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Abstract
The Job Shop Scheduling Problem (JSP) is a classical combinatorial optimization

problem that involves scheduling a set of jobs on a set of machines to minimize the
makespan. Because of its importance, the JSP has been extensively studied in the
fields of operations research and manufacturing. This study presents a highly effec-
tive hybrid approach that integrates tabu search with frequent pattern mining within
a population-based search framework for addressing the JSP. Of particular interest
of the tabu search is its novel tabu strategy, which employs hash techniques to ac-
curately mark visited solutions and rapidly determine the tabu status of neighboring
solutions in the local search. Such a tabu strategy enables a more efficient exploration
of the solution space. Furthermore, the hybrid approach fully embraces the potential
of frequent pattern mining by incorporating a frequent job order recognition method to
identify promising solution structures. These structures are not only used to generate
new promising solutions but also to guide the local search process. Extensive experi-
ments on the benchmark instances widely used in the literature show that the hybrid
algorithm performs remarkably well, by improving 13 best-known results (new upper
bounds). Additional experiments are presented to gain insight into the role of the key
elements of the algorithm.

Keywords: Job-shop scheduling; Frequent pattern based search; Hash-based prohibition;
Heuristics.

1 Introduction

The job shop scheduling problem (JSP) is not only one of the most notorious and intractable

NP-hard combinatorial optimization problems (Garey et al., 1976), but also one of the most

critical and challenging scheduling problems in the fields of operations management and

production planning. Over the decades, the JSP has attracted significant research attention,
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due to its broad applications in various domains, not limited to industrial manufacturing

and job-oriented production environments (Lamorgese and Mannino, 2019; Etesami, 2022).

Because of the theoretical and practical importance of the JSP, numerous solution meth-

ods have been proposed in the literature to effectively tackle the problem, including exact

algorithms, heuristics, and metaheuristic. Exact techniques based on branch and bound

(Barker and McMahon, 1985; Carlier and Pinson, 1989), Lagrangian relaxation (Kaskavelis

and Caramanis, 1998; Chen and Luh, 2003), mixed integer programming (Lamorgese and

Mannino, 2019; Naderi et al., 2023), and constraint programming (Ku and Beck, 2016;

Naderi et al., 2023) can find optimal solutions for problem instances with no more than

400 operations (except trivial cases). However, their computational requirements grow ex-

ponentially with problem size, making them impractical for larger instances. Therefore,

studies on heuristic and metaheuristic approaches have received increasing attention over

the last 30 years. These methods provide a good balance between computational efficiency

and solution quality, thus gaining wide acceptance for tackling the JSP.

Within the class of metaheuristic methods for the JSP, the most efficient methods

are usually dedicated local search algorithms (Vaessens et al., 1996; Grimes and Hebrard,

2015) and their combinations with population-based search frameworks. In particular, tabu

search has maintained its dominance among state-of-the-art local search methods for the

past two decades (Cheng et al., 2016; Xie et al., 2022, 2023). Two typical tabu strategies

are widely applied in the JSP literature: one preventing reversing moves (Beck et al., 2011)

and the other employing a partial solution-based tabu strategy (Zhang et al., 2007). Never-

theless, studies by Zhang et al. (2007); Cheng et al. (2016); Peng et al. (2015) have revealed

notable limitations in these tabu strategies: (i) incorrectly marking unvisited solutions, (ii)

repetitive visits to the same solutions, and (iii) the high time complexity associated with

recording partial solutions and checking tabu status. Therefore, we conjecture that employ-

ing a tabu strategy capable of accurately tracking visited solutions and quickly determining

tabu status could further improve the performance of tabu search.

The combination of frequent pattern mining and optimization methods has proven to be

a highly effective search framework for solving challenging optimization problems (Reddy

et al., 2012; Umetani, 2015; Zhou et al., 2020, 2023, 2024). Especially in the context of

the JSP, frequent pattern mining can help discover and identify useful scheduling-specific

2



rules and information from high-quality solutions encountered, such as the precise order of

job operations on different machines and the synchronization of job dependencies. These

scheduling-specific rules and information, when fully leveraged and exploited, can be used

to guide the local search algorithms to make more informed search decisions and improve

search effectiveness.

The above observations and considerations motivate us to develop a more robust heuris-

tic algorithm by combining hash-based tabu search and frequent pattern mining within a

population-based search framework to solve the JSP. The aim of this paper is twofold. The

first goal is to enrich the JSP literature with a new effective solution approach, capable

of finding higher-quality upper bounds with reasonable computing effort. The other goal

is to investigate methodological contributions on how to mark visited solutions effectively

to overcome the main limitations experienced by the traditional tabu strategy, and on

how to use scheduling-specific rules and knowledge to guide the local search. The detailed

contributions of this work are summarized as follows:

• Methodological Contributions: First, we devise a novel tabu strategy for the

JSP employing hashing techniques to precisely record each visited solution and de-

termine the tabu status of neighboring solutions. Our tabu search method employs

hash functions to accurately track visited solutions, thereby avoiding missing out any

high-quality non-visited solution and effectively preventing short-term and long-term

cycling. We design fast computation and update techniques, which allow us to deter-

mine the tabu status of neighboring solutions in constant time. Given the generality

of the proposed tabu strategy, it is applicable to various scheduling problems like flow

shop scheduling (Minella et al., 2008), flexible job shop scheduling (Vandevelde et al.,

2005), and machine scheduling (Kowalczyk and Leus, 2018).

Second, we explore the usefulness of frequent pattern mining in solving the JSP by

integrating it and tabu search within a population-based search framework. The

resulting hybrid algorithm (denoted by HTSFP) uses frequent pattern mining to

discover scheduling-specific rules and knowledge about the order and precedence of

job operations from high-quality solutions in the population, which are then used to

generate promising new initial solutions for the tabu search procedure and reduce

the search space explored by the algorithm. Until now, frequent pattern mining has
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rarely been explored in the context of solving the JSP, so this work fills this gap and

demonstrates its usefulness for better solving the problem.

• Computational Contributions: We show extensive experiments to validate the ef-

fectiveness and competitiveness of the proposed hybrid method by comparing it with

state-of-the-art JSP algorithms from the literature. This study demonstrates that, for

the benchmark instances widely used in the literature, the hybrid algorithm statisti-

cally outperforms the state-of-the-art algorithms. In particular, it is able to discover

13 improved best results (new upper bounds) on these commonly used benchmarks.

Additionally, we show an in-depth analysis on two critical algorithmic components:

the hash-based tabu strategy and the frequent pattern mining procedure, to provide

insights into their respective roles in the hybrid algorithm.

The remaining sections are organized as follows. In Section 2, a comprehensive literature

review for the JSP is provided. Section 3 presents the problem definition and formulation of

the JSP. The main algorithmic components of the proposed HTSFP algorithm are detailed

in Section 4. Section 5 presents the computational results of our algorithm and compares

it with several state-of-the-art methods. Section 6 provides an analysis on the algorithmic

usefulness of two critical components. Finally, Section 7 summarizes the conclusion.

2 Literature Review

This section provides a review of the literature on solving the JSP using tabu search and

hybrid algorithms.

2.1 Tabu Search for the JSP

Starting with an early algorithm by Taillard (1994), tabu search approaches have consis-

tently represented the state of the art in achieving high-quality solutions for the JSP due

to their ability to balance exploration and exploitation in the search space effectively. By

maintaining a memory structure that guides the search process, tabu search can efficiently

navigate complex solution spaces, avoid getting stuck in local optima, and converge towards

high-quality solutions. Several comprehensive reviews of the JSP methods (Błażewicz,
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2019; Michael, 2012) have identified tabu search as one of the most effective standalone

metaheuristic for the JSP. Some early foundational studies also demonstrated that tabu

search outperforms standalone genetic algorithm (GA) and simulated annealing (SA) for

the JSP. For instance, Nowicki and Smutnicki (1996) demonstrated through computational

experiments that tabu search outperforms SA. Jain and Meeran (1999) reviewed heuristic

methods for the JSP and concluded that tabu search generally outperforms simulated SA

due to SA’s parameter sensitivity and slower convergence, which results from its random-

walk behavior caused by probabilistically accepting worse solutions. Gonçalves et al. (2005)

demonstrated by computational experiment that pure GA underperforms tabu search for

the JSP but achieves better results when hybridized with tabu search. Yamada and Nakano

(1992) also highlighted limitations of pure GA for the larger JSP instances, noting that GA

is prone to premature convergence. This occurs because GA relies on crossover and mu-

tation for exploration but ofen lack localized intensification unless hybridized with local

search.

Tabu search approaches for the JSP are typically built on a foundation of one or more

problem-specific move operators to identify promising feasible and high-quality solutions in

the neighborhood of a given solution. The most famous neighborhood structures are N5,

N6, N7, and N8. As shown in Figure 1, the core idea of these neighborhood structures is to

change the critical path of an original scheduling scheme. Precisely, the N5 neighborhood

(Nowicki and Smutnicki, 1996) is to swap the first two operations or the last two operations.

The N6 neighborhood (Balas and Vazacopoulos, 1998) consists of moving an operation to

the beginning of the block or moving an operation to the end of the block. Based on the

N6 neighborhood, the N7 neighborhood (Zhang et al., 2007) further considers moving the

first and the last operation inside the critical block. More recently, Xie et al. (2023) present

the N8 neighborhood by further extending N7 neighborhood.

In addition to neighborhood structure, the tabu strategy is another critical component

in tabu search. It typically employs a ”tabu list” to keep track of recently visited solutions

and prevent the search from short-term cycling. As shown in Table 1, currently, there are

two typical tabu strategies widely applied in the literature. An early tabu strategy for the

JSP is based on the attributes of moves (Nowicki and Smutnicki, 1996, 2005; Pardalos and

Shylo, 2006; Beck et al., 2011), where the reverse move of a performed move is forbidden for
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Figure 1: Illustration of the Famous N5-N8 Neighborhoods.

Table 1: Different Tabu Strategies for the JSP in the Literature

Tabu strategy Description Literature

Move based tabu

strategy

When operations u and v are swapped, the reverse

move is forbidden for the next few iterations.

Nowicki and Smut-

nicki (1996, 2005);

Pardalos and Shylo

(2006); Beck et al.

(2011)

Partial solution

based tabu strat-

egy

When operation u is relocated to a position behind

operation v (or v is positioned ahead of u), moves re-

sulting in the same sequence of operations between

u and v (u, . . . , i, . . . , v) and their corresponding ma-

chine positions (pu, . . . , pi, . . . , pv) are forbidden.

Zhang et al. (2007,

2008); Peng et al.

(2015); Xie et al.

(2023, 2022)

the next few iterations called tabu tenure. This restriction aims to prevent the search from

rapidly returning to the recently visited solution or avoid short-term cycles between two or

more consecutively visited solutions. Subsequently, with the application of more complex

move operators in TS for the JSP, a partial solution based tabu strategy was proposed

by Zhang et al. (2007), where a sequence of operations and their positions in the machine

between two swapped operations is recorded in the tabu list, and any move resulting in the

same sequence and positions of operations are deemed forbidden. Specifically, if a move

involves swapping two operations u and v, any move that results in the same sequence of

operations and positions (i.e., operations from u to v (u, . . . , w, . . . , v) and their correspond-

ing machine positions from u to v (pu, . . . , pw, . . . , pv) is prohibited. In recent years, this
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tabu strategy has been extensively employed (Zhang et al., 2008; Peng et al., 2015; Xie

et al., 2023, 2022) and is regarded as more effective than move based strategy for the JSP.

However, there are some potential side effects of implementing the above traditional tabu

strategies. First, they may incorrectly mark many unvisited solutions as tabu, potentially

missing high-quality solutions. Second, early tabu decisions may become outdated, leading

to repeated visits to the same solutions and the risk of long-term cycling. Furthermore, the

implementation of the partial solution-based tabu strategy, which has been widely adopted

recently, requires a high time complexity for recording partial solutions and checking tabu

status, which significantly affects the overall efficiency of the tabu search method. A key

contribution of this study is the introduction of a novel hashing technique that uses hash

functions to accurately mark visited solutions and quickly determine the tabu status of

candidate solutions. Our proposed tabu strategy can effectively address the challenges

faced by traditional tabu strategies.

2.2 Hybrid Algorithms for the JSP

To achieve a more balanced search between intensification and diversification, tabu search

has been integrated with various population-based search frameworks in the literature, re-

sulting in the development of several hybrid evolutionary algorithms. For instance, Peng

et al. (2015) devised a TS/PR algorithm that blends tabu search with a path-relinking pro-

cedure. Their TS/PR algorithm successfully updated the upper bounds for 49 benchmark

instances. Cheng et al. (2016) introduced a hybrid evolutionary algorithm that combines

tabu search with the longest common sequence based recombination operator. Their ap-

proach successfully identified better upper bounds for two benchmark instances. Gonçalves

and Resende (2014) introduced a tabu search algorithm based on an extension of the graph-

ical method proposed by Akers Jr (1956), and applied it within a biased random-key genetic

algorithm. González et al. (2015) proposed a scatter search algorithm that uses tabu search

and path relinking in its core. Xie et al. (2022) proposed a hybrid algorithm that incor-

porates innovative crossover and mutation operators in the genetic algorithm part and

employs an expanded neighborhood structure in the tabu search part. The computation

results show that their proposed hybrid algorithm outperforms previous algorithms in terms

of both computational efficiency and solution quality. Constraint programming has proven
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to be highly effective for real-world scheduling problems due to its scheduling-specific in-

ference capabilities. Combining constraint programming with tabu search forms another

important hybrid approach for solving the JSP. An example of this hybrid approach can

be found in Beck et al. (2011), where the authors presented a hybrid algorithm for the JSP

that leverages both the fast, broad search capabilities of tabu search with domain-specific

inference inference capabilities of constraint programming.

Finally, in recent years, the emergence of new manufacturing modes, such as distributed

manufacturing, intelligent manufacturing, and green manufacturing, along with advances

in data analysis and artificial intelligence (including machine learning and deep learning),

has led to the development of several hybrid algorithms that combine learning-based tech-

niques with optimization methods (Lu et al., 2025). These hybrid algorithms aim to address

various new JSP models that incorporate a wide range of realistic requirements and prac-

tical production environments. For example, Liu et al. (2023) combine machine learning

with mathematical optimization, improving decision-making in complex job shops. Liu

et al. (2024) develop an exact algorithm and a machine learning heuristic for stochastic lot

streaming and scheduling, providing robust solutions for uncertain environments. Zhang

et al. (2023) offer a comprehensive survey on genetic programming and machine learning

techniques for heuristic design in job shop scheduling. For a recent overview of the latest

advances in applying hybrid algorithms to new JSP models, interested readers can refer to

Xiong et al. (2022).

3 Problem Definition and Notations

The JSP can be formally defined as follows: Let J be a finite set of jobs andM be a finite set

of machines. Each job j ∈ J must be processed exactly once on each of the |M| machines.

Thus, each job j is composed of an ordered operation list (O1
j , O

2
j , . . . , O

|M|
j ), where each

operation Oh
j (1 ≤ h ≤ |M|) must be processed on a specific machine, and the ordered

list of operations for job j is processed on a corresponding machine list (σ1j , σ2j , . . . , σ
|M|
j ).

Additionally, for each job j ∈ J and each machine m ∈ M, we are given a non-negative

integer pjm, which represents the processing time of j on m. Each machine can handle

only one operation at a time, and once an operation is initiated on a given machine, it
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must be completed on that machine without interruption. The objective is to minimize

the makespan, denoted as Cmax, which corresponds to the maximum completion time of

the last operation among all jobs. A mathematical formulation of the problem is shown in

Appendix A.1.

4 Hybrid Algorithm Combining Hash-based Tabu Search and Fre-

quent Pattern Mining

To achieve a more balanced search between intensification and diversification, this work

proposes a hybrid algorithm (denoted by HTSFP) for the JSP, which integrates hash-

based tabu search and frequent pattern mining within a general population-based search

framework.

4.1 Main Scheme

Begin

End

Adding  to the Pool, 
then Managing Population Health

Frequent Pattern based
Solution Construction

Random Population 
Construction

Frequent Pattern Mining 
Adjacent order & Precedence order

Meeting Stop
Condition?

Population

The 2nd Phase: Complete Search
without

Adjacent Job Fixing Rule or
Precedence Order Fixing Rule

The 2nd Phase: Complete Search
without

Adjacent Job Fixing Rule or
Precedence Order Fixing Rule

The 1st Phase: Reduced Search
with

Adjacent Job Fixing Rule &
Precedence Order Fixing Rule

The 1st Phase: Reduced Search
with

Adjacent Job Fixing Rule &
Precedence Order Fixing Rule

Yes

No

Hash-based Two Phased Tabu Search

Figure 2: The General Scheme of the HTSFP algorithm.

Figure 2 summarizes the general scheme of the HTSFP algorithm. It begins with an

initial population of |Pop| distinct random solutions. Subsequently, the algorithm enters
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its main loop to evolve the population iteratively. At each generation, a frequent pattern

mining procedure is first applied to identify two types of scheduling order information from

the population (Section 4.3). The first one involves the adjacent order relationship between

job operations in the job sequence of the same machine, while the second one involves the

precedence order between job operations in the job sequence of the same machine. In our

context, two jobs j and k are adjacent jobs in the job sequence of machine m, if j and k

are immediate successor and predecessor in the job sequence of machine m. Additionally,

if job j precedes (i.e., not necessarily immediately) job k in the job sequence of machine m,

we say that there is a precedence order between j and k in the job sequence of machine m.

The first type of scheduling information is first applied to generate a new starting solution

by preserving the adjacent job order frequently occurring in the job sequence of the same

machine across all solutions in the population. Afterward, this new starting solution is

further improved by the hash-based two phased tabu search procedure. The first phase of

the tabu search involves a reduced search procedure (Section 4.5.3), where the two types

of scheduling order information are employed to fix certain job operation orders frequently

appearing in the population. This can considerably reduce the search space and allow the

algorithm to explore the search space in a more focused manner. However, it is possible

that some orders can be wrongly fixed. To mitigate this risk, the improved solution is

further refined through the second phase of the tabu search procedure (Section 4.5.4),

which considers all possible candidate neighboring solutions by ignoring the prefixed order.

Both search phases rely on the tabu search framework, where a hash-based tabu strategy

is applied to precisely record visited solutions and quickly determine the tabu status of

candidate neighboring solutions (Section 4.5.2). Finally, the refined solution is used to

update the population through a population management procedure (Section 4.6). The

process repeats until a given time limit tmax is reached. The best solution S∗ found during

the search is finally returned as the result of the algorithm.

4.2 Solution Encoding and Decoding

We adopt the solution representation proposed by Falkenauer and Bouffouix (1991) and

widely used in the literature (Zhang et al., 2007; Xie et al., 2023; Peng et al., 2015). This

representation is based on the concept that once the sequence of job operations on machines
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is established, a unique scheduling scheme can be derived. Specifically, a solution to the

JSP is encoded as a chromosome comprising a set of |M| substrings, with each substring

representing the job sequence processed on each machine, denoted by a permutation of

{1, . . . , |J |}. Table 2 illustrates an example of the JSP featuring three machines and three

jobs. Here, substrings (3, 2, 1), (2, 1, 3), and (1, 3, 2) represent the job sequences processed

on machines 1, 2, and 3, respectively.

Table 2: An Instance of the JSP with Format ”{Machine, Processing Time}”

Job 1st operation 2nd operation 3rd operation

1 {3, 2} {2, 2} {1, 3}

2 {2, 1} {1, 3} {3, 2}

3 {1, 2} {2, 2} {3, 1}

Table 3: Sequences of the operations processed on each machine deduced from the encoded

chromosome {(3, 2, 1), (2, 1, 3), (1, 3, 2)}

Machine 1st operation 2nd operation 3rd operation

1 O1
3 O2

2 O3
1

2 O1
2 O2

1 O2
3

3 O1
1 O3

3 O3
2

Machine 2

Machine 3

Machine 1

Processing time

Makespan (Cmax)

0      1      2      3      4      5      6      7      8      9      10

1

1
O

3

3
O

3

2
O

1

2
O

2

3
O

2

1
O

1

3
O

2

2
O

3

1
O

Figure 3: Example of the JSP with the Solution {(3, 2, 1), (2, 1, 3), (1, 3, 2)}.

Conversely, from the encoded chromosome {(3, 2, 1), (2, 1, 3), (1, 3, 2)}, we can also de-

duce the only corresponding schedule as shown in Figure 3 using the decoding method

described in Falkenauer and Bouffouix (1991) and Ren and Wang (2012). Recall that Oh
j

is the h-th operation of job j (see Section 3). According to Table 2, operations O1
3, O2

2,
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O3
1 must be scheduled on machine 1, operations O1

2, O2
1, O2

3 must be scheduled on ma-

chine 2 and operations O1
1, O3

2, O3
3 must be scheduled on machine 3. And the schedule

must meet the job process constraint O1
1 − O2

1 − O3
1, O1

2 − O2
2 − O3

2 and O1
3 − O2

3 − O3
3,

where Oh1
j1 −Oh2

j2 means that operation Oh1
j1 must be scheduled before Oh2

j2 . The substrings

{(3, 2, 1), (2, 1, 3), (1, 3, 2)} represent the sequences of the operations processed on machine

1, 2 and 3, respectively. Therefore, the sequences of the operations processed on machine 1

is O1
3 −O2

2 −O3
1, machine 2 is O1

2 −O2
1 −O2

3 and machine 3 is O1
1 −O3

3 −O3
2 (see Table 3).

In the decoding method, an operation Oh
j can be scheduled immediately if and only if both

its preceding operation in its job’s operation sequence and its preceding operation in its

machine’s operation sequence have been completed. Based on the above schedule rule, we

schedule operation O1
3 on machine 1, operation O1

2 on machine 2, and operation O1
1 on ma-

chine 3 at time 0. Then at time 1, operation O1
2 is completed, however, we cannot schedule

operation O2
2 immediately because its preceding operation in the operation sequence of its

machine (i.e., O1
3 on machine 1) has not been completed. At time 2, operations O1

1 and O1
3

are completed, all three machines are idle at this moment. Therefore, we schedule operation

O2
2 on machine 1, operation O2

1 on machine 2 at time 2. Note that at this moment, we

cannot schedule operation O2
3 on machine 2 because the operation sequence on machine 2 is

O1
2 −O2

1 −O2
3, therefore, O2

3 can be scheduled only after the completion of O2
1. In a similar

manner, we schedule operation O2
3 on machine 2 at time 4, operation O3

1 on machine 1 at

time 5, operation O3
3 on machine 3 at time 6, and operation O3

2 on machine 3 at time 7.

4.3 Frequent Pattern Mining

Our hybrid algorithm maintains a population of elite solutions. Two types of useful frequent

patterns related to both the adjacent order and precedence order of jobs on each machine

are mined and extracted from the solutions in the population. In the context of job shop

scheduling, frequent patterns refer to recurring sequences or orders of job operations on

machines that occur frequently in historical or current scheduling solutions. The identi-

fication and analysis of these frequent patterns contribute significantly to the efficiency

and effectiveness of scheduling algorithms. On the other hand, the adjacent order and

precedence order of jobs on machines is crucial for optimizing the completion time of the

jobs. Therefore, frequent adjacent order patterns and frequent precedence order patterns
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represent two important types of frequent patterns in job shop scheduling.
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Figure 4: The Example of Mining Frequent Patterns from the Population.

Given a population of solutions that are initially randomly constructed and gradually

converge towards better solutions as generations progress, the hybrid algorithm first iden-

tifies common adjacent orders and precedence orders of job operations on machines based

on the structures of these solutions. It then records these identified order patterns in cor-

responding matrices. Specifically, for each machine m, an adjacent order matrix Pm is

introduced, where the element Pm
jk represents the frequency of jobs j and k being immedi-

ate successors and predecessors in the job sequence of machine m across all solutions in the

population. To facilitate tracking the initial and last jobs in the job sequence of machine

m, two dummy jobs, labeled as 0 and 0′, are introduced. Using a population with four JSP

solutions as an example, and assuming that the job sequences on machine 1 of these four

solutions are respectively (1, 2, 3, 4, 5), (2, 3, 1, 5, 4), (4, 1, 2, 3, 5), (1, 4, 2, 3, 5), as illustrated

in Figure 4(a). The corresponding precedence matrix P 1 is presented in Figure 4(b). For

instance, since jobs 2 and 3 are immediate successor and predecessor in the job sequence of

machine 1 for all four solutions, we have P 1
23 = 4.

Similarly, for each machine m, we introduce a precedence order matrix Qm, where the

element Qm
jk denotes the frequency with which job j precedes (not necessarily immediately

precedes) job k on machine m. Figure 4(c) illustrates the corresponding precedence order

matrix Q1 for the example presented in Figure 4(a). For instance, as job 1 precedes job 5

in the job sequence of machine 1 for all four solutions, we have Q1
15 = 4.
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4.4 The Frequent Pattern based Method for Solution Construction

The JSP is a typical sequence problem that involves finding a job sequence on each machine

that satisfies a given set of constraints while minimizing the makespan. The design of

this frequent pattern based method relies on the observation that some common adjacent

job orders frequently appear in the job sequence of many high-quality solutions. This

suggests that if these adjacent job orders frequently appear in the job sequence of the same

machine across the high-quality solutions, there is a strong chance that these adjacent

job orders also exist in the job sequence of the global optimum as shown in Section 6.2.

Therefore, algorithms can take advantage of these frequently recurring job orders, which

lead to successful schedules, to construct more promising initial solutions. This, in turn,

facilitates a more efficient exploration of the solution space.

Based on the mined frequent adjacent order patterns stored in the matrix Pm (m ∈

M), our frequent pattern-based method constructs a new JSP solution by considering the

machines one by one. For each considered machine m, the frequent pattern-based method

is to find a job sequence that maximizes the total frequency of the adjacent order between

immediate successor and predecessor jobs. Specifically, this problem can be formulated as

the following model:

max
∑

j∈{0}∪J

∑
k∈J∪{0′}

Pm
jkηjk (1)

s.t.
∑

k∈J∪{0′}

ηjk = 1, ∀j ∈ {0} ∪ J (2)

∑
j∈{0}∪J

ηjk = 1, ∀k ∈ {0′} ∪ J (3)

∑
j∈U

∑
k∈U

ηjk ≤ |U| − 1, ∀U ⊂ J , 2 ≤ |U| ≤ |J | (4)

ηjk ∈ {0, 1}, ∀j ∈ {0} ∪ J ∀k ∈ {O′} ∪ J (5)

where ηjk is a binary decision variable equal to 1 if job j immediately precedes k in the con-

structed job sequence for the currently considered machine, and 0 otherwise. Constraints

(2) and (3) ensure that each job is assigned to exactly one position on machine m, guaran-

teeing that every job is processed once on machine m. Constraints (4) state that for any job

subset U with at least two jobs and at most |J | − 1 jobs, at most one job in U can precede
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another job in U on machine m, ensuring an acyclic order of jobs on the machine. To solve

the model described above, we can develop dedicated heuristic approaches aimed at achiev-

ing high-quality solutions specifically for the problem. However, as discussed below, this

model is equivalent to the well-studied Asymmetric Traveling Salesman Problem (ATSP),

for which many effective solution methods have already been developed. By utilizing these

established ATSP methods, we can potentially tackle the new problem more efficiently.

Let djk = H − Pm
jk , where H = |Pop| is an upper bound for Pm

jk (Pm
jk ≤ H, ∀j ∈

J , k ∈ J , m ∈ M). Then we can rewrite the objective (1) as max |J |(|J |+1)H
2 −∑

j∈{0}∪J

∑
k∈J∪{0′}

djkηjk, which is equivalent to minimizing
∑

j∈{0}∪J

∑
k∈J∪{0′}

djkηjk. There-

fore, the model defined by (1)–(5) is equivalent to the following model:

min
∑

j∈{0}∪J

∑
k∈J∪{0′}

djkηjk (6)

s.t. (2)− (5)

The above model defined by (6) and (2) - (5) is precisely the DFJ model (Öncan et al.,

2009) of the ATSP problem, which is defined on a directed graph G = (V ∪ {0} ∪ {0′}, E),

where each vertex i ∈ V corresponds to a job in J , vertex 0 is the depot and corresponds

to the start job 0, while 0′ is a copy of 0 and corresponds to the finish job. Each arc

{j, k} ∈ E (j ∈ {0} ∪ V, k ∈ V ∪ {0′}) is assigned a distance djk = H − Pm
jk . Then

searching a job sequence with the maximum total frequency for machine m corresponds to

identifying the shortest route visiting each city (vertex) exactly once in G = (V ∪ {0} ∪

{0′}, E), implying any solution method for the ATSP can be used to solve our job sequence

problem defined by constraints (1) - (5). Since the ATSP is a well-studied problem in the

literature, for which many highly effective solution methods have been developed (Helsgaun,

2009; Nagata and Kobayashi, 2013; Pop et al., 2024), we can directly use these ATSP

methods to solve our job sequence problem and applying existing sophisticated methods

can lead to more efficient and reliable solutions. To this end, we adopt the LKH-2 algorithm

(Helsgaun, 2009), one of the most powerful ATSP heuristics, whose latest version 2.0.10 is

available at http://akira.ruc.dk/~keld/research/LKH/. Note that the schedule generated

by the LKH-2 approach can ensure the precedence order between operations on the same

machine. However, when considering all job sequences on all |M| machines, it may violate

15

http://akira.ruc.dk/~keld/research/LKH/


the precedence constraints, which require that all operations of a job are executed in the

given order. In such cases, we employ the procedure proposed by Ren and Wang (2012) to

repair an infeasible schedule to a feasible one.

4.5 Hash-based Two Phased Tabu Search for the JSP

The hash-based two phased tabu search is another critical component of our HTSFP al-

gorithm and plays the key role of search intensification. In what follows, we introduce its

neighborhood structure, its tabu strategy using hashing vectors to accurately mark visited

solutions and rapidly determine the tabu status of neighboring solutions, as well as its

reduced search phase and complete search phase.

4.5.1 Neighborhood Structure

Our tabu search procedure relies on the N8 neighborhood structure recently proposed in

Xie et al. (2022). The foundation of the N8 neighborhood structure is based on the concept

of the critical path, which represents the longest sequence of dependent operations that

determine makespan. Then a critical operation is defined as the operation on the critical

path, while a critical block refers to a maximal sequence of adjacent operations on the same

machine in a critical path. Based on these defined concepts, the N8 neighborhood structure

is defined by the relocation move operator which consists of moving a critical operation

outside its critical block and inserting it at a different position within the sequence on

the same machine. As shown in Figure 1, compared to the well-known N5, N6, and N7

neighborhood structures, which focus on moving critical operations within a critical block,

the N8 neighborhood explores a more extensive search space by considering moving critical

operations outside their critical block, thereby increasing the chances of the algorithm

discovering high-quality solutions.

4.5.2 Hashing Vectors for Solution Marking

Our hashing strategy is designed to address the challenge of managing a large number of

visited solutions during the search phase. Instead of maintaining an impractically massive

pool of solutions and comparing each candidate neighboring solution against it, we employ
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the hashing technique. By mapping each visited solution to an integer and marking this

integer with an index in the associated hashing vector, we efficiently track visited solutions.

This approach proves effective in both recording visited solutions and rapidly determining

whether a solution has been encountered previously (Wang et al., 2017).

More precisely, with a hash function h and hashing vector H of size L, a candidate

neighboring solution S ∈ Ω can be mapped to an integer h(S) using the hash function h

(h : S ∈ Ω → {0, 1, 2, ..., L − 1}). This integer serves as an index in the hash vector H,

enabling efficient storage and tracking of visited solutions. Specifically, the binary value in

the h(S)-th position of H (i.e., H[h(S)]) indicates the status of solution S: H[h(S)] = 1

implies that the candidate solution S has been previously visited; otherwise, H[h(S)] = 0.

The hash vector H is initialized to 0, indicating no solutions have been visited.

However, an issue arises regarding the computation and update of these hash functions.

The challenge is to make their calculation and update as easy and straightforward as pos-

sible. Specifically, the structure of the hash functions should align with the structure of

the adopted neighborhoods, streamlining the computation of hashing values for candidate

neighboring solutions. In our work, we propose hash functions with unified forms that are

applicable to all types of JSP problems and are easy to compute, enabling the calculation

of hash functions for any neighboring solution in O(1) time complexity. Precisely, for each

triple (j, k,m) where j ∈ J ∪{0}, k ∈ J ∪{0′} andm ∈M, we associate it with a predefined

dummy value wjkm. For a JSP solution denoted by its job sequences on all machines, let

yjkm represent a binary variable where yjkm = 1 if jobs j and k are two immediate successor

and predecessor jobs in the job sequence of machine m in S, and yjkm = 0 otherwise. The

hash value h(S) is computed as follows:

h(S) = (
∑

j∈J∪{0}

∑
k∈J∪{0′}

∑
m∈M

wjkmyjkm) mod L (7)

where L is the length of the hashing vectors which is empirically set to 108 in this work, and

the weight wjkm for (j, k,m) takes a prefixed value randomly generated in [0, ..., T ], where

T is a parameter. In the above hash function, due to the size limitation of the hash vector,

we modulate the raw hash value
∑

j∈J∪{0}

∑
k∈J∪{0′}

∑
m∈M

wjkmyjkm by the hash vector size L

to ensure it remains within the vector’s boundaries. Figure 5 illustrates the application of

this hash function to mark a solution on the presented instance with three machines and
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three jobs.
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Figure 5: The Use of a Hash function to Mark Solution {(3, 2, 1), (2, 1, 3), (1, 3, 2)} on an

Instance with Three Machines and Three Jobs.

In such an implementation, a fast incremental evaluation technique can be used to

compute the hash function value of any neighboring solution S′ based on the hash function

value of the current solution S. Specifically, our tabu search procedure relies solely on

the N8 neighborhood, employing a relocation move that shifts a critical operation of job

i on machine m outside its critical block and re-inserts it elsewhere in the job sequence

on machine m. Assume that j and k are the immediate predecessor and successor jobs

of i respectively before the move, and i is re-inserted between another two immediate

predecessor and successor jobs j′ and k′ in the same sequence, the hash value of the resulting

solution S′ can then be easily calculated as:

h(S′) = (h(S) + wjkm + wj′im + wik′m − wjim − wikm − wj′k′m) mod L (8)

However, due to the “birthday paradox” where the probability of a shared birthday ex-

ceeds 50% in a group of only 23 people (Carlton and Barnes, 1996), collisions can frequently

18



occur when two different solutions S1 and S2 are mapped into the same integer by h, i.e.,

h(S1) = h(S2). Such collisions may lead to an incorrect determination of a neighboring

solution’s tabu status, causing a non-visited candidate solution to be mistakenly identified

as a previously visited one.

To effectively reduce hashing collisions, we adopt the technique from Wang et al. (2017)

by simultaneously using multiple hash functions and their associated vectors to track each

visited solution. Specifically, three hash functions and their associated vectors are employed

to record each visited solution in this study. By setting different values for wjkm, we obtain

three distinct hash functions, namely h1(S), h2(S), and h3(S). The rationale behind using

multiple hash functions (vectors) to reduce collisions is twofold. First, each hash function

generates a different hash value for the same input, so even if one function produces a

collision, the others may not. Therefore, as long as collisions do not simultaneously occur

in all three hashing vectors (i.e., H1[h1(S)] = 0 or H2[h2(S)] = 0 or H3[h3(S)] = 0), we

clearly confirm such a candidate solution S has never been visited previously, and there is

no risk of misclassifying the tabu status for this candidate solution. Second, the probability

of collisions occurring simultaneously in all three hash vectors (i.e., H1[h1(S)] = 1 and

H2[h2(S)] = 1 and H3[h3(S)] = 1) is significantly lower compared to using only a single

hashing vector. As shown in Section A.3, our three hash functions can achieve an extremely

low collision rate, approaching zero.

The method for recording visited solutions and determining the tabu status of a can-

didate solution operates as follows. At the beginning of the search, all hashing vectors are

initialized with 0, indicating that no solution has been visited. Subsequently, each time a

solution is visited during the search process, the corresponding positions in the hashing vec-

tors are marked with 1 by setting Hk[hk(S)] = 1 for k = 1, 2, and 3. To determine the tabu

status of a candidate neighboring solution S′, we first compute the hashing values hk(S′)

and then check the values of Hk[hk(S
′)]. If any of them is 0, the candidate solution S′ is

classified as an admissible solution that has not been visited previously. Otherwise i.e.,(i.e.,

Hk[hk(S
′)] = 1 for k = 1, 2 and 3), the candidate solution is identified as a previously visited

solution, and it is prohibited from being considered again.
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4.5.3 The Reduced Search Phase

Compared to well-known neighborhood structures like N5 (Nowicki and Smutnicki, 1996),

N6 (Balas and Vazacopoulos, 1998), and N7 (Zhang et al., 2007), N8 (Xie et al., 2023)

explores a broader solution space. While a large neighborhood increases the chances of

discovering better solutions, it also demands evaluating a larger number of neighbors. Es-

pecially for the JSP, the calculation for the makespan of a neighboring solution requires

a time complexity of O(|M||J |), further intensifying the computational burden on neigh-

borhood evaluation. However, not all neighbors are equally likely to improve solutions.

Therefore, we propose a reduced neighborhood search, allowing the algorithm to focus on

promising regions of the search space. To define our search space, we use the frequent

adjacent order patterns and frequent precedence order patterns identified in Section 4.3 to

temporarily constrain a subset of job orders through the following two rules.

• Adjacent Job Order Fixing Rule: If jobs j and k are immediate successor and

predecessor in the job sequence of machine m across all elite solutions in the popu-

lation and the constructed solution produced by the frequent pattern based method

(i.e., Pm
jk = |Pop|), then during the subsequent local search procedure, the relative

positions of jobs j and k on machine m will be restricted from changing to strictly

maintain this adjacent order between the two jobs. For example, in Figure 4, jobs

2 and 3 are immediate successor and predecessor in the job sequence of machine 1

across all solutions. Therefore, during the subsequent local search, the relative posi-

tions of jobs 2 and 3 in the job sequence of machine 1 will be kept unchanged, but

the absolute positions of jobs 2 and 3 in machine 1 can change. The time complexity

of checking whether a move respects this rule is bounded by O(1).

• Precedence Order Fixing Rule: If job j always precedes (not necessarily imme-

diately precedes) job k in the job sequence of machine m across all solutions of the

population (i.e., Qm
jk = |Pop|), then during the subsequent local search procedure, we

do not consider moves that place job i after job j in the job sequence of machine m.

For example, in Figure 4, job 2 is always processed before jobs 3 and 5 on machine 1.

Therefore, during the subsequent local search, we do not consider moves that place

job 2 after job 3 or 5 in the job sequence of machine 1. The time complexity of
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checking whether a move respects this rule is bounded by O(|J |).

At each iteration of the reduced search, only moves respecting both fixing rules are

used to generate candidate neighboring solutions. From these solutions, the reduced search

then selects the best non-visited neighboring solution (i.e., the one not marked by the hash-

based tabu strategy and with the minimum makespan) to replace the current solution. The

reduced search stops when the best-found solution fails to be improved for a number of ω1

consecutive iterations, where ω1 is a parameter called search depth. By concentrating on

the reduced search space, the neighborhood becomes smaller and more focused, potentially

leading to more efficient searches. However, there is a risk that some job orders may be

incorrectly fixed. To mitigate this risk, the tabu search further resorts to a complete search

phase, where an exhaustive search is performed in the N8 neighborhood.

4.5.4 The Complete Search Phase

When the reduced search phase stops, the tabu search switches to the complete search

phase to allow the search to explores the full neighborhood of N8 to further improve the

solution. Specifically, at each iteration of the complete search, it considers all candidate

neighboring solutions in N8, and selects the overall best non-visited neighboring solution

to replace the current solution. The complete search stops when the best-found solution

can not be improved for a number of ω2 consecutive iterations. The general scheme of our

hash-based two phased tabu search is presented in Algorithm 1 in Appendix A.2.

4.6 Population Health Management

This work employs a population management strategy taking both solution quality and

distance information into account to maintain a healthy population (Lü and Hao, 2010;

Cheng et al., 2016; Zhou et al., 2024).

Our evaluation of the distance between two solutions is based on the similarity of solu-

tions. Currently, two main approaches exist in the literature for evaluating the similarity

of JSP solutions. The first approach employs the concept of the ”Hamming distance”,

where similarity increases by one if the job operations at the corresponding position on the

same machine are identical. The second approach uses the method of finding the longest
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common subsequence to determine the similarity between two solutions, which is generally

considered more accurate than the first method. In this work, we propose a job order-based

method for assessing the similarity between two solutions Sa and Sb. Precisely, for a pair

of jobs (j, k) and a machine m ∈ M, if j immediately precedes k in the job sequence of

machine m in both solutions Sa and Sb, the similarity between the two solutions increases

by 1. Then, the job order-based similarity Sim(Sa, Sb) is defined as follows:

Sim(Sa, Sb) =
∑
j∈J

∑
k∈J

∑
m∈M

ψ(j, k,m) (9)

where ψ(j, k,m) equals 1 if job j is the immediate predecessor of job j in the job sequence

of m in both solutions, and 0 otherwise.

Job Order-based Distance between Two Schedulings: Given two individuals

Sa and Sb, let Sim(Sa, Sb) be their job order-based similarity, then the job order-based

distance between these two solutions is defined by:

Da,b = |M||J | − Sim(Sa, Sb) (10)

Distance between One Scheduling and a Population: Given a population Pop =

{S1, . . . , Sp} and the distanceDab between any two schedulings Sa and Sb (a, b = 1, . . . , p, a ̸=

b), the distance between a scheduling Sa (a = 1, . . . , p) and the population Pop is defined

as the minimum distance between Sa and any other scheduling in Pop, denoted by Da,Pop:

Da,Pop = min{Dab | Sb ∈ Pop, b ̸= a} (11)

Health Score of a Scheduling for a Population: Given a population Pop =

{S1, . . . , Sp} and the distance Da,Pop for any solution Sa (a = 1, . . . , p), the health score of

solution Sa for population Pop is defined as:

Q(a, Pop) = β · Ã(f(Sa)) + (1− β) · Ã(Da,Pop) (12)

where f(Sa) is the makespan of solution Sa and Ã(·) represents the normalized function:

Ã(t) =
t− tmin

tmax − tmin + 1
(13)

where tmax and tmin are respectively the maximum and minimum values of t in the popu-

lation Pop, the number ”1” is used to avoid the possibility of a 0 denominator, and β is a

constant parameter.
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Our population management strategy to determine whether to insert a solution S into

Pop or discard it operates as follows. We temporarily add the solution S to the population

Pop, resulting in a modified population Pop′, i.e., Pop′ ← Pop ∪ S. We evaluate each

individual in the population Pop′ using the scoring function (12) and identify the worst

solution Sc, i.e., Sc ← argmaxSa∈Pop′ Q(a, Pop′). We compare Sc with S. If Sc is different

from S, we replace Sc with S. Otherwise, we discard S.

5 Computational Results

In this section, we present computational results of our proposed HTSFP algorithm and

provide a comparison with the state-of-the-art JSP heuristics.

5.1 Benchmark Instances and Experimental Settings

To evaluate the performance of HTSFP, we only focus on these notoriously difficult in-

stances, which are considered to be challenging for most JSP algorithms, while excluding

from consideration those instances for which the optimal solution can be readily reached in

a very short time by most algorithms in the literature. Consequently, we test our HTSFP

algorithm on the following four sets of a total of 185 JSP benchmark instances.

• The first set of benchmark instances features the 50 most challenging cases TA01–

TA50 by Taillard (1994).

• The second set of benchmark instances comprises the 40 classic instances LA01–LA40

introduced by Lawrence (1984).

• The third set of benchmark instances includes the 15 instances SWV01–SWV15 pre-

sented by Storer et al. (1992).

• The fourth set of benchmark instances encompasses the 80 most demanding scenarios

DMU01-DMU80 compiled by Demirkol et al. (1998).

These instances have been extensively tested by various algorithms for JSP. All these bench-

mark instances can be accessed for testing from the OR-Library and Shylo’s webpage (see

https://optimizizer.com/jobshop.php).
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We implemented HTSFP in C++ and executed it on a personal computer equipped with

an i7-12700 processor clocked at 2.1GHz and 16GB of RAM, operating on the Windows

11 platform. HTSFP requires four parameters as summarized in Table 4. To tune these

parameters, we resort to IRACE (Birattari et al., 2002), an automatic parameter configura-

tion tool. IRACE was executed using 20 randomly selected instances, with a tuning budget

of 2000 HTSFP executions and a time limit of 300s per execution. Table 4 presents the

parameter settings recommended by IRACE. These settings are considered as the default

setting of the algorithm and were used for all experiments in this study.

Table 4: Settings of the Required Parameters of the HTSFP Algorithm.

Parameter Section Description Considered values Final

ω1 4.5.4 Search depth of the reduced search {1e3, 2e3, 3e3, 4e3, 5e3} 2e3

ω2 4.5.4 Search depth of the complete search {1e3, 2e3, 3e3, 4e3, 5e3} 2e3

β 4.6 Population quality parameter {0.1, 0.3, 0.5, 0.7, 0.9} 0.5

p 4.5.2 Number of individuals in population {20, 30, 40, 50, 60} 30

T 4.6 Range of weights used in the hash functions {300, 600, 1000, 10000, 100000} 1000

Considering the stochastic nature of HTSFP, we independently execute the HTSFP

algorithm ten times for each problem instance. Additionally, due to the variation in the

sizes of these 185 instances, different stopping conditions have been applied in the literature

on these instances. Following Xie et al. (2022), we employ different time limits of Table 5.

Table 5: The Time Limit for Each Instance Set.
Instance name SWV12 (15) DMU56-65 DMU66-70 DMU71-80 Other

Time limit (h) 2 2 4 5 1

To measure the performance of HTSFP, we calculate the relative error (RE) using the

following relative deviation formula on each instance, following Xie et al. (2022).

RE = 100× UBsolve − LBbest
LBbest

where LBbest and UBsolve are the best known lower bound and upper bound reported in

the literature, respectively. Subsequently, we calculate the mean relative error (MRE) for

a given algorithm as the mean RE over all the tested instances.
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To demonstrate the effectiveness of HTSFP, we conduct a comparison with several state-

of-the-art algorithms from the literature. According to the computational results presented

in recent studies on JSP, the following three algorithms can reach the best-known upper

bounds reported in the literature for almost all of the instances and can be considered as

the current state-of-the-art algorithms for JSP.

• BRKGA by Gonçalves and Resende (2014), was implemented in C++ and tested on

a computer equipped with an AMD 2.2 GHz Opteron 2427 CPU running the Linux

(Fedora release 12) operating system.

• TS/PR by Peng et al. (2015), was implemented in C++ and executed on a PC with

a Quad-Core AMD Athlon 3.0 GHz CPU and 2 GB RAM, running the Windows 7

operating system.

• HA by Xie et al. (2022), was implemented in Java and executed on an Intel Core PC

with a 3.6 GHz processor and 16 GB of memory.

Note that the reference algorithms were tested on different computing platforms. Ac-

cording to the product information provided by Intel (https://www.intel.com/) and Ad-

vanced Micro Devices (https://www.amd.com/), our computing platform has a slower

single-thread CPU speed compared to that of Peng et al. (2015) and Xie et al. (2022), and is

roughly comparable to that of Gonçalves and Resende (2014). Providing a fully fair compar-

ison between HTSFP and the reference algorithms is challenging due to differences in coding

languages, implementations, computing platforms, etc. Therefore, we primarily focus on the

quality criterion of the obtained solutions and provide computation times just for indicative

purposes. Finally, we have made the validated best-known solutions and all instances from

this study publicly accessible on Shylo’s webpage at https://optimizizer.com/jobshop.php.

5.2 Computational Comparisons

We present a comparative analysis of the HTSFP algorithm against reference algorithms

across the four sets of benchmark instances in Table 6. Detailed computational results for

each instance can be found in Appendix (Tables 11 – 15).

Each row in Table 6 reports the results on a subset of instances of the same type from

the same data set. The first three columns in the table indicate which data set each subset
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of instances belongs to, the compared algorithm pair, and the number of compared in-

stances in this subset when comparing each pair of algorithms. Columns “#Win”, “#Tie”

and “#Lose” summarize respectively the number of instances for which HTSFP obtained

a better (#Win), equal (#Tie) or worse (#Lose) result compared to each reference algo-

rithm. Column “p-value” provides the p-values from the Wilcoxon signed-rank test with a

significance level of 0.05 for the results of each compared algorithm pair.

Table 6: Computational comparison results on the JSP instances.
Best Avg.

Instance Algorithm pair #Case #Win #Tie #Lose p-value #Win #Tie #Lose p-value

TA HTSFP vs. HA 50 6 44 0 2.6e-02 29 19 2 2.3e-03
HTSFP vs. TS/PR 50 13 37 0 1.4e-03 32 17 1 5.9e-07
HTSFP vs. BRKGA 50 9 41 0 7.1e-03 38 11 1 7.7e-08

LA HTSFP vs. HA 40 0 40 0 - 0 40 0 -
HTSFP vs. TS/PR 40 0 40 0 - 0 40 0 -
HTSFP vs. BRKGA 40 0 40 0 - 2 38 0 1.8e-01

SWV HTSFP vs. HA 15 1 14 0 9.3e-04 7 5 3 1.7e-05
HTSFP vs. TS/PR 15 4 11 0 1.1e-08 12 2 1 5.2e-10
HTSFP vs. BRKGA 15 7 8 0 7.6e-09 14 1 0 1.6e-08

DMU HTSFP vs. HA 80 14 66 0 3.2e-01 37 31 12 2.8e-02
HTSFP vs. TS/PR 80 43 37 0 6.6e-02 57 20 3 2.4e-03
HTSFP vs. BRKGA 80 44 36 0 1.8e-02 54 20 6 9.8e-04

Based on the summarized results in Table 6 and the detailed results in Tables 11-15,

the following observations can be made.

• TA instance set. As shown in the row “TA” of Table 6, the results achieved by

our HTSFP algorithm are highly competitive when compared to the three reference

algorithms. Specifically, in terms of the best objective values, HTSFP can achieve

better results than HA, TS/PR, BRKGA respectively for 6, 13, 9 out of the 50

instances, and matches the remaining instances. In terms of the average objective

values, HTSFP can achieve better results than HA, TS/PR, BRKGA respectively for

29, 32, 38 instances, and worse results only on 2, 1, 1 cases. By examining Table

11 of the online supplemental appendix, one can observe that HTSFP improves the

previously best-known result (new upper bound) for one instance (TA49).

• LA instance set. From the row “LA” of Table 6, one can observe that the results

obtained by HTSFP are comparable to those of HA, TS/PR and BRKGA. Indeed,
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across all 40 TA instances, HTSFP consistently achieves equal or better results in

terms of both the best and average objective values. From Table 12 of the online

supplemental appendix, we observe that our HTSFP algorithm can consistently attain

the known optimal solution for all except instance LA29 in each run. From Table 6,

one can also observe that all compared methods perform similarly on the set of LA

instances as all of them can reach the same best result on the 40 LA instances. This

can be attributed to the relatively small size of the LA instances and the fact that

the processing times of the operations in these instances vary within a narrow range,

making the LA instances easier for these algorithms to converge to the best solutions.

• SWV instance set. As shown in the row “SWV” of Table 6, compared to the three

reference algorithms HA, TS/PR and BRKGA, HTSFP has an excellent performance

on the 15 SWV instances. Furthermore, as shown by the row “MRE” in Table 13 of

the online supplemental appendix, our HTSFP algorithm has a much smaller MRE

value compared to the other three algorithms, indicating that the makespan of the

solutions produced by HTSFP is closer to the lower bound for these 15 SWV instances.

This confirms the competitiveness of our HTSFP algorithm on the SWV instance set.

• DMU instance set. As shown in the row “DMU” of Table 6, compared to the HA,

TS/PR, BRKGA heuristic algorithms, HTSFP shows a significant performance ad-

vantage in terms of the best objective values, by achieving better results for 14, 43, 44

out of 80 instances and matches the remaining instances. Furthermore, by examining

Table 14 of the online supplemental appendix, we observe that HTSFP improves the

previously best-known result (new upper bound) for 13 instances. HTSFP is able to

reach its best objective value in a relatively short time compared to the time required

by HA and TS/PR.

In summary, across the four sets comprising a total of 185 extensively tested JSP bench-

mark instances, the HTSFP algorithm performed remarkably well in terms of both the best

and average results. Notably, it improves the previous best-known results (establishing new

upper bounds) for 13 instances. A summary of the updated best results achieved by HTSFP

is provided in Table 9.
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5.3 Comparisons between HTSFP and Exact Methods based on Math-

ematical Models

To further confirm the effectiveness of the proposed HTSFP, we compare it with exact

methods based on two well-known Mixed Integer Programming (MIP) models for the JSP,

namely, the disjunctive model and the time-indexed model (Ku and Beck, 2016). Both

models were solved using CPLEX 22.1.0 on the same computer that was used to test our

HTSFP approach, ensuring a fair comparison. CPLEX 22.1.0 stops when the given instance

is solved to optimality or when the time limit of 7200 s is reached. Table 7 in Appendix

summarizes the comparative results of the three methods. For the two compared models, we

report the achieved upper bound (UB), lower bound (LB), the percentage gap between the

LB and UB (GAP), and the running time in seconds required to reach the optimal solution

for each instance. If an instance cannot be solved to optimality within the time limit, the

reported value for Time(s) is 7200 seconds. It can be observed from Table 7 that, for the

cases where the disjunctive model or time-indexed model achieves optimality, HTSFP easily

and consistently achieves the optimal solutions. Comparing HTSFP with the time-indexed

model, it is observed that the time-indexed model can only report UB and LB for the set

of LA instances within the given time limit. On the other hand, HTSFP outperforms the

time-indexed model on almost all LA instances by producing smaller upper bounds. In

comparison to the disjunctive model, it is observed that the disjunctive model can only

optimally solve cases up to a size of 15 × 15; larger instances cannot be optimally solved

within the given time, and the solution quality is significantly inferior to that of HTSFP.

For the LA instances, the disjunctive model can optimally solve cases up to a maximum

size of 10 × 10, while neither 15 × 5 nor larger instances can be optimally solved, yielding

results that are far inferior to HTSFP. For the SWV and DMU instances, the disjunctive

model cannot optimally solve even the smallest cases.

5.4 Computational results on larger instances

As mentioned in Section 5.1, our experiments conducted in Sections 5.2 and 5.3 focus on

these notoriously difficult and large instances from the literature. To further evaluate the

scalability of the proposed HTSFP algorithm, we generate 10 new larger instances: five with
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80 jobs and 30 machines, and five with 90 jobs and 35 machines. These 10 instances, named

DMU81–DMU90, are generated using the method for generating DMU instances (Demirkol

et al., 1998), which are considered the most challenging JSP instances in the literature. The

processing sequence of each job is a random permutation of all the machines in the shop.

The operation processing times of the operations are generated from a discrete uniform

distribution between 1 and 200. These new large instances are available for download at

https://github.com/MINGJIE666/JSP.

We tested HTSFP on the 10 newly generated instances and compared it with the dis-

junctive model and the time-indexed model. Table 8 in the Appendix summarizes the

comparative results of the three methods. As shown in Table 8, the disjunctive model is

only able to obtain upper bounds (UBs) for two instances within the 7200 s time limit,

while the time-indexed model fails to reach any UBs for all instances within the same time

frame. Furthermore, HTSFP provides significantly better UBs (derived from its feasible

solutions) within the given time compared to the two MIP models for the tested instances.

Overall, our HTSFP employs hash technology to quickly mark solutions and effectively

reduce invalid visits, and also applies data mining to identify meaningful orders that guide

the algorithm toward more promising solutions. These techniques enable HTSFP to sig-

nificantly outperform state-of-the-art models proposed in the literature, both in terms of

runtime and solution quality when solving large-scale problems.

6 Analysis

In this section, we analyze the key components of the proposed HTSFP algorithm to verify

their impacts on the performance of the algorithm: the usefulness of the hashing vectors for

solution marking and the rationale behind the frequent pattern mining. The effectiveness

of the multiple hash function strategy on reducing hashing collisions, the importance of

the frequent pattern based method for solution construction, and the sensitivity of the

parameters required by HTSFP are analyzed in Appendix A.3-A.5 respectively.
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6.1 The Usefulness of the Hashing Vectors for Solution Marking

To assess the benefit of the hashing vectors for solution marking, we compared HTSFP

with an HTSFP variant (named HTSFP1), where we replaced the hashing vector solution

marking with a traditional move based tabu strategy. For HTSFP1, each time a move is

performed, the reversed move is no longer eligible for selection for the next tt iterations,

where tt is the tabu tenure. We tested three different values of tt (tt = 5, 10, and 15

respectively) to fully evaluate the performance of HTSFP1. Preliminary experimental re-

sults indicate that HTSFP1 with tt = 10 has better overall performance, therefore, we set

tt = 10 for our HTSFP1. In addition to the traditional move based tabu strategy, the

classic aspiration criterion is also applied to further reinforce HTSFP1, which permits a

move to be performed despite being tabu if that move produces a solution better than the

best solution ever found. For this comparison, we used the 13 difficult instances whose

upper bounds are updated in this paper as shown in Table 9. HTSFP and HTSFP1 are

run 10 times independently to solve each instance with a time limit described in Section 5.

The comparative results are shown in Figure 6.
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Figure 6: Comparisons of the HTSFP with Its Variant HTSFP1.

From Figure 6, it can be observed that HTSFP and its variant HTSFP1 respectively

achieve the best results in 13 and 5 instances in terms of the best objective value, and

in 13 and 0 instances in terms of the average objective value. Furthermore, the small p-

values (1.80E-02 and 2.44E-04) from the Wilcoxon signed-rank test confirm the statistically

significant differences between HTSFP and its variant HTSFP1 in terms of the best and

average objective.
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6.2 Rationale behind the Frequent Pattern Mining for Solution Con-

struction

As mentioned in Section 4.4, the design of our frequent pattern based method relies on the

observation that some common adjacent job orders frequently appear in the job sequence of

many high-quality solutions, which form the backbone of optimal solutions. In this section,

we provide empirical motivation for this solution construction method. For this purpose,

we show an analysis on the proportion of commonly shared adjacent job orders between

solutions of various quality.
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Figure 7: Proportion of Commonly Shared Adjacent Job Orders between Solutions of Var-

ious Quality.

For the experiment, we used four representative instances with the known optimal value:

TA01, LA38, SWV03, and DMU37. We applied our HTSFP with different stop conditions

to solve these instances and recorded a number of solutions. To collect more solutions of
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different quality, we also applied a HTSFP variant that replaces the frequent pattern mining

part with a multi-restart component. Therefore, for each instance, we collect 600 solutions

of different quality using HTSFP and its multi-restart variant. Among these 600 solutions,

we select the top 5% (30 cases) with the smallest objective values and call them ‘high-quality

solutions’. Similarly, we take the bottom 5% (30 cases) with the largest objective values

and call them ‘low-quality solutions’. We also randomly select 5% from the 600 solutions

and call them ‘random solutions’. For each instance, we identify its optimal solution and

put it directly into the set of high-quality solutions.

Then, for each solution set, we calculated the proportion of common adjacent job orders

among all pairwise adjacent job orders, computed as ns
|M|(|J |+1) × 100%, where ns is the

number of common adjacent job orders shared by all solutions in the set. The results are

presented in Figure 7. From Figure 7, we can clearly see that, the proportion of common

adjacent job orders between solutions in the high-quality set is significantly higher than

that between solutions in the low-quality set and the random set.

L1:   0   12   10   8   11   9   13   4   3   2   15   7   6   5   1   15   0'

L2:   0   12   8   10   11   9   13   4   3   2   15   7   6   5   1   15   0'

L3:   0   12   8   10   11   9   13   4   3   2   15   7   6   5   1   15   0'

L4:   0   12   10   8   11   9   13   4   3   2   15   7   6   5   1   15   0'

L5:   0   12   10   8   11   9   13   4   3   2   15   7   6   5   1   15   0'

L6:   0   12   10   8   11   9   13   4   3   2   15   7   6   5   1   15   0'

L7:   0   12   10   8   11   9   13   4   3   2   15   7   6   5   1   15   0'

L8:   0   12   10   8   11   9   13   4   3   2   15   7   6   5   1   15   0'

L9:   0   12   8   10   11   9   13   4   3   2   15   7   6   5   1   15   0'

L10:  0   12   8   10   11   9   13   4   3   2   15   7   5   6   1   15   0'

Figure 8: Schedules among Ten High-Quality Solutions on Machine 1 of Instance TA01.

To complement this experiment, we also use a small instance, TA01, as a case study.

From the 600 collected solutions, we record the ten highest quality solutions including

the optimal solution, denoted as L1 − L10, with L1 being the optimal solution. Figure 8

illustrates the job processing order on machine 1 for these ten high-quality solutions (Note

that two solutions in L1 − L10 may have the same job sequence on machine 1, but their

job sequences may be different on other machines, resulting in two different solutions). It

is evident that in these high-quality solutions, the majority of the adjacent job orders are

identical and very close to those of the optimal solution. This observation further validates

the rationale for using frequent pattern mining for solution construction.
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7 Conclusion

This study investigated the Job Shop Scheduling Problem (JSP), a classic and important

problem in the field of operations research and manufacturing. To effectively solve JSP, this

study proposed an original hybrid algorithm (denoted by HTSFP) that combines hashing

vectors and frequent pattern mining for JSP. The proposed HTSFP algorithm incorporates

several innovative components. Firstly, since their introduction, tabu search algorithms

have consistently represented the state-of-the-art in obtaining high-quality solutions to

JSP. However, the traditional tabu strategies often encounter difficulties such as giving

a tabu status to unvisited solutions or falling into long-term cycles. To overcome these

challenges, our algorithm introduces a novel hash technique that employs hash functions to

precisely mark visited solutions and quickly determine the tabu status of neighboring solu-

tions. Additionally, the hash functions are implemented with a fast streamline evaluation,

ensuring that their computation and update can be easily achieved with a complexity of

O(1). Secondly, while frequent pattern mining approaches have proven to be effective in

solving various combinatorial optimization problems, they have rarely been investigated for

the JSP. Our hybrid algorithm tages advantage of the potential of frequent pattern min-

ing by incorporating a frequent pattern recognition method to identify promising solution

structures, which are used not only to generate new promising solutions, but also to reduce

the search space by focusing on areas of the solution space that are more likely to contain

promising solutions.

The performances of the proposed algorithm was tested on four sets of benchmark

instances in the literature. Compared with the state-of-the-art heuristic algorithms, the

proposed algorithm proved to be highly competitive. In particular, it obtained improved

best-known results (i.e., new UBs) for 13 benchmark instances. Additional experiments

were performed to study the impact of the essential components of the proposed HTSFP,

confirming the usefulness of the hashing vector solution marking strategy, the joint use of

multiple hash functions, and the frequent pattern mining strategy. Since these strategies

have a general nature and significantly contribute to the performance of the proposed

algorithm, it would be interesting for future research to explore the application of the

HTSFP algorithm to address other JSPs with different objective functions and practical

operational rules.
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A Appendix

A.1 Problem Definition and Notations

Table 10: The Sets, Parameters and Variables Used to Formulate the JSP

Notation Description

Sets:

M Set of machines

J Set of jobs

Parameters:

Oh
j The h-th operation of job j ∈ J

σh
j The machine for processing Oh

j

pjm Processing time of job j ∈ J on machine m ∈M

V Total processing time computed as: V =
∑

j∈J
∑

m∈M pjm

Variables:

xjm The integer start time of job j ∈ J on machine m ∈M

zjkm Equal to 1 if job j ∈ J precedes job k ∈ J on machine m ∈M

With the notations shown in Table 10, the JSP can be formulated as the following disjunc-

tive model (Ku and Beck, 2016):

min Cmax (14)

s.t. xjσh
j
≥ xjσh−1

j
+ pjσh−1

j
, ∀j ∈ J , h ∈M \ {1} (15)

xjm ≥ xkm + pkm − V · zjkm, ∀j, k ∈ J , j < k,m ∈M (16)

xkm ≥ xjm + pjm − V · (1− zjkm), ∀j, k ∈ J , j < k,m ∈M (17)

Cmax ≥ xjσ|M|
j

+ p
jσ

|M|
j

, ∀j ∈ J (18)

xjm ≥ 0, ∀j ∈ J ,m ∈M (19)

zjkm ∈ {0, 1}, ∀j, k ∈ J ,m ∈M (20)

The objective (14) is to minimize the makespan Cmax. Constraints (15) are the prece-

dence constraints ensuring that all operations of a job are executed in the given order. The

disjunctive constraints (16) and (17) ensure that two jobs can not be scheduled on the same

machine at the same time. V is assigned to a large enough value V =
∑

j∈J
∑

m∈M pjm
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to ensure the correctness of constraints (16) and (17). Constraints (18) ensure that the

makespan is at least the largest completion time of the last operation of all jobs. Con-

straints (19) ensure that the start time of each job is greater or equal to 0. Constraints

(20) guarantee that z are binary variables.

A.2 Main Scheme of the Hash-based Two-phased Tabu Search

Algorithm 1 Pseudo-code of the Hash-based Two-phased Tabu Search
Input: The initial solution S, the matrix P , the matrix Q, the reduced search depth ω1, the

complete search depth ω2.
Output: The best solution S∗ found so far.
1: for 0 ≤ i ≤ L− 1 do
2: H1[h1(i)] = H2[h2(i)] = H3[h3(i)] = 0 /* Initialize the hashing vectors */
3: end for
4: N ← 0 /* Record the number of consecutive unimproved iterations */

/* Begin the Reduced Search */
5: while $N < ω1 do
6: Identify the set of neighboring solutions, Neighbor_Reduce (S), for S, which satisfy the

Adjacent Job Order Fixing Rule and the Precedence Order Fixing Rule
7: Identify the best non-visited neighboring solution S′ from the reduced neighborhood of S,

i.e., S′ = argminS1∈Neighbor_Reduce(S) Cmax(S1), and H1[h1(S
′)] = 0 or H2[h2(S

′)] = 0 or
H3[h3(S

′)] = 0
8: S ← S′

9: H1[h1(S)] = H2[h2(S)] = H3[h3(S)] = 1 /* Record S as the visited solution by the hash
functions */

10: if Cmax(S) < Cmax(S
∗) then

11: S∗ ← S, N ← 0
12: else
13: N ← N + 1
14: end if
15: end while

/* Begin the Complete Search */
16: N ← 0, S ← S∗

17: while N < ω2 do
18: Identify the best non-visited neighboring solution S′ of S determined by the hash func-

tions, i.e., S′ = argminS1∈Neighbor(S) Cmax(S1), and H1[h1(S
′)] = 0 or H2[h2(S

′)] = 0 or
H3[h3(S

′)] = 0
19: S ← S′

20: H1[h1(S)] = H2[h2(S)] = H3[h3(S)] = 1 /* Record S as the visited solution by the hash
functions */

21: if Cmax(S) < Cmax(S
∗) then

22: S∗ ← S, N ← 0
23: else
24: N ← N + 1
25: end if
26: end while
27: return S∗
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The general scheme of our hash-based two phased tabu search is presented in Algorithm

1. At the beginning, the algorithm first initializes the hashing vectors (lines 1-3), and then

performs the reduced search phase (lines 5-16) and complete search phase (lines 17-26) to

improve the current solution. During the search, each time a solution is visited, we mark

the corresponding solution as a visited one by setting Hk[hk(S)] = 1 (k = 1, 2 and 3),

and the best solution encountered S∗ is updated if a better solution is found. Finally, the

algorithm terminates when the stopping condition is reached, and then returns the best

solution S∗ found during the search process.

A.3 The Effect of the Multiple Hash functions

In order to show the effectiveness of the multiple hash function strategy on reducing hash-

ing collisions, we compare it with three other strategies in terms of the number of errors

encountered during the search process. The first strategy (HTSFP2) uses one hash func-

tion and a vector of length L, the second (HTSFP3) uses two hash functions and two

vectors of length L, and the third (HTSFP4) uses four hash functions and four vectors

of length L. Our proposed strategy (denoted by HTSFP) uses three hash functions along

with three hashing vectors of length L. An error is counted when an unvisited solution

is incorrectly determined as tabu. To be specific, we perform a single run of the HTSFP

for 10,000 iterations on the DUM01 instance and preserve each visited solution in a pop-

ulation. Each iteration checks all the neighboring solutions of the current solution to find

those determined as tabu by the corresponding hashing strategy, i.e., filled with 1s in the

corresponding positions of all hashing vectors. For all such neighbor solutions, the number

of errors denoted by ec is incremented by one if the solution population does not contain

a duplicate of this solution; otherwise the non-error counter nec is incremented by one.

Finally, the error rate is calculated as ec/(ec+ nec).

Figure 9 depicts how the error rate changes as a function of search iterations during

the search process. This figure discloses that during the first 1000 iterations, the error

rate caused by any hashing strategy is very low and close to 0. Later, the error rate for

the HTSFP with a single hash function increases drastically with search iterations. After

iteration 4 × 106, the error rates even become 90%, making it useless to mark visited

solutions for the HTSFP. On the contrary, the error rate is significantly reduced by jointly
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Figure 9: Error Rates of the HTSFP Iterations.

using two hashing vectors, with a maximum error rate of only 30%. Furthermore, when

three or four hash functions are applied, the error rate drops very close to 0 across all

iterations, with a maximum value of just 0.01%. This experiment confirms that three hash

functions are sufficient to reduce the error rate to negligible levels. Adding a fourth hash

function (or more) provides only very marginal improvement (with error rate differences

becoming negligible as they approach 0.01%) while introducing unnecessary computational

overhead for checking a solution’s tabu status. Therefore, in this study, we adopt the three-

hash-function strategy, which not only achieves near-zero error rate, but also avoids the

redundant computational cost of a fourth function.

Using multiple hash functions can significantly reduce the likelihood of collisions. Each

hash function generates a different hash value for the same input, so even if one function

produces a collision, the others may not. This is analogous to a group of people, where the

probability of having two individuals with the same height is quite high, but the probability

of having two individuals with the same height, weight, and age is close to zero. On the

other hand, using a single function where each triple (j, k,m) is assigned a different weight

in the format of 2n (n is an integer) can potentially avoid collisions. However, this approach

can easily risk an integer overflow when computing the hash value, making it inapplicable.
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A.4 Importance of Frequent Pattern based Method for Solution Con-

struction
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Figure 10: Comparisons of HTSFP with Its Variant HTSFP4&5.

As introduced in Section 4.3, the HTSFP algorithm employs a frequent pattern based

method to construct new initial solutions. To verify the effectiveness of this frequent pattern

based method, we compared HTSFP with two variants HTSFP4 and HTSFP5. HTSFP4

replaces the frequent pattern based method with the crossover method proposed by Xie

et al. (2022), while HTSFP5 replaces the frequent pattern based method with the path

relinking procedure proposed by Peng et al. (2015). To make a fair comparison, We run all

approaches using selected instances and the same experimental condition like Section 6.1.

Figure 10 exhibits the comparison results. From Figure 10, one can observe that HTSFP,
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HTSFP4 and HTSFP5, respectively, produce the best result in 13/10, 2/1 and 2/2 cases in

terms of the best/average objective value. This experiment demonstrates that the informed

frequent pattern mining mechanism positively contributes to the overall performance of the

HTSFP algorithm.

A.5 Sensitivity analysis of the parameters

The HTSFP algorithm requires five parameters as shown in Table 4, including ω1 (Search

depth of the reduced search), ω2 (Search depth of the complete search), β (Population

quality parameter), p (Number of individuals in population), and T (Range of weights used

in the hash functions).

We first perform a 2-level full factorial experiment to test the interaction effects among

these four parameters. The low and high levels of each parameter are respectively set

as the smallest and largest values in Table 4. Since each parameter has two levels, this

results in a total of 32 (25 = 32) combinations for the five parameters. The experiment

is conducted on twenty randomly selected instances used in Section 5.1. Each instance

is solved independently 10 times with a time limit of 300s per run for each parameter

combination. Then the average results of the best objective values obtained on the twenty

instances are considered for each parameter combination. The Friedman test indicates

no statistically significant difference (p-values > 0.05) in terms of the considered average

results, which means that the interaction effects between these five parameters are not

statistically significant.

Then, for each single parameter, we perform a one-at-a-time sensitivity analysis to

analyze the influence of the parameter on the performance of HTSFP and to determine

its most appropriate value. To achieve this, we test its value within the range of possible

values as listed in the column 4 of Table 4 while fixing the other parameters to their default

values in Table 4. The HTSFP algorithm is independently run 10 times under a time limit

of 300s per run for each parameter value. We report the obtained best objective value

(denoted by Φbest) and the average objective value (denoted by Φavg) over the 10 runs on

the twenty instances in Figure 11, where the X-axis indicates the values of each parameter,

and the Y -axis presents the best/average gaps to the best-known results over the four

parameters. From Figure 11, we observe that the recommended parameter values from this
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calibration experiment are the same as those recommended by IRACE. Especially, the

choice of parameter T is crucial in determining the range of hash values h(S). A small T

restricts the hash value to a narrower range, potentially increasing the likelihood of collisions

as fewer indexes are available to store unique solutions. For example, setting T to 300 or

600 would map many solutions to the same integer, resulting in a high collision rate, thus

affecting the quality of the solutions as shown in Figure 11(e). As T increases and reaches

an appropriate value such as 1,000 and 10,000, the algorithm tends to stabilize. However,

an excessively large T value (e.g., 100,000) can cause integer overflow in hash calculations.

In this study, T is set to 1000 to balance collision risk and computational efficiency.
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Figure 11: Sensitivity analysis.

Furthermore, we employ the Friedman test to determine whether there exists a statisti-

cally significant difference in solution quality for different values of a given parameter. The

Friedman test indicates that the HTSFP algorithm is sensitive to the setting of β (with

p-value = 0.04), while this is not the case for the other parameters. The HTSFP algorithm

is sensitive to β, possibly due to the fact that a too small/large β may lead to a too much

diversification/greediness into the population health management procedure. Thus, suit-
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able values for the β is critical to the performance of the HTSFP algorithm. To sum up,

there are no significant interaction effects among the four parameters required by HTSFP.

Therefore, if the user needs to tune the parameters, more effort should be devoted to β.

A.6 Detailed Computational Results on Instances

In Tables 11 – 15, the first three columns indicate the instance name (Instance), the number

of jobs and machines (Size), and the best-known lower bound and upper bound reported

in the literature (UB(LB)). Columns 4–13 list the results obtained by the four compared

heuristic approaches on the 50 TA instances, including the best (Best), worst (Worst)

and the average (Avg.) objective value (i.e., makespan), as well as the average run time

(Time(s)) in seconds to reach the best result. In the “Best” and “Worst” columns, bold

values indicate that the best result of HTFSP outperforms the best result of all other

compared methods, while bold values in the “Worst” column signify that the worst result

of HTFSP is worse than the average result of all other compared methods. The row labeled

“#Best” shows the number of instances in which the respective algorithm achieves the best

result among all compared algorithms in terms of the best and average objective value. The

row labeled “Avg.” provides a summary of the results averaged across all tested instances.

The row labeled “MRE” presents the mean relative error (MRE) of a given algorithm across

tested instances.
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Table 7: Comparative Results between the HTSFP and Disjunctive Model and Time-

Indexed Model. ‘-’ Indicates That the Method Fails to Report the Corresponding Results

within the Given Time Limit.
HTSFP Disjunctive Model Time-indexed Model

Instance Size Best (UB) Worst Avg. Time(s) UB LB Time(s) GAP(%) UB LB Time(s) GAP(%)

TA01 15×15 1231 1231 1231 5.2 1231 1231 179.66 0 - - - -
TA02 15×15 1244 1244 1244 12.7 1244 1244 1316.25 0 - - - -
TA03 15×15 1218 1218 1218 65.3 1218 1218 513.75 0 - - - -
TA04 15×15 1175 1175 1175 54.1 1175 1175 376.61 0 - - - -
TA05 15×15 1224 1224 1224 15.3 1224 1224 7087.49 0 - - - -
TA06 15×15 1238 1238 1238 145.6 1238 1028 7200 18.67 - - - -
TA07 15×15 1228 1228 1228 0.2 1227 1227 1176.51 0 - - - -
TA08 15×15 1217 1217 1217 5.1 1217 1217 156.67 0 - - - -
TA09 15×15 1274 1274 1274 12.3 1274 1274 693.72 0 - - - -
TA10 15×15 1241 1241 1241 14.6 1241 1241 566.56 0 - - - -
TA11 20×15 1357 1357 1357 98.3 1420 1141 7200 19.65 - - - -
TA12 20×15 1367 1367 1367 116.3 1399 1118 7200 20.09 - - - -
TA13 20×15 1342 1352 1345 85.4 1371 1115 7200 18.67 - - - -
TA14 20×15 1345 1345 1345 6.1 1357 1073 7200 20.93 - - - -
TA15 20×15 1339 1339 1339 74.3 1387 1089 7200 21.49 - - - -
TA16 20×15 1360 1360 1360 29.2 1446 1078 7200 25.43 - - - -
TA17 20×15 1462 1480 1470 85.6 1522 1185 7200 22.14 - - - -
TA18 20×15 1396 1400 1397 111.7 1484 1097 7200 26.08 - - - -
TA19 20×15 1332 1334 1333 72.6 1421 1027 7200 27.73 - - - -
TA20 20×15 1348 1351 1350 153.9 1390 1121 7200 19.35 - - - -
LA01 10×5 666 666 666 0.1 666 666 1.39 0 666 666 711.2 0
LA02 10×5 655 655 655 0.1 655 655 0.69 0 656 642 7200 2.13
LA03 10×5 597 597 597 0.1 597 597 1.38 0 605 579 7200 4.3
LA04 10×5 590 590 590 0.1 590 590 0.41 0 624 567 7200 9.13
LA05 10×5 593 593 593 0.1 593 593 5.59 0 593 571 7200 3.69
LA06 15×5 926 926 926 0.1 926 618 7200 33.26 1035 741 7200 28.34
LA07 15×5 890 890 890 0.1 890 701 7200 21.24 1041 685 7200 34.23
LA08 15×5 863 863 863 0.1 863 654 7200 24.22 1043 666 7200 36.15
LA09 15×5 951 951 951 0.1 951 636 7200 33.12 1084 731 7200 32.51
LA10 15×5 958 958 958 0.1 958 656 7200 31.52 1078 754 7200 30.06
LA11 20×5 666 666 666 0.1 1222 616 7200 49.59 - - - -
LA12 20×5 655 655 655 0.1 1039 643 7200 38.11 1375 726 7200 47.24
LA13 20×5 597 597 597 0.1 1150 544 7200 52.7 1377 777 7200 41.65
LA14 20×5 590 590 590 0.1 1292 591 7200 54.26 - - - -
LA15 20×5 593 593 593 0.1 1207 683 7200 43.41 - - - -
LA16 10×10 945 945 945 0.1 945 945 1.73 0 - - - -
LA17 10×10 784 784 784 0.1 784 784 1.94 0 830 689 7200 17.09
LA18 10×10 848 848 848 0.1 848 848 0.97 0 - - - -
LA19 10×10 842 842 842 0.1 842 842 0.95 0 - - - -
LA20 10×10 902 902 902 0.1 902 902 0.86 0 - - - -
SWV01 20×10 1407 1407 1407 201.6 1519 913 7200 39.89 - - - -
SWV02 20×10 1475 1475 1475 175 1553 857 7200 44.82 - - - -
SWV03 20×10 1398 1398 1398 196.5 1516 869 7200 42.68 - - - -
SWV04 20×10 1464 1472 1468.1 101.7 1610 910 7200 43.48 - - - -
SWV05 20×10 1424 1426 1425.2 359.1 1563 933 7200 40.31 - - - -
DMU01 20×15 2563 2563 2563 207.1 2706 2090 7200 22.76 - - - -
DMU02 20×15 2706 2715 2710 13.7 2784 2297 7200 17.49 - - - -
DMU03 20×15 2731 2731 2731 28.5 2893 2177 7200 24.75 - - - -
DMU04 20×15 2669 2669 2669 15.2 2841 2171 7200 23.58 - - - -
DMU05 20×15 2749 2751 2750.4 108.9 2848 2130 7200 25.21 - - - -
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Table 8: Comparative Results between the HTSFP and Disjunctive Model and Time-

Indexed Model on New Larger Instances. ‘-’ Indicates That the Method Fails to Report

the Corresponding Results within the Given Time Limit.
HTSFP Disjunctive Model Time-indexed Model

Instance Size Best (UB) Worst Avg. Time(s) UB LB Time(s) GAP(%) UB LB Time(s) GAP(%)

DMU81 80×30 9233 9386 9285.5 4351.6 14098 3764 7200 73.3 - - - -
DMU82 80×30 9223 9223 9223 5631.2 - - - - - - - -
DMU83 80×30 8928 9231 9123.2 4185.9 - - - - - - - -
DMU84 80×30 9148 9245 9185.7 6237.8 14772 3756 7200 74.49 - - - -
DMU85 80×30 9130 9268 9231.6 5412.6 - - - - - - - -
DMU86 90×35 10067 10456 10213.1 6413.5 - - - - - - - -
DMU87 90×35 10415 10792 10543.8 7435.6 - - - - - - - -
DMU88 90×35 9969 10510 10359.4 6137.1 - - - - - - - -
DMU89 90×35 10775 10819 10801.6 6531.8 - - - - - - - -
DMU90 90×35 10055 10411 10256.3 5179.8 - - - - - - - -

Table 9: Summary of the 13 Improved Best-Known Solutions.
HTSFP HA TS/PR BRKGA

Instance Size UB(LB) Best Avg. Time(s) Best Avg. Time(s) Best Avg. Time(s) Best Avg.

TA49 30×20 1963(1931) 1960* 1962.1 450.4 1963 1967.0 592.7 1963 1971.5 1035.8 1964 1972.6
DMU16 30×20 3751(3734) 3750* 3752.8 1366.8 3751 3754.0 917.0 3753 3765.4 1303.4 3751 3758.9
DMU17 30×20 3814(3709) 3812* 3825.1 72.3 3814 3841.1 516.4 3819 3843.3 734.0 3830 3850.6
DMU20 30×20 3703(3604) 3699* 3705.2 286.9 3703 3716.2 493.4 3710 3726.5 701.3 3712 3715.3
DMU47 20×20 3942(3522) 3939* 3944.8 336.3 3943 3950.7 692.9 3942 3963.6 829.3 3939 3968.0
DMU49 20×20 3710(3403) 3706* 3715.1 107.1 3710 3720.0 660.3 3710 3736.1 633.8 3723 3729.6
DMU52 30×15 4303(4065) 4297* 4338.9 2344.6 4304 4341.2 1684.4 4311 4353.2 2232.6 4341 4353.2
DMU55 30×15 4263(4140) 4258* 4284.2 1230.5 4271 4288.1 1343.4 4271 4295.2 1914.4 4290 4299.4
DMU59 30×20 4616(4217) 4607* 4649.0 3020.4 4620 4652.0 2560.6 4624 4670.6 3614.5 4630 4633.3
DMU61 40×15 5171(4917) 5169* 5202.2 2716.0 5171 5201.0 2635.3 5195 5217.1 4739.1 5224 5233.3
DMU62 40×15 5248(5033) 5247* 5276.9 4231.6 5248 5277.0 3334.1 5268 5301.0 4853.8 5301 5304.4
DMU63 40×15 5313(5111) 5312* 5326.9 4331.2 5313 5336.2 3414.7 5326 5347.5 4122.7 5357 5386.6
DMU65 40×15 5184(5105) 5173* 5206.0 607.8 5184 5202.0 3156.9 5196 5203.2 4963.8 5197 5211.5
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Table 11: Computational Results on the TA Instance Set.
HTSFP HA TS/PR BRKGA

Instance Size UB(LB) Best Worst Avg. Time(s) Best Avg. Time(s) Best Avg. Time(s) Best Avg.

TA01 15×15 1231(1231) 1231 1231 1231 5.2 1231 1231 1 1231 1231 2.9 1231 1231
TA02 15×15 1244(1244) 1244 1244 1244 12.7 1244 1244 15.7 1244 1244 38.1 1244 1244
TA03 15×15 1218(1218) 1218 1218 1218 65.3 1218 1218 24.3 1218 1218 43.7 1218 1218
TA04 15×15 1175(1175) 1175 1175 1175 54.1 1175 1175 21.7 1175 1175 38.7 1175 1175
TA05 15×15 1224(1224) 1224 1224 1224 15.3 1224 1224 6.3 1224 1224 11.2 1224 1224.9
TA06 15×15 1238(1238) 1238 1238 1238 145.6 1238 1238 99.7 1238 1238.4 178.1 1238 1238.9
TA07 15×15 1227(1227) 1228 1228 1228 0.2 1228 1228 0.4 1228 1228 0.6 1228 1228
TA08 15×15 1217(1217) 1217 1217 1217 5.1 1217 1217 1.4 1217 1217 2.4 1217 1217
TA09 15×15 1274(1274) 1274 1274 1274 12.3 1274 1274 10.4 1274 1274 18.7 1274 1277
TA10 15×15 1241(1241) 1241 1241 1241 14.6 1241 1241 23.7 1241 1241 42.3 1241 1241
TA11 20×15 1357(1357) 1357 1357 1357 98.3 1357 1357 104.3 1357 1359.9 186.2 1357 1360
TA12 20×15 1367(1367) 1367 1367 1367 116.3 1367 1367 114.4 1367 1369.9 206.1 1367 1372.6
TA13 20×15 1342(1342) 1342 1352 1345 85.4 1342 1345 90.4 1342 1346 161.4 1344 1347.3
TA14 20×15 1345(1345) 1345 1345 1345 6.1 1345 1345 4.6 1345 1345 8.3 1345 1345
TA15 20×15 1339(1339) 1339 1339 1339 74.3 1339 1339 97.2 1339 1339 173.5 1339 1348.9
TA16 20×15 1360(1360) 1360 1360 1360 29.2 1360 1360 35.5 1360 1360 63.4 1360 1362.1
TA17 20×15 1462(1462) 1462 1480 1470 85.6 1462 1470 114 1463 1473 203.5 1462 1470.5
TA18 20×15 1396(1377) 1396 1400 1397 111.7 1396 1397 51.1 1396 1401 91.1 1396 1400.9
TA19 20×15 1332(1332) 1332 1334 1333 72.6 1332 1333 81.5 1332 1336.6 145.4 1332 1333.2
TA20 20×15 1348(1348) 1348 1351 1350 153.9 1348 1350 123.4 1348 1351.3 216.7 1348 1350.4
TA21 20×20 1642(1642) 1642 1650 1645 251.8 1642 1645 281.8 1644 1645.2 503 1642 1647
TA22 20×20 1600(1561) 1600 1600 1600 102 1600 1600.3 123.2 1600 1603.8 228.9 1600 1600
TA23 20×20 1557(1518) 1557 1561 1559 154.3 1557 1558.1 201.6 1557 1559.6 359.8 1557 1562.6
TA24 20×20 1644(1644) 1644 1647 1645.8 510.9 1644 1646 436.6 1645 1647.7 779.3 1646 1650.6
TA25 20×20 1595(1558) 1595 1597 1595.4 150.3 1595 1595.7 233.1 1595 1597 416.1 1595 1602
TA26 20×20 1643(1591) 1643 1651 1646.5 230.5 1645 1647 149.9 1647 1651.4 267.5 1643 1652.3
TA27 20×20 1680(1652) 1680 1689 1683.1 105.3 1680 1682.3 143.8 1680 1686.7 254.7 1680 1685.6
TA28 20×20 1603(1603) 1603 1607 1604.5 121.4 1603 1605.2 183.8 1613 1616.2 326.2 1603 1611.7
TA29 20×20 1625(1583) 1625 1625 1625 26.9 1625 1625.4 52.5 1625 1627.4 93.5 1625 1627.4
TA30 20×20 1584(1528) 1584 1587 1585 153.8 1584 1588.5 217.7 1584 1588.3 388.7 1584 1588.5
TA31 30×15 1764(1764) 1764 1764 1764 41.5 1764 1764 19.9 1764 1764 35.6 1764 1764.4
TA32 30×15 1784(1774) 1785 1789 1787 516.6 1785 1787 393.9 1787 1803.5 703.1 1785 1794.1
TA33 30×15 1791(1788) 1791 1793 1791.5 127.7 1791 1792.3 256.3 1791 1794.6 457.6 1791 1793.7
TA34 30×15 1828(1828) 1829 1829 1829 98.3 1829 1832 176.9 1829 1831.2 315.7 1829 1832.1
TA35 30×15 2007(2007) 2007 2007 2007 0.1 2007 2007 0.3 2007 2007 0.6 2007 2007
TA36 30×15 1819(1819) 1819 1819 1819 54.1 1819 1819 68.7 1819 1819 122.7 1819 1822.9
TA37 30×15 1771(1771) 1771 1775 1772.6 285.3 1771 1773 365.4 1771 1776.8 652.2 1771 1777.8
TA38 30×15 1673(1673) 1673 1673 1673 94.4 1673 1673 172.2 1673 1673 307.3 1673 1676.7
TA39 30×15 1795(1795) 1795 1795 1795 85.6 1795 1795 64.8 1795 1795 115.6 1795 1801.6
TA40 30×15 1669(1651) 1669 1678 1673 435.4 1670 1675 252.1 1671 1676 450 1669 1678.1
TA41 30×20 2006(1906) 2006 2013 2011.2 521.6 2006 2010.1 710.2 2010 2018.6 1267.8 2008 2018.7
TA42 30×20 1937(1884) 1937 1951 1943 863.8 1939 1946 871.9 1949 1950.3 1556.4 1937 1949.3
TA43 30×20 1846(1809) 1846 1855 1850 1030.8 1846 1850 967.3 1846 1865.1 1726.8 1852 1863.1
TA44 30×20 1979(1948) 1979 1982 1980.1 639.7 1979 1981.2 731.9 1982 1989.1 1304.7 1983 1992.4
TA45 30×20 2000(1997) 2000 2001 2000.6 513.1 2000 2004 592.8 2000 2000.5 1057.8 2000 2000
TA46 30×20 2004(1957) 2004 2015 2009.1 899.7 2006 2010 692.2 2008 2022.3 1236 2004 2015.5
TA47 30×20 1889(1807) 1889 1902 1900.4 854.2 1896 1902 577.5 1889 1906.2 1030.9 1894 1902.1
TA48 30×20 1937(1912) 1937 1952 1946 566.7 1937 1952 587.7 1947 1955.5 1047.4 1943 1959.2
TA49 30×20 1963(1931) 1960* 1965 1962.1 450.4 1963 1967 592.7 1963 1971.5 1035.8 1964 1972.6
TA50 30×20 1923(1833) 1923 1934 1927 779.3 1923 1928 738.8 1923 1931.4 1318.1 1925 1927

#best 50 46 44 31 37 17 41 12
Avg. 1559.7 1593.6 1561.4 236.6 1559.9 1561.7 237.6 1560.6 1564.0 423.8 1560.2 1564.2
MRE 0.97 1.19 1.08 0.99 1.11 1.04 1.26 1.01 1.29
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Table 12: Computational Results on the LA Instance Set.
HTSFP HA TS/PR BRKGA

Instance Size OPT Best Worst Avg. Time(s) Best Avg. Time(s) Best Avg. Time(s) Best Avg.

LA01 10×5 666 666 666 666 0.1 666 666 0.0 666 666 0.1 666 666.0
LA02 10×5 655 655 655 655 0.1 655 655 0.0 655 655 0.1 655 655.0
LA03 10×5 597 597 597 597 0.1 597 597 0.0 597 597 0.1 597 597.0
LA04 10×5 590 590 590 590 0.1 590 590 0.0 590 590 0.1 590 590.0
LA05 10×5 593 593 593 593 0.1 593 593 0.1 593 593 0.1 593 593.0
LA06 15×5 926 926 926 926 0.1 926 926 0.1 926 926 0.1 926 926.0
LA07 15×5 890 890 890 890 0.1 890 890 0.1 890 890 0.1 890 890.0
LA08 15×5 863 863 863 863 0.1 863 863 0.0 863 863 0.1 863 863.0
LA09 15×5 951 951 951 951 0.1 951 951 0.0 951 951 0.1 951 951.0
LA10 15×5 958 958 958 958 0.1 958 958 0.1 958 958 0.1 958 958.0
LA11 20×5 1222 1222 1222 1222 0.1 1222 1222 0.1 1222 1222 0.1 1222 1222.0
LA12 20×5 1039 1039 1039 1039 0.1 1039 1039 0.1 1039 1039 0.1 1039 1039.0
LA13 20×5 1150 1150 1150 1150 0.1 1150 1150 0.1 1150 1150 0.1 1150 1150.0
LA14 20×5 1292 1292 1292 1292 0.1 1292 1292 0.1 1292 1292 0.1 1292 1292.0
LA15 20×5 1207 1207 1207 1207 0.1 1207 1207 0.1 1207 1207 0.1 1207 1207.0
LA16 10×10 945 945 945 945 0.1 945 945 0.1 945 945 0.2 945 945.0
LA17 10×10 784 784 784 784 0.1 784 784 0.1 784 784 0.1 784 784.0
LA18 10×10 848 848 848 848 0.1 848 848 0.1 848 848 0.1 848 848.0
LA19 10×10 842 842 842 842 0.1 842 842 0.0 842 842 0.2 842 842.0
LA20 10×10 902 902 902 902 0.1 902 902 0.1 902 902 0.1 902 902.0
LA21 15×10 1046 1046 1046 1046 2.5 1046 1046 4.7 1046 1046 7.3 1046 1046.0
LA22 15×10 927 927 927 927 2.1 927 927 3.4 927 927 3.9 927 927.0
LA23 15×10 1032 1032 1032 1032 0.2 1032 1032 0.1 1032 1032 0.1 1032 1032.0
LA24 15×10 935 935 935 935 2.1 935 935 3.1 935 935 3.1 935 935.0
LA25 15×10 977 977 977 977 0.9 977 977 1.1 977 977 1.4 977 977.0
LA26 20×10 1218 1218 1218 1218 0.1 1218 1218 0.2 1218 1218 0.3 1218 1218.0
LA27 20×10 1235 1235 1235 1235 1.2 1235 1235 1.9 1235 1235 2.2 1235 1235.0
LA28 20×10 1216 1216 1216 1216 0.1 1216 1216 0.3 1216 1216 0.4 1216 1216.0
LA29 20×10 1153 1153 1153 1153 11.6 1153 1153 35.5 1153 1153 73.8 1153 1154.7
LA30 20×10 1355 1355 1355 1355 0.3 1355 1355 0.2 1355 1355 0.3 1355 1355.0
LA31 30×10 1784 1784 1784 1784 0.2 1784 1784 0.2 1784 1784 0.3 1784 1784.0
LA32 30×10 1850 1850 1850 1850 0.4 1850 1850 0.2 1850 1850 0.3 1850 1850.0
LA33 30×10 1719 1719 1719 1719 0.7 1719 1719 0.2 1719 1719 0.3 1719 1719.0
LA34 30×10 1721 1721 1721 1721 0.1 1721 1721 0.2 1721 1721 0.3 1721 1721.0
LA35 30×10 1888 1888 1888 1888 0.2 1888 1888 0.1 1888 1888 0.3 1888 1888.0
LA36 15×15 1268 1268 1268 1268 1.5 1268 1268 2.6 1268 1268 4.5 1268 1268.0
LA37 15×15 1397 1397 1397 1397 10.3 1397 1397 15.8 1397 1397 26.2 1397 1397.0
LA38 15×15 1196 1196 1196 1196 11.7 1196 1196 21.3 1196 1196 32.6 1196 1196.0
LA39 15×15 1233 1233 1233 1233 6.2 1233 1233 5.7 1233 1233 11.6 1233 1233.0
LA40 15×15 1222 1222 1222 1222 85.4 1222 1222 110.3 1222 1222 384.8 1222 1223.2

#best 40 40 40 40 40 40 40 38
Avg. 1081.3 1081.3 1081.3 3.5 1081.3 1081.3 5.2 1081.3 1081.3 13.9 1081.3 1081.3
MRE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.008
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Table 13: Computational Results on the SWV Instance Set.
HTSFP HA TS/PR BRKGA

Instance Size UB(LB) Best Worst Avg. Time(s) Best Avg. Time(s) Best Avg. Time(s) Best Avg.

SWV01 20×10 1407(1407) 1407 1407 1407.0 201.6 1407 1408.9 272.3 1407 1411.4 575.8 1407 1408.9
SWV02 20×10 1475(1475) 1475 1475 1475.0 175.0 1475 1475.0 189.7 1475 1475.1 294.1 1475 1478.2
SWV03 20×10 1398(1398) 1398 1398 1398.0 196.5 1398 1398.0 315.3 1398 1398.9 613.0 1398 1400.0
SWV04 20×10 1464(1464) 1464 1472 1468.1 101.7 1464 1470.1 189.6 1464 1473.5 257.6 1470 1472.8
SWV05 20×10 1424(1424) 1424 1426 1425.2 359.1 1424 1425.0 313.5 1425 1426.0 612.8 1425 1431.4
SWV06 20×15 1667(1630) 1667 1675 1671.1 201.7 1667 1670.0 182.5 1671 1675.9 385.7 1675 1682.1
SWV07 20×15 1594(1513) 1594 1610 1598.1 286.9 1595 1600.0 316.5 1595 1605.0 626.5 1594 1601.2
SWV08 20×15 1751(1671) 1752 1762 1756.1 195.6 1752 1758.2 253.0 1752 1760.4 503.0 1755 1764.3
SWV09 20×15 1655(1633) 1655 1659 1657.2 165.9 1655 1658.9 128.5 1655 1661.8 521.9 1656 1667.9
SWV10 20×15 1743(1663) 1743 1748 1745.6 128.6 1743 1748.0 138.9 1743 1756.6 441.4 1743 1754.6
SWV11 50×10 2983(2983) 2983 2983 2983.0 359.0 2983 2983.0 420.7 2983 2984.5 940.7 2983 2985.9
SWV12 50×10 2972(2972) 2972 2981 2976.3 1563.7 2972 2977.8 2763.8 2977 2985.3 6097.4 2979 2989.7
SWV13 50×10 3104(3104) 3104 3104 3104.0 714.8 3104 3104.0 562.1 3104 3104.0 1111.2 3104 3111.6
SWV14 50×10 2968(2968) 2968 2968 2968.0 243.6 2968 2968.0 321.4 2968 2968.0 422.8 2968 2968.0
SWV15 50×10 2885(2885) 2885 2898 2890.1 1956.7 2885 2889.0 2455.8 2885 2889.4 6000.6 2901 2902.9

#best 15 12 14 8 11 2 8 1
Avg. 1906.6 2037.7 1908.4 456.7 1906.6 1908.9 588.2 1907.1 1911.1 1293.6 1908.8 1913.8
MRE 1.24 1.52 1.36 1.25 1.41 1.28 1.56 1.38 1.70
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Table 14: Computational Results on the DMU Instance Set.
HTSFP HA TS/PR BRKGA

Instance Size UB(LB) Best Worst Avg. Time(s) Best Avg. Time(s) Best Avg. Time(s) Best Avg.

DMU01 20×15 2563(2501) 2563 2563 2563.0 207.1 2563 2563.0 234.2 2563 2563.0 332.9 2563 2563.0
DMU02 20×15 2706(2651) 2706 2715 2710.0 13.7 2706 2710.0 126.1 2706 2713.2 179.2 2706 2714.5
DMU03 20×15 2731(2731) 2731 2731 2731.0 28.5 2731 2732.3 273.4 2731 2733.1 388.6 2731 2736.5
DMU04 20×15 2669(2601) 2669 2669 2669.0 15.2 2669 2669.0 67.9 2669 2670.2 96.5 2669 2672.4
DMU05 20×15 2749(2749) 2749 2751 2750.4 108.9 2749 2755.4 213.2 2749 2758.6 303.0 2749 2755.4
DMU06 20×20 3244(2998) 3244 3250 3247.1 699.7 3244 3246.0 579.1 3245 3249.2 823.2 3244 3246.6
DMU07 20×20 3046(2815) 3046 3060 3052.3 341.8 3046 3050.1 253.7 3046 3062.3 360.6 3046 3058.6
DMU08 20×20 3188(3051) 3188 3188 3188.0 30.3 3188 3188.0 208.1 3188 3194.3 295.8 3188 3188.3
DMU09 20×20 3092(2956) 3092 3094 3093.0 100.3 3092 3093.0 104.1 3094 3097.4 148.0 3092 3094.4
DMU10 20×20 2984(2858) 2984 2984 2984.0 236.2 2984 2984.0 177.6 2985 2991.0 252.5 2984 2984.8
DMU11 30×15 3430(3395) 3430 3441 3435.0 1411.0 3430 3434.0 1053.1 3430 3435.2 1496.9 3445 3445.8
DMU12 30×15 3492(3418) 3492 3501 3497.3 265.6 3492 3496.1 633.2 3495 3509.7 900.0 3513 3518.9
DMU13 30×15 3681(3681) 3681 3681 3681.0 54.5 3681 3681.0 437.7 3681 3682.8 622.1 3681 3690.6
DMU14 30×15 3394(3394) 3394 3394 3394.0 0.9 3394 3394.0 2.1 3394 3394.0 3.0 3394 3394.0
DMU15 30×15 3343(3343) 3343 3343 3343.0 0.4 3343 3343.0 1.3 3343 3343.0 1.8 3343 3343.0
DMU16 30×20 3751(3734) 3750* 3755 3752.8 1366.8 3751 3754.0 917.0 3753 3765.4 1303.4 3751 3758.9
DMU17 30×20 3814(3709) 3812* 3841 3825.1 72.3 3814 3841.1 516.4 3819 3843.3 734.0 3830 3850.6
DMU18 30×20 3844(3844) 3844 3844 3844.0 3509.3 3844 3844.0 2664.5 3844 3849.5 3787.4 3844 3845.4
DMU19 30×20 3764(3669) 3764 3792 3781.3 726.9 3764 3781.0 505.6 3768 3787.4 718.7 3770 3791.8
DMU20 30×20 3703(3604) 3699* 3712 3705.2 286.9 3703 3716.2 493.4 3710 3726.5 701.3 3712 3715.3
DMU21 40×15 4380(4380) 4380 4380 4380.0 0.5 4380 4380.0 0.5 4380 4380.0 0.7 4380 4380.0
DMU22 40×15 4275(4275) 4275 4275 4275.0 0.8 4275 4275.0 1.0 4725 4725.0 1.5 4725 4725.0
DMU23 40×15 4668(4668) 4668 4668 4668.0 0.9 4668 4668.0 0.9 4668 4668.0 1.3 4668 4668.0
DMU24 40×15 4648(4648) 4648 4648 4648.0 0.3 4648 4648.0 0.5 4648 4648.0 0.8 4648 4648.0
DMU25 40×15 4164(4164) 4164 4164 4164.0 0.3 4164 4164.0 0.4 4164 4164.0 0.6 4164 4164.0
DMU26 40×20 4647(4647) 4647 4647 4647.0 1504.7 4647 4647.0 1147.7 4647 4647.3 1631.4 4647 4658.4
DMU27 40×20 4848(4848) 4848 4848 4848.0 0.1 4848 4848.0 8.6 4848 4848.0 12.2 4848 4848.0
DMU28 40×20 4692(4692) 4692 4692 4692.0 8.4 4692 4692.0 12.4 4692 4692.0 17.7 4692 4692.0
DMU29 40×20 4691(4691) 4691 4691 4691.0 50.1 4691 4691.0 44.7 4691 4691.0 63.5 4691 4691.0
DMU30 40×20 4732(4732) 4732 4732 4732.0 31.7 4732 4732.0 86.5 4732 4732.0 123.0 4732 4732.0
DMU31 50×15 5640(5640) 5640 5640 5640.0 0.5 5640 5640.0 0.6 5640 5640.0 0.8 5640 5640.0
DMU32 50×15 5927(5927) 5927 5927 5927.0 0.3 5927 5927.0 0.4 5927 5927.0 0.6 5927 5927.0
DMU33 50×15 5728(5728) 5728 5728 5728.0 0.0 5728 5728.0 0.3 5728 5728.0 0.4 5728 5728.0
DMU34 50×15 5385(5385) 5385 5385 5385.0 0.1 5385 5385.0 1.6 5385 5385.0 2.2 5385 5385.0
DMU35 50×15 5635(5635) 5635 5638 5636.0 0.4 5635 5636.0 0.5 5635 5635.0 0.7 5635 5635.0
DMU36 50×20 5621(5621) 5621 5621 5621.0 3.5 5621 5621.0 5.5 5621 5621.0 7.8 5621 5621.0
DMU37 50×20 5851(5851) 5851 5851 5851.0 11.4 5851 5851.0 8.0 5851 5851.0 11.4 5851 5851.0
DMU38 50×20 5713(5713) 5713 5713 5713.0 4.3 5713 5713.0 7.5 5713 5713.0 10.7 5713 5713.0
DMU39 50×20 5747(5747) 5747 5747 5747.0 0.6 5747 5747.0 1.4 5747 5747.0 2.0 5747 5747.0
DMU40 50×20 5577(5577) 5577 5577 5577.0 4.1 5577 5577.0 3.5 5577 5577.0 4.9 5577 5577.0
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Table 15: (Continue.) Computational Results on the DMU Instance Set.
HTSFP HA TS/PR BRKGA

Instance Size UB(LB) Best Worst Avg. Time(s) Best Avg. Time(s) Best Avg. Time(s) Best Avg.

DMU41 20×15 3248(3007) 3248 3280 3268.5 421.0 3248 3274.0 294.0 3248 3281.9 417.8 3261 3281.9
DMU42 20×15 3390(3172) 3390 3401 3394.5 406.6 3390 3395.5 315.8 3390 3409.8 449.0 3395 3403.9
DMU43 20×15 3441(3292) 3441 3452 3446.7 2.1 3441 3447.0 3.5 3441 3450.5 399.3 3441 3452.7
DMU44 20×15 3475(3283) 3475 3495 3488.3 212.8 3475 3490.0 280.9 3489 3509.7 371.3 3488 3510.7
DMU45 20×15 3266(3001) 3266 3293 3283.7 193.3 3267 3285.0 261.2 3273 3287.9 709.2 3272 3287.3
DMU46 20×20 4035(3575) 4035 4056 4043.2 365.2 4035 4042.2 498.9 4035 4051.8 984.9 4035 4043.2
DMU47 20×20 3942(3522) 3939* 3948 3944.8 336.3 3943 3950.7 692.9 3942 3963.6 829.3 3939 3968.0
DMU48 20×20 3763(3447) 3763 3805 3798.7 508.1 3763 3798.2 583.4 3778 3814.1 938.6 3781 3800.9
DMU49 20×20 3710(3403) 3706* 3721 3715.1 107.1 3710 3720.0 660.3 3710 3736.1 633.8 3723 3729.6
DMU50 20×20 3729(3496) 3729 3746 3739.9 645.8 3729 3740.0 445.9 3729 3741.2 609.6 3732 3746.5
DMU51 30×15 4156(3917) 4156 4203 4192.5 40.7 4156 4200.0 428.9 4167 4205.9 2394.3 4201 4222.9
DMU52 30×15 4303(4065) 4297* 4350 4338.9 2344.6 4304 4341.2 1684.4 4311 4353.2 2232.6 4341 4353.2
DMU53 30×15 4378(4141) 4381 4453 4421.7 1130.2 4388 4421.4 1570.7 4394 4425.7 2161.8 4415 4420.2
DMU54 30×15 4361(4202) 4361 4399 4379.5 157.0 4361 4381.2 1520.9 4371 4390.5 1909.5 4396 4402.7
DMU55 30×15 4263(4140) 4258* 4310 4284.2 1230.5 4271 4288.1 1343.4 4271 4295.2 1914.4 4290 4299.4
DMU56 30×20 4939(4554) 4939 4998 4974.6 1700.8 4939 4976.0 1346.8 4941 4990.6 3825.4 4961 4768.4
DMU57 30×20 4647(4302) 4647 4723 4698.1 1116.8 4647 4701.0 2691.3 4663 4714.0 3649.4 4698 4704.9
DMU58 30×20 4701(4319) 4708 4769 4752.1 922.3 4708 4760.0 2567.4 4708 4779.4 3639.7 4751 4752.8
DMU59 30×20 4616(4217) 4607* 4657 4649.0 3020.4 4620 4652.0 2560.6 4624 4670.6 3614.5 4630 4633.3
DMU60 30×20 4721(4319) 4745 4781 4763.9 3135.2 4745 4770.0 2542.9 4755 4804.3 3745.9 4774 4777.0
DMU61 40×15 5171(4917) 5169* 5231 5202.2 2716.0 5171 5201.0 2635.3 5195 5217.1 4739.1 5224 5233.3
DMU62 40×15 5248(5033) 5247* 5287 5276.9 4231.6 5248 5277.0 3334.1 5268 5301.0 4853.8 5301 5304.4
DMU63 40×15 5313(5111) 5312* 5341 5326.9 4331.2 5313 5336.2 3414.7 5326 5347.5 4122.7 5357 5386.6
DMU64 40×15 5226(5130) 5226 5289 5260.8 3473.9 5226 5269.1 2900.4 5252 5279.8 4487.3 5312 5321.8
DMU65 40×15 5184(5105) 5173* 5218 5206.0 607.8 5184 5202.0 3156.9 5196 5203.2 4963.8 5197 5211.5
DMU66 40×20 5701(5391) 5714 5768 5749.0 1532.9 5714 5756.0 3492.1 5717 5788.7 9543.9 5796 5806.6
DMU67 40×20 5779(5589) 5779 5825 5802.7 9127.9 5779 5810.0 6714.3 5816 5852.5 8431.5 5863 5881.3
DMU68 40×20 5763(5426) 5763 5912 5894.3 4366.7 5763 5902.0 5931.7 5773 5801.8 8739.5 5826 5843.7
DMU69 40×20 5688(5423) 5688 5701 5694.6 8358.8 5688 5700.0 6148.4 5709 5754.4 8107.6 5775 5804.0
DMU70 40×20 5868(5501) 5868 5934 5916.4 4891.3 5868 5921.0 5703.9 5903 5924.2 7285.3 5951 5968.2
DMU71 50×15 6207(6080) 6207 6251 6231.4 5601.8 6207 6232.0 5125.3 6223 6264.8 9835.1 6293 6603.8
DMU72 50×15 6463(6395) 6463 6517 6497.9 6476.3 6463 6507.1 6919.2 6483 6510.9 10881.8 6503 6560.7
DMU73 50×15 6136(6001) 6136 6199 6178.4 8676.4 6136 6187.2 7655.5 6163 6199.8 11475.2 6219 6250.5
DMU74 50×15 6196(6123) 6196 6213 6205.8 5434.6 6196 6211.1 8073.0 6227 6266.4 11164.4 6277 6312.6
DMU75 50×15 6189(6029) 6189 6221 6203.0 4668.8 6189 6200.1 7854.4 6197 6239.4 11330.9 6248 6282.4
DMU76 50×20 6718(6342) 6718 6897 6814.7 7948.6 6718 6810.0 7971.5 6813 6854.8 9998.2 6876 6885.4
DMU77 50×20 6747(6499) 6747 6812 6790.7 4147.4 6747 6800.0 7033.9 6822 6879.9 12062.9 6857 6892.7
DMU78 50×20 6755(6586) 6755 6901 6801.0 3878.3 6755 6801.0 8486.5 6770 6813.2 10346.6 6831 6855.7
DMU79 50×20 6910(6650) 6910 6998 6971.4 8253.7 6910 6970.0 7279.0 6970 7003.0 9818.9 7049 7060.9
DMU80 50×20 6634(6459) 6634 6701 6669.5 5035.7 6634 6670.0 6907.8 6686 6700.1 10332.0 6736 6757.9

#best 80 64 66 41 37 22 36 24
Avg. 4553.3 4636.7 4569.7 1660.7 4554.0 4571.4 1872.8 4568.1 4586.3 2791.2 4584.3 4595.1
MRE 3.41 3.98 3.76 3.43 3.81 3.73 4.15 4.05 4.27

53


	Introduction
	Literature Review
	Tabu Search for the JSP
	Hybrid Algorithms for the JSP

	Problem Definition and Notations
	Hybrid Algorithm Combining Hash-based Tabu Search and Frequent Pattern Mining
	Main Scheme
	Solution Encoding and Decoding
	Frequent Pattern Mining
	The Frequent Pattern based Method for Solution Construction
	Hash-based Two Phased Tabu Search for the JSP
	Neighborhood Structure
	Hashing Vectors for Solution Marking
	The Reduced Search Phase
	The Complete Search Phase

	Population Health Management

	Computational Results
	Benchmark Instances and Experimental Settings
	Computational Comparisons
	Comparisons between HTSFP and Exact Methods based on Mathematical Models
	Computational results on larger instances

	Analysis
	The Usefulness of the Hashing Vectors for Solution Marking
	Rationale behind the Frequent Pattern Mining for Solution Construction

	Conclusion
	Appendix
	Problem Definition and Notations
	Main Scheme of the Hash-based Two-phased Tabu Search
	The Effect of the Multiple Hash functions
	Importance of Frequent Pattern based Method for Solution Construction
	Sensitivity analysis of the parameters
	Detailed Computational Results on Instances


