the total weight of the selected subsets
does not exceed the budget, while the total profit of the associated elements
is maximized. BMCP is NP-hard and thus computationally challenging. We
investigate for the first time an effective practical algorithm for solving this
problem, which combines reinforcement learning and local search. The algo-
rithm iterates through two distinct phases, namely a tabu search phase and a
probability learning based perturbation phase. To assess the effectiveness of the
proposed algorithm, we show computational results on a set of 30 benchmark
instances introduced in this paper and present comparative studies with respect
to the approximation algorithm, the genetic algorithm and the CPLEX solver.

Keywords: Budgeted maximum coverage problem; Learning-based optimiza-
tion; Tabu search; Combinatorial optimization.

1. Introduction

We address the challenging Budgeted Maximum Coverage Problem (BMCP)
(Khuller et al., 1999), which is a natural extension of the standard 0-1 Knapsack
Problem (Kellerer et al., 2004) and the set cover problem (Balas and Padberg,
1972). Let E = {1, 2, ..., n} be a set of n elements where each element j ∈ E has
a nonnegative profit pj > 0 and I = {1, 2, ...,m} be a collection of m sets (or
items) where each set (item) i ∈ I has a nonnegative weight wi > 0 and covers
a subset of elements Ei ⊆ E determined by a relationship matrix M. Given a

∗Corresponding author.
Email address: brooklet60@hust.edu.cn (Kun He)
The first two authors contributed equally to this work.

Preprint submitted to Elsevier June 25, 2021

budget (a knapsack with capacity) C > 0, the BMCP aims to select a subset
S ⊆ I such that the total weight W (S) of the selected sets does not exceed the
budget and the total profit P (S) of the covered elements is maximized. Note
that for a subset S ⊆ I, the profit pj of an element j is counted only once even
if the element may belong to multiple selected sets.

Formally, the BMCP can be stated as follows.
Maximize P (S) =

∑
j∈∪i∈SEi

pj
s.t. W (S) =

∑
i∈S wi 6 C,S ⊆ I

The BMCP is closely related to the NP-hard set cover problem and 0-1
knapsack problem. If each set has a unit cost, the BMCP corresponds to a
variant of the weighted set cover problem (Nemhauser et al., 1978) of picking K
sets such that the total profit of the covered elements is maximized. Further, if
each element also has a unit profit, the BMCP corresponds to a variant of the
set cover problem (Hochba, 1997) of picking K sets such that the total number
of covered elements is maximized. In a very simplified case where the sets and
elements have a one-to-one mapping, the BMCP degenerates into the NP-hard
0-1 knapsack problem with weighted costs and profits.

As a generalized form of the NP-hard set cover problem and the NP-hard
0-1 knapsack problem, the BMCP is not only theoretically interesting, but also
valuable for various applications, such as service provider operations, location
of network monitors (Suh et al., 2006), news recommendation systems (Li et al.,
2011), worker employment, financial decision making, software package instal-
lation, facility location (Khuller et al., 1999), and hybrid Software Defined Net-
work (SDN) optimization (Kar et al., 2016). However, the BMCP was mainly
investigated in terms of approximation algorithms. In particular, a (1 − 1/e)-
approximation greedy algorithm was proposed in (Khuller et al., 1999), which is
also the best possible approximation unless NP ⊆ DTIME(nO(loglogn)). Given
its high complexity, it is clear that such an algorithm has limited interest for
practical applications. Since then, several approximation algorithms have been
proposed for extensions of BMCP (Cohen and Katzir, 2008; Piva, 2019; van
Heuven van Staereling et al., 2016), but little work has been done on the heuris-
tic or meta-heuristic side. In 2016, Kar et al. formulated the hybrid Software
Defined Network (SDN) optimization problems as a variant of BMCP, and pro-
posed two greedy heuristic algorithms (Kar et al., 2016).

In this work, we aim to fill the gap by designing an effective practical algo-
rithm for solving the BMCP. Our main contributions are summarized as follows.

� First, we introduce a mathematical model of the BMCP and propose an
efficient practical algorithm for the problem that combines tabu search
based local optimization and reinforcement learning based perturbation to
reach a suitable balance between search intensification and diversification.

� Second, we introduce a set of 30 benchmark instances with varied prop-
erties and report computational results obtained with the proposed al-
gorithm. These would be useful for future work on the BMCP, e.g., to
evaluate the performance of other algorithms for this problem.

2

� Third, we investigate for the first time the general CPLEX solver for solv-
ing the BMCP and compare its results with those from the proposed algo-
rithm. For the performance assessment, we also apply an approximation
algorithm and a genetic algorithm for solving the BMCP. Experimental
results demonstrate that our approach outperforms the general CPLEX
solver and the two reference algorithms.

The rest of the paper is organized as follows. In Section 2, we provide a
formal definition of the problem and illustrate its possible applications, followed
by a review of related work in Section 3. In Section 4, we introduce the general
framework and the composing ingredients of the probability learning based tabu
search. Section 5 shows computational results and comparisons of PLTS with
the approximation algorithm, the genetic algorithm and the CPLEX solver.
We also analyze the parameters and carry out an ablation study to show the
effectiveness of the probability learning based perturbation strategy in Section
6. Section 7 concludes the work.

2. Budgeted Maximum Coverage Problem

2.1. Problem Definition and Formulation

We formulate the Budgeted Maximum Coverage Problem (BMCP) using a
0/1 integer linear programming model, which is also suitable for the general
Integer Linear Programming (ILP) solver CPLEX.

Given a collection of sets (items) I = {1, 2, ...,m} where each set (item)
i ∈ I has a weight wi > 0, and a set of elements E = {1, 2, ..., n} where each
element j ∈ E has a profit pj > 0, we are asked to select a subset of sets S ⊆ I
such that the total weight W (S) of the selected sets does not exceed the budget
(knapsack capacity) C and the total profit P (S) of their covered elements is
maximized.

Let yi (i = 1, 2, ...,m) be a binary variable such that yi = 1 if set i is selected,
and yi = 0 otherwise. Let M be an m × n binary relationship matrix between
m sets and n elements where Mij = 1 indicates the presence of element j in

set i. For each element j (j = 1, 2, ..., n), define Hj =
m∑
i=1

yiMij that counts

the number of appearances of element j in the sets. Let xj be a binary variable
such that xj = 1 if Hj > 0, and xj = 0 otherwise.

The BMCP can be formulated as the following integer linear program:
Maximize P (S) =

n∑
j=1

xjpj

s.t. (1) W (S) =

m∑
i=1

yiwi 6 C

(2) yi ∈ {0, 1}, i = 1, . . . ,m

(3) Hj =

m∑
i=1

yiMij , j = 1, . . . , n

3

(4) xj =

{
1, if Hj > 0;

0, otherwise.

2.2. Possible Applications

The BMCP exhibits a wide range of real-world applications. To name only
a few, we provide the following application scenarios.

� Software package installation. Assume that a computer server has a
certain storage capacity, and it needs to install some application software
packages, each of which has a certain profit and needs to install some de-
pendent packages in advance, which occupy a certain amount of memory
space. An important decision is which set of packages should be installed
to maximize the software profits without exceeding the server storage ca-
pacity limit. In the BMCP model of this application, each set corresponds
to a package and each element corresponds to a software package. The
weight of each set equals the amount of memory required for the corre-
sponding package, and the profit of each element equals the profit of each
software.

� Service provider operations. The budget corresponds to the budget
of a service provider, and each element corresponds to a service that can
be carried out in a city. Each service has a profit, but needs to establish
a facility beforehand, for example the base station, for the service. The
service can be supported by any of the associated facilities, and each facil-
ity needs a certain building cost. The service provider needs to determine
which subset of facilities to be built under the budget so as to earn a
maximized profit on the associated services.

� Worker employment. A company has an employment budget for work-
ers. Each worker has several skills, and each skill has a priority score bas-
ing on its importance to the company if covered by at least one employed
worker. Thus, a set corresponds to a worker and an element corresponds
to a skill. The goal is to employ workers under the total budget such that
the required total skill score for the company is maximized.

� Financial decision making. The budget corresponds to a company’s
project investment budget. Each set corresponds to an investment leader,
together with a certain employment cost and a variety of projects to be
invested. Each element corresponds to a project, together with a certain
profit if invested. The goal is to hire a subset of the project leaders under
the total budget to maximize the total profit of the associated projects.

� Program assignment. The programmers have a total budget of working
time, and each program writing takes a certain amount of time. So each
program corresponds to a set with a time cost. A task is related to several
programs and we could earn a profit if any one of the associated programs
is completed. We need to assign a subset of programs to the programmers
under the total budget time so that the total profit is maximized.

4

3. Related Work

For related work, we discuss the BMCP and its related problems as well as
approaches combining heuristics with learning techniques.

3.1. Existing work for the BMCP

The BMCP is studied theoretically on approximation algorithms early in
1999 (Khuller et al., 1999), in which the authors presented a (1−1/e)-approximation
algorithm, and claimed it is the best possible approximation unless NP ⊆
DTIME(nO(loglogn)). Followup works are on approximation algorithms for ex-
tension or generalized versions of the BMCP (Cohen and Katzir, 2008; Piva,
2019; van Heuven van Staereling et al., 2016). To the best of our knowledge,
little work is done from the perspective of heuristics or meta-heuristics for the
BMCP. Recently in 2016, Kar et al. formulated the maximum coverage mini-
mum cost hybrid Software Defined Network (SDN) optimization problems both
for path coverage and hop coverage, and proposed two efficient greedy heuristic
algorithms, the maximum number of uncovered paths first and maximum num-
ber of minimum hop covered paths first for the BMCP variant problem (Kar
et al., 2016). Given the high complexity of the BMCP, the approximation of
(1 − 1/e) has limited interest for practical applications, and it is valuable to
design efficient and effective algorithms.

We observe that the existing studies focused on the theoretical aspects of
the BMCP, while ignoring the practical solution approaches. This work fills this
gap by presenting an efficient metaheuristic algorithm for solving the BMCP.

3.2. The BMCP Related Problems

As mentioned in Section 1, the BMCP degenerates to the well-known set
cover problem (Balas and Padberg, 1972) when the weight wi, i ∈ I and profit
pj , j ∈ E are all set to 1. In such a case the goal of BMCP reduces to cover
as many elements as possible. The BMCP can also be reduced to the standard
NP-hard 0-1 Knapsack Problem (Kellerer et al., 2004) when m = n and each
set i ∈ I covers exactly one element i ∈ E. As a generalization problem of the
two typical NP-hard problems, the BMCP is computationally challenging.

Moreover, the BMCP is highly related to the Set-Union Knapsack Problem
(SUKP) (Goldschmidt et al., 1994). In the SUKP, each set (item) i has a
nonnegative profit pi and each element j has a nonnegative weight wj . The
goal of SUKP is to package a subset S of sets (items) in order to maximize the
total profit P (S) of the selected sets (items), while the total weight W (S) of
the covered elements does not exceed the knapsack capacity C.

The SUKP can be formulated as follows:
Maximize P (S) =

∑
j∈S pj

s.t. W (S) =
∑
i∈∪j∈SEj

wi 6 C.

The BMCP swaps the attributes of sets (items) and elements (see Figure 1),
and thus we call BMCP the “dual” problem of SUKP, and SUKP the “dual”
problem of BMCP. The SUKP has received increasing attention in recent years.

5

Early in 1994, Goldschmidt et al. first presented an exact algorithm based on
dynamic programming to solve the SUKP (Goldschmidt et al., 1994). In 2014,
Arulselvan presented a greedy strategy based on an approximation algorithm
(Arulselvan, 2014). Recently in 2016, Taylor designed an approximation algo-
rithm using results of the related densest k-subhypergraph problem (Taylor,
2016). Then He et al. developed a binary artificial bee colony algorithm for the
SUKP in 2018 (He et al., 2018). In 2019, Wei et al. proposed an iterated two-
phase local search called I2PLS (Wei and Hao, 2019), and Geng et al. presented
a hybrid binary particle swarm optimization with tabu search (Lin et al., 2019).
In 2020, He et al. proposed a hybrid Jaya algorithm for solving the SUKP (Wu
and He, 2020). Very recently, Wei et al. introduced two heuristic algorithms
and achieved remarkable results on the SUKP (Wei and Hao, 2020, 2021).

Set with weight Element with profit Set with profit Element with weight

BMCP SUKP

W1

W2

W3

W4

W5

W1

W2

W3

W4

W5

W6

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

Fig. 1. Relationship of the BMCP and the SUKP.

For the two highly related knapsack problems, the SUKP has received a lot
of attention in recent years, while the BMCP has been overlooked. It would be
meaningful to develop the mathematical model and solution approaches for the
BMCP.

Furthermore, there are some other extensions that are related to the BMCP,
such as the generalized maximum coverage problem (Cohen and Katzir, 2008),
wherein the authors used a variation of greedy algorithm to settle an extension
of the BMCP; the maximum coverage problem with group budget constraint
(Chekuri and Kumar, 2004), wherein the authors studied a variant of the BMCP
that labeled the maximum coverage problem with group budget constraints;
the budgeted maximum coverage with overlapping costs (Curtis et al., 2010),
wherein the authors modeled the problem of monitoring a listserv as a type
of the BMCP; the ground-set-cost budgeted maximum coverage problem (van
Heuven van Staereling et al., 2016), which is a natural variant of the BMCP,
etc.

3.3. Combining Learning with Heuristics
In recent years, researches on combining heuristics with learning techniques

have received increasing attention. In 2001, Boyan and Moore proposed a learn-

6

ing evaluation function to improve the optimization by local search (Boyan
and Moore, 2000). In 2016, Zhou et al. introduced a reinforcement learning
based local search (RLS) for solving grouping problems (Zhou et al., 2016). In
2017, Wang and Tang presented a machine-learning based memetic algorithm
for the multi-objective permutation flowshop scheduling problem (Wang and
Tang, 2017). And Benlic et al. proposed a hybrid breakout local search and
reinforcement learning approach to the vertex separator problem (Benlic et al.,
2017). In 2020, Wang et al. combined local search and reinforcement learn-
ing for the minimum weight independent dominating set problem (Wang et al.,
2020).

In this work, we present a probability learning based local search to ad-
dress the BMCP. We are interested in investigating a probabilistic guided local
search method for the BMCP that adopts learning techniques to process the
information collected from the search process so as to improve the heuristic
performance.

4. The Proposed Algorithm

This section describes the proposed probability learning based tabu search
(PLTS) algorithm for solving the BMCP. The overall framework is introduced
first, followed by detailed algorithm description.

4.1. General Framework

The proposed PLTS algorithm is mainly inspired by the studies of (Zhou
et al., 2016, 2018). By combining probability learning technique with tabu
search, the PLTS algorithm is composed of two complementary search phases:
a descent-based tabu search procedure to find new local optimal solutions and a
local optimal perturbation procedure based on probability learning instruction
(Algorithm 1).

Algorithm 1 Probability Learning Based Tabu Search

1: Input: Instance A, time limit Tmax, probability vector P , flip neighborhood N1 and swap
neighborhood N2, tabu search depth αmax

2: Output: The best solution found S∗
3: // Initialization of solution S0, §4.3
S0 ← Initial Solution(A)

4: S∗ ← S0
5: while RunningT ime 6 Tmax do
6: P0 ← Initial Probability V ector(P)
7: // Optimization of the first search phase, §4.4

(Sb, P)←Tabu Search(S0, N1, N2, P0, αmax)
8: if f(Sb) > f(S∗) then
9: S∗ ← Sb // Update the best solution S∗ found so far

10: end if
11: // Optimization of the second search phase, §4.5

S0 ← Probability Perturbation(Sb, P)
12: end while
13: return S∗

7

Specifically, the PLTS algorithm is randomly initialized and then a descent-
based local search is applied to reach a local optimal as the initial solution. Then
a tabu search procedure is adopted to explore a new local optimal solution within
the flip neighborhood N1 and the swap neighborhood N2 (Section 4.4.1). We
update the probability vector whenever a better solution is found (Section 4.4.2).
Specifically, if a set is selected to join the candidate set group, we increase its
value of the probability vector as the reward. Otherwise, if a set is removed from
the candidate set group, we reduce its probability as the punishment. When
the tabu search is exhausted, the PLTS algorithm applies a probability learning
based perturbation to guide the search to unexplored regions. In Section 4.5,
we use the probability vector to randomly generate a new solution and start
the tabu search again from this new solution. During this search process, the
best solution found is recorded and returned as the final output within the time
limit.

4.2. Search Space and Evaluation Function

The search space Ω explored through the tabu search process depends on
the number of sets in a problem instance. Given a BMCP instance with m sets
I = {1, 2, ...,m} and n elements E = {1, 2, ..., n} where each set i(i = 1, ...,m)
corresponds to a subset of elements Ei ⊆ E, a candidate solution S of Ω can
be represented by S = 〈V, V̄ 〉 where V represents the set of selected sets and V̄
represents the remaining sets. The search space Ω can be represented as follows:

Ω = {(x1, x2, ..., xm)|xi ∈ {0, 1}, 1 6 i 6 m}. (1)

For an arbitrary solution S ⊆ Ω, the total weight of S is:

W (S) =
∑
i∈S

wi. (2)

The evaluation function f(S) that corresponds to the total profit of S is
defined as:

f(S) =
∑

j∈∪i∈SEi

pj . (3)

Given an instance with budget C, the purpose of PLTS is to find a solution
S while the total weight of picked sets W (S) 6 C and the objective value f(S)
is as large as possible.

4.3. Initialization

The PLTS algorithm starts the search from an initial solution (Algorithm 2).
For simplicity, we employ a simple and fast descent-based local search procedure
to generate a good initial solution which is carried out in two steps. First of all,
we pick some sets from the candidate group randomly until the budget constraint
is reached. Then we adopt a simple descent-based algorithm to exchange one
selected set with one unselected set, which we call an action. If an action

8

increases the total profit of the covered elements and the total weight does not
exceed the budget, then we select that move. At the end of this process, we
obtain a local optimal feasible solution which is used as the initial solution for
the tabu search procedure.

Algorithm 2 Generating the Initial Solution

1: Function Initial Solution()
2: Input: Instance A
3: Output: Initial solution S0 = (x1, x2, ..., xm)
4: while TotalWeight 6 C do
5: Randomly add an unselected set i into the set group.
6: if TotalWeight+wi 6 C then
7: xi ← 1
8: else
9: break

10: end if
11: end while
12: S0 ← (x1, x2, ..., xm)
13: S0 ← Descent based Local Search(S0)
14: return S0

4.4. Tabu Search for Solution Improvement

The descent-based local search can quickly find a local optimum. However,
the quality of this initial solution usually can be further improved. In particular,
tabu search is known as one of the most popular local search methods for several
knapsack problems (Glover and Laguna, 1997). We take this local optimum as
the input solution of the tabu search (TS) procedure (Algorithm 3) to find better
solutions.

The tabu search procedure examines two neighborhoods N1 and N2 (Section
4.4.1) simultaneously to explore candidate solutions. As shown in Algorithm 3,
at each iteration, TS picks the best feasible neighboring solution S ′ ∈ (N1(S)⋃
N2(S)) according to the evaluation function f given by Equation 3 such that

S ′ is the best solution not forbidden by the tabu list. If no improving solution
exists in N1(S)

⋃
N2(S), the tabu search process selects the best solution S ′

from the candidate neighboring solutions even if f(S ′) < f(S). This feature
allows the tabu search to go beyond the local optimum.

To avoid revisiting already encountered solutions during the search, we em-
ploy a tabu list to record the sets involved in the move operation. Ti is the tabu
tenure (duration) of set i and is determined as follows:

Ti = 4 +max(m,n)/100. (4)

where m is the number of sets and n is the number of elements. As a result,
the length of tabu tenure will change with the size of different instances. Our
preliminary experiment discloses that this adaptive strategy is helpful to keep
the number of forbidden sets within a reasonable range.

During the tabu search, we also need to update the probability vector of the
set simultaneously (Section 4.4.2). If a set is selected into the candidate group,

9

we will reward its probability, whereas if the set is taken out, we will reduce its
probability as the punishment. This probability vector will be used during the
perturbation procedure.

The tabu search process terminates when the number of iterations without
improving S ′ reaches the tabu search depth αmax. Considering the fact that the
search space will increase with the size of the instance, a larger search depth is
beneficial for the algorithm to explore unvisited regions. On the contrary, PLTS
can effectively explore the space with a smaller search depth for the instances
of small sizes. In order to ensure the performance of the proposed algorithm
on the BMCP instances of different sizes, we employ an adaptive mechanism to
tune the tabu search depth, i.e., αmax = (1100−m)×20. Here m is the number
of sets. Therefore, our algorithm can automatically choose the corresponding
termination conditions for different instances. We present an analysis of the
tabu search depth in Section 6.1.

Algorithm 3 Tabu Search Procedure

1: Function Tabu Search()
2: Input: Input solution S, neighborhood N1, N2, probability vector P0, tabu search depth
αmax

3: Output: Best solution Sb found during the tabu search and probability vector P
4: Sb ← S //Sb records the best solution found so far
5: α← 0 //α counts the number of consecutive non-improving iterations
6: while α < αmax do
7: S ← argmax{f(S′) : S′ ∈ (N1(S)

⋃
N2(S)) and S′ is not forbidden by the tabu list}

8: // Update the probability vector, §4.4.2
P ← probability vector updating(P0)

9: if f(S) > f(Sb) then
10: Sb ← S // Update the best solution Sb found so far
11: α← 0
12: else
13: α← α+ 1
14: end if
15: Tabu list updating()
16: end while
17: return Sb

4.4.1. Move Operators and Neighborhoods

The neighborhood used by Tabu Search() consists of two basic neighbor-
hoods, namely the flip neighborhood N1 and the swap neighborhood N2. For
a current feasible solution indicated by S = (x1, x2, ..., xm), the function of flip
neighborhood N1 is to flip the value of a variable xq in S while satisfying the
budget constraint C, that is, Flip(q) changes the value of a variable xq to its
complementary value 1 − xq. Therefore, all possible solutions that can be ob-
tained by the flip operator constitute the N1 neighborhood of solution S. N1(S)
can be defined as follows:

N1(S) = {S ′ | S ′ = S ⊕ Flip(q), q ∈ S,
∑
i∈S′

wi 6 C}. (5)

10

The second neighborhood N2 is defined by the swap operator Swap(p, q)
where p is in the selected set group V and q is in the unselected set group V̄ .
Note that the swap operator also needs to meet the budget constraint C. The
swap neighborhood N2(S) can be defined as follows:

N2(S) = {S ′ | S ′ = S ⊕ Swap(p, q), p ∈ V, q ∈ V̄ ,∑
i∈S′

wi 6 C}. (6)

The tabu search algorithm explores the union of the two neighborhoods,
N(S) = N1(S)

⋃
N2(S), and N is bounded in size by O(m+ |V | × |V̄ |).

4.4.2. Probability Update Policy

Our probability learning based tabu search algorithm borrows the idea of
reinforcement learning in the area of machine learning. Reinforcement learning
is defined as the concept of how an agent should take actions in an environment
to maximize the cumulative rewards. The intuition is that actions leading to
higher rewards are more likely to recur. In the BMCP, for each set there are
two possible states, selected or unselected. There are also two possible actions
(moves) for a set: putting into the candidate group or removing from the candi-
date group. Since there are numerous move operations during the tabu search
process, it is beneficial to integrate some learning techniques to guide the search
to update the probability vector.

We define a probability vector of length n, where pi denotes the probability
that set i is selected to be put into the candidate group. Initially, each of the
probability values in the probability vector is set to 0.50, indicating that each
set has a half chance to be selected into the candidate group.

During the tabu search procedure, if a set i is selected into the candidate
group, we update its probability value as follows:

pi(t+ 1) = β + (1− β)× pi(t), (7)

where β (0 < β < 1) is a reward factor. On contrast, if a set i is taken
out of the candidate group, we punish its probability by a penalization factor
γ (0 < γ < 1):

pi(t+ 1) = (1− γ)× pi(t). (8)

Our probability update scheme is inspired by the learning automata (Naren-
dra and Thathachar, 1989). The principle of this scheme is to increase the
selection probability when sets are selected feasibly and reduce the selection
probability when sets are taken out. The probability vector is updated during
the tabu search procedure. And in the perturbation procedure (Section 4.5), we
can generate new solutions directly based on the probability vector. We provide
an analysis of the reward factor β and the penalization factor γ in Section 6.2.

11

4.5. Probability Learning based Perturbation

The purpose of the perturbation procedure is to diversify the search by
exploring new search areas. The probability learning based perturbation plays
an important role when the tabu search is exhausted. Specifically, each set will
be dropped or picked according to the probability vector, which will generate a
new perturbed solution as the starting point for the next round of tabu search.
We consider and compare the following two perturbation strategies:

1) Random perturbation: For a feasible solution S, this policy randomly
selects half sets to be removed from the candidate group (regardless of its prob-
ability value), then uses the descent search algorithm to select sets until the
candidate group reaches the budget. Note that this selection policy does not
use any information gathered from the search history.

2) Probability perturbation: As shown in Algorithm 4, starting from the input
local optimal solution Sb, this policy first drops the selected sets in Sb according
to the probability vector P . Then, we put unselected sets into the candidate
group under the guidance of vector P . Specifically, for a randomly unselected
set j, we set xj = 1 according to the j-th value in probability vector P , when
set j can bring a feasible solution after being added into the candidate group.
This process iterates until the budget is reached. The new perturbed solution
S0 will serve as a new input solution for the tabu search. Thus, the probability
perturbation makes full utilization of the probability vector. If a set has a high
probability of being selected, it has a higher probability of being taken out of
the candidate group. On the contrary, if the value of the probability vector is
small, it has a higher probability of being selected into the candidate group.
This strategy enables the algorithm to explore new search areas from a feasible
solution. Furthermore, we will show the impact of this perturbation strategy
on the performance in Section 6.3.

5. Experimental Results

In this section, we present experimental results of the proposed PLTS algo-
rithm on 30 benchmark instances that we designed for the BMCP, and show
comparisons with the results obtained by the general CPLEX solver, as well as
the typical approximation algorithm (Khuller et al., 1999) we implemented and
a genetic meta-heuristic algorithm we designed as a baseline. Then we analyze
the probability learning based perturbation of the PLTS algorithm.

5.1. Benchmark Instances

As there are no existing benchmark instances for the BMCP, inspired by
the instances of SUKP (He et al., 2018), we generate 30 instances 2 with similar
characteristics to the instances of SUKP. For the diversity of instances, we divide
the instances into three sets, ranging from 585 to 1000, based on the relationship

2Available at: https://github.com/lly53/BMCP instance.

12

Algorithm 4 Probability Perturbation Policy

1: Function Probability Perturbation()
2: Input: Input solution Sb, number of sets (m), probability vector P , budget C
3: Output: New solution S0 = (x1, x2, ..., xm)
4: for each selected set i in Sb (xi = 1) do
5: p← rand(0, 1)
6: if p 6 pi then
7: xi ← 0 //Drop set according to probability vector
8: Update TotalWeight
9: end if

10: end for
11: for each unselected set j in Sb (xj = 0) do
12: if TotalWeight+ wj 6 C then
13: p← rand(0, 1)
14: if p > pj then
15: xj ← 1 //Pick set according to probability vector
16: Update TotalWeight
17: end if
18: else
19: break
20: end if
21: end for
22: S0 ← (x1, x2, ..., xm)
23: return S0

between the number of sets and the number of elements. The number of sets
in the first group is less than the number of elements. In the second group,
the number of sets equals the number of elements, and in the third group the
number of sets is greater than the number of elements. Let M be an m×n binary
relation matrix between m sets and n elements where Mij = 1 indicates the
presence of element j in set i. Experiments show that the budget has a strong
correlation with the density of relation matrix. If the backpack budget is too
large and the relation matrix density is too high, it is easy for all elements to be
covered, resulting in a trivial solution to this problem. Therefore, to avoid the
number selection of sets that easily cover all elements, we adjusted the density
of the relationship matrix M to a fixed value according to the budget. When the
budget is 2000, the density of the relationship matrix is 0.05. When the budget
is 1500, the density of the relationship matrix is 0.075. Then bmcp m n α C
designates an instance withm sets and n elements, density of relationship matrix
α and budget C, where α = (

∑m
i=1

∑n
j=1Mij)/(mn).

5.2. Experimental Setup

The proposed PLTS algorithm was coded in C++ and compiled using the
g++ compiler with the -O3 option. The experiments were carried on an Intel
Xeon E5-2670 processor with 2.5 GHz and 2 GB RAM under the Linux operating
system.

Table 1 shows the description and setting of the parameters used for our
experiments. To obtain the experimental results, each instance was solved 30

13

Table 1: Parameter setup.

Parameters Section Description Value

Tmax 4.1 time limit 600

β 4.4.2 reward factor 0.50

γ 4.4.2 penalization factor 0.50

times independently with different random seeds, each run being limited to 600
seconds.

Since there is no result reported by using the general integer linear program-
ming (ILP) approach for solving the BMCP, we present computational results
of the CPLEX solver (version 12.8) under the time limit of 2 hours as well as 5
hours for each instance based on the 0/1 integer linear programming model.

To complete the computational assessment of the proposed algorithm, we
also adopt two other reference algorithms, i.e., the traditional approximation
algorithm for the BMCP as introduced in (Khuller et al., 1999) and a genetic
algorithm. For the genetic algorithm, we first initialize the population (of size
10) randomly and employ the common backbone-based crossover to create new
offspring solutions. Then a descent procedure is adopted to improve the ob-
tained solution. To make a fair comparison, we run the genetic algorithm on
our computing platform 30 times with the same cut-off time (600 seconds).

5.3. Comparison on Computational Results

We first assess the performance of the proposed PLTS algorithm with re-
spect to the CPLEX solver and the two reference algorithms. In Tables 2-4
we report computational results on the three sets of benchmark instances. The
first column indicates each instance name, the second and third columns list
the results of the approximate algorithm (AA) and the best result obtained
by the genetic algorithm (GA), respectively, followed by the best lower bound
(LB) and upper bound (UB) achieved by CPLEX. To thoroughly compare the
experimental results, we ran CPLEX for 2 hours and 5 hours respectively for
each instance. Then, fbest indicates the best objective value obtained by PLTS
over 30 runs, followed by the average value (favg), standard deviations (Std),
and average running time (tavg) in seconds. As can be seen from Tables 2-4,
the PLTS algorithm we proposed is always superior to the traditional approx-
imation algorithm, the genetic algorithm and the lower bounds of the CPLEX
solver. Moreover, we carry out the non-parametric Wilcoxon signed-rank test
to check the statistical difference between PLTS and the reference algorithms
(AA and GA). The small p-values (2.88e-06 for PLTS vs. AA and 1.73e-06
for PLTS vs. GA) clearly disclose that there are significant differences between
PLTS and its competitors.

In Figure 2, we further illustrate the comparative results of our PLTS algo-

rithm with the three baselines. This figure shows the experimental results of the

approximate algorithm, the genetic algorithm and the lower bounds obtained

by CPLEX solver of 2 hours and 5 hours and the best results obtained by the

14

67000

77000

87000

97000

107000

117000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

O
bj

ec
tiv

e
va

lu
e

The first set of instances(m<n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

65000

75000

85000

95000

105000

115000

125000

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

O
bj

ec
tiv

e
va

lu
e

The second set of instances(m=n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

60000

70000

80000

90000

100000

110000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

O
bj

ec
tiv

e
va

lu
e

The third set of instances(m>n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

Fig. 2. Comparisons of our PLTS algorithm with the approximation algorithm, the genetic
algorithm and the lower bounds of CPLEX (2 hours and 5 hours) on the three sets of BMCP
instances.

Table 2: Comparison of PLTS with the approximation algorithm, the genetic algorithm and
the CPLEX solver on the first set of instances (m < n).

Instance AA GA
CPLEX (2 hours) CPLEX (5 hours) PLTS

LB UB LB UB fbest favg Std tavg

bmcp 585 600 0.05 2000 70494 67517 67910 73495.88 70742 74224.94 71102 71065.17 82.36 309.602

bmcp 585 600 0.075 1500 68475 67514 68418 77549.43 69172 76716.90 70677 70677.00 0.00 61.242

bmcp 685 700 0.05 2000 79778 76938 79997 88954.29 80783 88447.67 81227 80585.73 508.37 522.060

bmcp 685 700 0.075 1500 80457 77133 80443 92328.30 81639 91378.98 82955 82951.40 19.39 109.670

bmcp 785 800 0.05 2000 90975 88787 90705 102198.73 91319 101585.69 92608 92587.60 34.30 252.589

bmcp 785 800 0.075 1500 90786 91711 92358 107354.51 92358 106842.67 94245 94245.00 0.00 248.128

bmcp 885 900 0.05 2000 99498 95255 100085 114313.81 99845 113746.97 102162 101331.53 174.95 206.025

bmcp 885 900 0.075 1500 105793 103018 102423 122684.38 102933 122093.51 106577 105942.43 334.18 489.396

bmcp 985 1000 0.05 2000 108105 103844 107820 125903.67 107488 124487.37 109567 109408.77 227.85 212.193

bmcp 985 1000 0.075 1500 113137 106604 110769 134440.36 111177 133789.78 114969 113838.07 509.34 485.677

15

67000

77000

87000

97000

107000

117000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

O
bj

ec
tiv

e
va

lu
e

The first set of instances(m<n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

65000

75000

85000

95000

105000

115000

125000

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

O
bj

ec
tiv

e
va

lu
e

The second set of instances(m=n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

60000

70000

80000

90000

100000

110000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

O
bj

ec
tiv

e
va

lu
e

The third set of instances(m>n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

Fig. 2. Comparisons of our PLTS algorithm with the approximation algorithm, the genetic
algorithm and the lower bounds of CPLEX (2 hours and 5 hours) on the three sets of BMCP
instances.

Table 2: Comparison of PLTS with the approximation algorithm, the genetic algorithm and
the CPLEX solver on the first set of instances (m < n).

Instance AA GA
CPLEX (2 hours) CPLEX (5 hours) PLTS

LB UB LB UB fbest favg Std tavg

bmcp 585 600 0.05 2000 70494 67517 67910 73495.88 70742 74224.94 71102 71065.17 82.36 309.602

bmcp 585 600 0.075 1500 68475 67514 68418 77549.43 69172 76716.90 70677 70677.00 0.00 61.242

bmcp 685 700 0.05 2000 79778 76938 79997 88954.29 80783 88447.67 81227 80585.73 508.37 522.060

bmcp 685 700 0.075 1500 80457 77133 80443 92328.30 81639 91378.98 82955 82951.40 19.39 109.670

bmcp 785 800 0.05 2000 90975 88787 90705 102198.73 91319 101585.69 92608 92587.60 34.30 252.589

bmcp 785 800 0.075 1500 90786 91711 92358 107354.51 92358 106842.67 94245 94245.00 0.00 248.128

bmcp 885 900 0.05 2000 99498 95255 100085 114313.81 99845 113746.97 102162 101331.53 174.95 206.025

bmcp 885 900 0.075 1500 105793 103018 102423 122684.38 102933 122093.51 106577 105942.43 334.18 489.396

bmcp 985 1000 0.05 2000 108105 103844 107820 125903.67 107488 124487.37 109567 109408.77 227.85 212.193

bmcp 985 1000 0.075 1500 113137 106604 110769 134440.36 111177 133789.78 114969 113838.07 509.34 485.677

15

67000

77000

87000

97000

107000

117000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

O
bj

ec
tiv

e
va

lu
e

The first set of instances(m<n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

65000

75000

85000

95000

105000

115000

125000

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

O
bj

ec
tiv

e
va

lu
e

The second set of instances(m=n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

60000

70000

80000

90000

100000

110000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

O
bj

ec
tiv

e
va

lu
e

The third set of instances(m>n)
best objective values of AA lower bound achieved by CPLEX solver (2 hours)
best objective values of GA lower bound achieved by CPLEX solver (5 hours)
best objective values of PLTS

Fig. 2. Comparisons of our PLTS algorithm with the approximation algorithm, the genetic
algorithm and the lower bounds of CPLEX (2 hours and 5 hours) on the three sets of BMCP
instances.

Table 2: Comparison of PLTS with the approximation algorithm, the genetic algorithm and
the CPLEX solver on the first set of instances (m < n).

Instance AA GA
CPLEX (2 hours) CPLEX (5 hours) PLTS

LB UB LB UB fbest favg Std tavg

bmcp 585 600 0.05 2000 70494 67517 67910 73495.88 70742 74224.94 71102 71065.17 82.36 309.602

bmcp 585 600 0.075 1500 68475 67514 68418 77549.43 69172 76716.90 70677 70677.00 0.00 61.242

bmcp 685 700 0.05 2000 79778 76938 79997 88954.29 80783 88447.67 81227 80585.73 508.37 522.060

bmcp 685 700 0.075 1500 80457 77133 80443 92328.30 81639 91378.98 82955 82951.40 19.39 109.670

bmcp 785 800 0.05 2000 90975 88787 90705 102198.73 91319 101585.69 92608 92587.60 34.30 252.589

bmcp 785 800 0.075 1500 90786 91711 92358 107354.51 92358 106842.67 94245 94245.00 0.00 248.128

bmcp 885 900 0.05 2000 99498 95255 100085 114313.81 99845 113746.97 102162 101331.53 174.95 206.025

bmcp 885 900 0.075 1500 105793 103018 102423 122684.38 102933 122093.51 106577 105942.43 334.18 489.396

bmcp 985 1000 0.05 2000 108105 103844 107820 125903.67 107488 124487.37 109567 109408.77 227.85 212.193

bmcp 985 1000 0.075 1500 113137 106604 110769 134440.36 111177 133789.78 114969 113838.07 509.34 485.677

15

Fig. 2. Comparisons of our PLTS algorithm with the approximation algorithm, the genetic
algorithm and the lower bounds of CPLEX (2 hours and 5 hours) on the three sets of BMCP
instances.

Table 2: Comparison of PLTS with the approximation algorithm, the genetic algorithm and
the CPLEX solver on the first set of instances (m < n).

Instance AA GA
CPLEX (2 hours) CPLEX (5 hours) PLTS

LB UB LB UB fbest favg Std tavg

bmcp 585 600 0.05 2000 70494 67517 67910 73495.88 70742 74224.94 71102 71065.17 82.36 309.602

bmcp 585 600 0.075 1500 68475 67514 68418 77549.43 69172 76716.90 70677 70677.00 0.00 61.242

bmcp 685 700 0.05 2000 79778 76938 79997 88954.29 80783 88447.67 81227 80585.73 508.37 522.060

bmcp 685 700 0.075 1500 80457 77133 80443 92328.30 81639 91378.98 82955 82951.40 19.39 109.670

bmcp 785 800 0.05 2000 90975 88787 90705 102198.73 91319 101585.69 92608 92587.60 34.30 252.589

bmcp 785 800 0.075 1500 90786 91711 92358 107354.51 92358 106842.67 94245 94245.00 0.00 248.128

bmcp 885 900 0.05 2000 99498 95255 100085 114313.81 99845 113746.97 102162 101331.53 174.95 206.025

bmcp 885 900 0.075 1500 105793 103018 102423 122684.38 102933 122093.51 106577 105942.43 334.18 489.396

bmcp 985 1000 0.05 2000 108105 103844 107820 125903.67 107488 124487.37 109567 109408.77 227.85 212.193

bmcp 985 1000 0.075 1500 113137 106604 110769 134440.36 111177 133789.78 114969 113838.07 509.34 485.677

PLTS algorithm. The X − axis in each subfigure indicates the 10 instances of

each set, and the Y − axis shows the objective values of the compared algo-

rithms. To facilitate the presentation of the results in Figure 2, the three sets

of instances are denoted by F1−F10 (m < n), S1−S10 (m = n) and T1−T10

(m > n), respectively. Figure 2 indicates that the proposed PLTS algorithm

outperforms the baseline algorithms on all instances. For all the 30 instances,

15

Table 3: Comparison of PLTS with the approximation algorithm, the genetic algorithm and

the CPLEX solver on the second set of instances (m = n).

Instance AA GA
CPLEX (2 hours) CPLEX (5 hours) PLTS

LB UB LB UB fbest favg Std tavg

bmcp 600 600 0.05 2000 66095 65546 67917 73495.08 68477 72880.93 68738 68472.00 71.09 95.638

bmcp 600 600 0.075 1500 70445 67581 70947 77379.97 71018 76337.67 71746 71746.00 0.00 27.975

bmcp 700 700 0.05 2000 76552 74320 76367 85587.33 77056 84855.44 78028 77859.27 75.16 127.445

bmcp 700 700 0.075 1500 83400 80679 81645 93026.66 81645 92151.99 84576 84375.70 550.91 196.995

bmcp 800 800 0.05 2000 89582 86322 90344 101141.03 89872 100373.77 91795 91576.27 309.05 307.274

bmcp 800 800 0.075 1500 93115 90157 94049 108713.00 94049 108005.62 95533 95509.60 70.20 239.146

bmcp 900 900 0.05 2000 98893 96523 100108 115682.55 100412 114551.09 101265 101231.17 62.94 325.683

bmcp 900 900 0.075 1500 103795 100715 101035 120452.83 99888 118554.77 104521 104521.00 0.00 176.865

bmcp 1000 1000 0.05 2000 111786 105941 109928 131194.18 111155 128583.63 112802 111897.07 636.78 577.668

bmcp 1000 1000 0.075 1500 118869 114763 115313 139152.89 115824 137900.40 120246 118467.87 546.67 279.220

Table 4: Comparison of PLTS with the approximation algorithm, the genetic algorithm and

the CPLEX solver on the third set of instances (m > n).

Instance AA GA
CPLEX (2 hours) CPLEX (5 hours) PLTS

LB UB LB UB fbest favg Std tavg

bmcp 600 585 0.05 2000 67256 61381 66184 71739.68 66452 71094.27 67636 67460.80 350.40 202.660

bmcp 600 585 0.075 1500 68005 65545 68145 77321.51 70113 76332.85 70588 70406.63 105.09 584.205

bmcp 700 685 0.05 2000 76600 73354 76139 83561.86 77176 82815.11 78054 78037.00 51.00 197.590

bmcp 700 685 0.075 1500 75224 74451 75841 86956.88 76033 86566.79 78869 78869.00 0.00 46.987

bmcp 800 785 0.05 2000 86750 84528 86139 97891.07 86813 97477.34 89138 88581.20 103.40 204.141

bmcp 800 785 0.075 1500 90548 88902 89018 103644.12 89229 102867.98 91021 91010.20 25.67 297.211

bmcp 900 885 0.05 2000 98337 91187 97088 110828.83 96945 109948.52 98840 98718.00 151.34 227.976

bmcp 900 885 0.075 1500 100359 96475 99881 119045.52 99888 118554.77 105141 104397.93 691.61 229.644

bmcp 1000 985 0.05 2000 107548 106497 108714 126779.11 110134 125574.84 111859 111228.80 828.72 244.920

bmcp 1000 985 0.075 1500 111778 99913 108801 131873.01 108801 130981.38 112250 112125.87 143.22 234.614

the best solutions (fbest) obtained by our PLTS algorithm are better than the

results obtained by the approximation algorithm, the genetic algorithm and the

lower bounds (LB) obtained by CPLEX solver no matter for 2 hours or 5 hours.

This figure again confirms the performance of the proposed algorithm.

6. Analysis

6.1. Analysis of Tabu Search Depth

As introduced in Section 4.4, the PLTS algorithm employs an adaptive mech-

anism to adjust the tabu depth during the search. Here we analyze the influence

of tabu search depth αmax on the performance of the proposed algorithm. This

experiment is based on a selection of eight representative instances, as listed in

Table 5. For each instance, we ran our PLTS algorithm 30 times with the same

cut-off time as in Section 5.2 and recorded the best objective value fbest. In this

16

experiment, the tabu search depth αmax takes its values with (1100−m)× 10

(TS×10), (1100−m)×20 (TS×20) and (1100−m)×30 (TS×30). In addition,

we also tested the αmax from 1000 to 10000 with a step size of 1000.

Table 5 shows the experimental results of this analysis. The first row gives

the settings of αmax (Tabu depth) and the first column shows the instances

tested. The fbest values of each setting of αmax are shown in rows 2 to 9,

respectively. The last row presents the average values of each column. The best

results of the compared settings are highlighted in bold.

Table 5 discloses that PLTS obtains better results when αmax = (1100 −
m) × 20. This justifies the adopted setting of αmax. Moreover, we carried

out the non-parametric Friedman test to compare the statistical significance of

the results in Table 5. The small p-value (1.61e-4 < 0.05) indicates that the

performance differences among the settings of αmax are statistically significant.

Table 5: Analyze the influence of tabu search depth αmax on the performance of the PLTS

algorithm.

InstanceTabu depth 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 TS × 10 TS × 20 TS × 30

bmcp 600 600 0.05 2000 68453 68609 68487 68738 68738 68738 68453 68453 68738 68738 68738 68738 68738

bmcp 600 585 0.075 1500 70473 70588 70588 70588 70318 70588 70318 70588 70318 70588 70588 70588 70588

bmcp 685 700 0.05 2000 80965 81204 81227 81227 81227 81227 80197 81227 81227 81227 81227 81227 81227

bmcp 800 785 0.05 2000 88562 88562 88863 88562 88562 89007 88562 89084 89138 88562 89084 89138 88562

bmcp 885 900 0.05 2000 101745 102000 101793 102000 102162 102071 102071 102071 102162 102071 102155 102162 102071

bmcp 900 885 0.075 1500 105076 105141 105141 105141 105141 105141 104962 105141 105141 105141 105141 105141 105044

bmcp 1000 1000 0.075 1500 120217 118959 120246 119620 119924 119594 118226 119412 119437 120217 119168 120246 120246

bmcp 1000 985 0.05 2000 111568 111859 111821 111821 111859 111859 111407 111859 111859 111821 111859 111859 111612

Average value 93382.3893365.2593520.7593462.1393491.3893528.1393024.5093479.3893502.5093545.63 93495 93637.38 93511

6.2. Analysis of Probability Update Policy

The proposed PLTS algorithm employs a probability update mechanism

to guide the search during the perturbation procedure (Section 4.5). In this

subsection, we provide an analysis of the reward factor β and the penalization

factor γ involved in the probability update mechanism. Specifically, we study

β and γ independently by fixing one of these values to 0.5 and varying another

value from 0.1 to 0.9 with a step size of 0.1. This experiment is based on the

same eight instances introduced in Section 6.1. We ran PLTS 10 times with the

same cut-off time as in Section 5.2. Figure 3 presents the average values of fbest

achieved by our algorithm with β and γ on the eight instances tested.

From Figure 3, we can observe that PLTS shows better performance with

the parameter settings of β = 0.5 and γ = 0.5, which are the default settings

of our algorithm. In fact, it is reasonable to give each set a half chance of

being selected, since we do not have any prior information of each set. And the

17

!"!##

!$###

!$%##

!$"##

!$$##

!$&##

!$'##

!$(##

!$)##

#*" #*& #*(#*+ %
!
"
#$
%
&'
(
$
(
)
*+
$

,$&&'-./ 01 2)3)4$&$3/

!

"

Fig. 3. Average of the fbest values on the eight instances obtained by executing PLTS with

different values of β and γ

probability of each set will be updated by the Equation 7 and 8 as the search

proceeds. In addition, the small p-values (4.42e-4 for β and 7.95e-4 for γ) from

the Friedman test indicate that the differences from alternative parameter values

are statistically significant.

6.3. Ablation Study on Perturbation Policy

We further analyze the main ingredients of the PLTS algorithm, the prob-

ability learning based perturbation. In Section 4.5, we present two strategies

to escape from the local optimal solution, random perturbation and probability

perturbation. Here we compare the two perturbation strategies, which allows

us to better understand the behavior of the PLTS algorithm and shed light on

its inner functioning.

To verify the effectiveness of the probability learning based perturbation

used in the PLTS algorithm, we made a comparison between the probability

perturbation and the random perturbation, in which we removed the probability

learning mechanism from the PLTS algorithm. Denote the modified algorithm

using the random perturbation as PLTS0.

The investigation was conducted on the same set of instances we generated

and each algorithm was run 30 times to solve each instance. The comparative

results between PLTS and PLTS0 are summarized in Table 6. For each instance,

we report the best solution (fbest) and average solution (favg) of each algorithm,

and better results (with a larger fbest or favg) between the two are in bold. The

p-values from the Wilcoxon signed rank test are reported in the last row.

As shown in Table 6, the perturbation strategy exhibits a significant impact

on the performance of our PLTS algorithm. PLTS improves on the best-known

results for 10 out of 30 instances compared to the random perturbation. There

are 19 instances where the two methods yield the same results, and only in

18

Table 6: Comparison of PLTS with PLTS0 on the three sets of the BMCP instances.

Instance
PLTS PLTS0

fbest favg fbest favg

bmcp 585 600 0.05 2000 71102 71065.17 71102 71056.97

bmcp 585 600 0.075 1500 70677 70677.00 70677 70677.00

bmcp 685 700 0.05 2000 81227 80585.73 81227 80578.67

bmcp 685 700 0.075 1500 82955 82951.40 82955 82947.80

bmcp 785 800 0.05 2000 92608 92587.60 92599 92492.20

bmcp 785 800 0.075 1500 94245 94245.00 94245 94244.60

bmcp 885 900 0.05 2000 102162 101331.53 101834 101259.73

bmcp 885 900 0.075 1500 106577 105942.43 106723 106056.07

bmcp 985 1000 0.05 2000 109567 109408.77 109470 109042.17

bmcp 985 1000 0.075 1500 114969 113838.07 114567 113583.03

bmcp 600 600 0.05 2000 68738 68472.00 68738 68488.60

bmcp 600 600 0.075 1500 71746 71746.00 71746 71746.00

bmcp 700 700 0.05 2000 78028 77859.27 77910 77880.17

bmcp 700 700 0.075 1500 84576 84375.70 84576 84257.03

bmcp 800 800 0.05 2000 91795 91576.27 91795 91392.07

bmcp 800 800 0.075 1500 95533 95509.60 95533 95500.73

bmcp 900 900 0.05 2000 101265 101231.17 101265 101165.93

bmcp 900 900 0.075 1500 104521 104521.00 104521 104521.00

bmcp 1000 1000 0.05 2000 112802 111897.07 112597 111560.43

bmcp 1000 1000 0.075 1500 120246 118467.87 119533 118453.60

bmcp 600 585 0.05 2000 67636 67460.80 67636 67373.20

bmcp 600 585 0.075 1500 70588 70406.63 70588 70357.63

bmcp 700 685 0.05 2000 78054 78037.00 78054 77992.67

bmcp 700 685 0.075 1500 78869 78869.00 78869 78869.00

bmcp 800 785 0.05 2000 89138 88581.20 89084 88611.63

bmcp 800 785 0.075 1500 91021 91010.20 91021 91006.70

bmcp 900 885 0.05 2000 98840 98718.00 98840 98747.57

bmcp 900 885 0.075 1500 105141 104397.93 105076 104253.67

bmcp 1000 985 0.05 2000 111859 111228.80 111802 111154.23

bmcp 1000 985 0.075 1500 112250 112125.87 112250 111885.13

p-value - - 2.08e-5 2.62e-3

19

!"#$""

!"%"""

!"%$""

!"&"""

!"&$""

!"'"""

!"'$""

" !"" ("")"" *"" $"" #""

!
"
#$
%&
'(
$
(
)
*+
$

,'-$./$%012/3
"-%4567859:::5:;:85<:::

!"#$

!"#$

!"#"""

!"#$""

!!""""

!!"$""

!!!"""

!!!$""

" !"" %"" &"" '"" $"" (""

!
"
#$
%
&'
(
$
(
)
*+
$

!"#$ %&$'()*&+
,#'-./000.123.0403.5000

!"#$

!"#$

!"#$""

!!""""

!!"$""

!!!"""

!!!$""

!!%"""

" !"" %"" &"" '"" $"" (""

!
"
#$
%&
'(
$
(
)
*+
$

,'-$./$%012/3
"-%45677756777578795:777

!"#$

!"#$&

Fig. 4. Convergence graphs of PLTS and PLTS0 for solving three BMCP instances.

one case the random perturbation achieves a better result. As for the average

solution, there are 21 out of 30 instances that PLTS yields better results. Only

on 5 instances PLTS0 yields better solutions and on 4 instances the two meth-

ods yield the same results. Moreover, the p-values (< 0.05) from the Wilcoxon

signed rank test disclose that the difference between PLTS and PLTS0 is sig-

nificant. The study indicates that the probability perturbation strategy with

probability vector is significantly better than the simple random perturbation

based PLTS0 algorithm.

To further study the behaviors of the two perturbation strategies, we car-

ried out an additional experiment to observe the convergence graphs of the algo-

rithms. This experiment is based on three representative BMCP instances of dif-

ferent sets, i.e., 985 1000 0.05 2000, 1000 985 0.05 2000, 1000 1000 0.05 2000.

We ran PLTS and PLTS0 30 times to solve each of the selected instances with

the same cut-off time (600 seconds). The best objective values during the search

were recorded. Then we obtain the convergence graphs shown in Figure 4. The

X − axis in each sub-figure gives the running time of the algorithm and the

Y − axis indicates the best objective values found by PLTS and PLTS0.

20

From Figure 4, we can observe that the proposed PLTS algorithm is able to

discover better solutions with the increase of time. We can also observe that

PLTS always obtains better best objective values than PLTS0 when the cut-off

time is reached, indicating that PLTS outperforms PLTS0. The competitive-

ness of the PLTS algorithm becomes even more evident when we consider the

convergence graphs of 1000 985 0.05 2000, 1000 1000 0.05 2000. For these two

instances, the curves of PLTS almost strictly run above the curves of PLTS0, in-

dicating that our PLTS algorithm can improve the solution quality quickly and

achieve better results. For the instance 985 1000 0.05 2000, although PLTS0

shows similar performance to PLTS, our PLTS algorithm has better performance

with the increase of time. This experiment again confirms the effectiveness of

the proposed PLTS algorithm.

7. Conclusions

In this paper, we present a probability learning based tabu search (PLTS) al-

gorithm to efficiently solve the Budgeted Maximum Coverage Problem (BMCP),

which is a generalization of the NP-hard set cover problem as well as the NP-

hard 0-1 knapsack problem, and a counterpart problem of the NP-hard Set-

Union Knapsack Problem (SUKP). The proposed PLTS algorithm combines

probability learning techniques and a tabu search procedure within the iterated

local search framework. Probability learning is used to maintain and update

a probability vector, with each entry specifying the probability that the corre-

sponding set is selected. At each iteration, the PLTS algorithm applies a tabu

search procedure to improve the solution until a local optimum is reached, then

the PLTS algorithm adopts a perturbation phase based on the probability vector

to escape from the local trap.

We generated three sets with a total of 30 instances with varied characteris-

tics and compared the results of our algorithm with the typical approximation

algorithm and the genetic algorithm. We also employed the general CPLEX

solver for solving the BMCP instances for the first time. For all the generated

instances, the best results obtained by the PLTS algorithm were better than the

results obtained by the approximation algorithm, the genetic algorithm and the

lower bounds (LB) of the CPLEX solver. In the section of analysis, we carried

out a parameter analysis and discussed the effects of tabu search depth, reward

factor and penalization factor on the performance of the PLTS algorithm. We

also showed an ablation study on the probability learning based perturbation

and made a comparison between probability perturbation and random pertur-

21

bation, demonstrating that the probability perturbation is much more effective

than the random perturbation for solving the BMCP.

The way of using probability learning method in the proposed algorithm

is innovative. Still there is room for further improvement. In future work, it

is worth testing other local search algorithms or applying other heuristics for

solving the BMCP. Also, our probability learning based tabu search approach

could be applied to other combinatorial optimization problems, such as various

variants of the knapsack problems and the set cover problems.

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions,

which helped us to significantly improve the paper. The work is partially sup-

ported by the “Sino-French CAI Yuanpei Program” (Grant No. 41342NC).

Support from the China Scholarship Council (Grant No. 201706290016) for

Zequn WEI is also acknowledged.

References

References

Arulselvan, A., 2014. A note on the set union knapsack problem. Discrete

Applied Mathematics 169, 214–218. URL: https://doi.org/10.1016/j.

dam.2013.12.015.

Balas, E., Padberg, M.W., 1972. On the set-covering problem. Operations Re-

search 20, 1152–1161. URL: https://doi.org/10.1287/opre.20.6.1152.

Benlic, U., Epitropakis, M.G., Burke, E.K., 2017. A hybrid breakout local

search and reinforcement learning approach to the vertex separator problem.

European Journal of Operational Research 261, 803–818. URL: https://

doi.org/10.1016/j.ejor.2017.01.023.

Boyan, J.A., Moore, A.W., 2000. Learning evaluation functions to improve

optimization by local search. Journal of Machine Learning Research 1, 77–

112. URL: http://jmlr.org/papers/v1/boyan00a.html.

Chekuri, C., Kumar, A., 2004. Maximum coverage problem with group budget

constraints and applications, in: Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques, Cambridge, MA, USA,

pp. 72–83.

22

Cohen, R., Katzir, L., 2008. The generalized maximum coverage problem. In-

formation Processing Letters 108, 15–22. URL: https://doi.org/10.1016/

j.ipl.2008.03.017.

Curtis, D.E., Pemmaraju, S.V., Polgreen, P., 2010. Budgeted maximum cover-

age with overlapping costs: monitoring the emerging infections network, in:

2010 Proceedings of the Twelfth Workshop on Algorithm Engineering and

Experiments (ALENEX), Austin, Texas, USA, pp. 112–123.

Glover, F.W., Laguna, M., 1997. Tabu Search. Kluwer.

Goldschmidt, O., Nehme, D., Yu, G., 1994. Note: On the set-union knapsack

problem. Naval Research Logistics 41, 833–842. URL: https://doi.org/10.

1002/1520-6750(199410)41:6<833::AID-NAV3220410611>3.0.CO;2-Q.

He, Y., Xie, H., Wong, T., Wang, X., 2018. A novel binary artificial bee colony

algorithm for the set-union knapsack problem. Future Generation Computer

Systems 78, 77–86. URL: https://doi.org/10.1016/j.future.2017.05.

044.

Hochba, D.S., 1997. Approximation algorithms for np-hard problems. ACM

Sigact News 28, 40–52. URL: https://doi.org/10.1145/261342.571216.

Kar, B., Wu, E.H., Lin, Y., 2016. The budgeted maximum coverage problem in

partially deployed software defined networks. IEEE Transactions on Network

and Service Management 13, 394–406. URL: https://doi.org/10.1109/

TNSM.2016.2598549.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack problems. Springer.

Khuller, S., Moss, A., Naor, J., 1999. The budgeted maximum coverage problem.

Information Processing Letters 70, 39–45. URL: https://doi.org/10.1016/

S0020-0190(99)00031-9.

Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B., 2011. SCENE: a scalable

two-stage personalized news recommendation system, in: Proceeding of the

34th International ACM SIGIR Conference on Research and Development in

Information Retrieval, Beijing, China, pp. 125–134.

Lin, G., Guan, J., Li, Z., Feng, H., 2019. A hybrid binary particle swarm

optimization with tabu search for the set-union knapsack problem. Expert

Systems with Applications 135, 201–211. URL: https://doi.org/10.1016/

j.eswa.2019.06.007.

23

Narendra, K.S., Thathachar, M.A.L., 1989. Learning Automata - An Introduc-

tion. Prentice Hall.

Nemhauser, G.L., Wolsey, L.A., Fisher, M.L., 1978. An analysis of approxima-

tions for maximizing submodular set functions - I. Mathematical Program-

ming 14, 265–294. URL: https://doi.org/10.1007/BF01588971.

Piva, B., 2019. Approximations for restrictions of the budgeted and gener-

alized maximum coverage problems, in: Proceedings of the tenth Latin and

American Algorithms, Graphs and Optimization Symposium, Belo Horizonte,

Brazil, pp. 667–676.

van Heuven van Staereling, I., de Keijzer, B., Schäfer, G., 2016. The ground-set-

cost budgeted maximum coverage problem, in: 41st International Symposium

on Mathematical Foundations of Computer Science, MFCS 2016, Kraków,

Poland, pp. 50:1–50:13.

Suh, K., Guo, Y., Kurose, J.F., Towsley, D.F., 2006. Locating network monitors:

Complexity, heuristics, and coverage. Computer Communications 29, 1564–

1577. URL: https://doi.org/10.1016/j.comcom.2005.07.009.

Taylor, R., 2016. Approximations of the densest k-subhypergraph and set union

knapsack problems. CoRR abs/1610.04935. URL: http://arxiv.org/abs/

1610.04935.

Wang, X., Tang, L., 2017. A machine-learning based memetic algorithm for

the multi-objective permutation flowshop scheduling problem. Computers &

Operations Research 79, 60–77. URL: https://doi.org/10.1016/j.cor.

2016.10.003.

Wang, Y., Pan, S., Li, C., Yin, M., 2020. A local search algorithm with re-

inforcement learning based repair procedure for minimum weight indepen-

dent dominating set. Information Sciences 512, 533–548. URL: https:

//doi.org/10.1016/j.ins.2019.09.059.

Wei, Z., Hao, J.K., 2019. Iterated two-phase local search for the set-union

knapsack problem. Future Generation Computer Systems 101, 1005–1017.

URL: https://doi.org/10.1016/j.future.2019.07.062.

Wei, Z., Hao, J.K., 2020. Kernel based tabu search for the set-union knapsack

problem. Expert Systems with Applications 165, 113802. URL: https://

doi.org/10.1016/j.eswa.2020.113802.

24

Wei, Z., Hao, J.K., 2021. Multistart solution-based tabu search for the set-union

knapsack problem. Applied Soft Computing , 107260doi:https://doi.org/

10.1016/j.asoc.2021.107260.

Wu, C., He, Y., 2020. Solving the set-union knapsack problem by a novel hybrid

jaya algorithm. Soft Computing 24, 1883–1902. URL: https://doi.org/10.

1007/s00500-019-04021-3.

Zhou, Y., Duval, B., Hao, J.K., 2018. Improving probability learning based

local search for graph coloring. Appllied Soft Computing 65, 542–553. URL:

https://doi.org/10.1016/j.asoc.2018.01.027.

Zhou, Y., Hao, J.K., Duval, B., 2016. Reinforcement learning based local search

for grouping problems: A case study on graph coloring. Expert Systems with

Applications 64, 412–422. URL: https://doi.org/10.1016/j.eswa.2016.

07.047.

25

