
A flow based formulation and a reinforcement learning based strategic
oscillation for cross-dock door assignment

Mingjie Lia,b, Jin-Kao Haob, Qinghua Wua,∗

aSchool of Management, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan, China
bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France

Accepted to European Journal of Operational Research, July 2023.

Abstract

Cross-dock door assignment is a critical warehouse optimization problem in supply chain management. It
involves assigning incoming trucks to inbound doors and outgoing trucks to outbound doors to minimize
the total pallet-handling cost inside the warehouse. This study investigates a flow based formulation and
a reinforcement learning based heuristic approach to solve this problem. The flow based formulation relies
on the flow of goods. It is significantly smaller than the existing mixed integer programming formulations
in the literature. The proposed heuristic algorithm relies on a Q-learning reinforced procedure to guide
the search toward promising areas, and a strategic oscillation method to adaptively explore feasible and
infeasible search spaces. It also relies on an improved tabu strategy using attributive and explicit memories.
The formulation and proposed heuristic algorithm were tested on two sets of benchmark instances widely
used in the literature and compared with several state-of-the-art algorithms. The computational results
demonstrated the high competitiveness of the proposed methods in solution quality and computation time.
In particular, the flow based formulation can optimally solve more and larger instances and produce better
lower and upper bounds than the existing mixed integer programming formulations in the literature. The
heuristic approach improved the best solutions (new upper bounds) for 43 of the 99 tested instances while
matching the other best-known solutions, except in two cases. The key components of the algorithm were
analyzed to justify the algorithm design. The code of the proposed algorithm will be publicly available.

Keywords: Heuristics; formulation; cross-docking assignment; reinforcement learning; strategic oscillation.

1. Introduction

The past few decades have witnessed tremendous growth in global trade volumes, which has greatly
stimulated the development of the world’s logistics industry and promoted technical changes in supply chain
management. Cross-docking is a fast-growing trend in supply chain management (Boysen & Fliedner, 2010;
Van Belle et al., 2012; Bodnar et al., 2017; Gaudioso et al., 2021). At a cross-docking terminal, which serves
as an intermediary node in the distribution network, the commodities of incoming trucks are unloaded,
sorted, moved across the terminal, and finally loaded onto outgoing trucks that immediately depart for the
next destination in the distribution network. In contrast to traditional warehouses, cross-docking techniques
can significantly accelerate the delivery of commodities and efficiently reduce warehousing, transportation,
and other costs associated with pallet handling.

∗Corresponding author
Email addresses: lmj@hust.edu.cn (Mingjie Li), jin-kao.hao@univ-angers.fr (Jin-Kao Hao),

qinghuawu1005@gmail.com (Qinghua Wu)

Preprint submitted to Elsevier July 10, 2023

Many significant decision-making problems arise during the life cycle of cross-docking terminals. These
decision problems concern specific cross-dock settings and must be carefully treated to make the transship-
ment processes as efficient and economical as possible (Boysen & Fliedner, 2010; Van Belle et al., 2012).
Boysen & Fliedner (2010) introduced a comprehensive classification of decision problems arising from cross-
docking. Some of these problems involve strategic or tactical decisions, such as determining the optimal
location of cross-dock terminals and planning the best terminal layout. Other problems address opera-
tional decisions and are abundant during daily cross-dock operations, including the assignment of trucks
to dock doors, vehicle routing, truck scheduling, resource scheduling inside the terminal, and load packing
into trucks. Among these decision problems, the truck scheduling problem has gained increased attention
due to its practical significance. Given a set of incoming and outgoing trucks arriving at the yard and a
set of dock doors at the terminal, the truck scheduling problem is to decide on the assignment of trucks to
doors to keep the intermediate storage inside the terminal as low as possible and ensure on-time deliveries.
In particular, considering different organizational and technical implementations in real-world settings and
studying from different planning horizons, leads to a variety of possible truck scheduling problem variants
in practice (Boysen & Fliedner, 2010).

This study focuses on an important operational decision problem widely explored in the literature, known
as the cross-dock door assignment problem (CDAP) (Boysen & Fliedner, 2010; Van Belle et al., 2012; Gelareh
et al., 2020). On a daily basis, several incoming trucks (origins) with pallets of commodities arrive at the
yard from different sources. They unload pallets of commodities through inbound doors. After the pallets are
sorted and organized according to their destination in a terminal staging area, they are transported directly
within the cross-dock (using pallet-handling devices, such as forklifts) to outbound doors, where they are
loaded onto outgoing trucks (destinations). The CDAP aims to find the best truck-to-door assignment
such that the overall cost of transporting pallets from inbound to outbound doors within the cross-dock
terminal is minimized while meeting certain constraints (Van Belle et al., 2012). Both the CDAP and
the truck scheduling problem involve determining the optimal truck-to-door assignment to minimize the
pallet-handling cost inside the cross-dock. However, one significant difference between these two problems is
whether the time aspects are taken into account when assigning trucks to doors. The CDAP assigns trucks
to doors at a specific moment and assumes that the door capacity is sufficiently large to accommodate all
trucks such that each arriving truck can be assigned to a door. In the truck scheduling problem, trucks
arrive at the yard at different times, and the truck-to-door assignment is decided over the planning horizon.
The CDAP is proved to be NP-hard since it includes the NP-hard generalized assignment problem as a
subproblem (Guemri et al., 2019).

The CDAP has gained significant attention in recent years due to its practical applications at the oper-
ational level of supply chain management. Many CDAPs have been defined considering different practical
constraints and operational environments (Boysen & Fliedner, 2010; Van Belle et al., 2012). For example,
different assignment restrictions are available in the literature, such as each door being able to serve only
one truck (Tsui & Chang, 1990, 1992; Tarhini et al., 2016) or each door having the capacity to serve more
than one truck (Zhu et al., 2009). Different capacity constraints have also been considered, such as those
imposed only on outbound doors (Tsui & Chang, 1990, 1992) or on both inbound and outbound doors
(Gelareh et al., 2020). Moreover, different shapes of cross-docking terminals can also be found in the litera-
ture (Bartholdi & Gue, 2004). Among them, the I-shaped layout is one of the most often considered shapes
(Tsui & Chang, 1990, 1992; Cohen & Keren, 2009; Gue, 1999; Bartholdi III & Gue, 2000; Oh et al., 2006).
An I-shaped cross-dock is rectangular, with receiving doors on one side and outbound doors on the other.
Therefore, rectilinear distances can be applied to accurately simulate the distances traversed by forklifts
following marked lanes. Other shapes, such as the L-shape, U-shape, T-shape, H-shape, and E-shape, have
also been studied in the literature (Bartholdi & Gue, 2004).

This study follows the majority of the works on the CDAP and explores the most studied CDAP model
in the literature. Specifically, in the CDAP model considered, each door can serve more than one truck
simultaneously, capacity constraints are imposed on both sides of the inbound and outbound doors, and
an I-shaped cross-dock is considered. To enrich the approaches for solving this problem, we investigate a
flow based formulation and propose a reinforcement learning (RL) based strategic oscillation (SO) approach,
denoted as RL-SO.

2

1.1. Related work

This section briefly reviews some representative solution methods for the CDAP and discusses relevant
research related to the proposed RL-SO algorithm.

1.1.1. The CDAP formulations and solution approaches

Zhu et al. (2009) introduced the CDAP model considered in this study. They extended the model
presented by Tsui & Chang (1990) by considering the realistic constraints arising in practice. They also
established a relationship between the generalized quadratic three dimensional assignment problem (GQ3AP)
and the CDAP. They showed that the CDAP could be solved as GQ3AP. However, their formulation is based
on a quadratic model, which is less effective when solved using commercial mixed integer programming (MIP)
solvers, such as CPLEX. Guignard et al. (2012) developed two heuristics to solve this problem. One is the
ad hoc, based on the multistart local search, and the other is the convex hull relaxation (CHR), designed
explicitly for the quadratic 0-1 problems with linear constraints. Nassief et al. (2016) proposed an MIP
formulation strengthened by some valid inequalities for the CDAP, which is concerned with determining the
optimum paths for commodities from origins to destinations via inbound and outbound doors. Due to the
many variables in their MIP formulation, they also developed a Lagrangian relaxation heuristic to address
large-scale instances of the problem. Guemri et al. (2019) proposed two probabilistic tabu search (PTS1
and PTS2) algorithms that differ in how they construct a list of candidate neighboring solutions and accept
new incumbent solutions. The results demonstrated that the proposed probabilistic tabu searches exhibited
excellent performance by reporting new upper bounds (UBs) for 53 tested instances. However, these tabu
search algorithms generally require long computing times to obtain their reported results. Moreover, the gap
between the best and average objective results is relatively large. Gelareh et al. (2020) compared 11 CDAP
MIP formulations. They further proved the equivalence of all formulations and identified their integral
properties. These formulations use four indexed variables to linearize the quadratic term in the objective
function, resulting in many variables and constraints. They also performed an extensive comparative study
to detect the best formulation among these 11 formulations on benchmark instances from the literature by
applying the CPLEX MIP solver to solve each formulation.

1.1.2. Reinforcement learning with optimization methods for combinatorial optimization

To solve the CDAP effectively, the proposed RL-SO algorithm relies on a combination of RL and opti-
mization methods interacting to improve the search capacity of the optimization method and the learning
ability of RL. RL has been successfully applied to solve many combinatorial optimization problems. It can
be directly applied to solve combinatorial optimization problems in an end-to-end learning manner by sim-
ply training the RL model to produce solutions directly from the given input instances. Bello et al. (2016)
explored this approach for the traveling salesman problem. However, as observed by Bengio et al. (2021),
this approach can fail when evaluated on unseen problem instances that are too far from those used to train
the learning predictor.

In recent years, RL methods have been integrated into optimization method frameworks to solve com-
binatorial optimization problems more effectively. This integration aims to improve the performance of the
optimization methods in solution quality, convergence rate, and robustness. The RL technique has been
used to guide the design of different optimization method elements, including parameter setting, operator
selection, initialization, cutting, and branding. For example, Benlic et al. (2017) used the RL technique to
determine the values of several important parameters in their proposed hybrid breakout local search method.
Zheng et al. (2021) incorporated the RL technique to select appropriate perturbation operators during the
search process of their iterated greedy algorithm. Zhou et al. (2016), Cai et al. (2019), and Gu et al. (2022)
used RL to generate good initial solutions for local searches or diversified initial solutions for population
based algorithms using the knowledge of previously visited solutions. Sghir et al. (2015) applied RL to
schedule several search operators (local search, crossover, and perturbation operators) under a multi-agent
based optimization framework. Tang et al. (2020) incorporated a deep RL technique into their cutting plane
method to adaptively select cutting planes. Scavuzzo et al. (2022) used RL as a learning tool for branching
in MIP. For more information on RL applied to optimization methods for solving combinatorial optimization
problems, interested readers can refer to Bengio et al. (2021) and Mazyavkina et al. (2021).

3

On the other hand, optimization methods can also be integrated into the RL framework to accelerate
the convergence of the learning process. For example, Bertsekas (2012), and Peng et al. (2021) introduced
dynamic programming methods to update the learning policy, which accelerates the learning efficiency of
the RL process. Ojha et al. (2017) introduced evolutionary algorithms and swarm intelligence for RL model
training. Despite the effectiveness and potential demonstrated by integrating optimization methods into
RL, research on this integration remains limited compared to the service of RL for optimization methods.

1.1.3. Strategic oscillation for strongly constrained optimization problems

The proposed RL-SO approach relies on an SO strategy that combines feasible and infeasible searches to
effectively explore the search space of the CDAP. This differs from all existing CDAP local search methods,
which are limited to examining only the feasible search space.

The SO allows an algorithm to surpass the boundaries of a feasible search space to visit infeasible solutions
(Glover & Hao, 2011). This approach is highly effective for combinatorial optimization problems with strong
constraints. As demonstrated in many studies (Glover & Hao, 2011; Qin et al., 2016), restricting the search
process only to the feasible region for such constrained problems can easily block the algorithm because
the problem constraints can make the feasible search space largely disconnected. Constraint relaxation is a
suitable strategy in such situations. By tunneling through feasible and infeasible search regions, the search
method can locate high-quality solutions that are difficult to obtain if the search is limited to only feasible
regions. For example, Qin et al. (2016) proposed an oscillation based tabu search procedure to solve the
quadratic multiple knapsack problem, which allows the search process to visit infeasible solutions by relaxing
the knapsack capacity constraint. Li et al. (2022) proposed a local search procedure combining feasible and
infeasible searches for the airport gate assignment problem in which the gate conflict constraint is relaxed
by temporarily assigning aircraft with overlapping time to the same gate. Martin-Santamaria et al. (2022)
applied the SO method to solve the balanced minimum sum-of-squares clustering problem, in which the
cluster size constraints are allowed to be relaxed by increasing each cluster size by a percentage during the
search. The SO method has also been applied to solve other optimization problems, such as the α-neighbor
p-center problem (Sánchez-Oro et al., 2022) and the capacitated hub location problems with modular links
(Corberán et al., 2016).

Different oscillation strategies have been proposed to maintain a balanced search between the feasible
and infeasible search regions for the algorithm to explore the search space more effectively. In the study by
Qin et al. (2016), the infeasible search procedure only considers moves that reallocate objects from heavy-
weight knapsacks to light-weight knapsacks to keep the search close to the boundaries of the feasible search
regions. Thus, the capacity constraint of each knapsack is only slightly violated, and more solutions are
generated near the boundaries of the feasible search regions. Chen et al. (2016) designed a penalty based
evaluation function considering the quality of the solution and violation of the capacity constraint to ensure
a controlled exploration of infeasible solutions. Lu et al. (2018) adopted an adaptive search strategy in
which the algorithm is forced back to the feasible search space if too many infeasible solutions are visited
consecutively. By contrast, the search is encouraged to return to the infeasible region if many feasible
solutions are visited consecutively.

1.1.4. Different tabu strategies under the tabu search framework

The proposed RL-SO algorithm uses a mixed tabu strategy that takes advantage of the attribute-based
and solution-based tabu strategies. This mixed tabu strategy differs from all current tabu search procedures,
which use only a single tabu strategy (i.e., either the attribute-based or solution-based tabu strategy) to
avoid previously visited solutions.

Tabu search (Laguna, 2018) is a metaheuristic based on the idea of using a “tabu list” to keep track of
previously visited solutions to prevent the algorithm from getting stuck in local optima. Tabu search has
demonstrated its high efficiency in solving many combinatorial optimization problems. Several advanced
versions of tabu search have also been developed, such as the reactive tabu search (Battiti & Tecchiolli,
1994), the guided tabu search (Zachariadis et al., 2009), and the focal distance tabu search (Glover & Lü,
2021).

4

Though different versions of tabu search can be found in the literature, the tabu strategies for implement-
ing the “tabu list” to keep track of previously visited solutions primarily fall into the following two categories
under the tabu search framework: (1) The attribute-based tabu strategy (Glover, 1997), which effectively
avoids short-term cycling in the search process by forbidding the reverse move for a certain number of it-
erations, known as tabu tenure. This tabu strategy has been successfully applied to various combinatorial
optimization problems, such as the maximum clique problem (Gendreau et al., 1993), the traveling salesman
and routing problems (Gendreau et al., 1994, 1998), the graph coloring problem (Galinier & Hao, 1999), the
binary optimization problems (Hanafi et al., 2023), and the project scheduling problem (He et al., 2023);
(2) The solution-based tabu strategy (Woodruff & Zemel, 1993; Wang et al., 2017) that utilizes hashing
techniques to mark visited solutions and determine the tabu status of new solutions. This tabu strategy can
accurately record each visited solution, preventing the search from short- or long-term cycling. Recently,
this tabu strategy has demonstrated its effectiveness in solving several combinatorial optimization prob-
lems, including the knapsack problems (Lai et al., 2019; Wei & Hao, 2021), the dispersion problems (Wang
et al., 2017; Lai et al., 2018; Lu et al., 2023), the obnoxious p-median problem (Chang et al., 2021), and
the bipartite Boolean quadratic problems (Wu et al., 2020). Generally, the attribute-based tabu strategy
provides more capabilities to diversify the search. In contrast, the solution-based tabu strategy enables a
more in-depth exploration of the search space.

1.2. Research gaps and our contributions

As discussed in the previous sections, significant effort has been dedicated to developing different solution
methods and mathematical programming formulations to address the CDAP. Nevertheless, more effective
solution methods and mathematical programming formulations can still be developed for the CDAP con-
sidering the following research gaps: (1) The existing MIP formulations for the CDAP generally involve
many variables and constraints, significantly influencing the efficiency of the formulations. The performance
of MIP formulations can be enhanced by reducing the number of variables and constraints; (2) Recently,
machine learning techniques have been extensively combined with optimization methods to solve various
combinatorial optimization problems. This approach has yielded promising results, as evidenced by recent
studies (Bengio et al., 2021; Mazyavkina et al., 2021). However, machine learning methods have rarely been
used to solve the CDAP currently; (3) The CDAP has some prominent features that can be used to guide
the design of search algorithms. By effectively exploring these features, the algorithms’ performance can
be significantly enhanced. For example, the CDAP can be viewed as a strongly constrained combinatorial
optimization problem, particularly when the capacity constraints are tight. As discussed in Section 1.1.3,
methods tunneling through feasible and infeasible regions are shown to be particularly effective for such
problems. However, these methods have not yet been investigated for solving the CDAP; (4) Tabu search
has been shown to be an effective approach for solving the CDAP (Guemri et al., 2019). Currently, the
general tabu search framework relies only on a single tabu strategy to prevent the search from cycling (i.e.,
either the attribute-based or solution-based tabu strategy). No algorithm combining these two tabu strate-
gies into the same local search procedure has been tested for solving combinatorial optimization problems.
A better search balance can be expected if these two tabu strategies are suitably combined.

To fill these gaps, this study investigates a flow based MIP (FBMIP) formulation and an original heuristic
algorithm combining RL with SO based local search to solve the widely studied CDAP model (Zhu et al.,
2009; Guignard et al., 2012; Nassief et al., 2016; Guemri et al., 2019; Gelareh et al., 2020). The aim of
this paper is twofold. Given the importance of CDAP, our first goal is to enrich the CDAP literature with
a better formulation and a new solution approach, capable of finding higher-quality solutions with fewer
computing efforts. The other goal is to investigate some methodological contributions on how reinforcement
learning techniques can work with optimization methods together, as well as how to improve the well-known
local search methods for combinatorial optimization problems. The detailed contributions of this work are
summarized as follows:

� Methodological contributions: (1) Based on the idea of the flow of commodities in incoming trucks
transported from inbound to outbound doors, this study obtained a flow based formulation using three
indexed continuous variables to linearize the quadratic term in the objective. The number of variables

5

in the resulting formulation is bounded by O(|M||I||J |) (|M|, |I| and |J | denote the number of
incoming trucks, inbound doors, and outbound doors, respectively), and is much smaller than the
number of variables in existing MIP formulations in the literature. (Zhu et al., 2009; Nassief et al.,
2016; Gelareh et al., 2020). (2) This study is the first to investigate a method combining machine
learning with optimization methods to solve the CDAP. Specifically, our RL-SO algorithm not only
uses RL techniques to enhance our local search method but also employs the linear programming (LP)
method to improve the learning capabilities of the RL framework. Notably, we propose a warm-start
method to initialize the action-value function in the RL framework, which is based on the observation
that the LP relaxation of the MIP formulation for the CDAP can effectively estimate the probability
value in the action-value function. This initialization enables RL to start from an action-value function
with appropriate initial values, significantly reducing the learning time of the RL process. To the
best of the authors’ knowledge, this study is the first to employ a dedicated optimization method
to initialize an action-value function in the context of Q-learning. (3) This study proposes an SO
strategy combining feasible and infeasible searches to effectively explore the search space of the CDAP.
This strategy is based on a prominent feature of the CDAP that considers the CDAP as a strongly
constrained problem imposed by the capacity constraints. By relaxing the capacity constraints in
a controlled manner, the SO based local search can oscillate between feasible and infeasible search
spaces to effectively locate high-quality solutions. In particular, to prevent the search from moving
too far from the boundary of the feasible search space, this study develops an adaptive penalty based
fitness function that guides the local search process for a fruitful examination of candidate solutions;
(4) This study proposes an improved tabu strategy under the general tabu search framework that
can effectively avoid being trapped in local optima or missing high-quality solutions in its explored
neighborhood by taking advantage of the attribute-based and solution-based tabu strategies. To the
best of the authors’ knowledge, this study is the first to explore the possibility of integrating the
attribute-based and solution-based tabu strategies into the same local search procedure. Given the
generality of the proposed mixed tabu strategy, it can be widely applicable to many other combinatorial
optimization problems.

� Computational contributions: Extensive experiments were performed to demonstrate the compet-
itiveness of the proposed methods by comparing them with the current best-performing formulations
and state-of-the-art algorithms. In particular, this study demonstrates that for the benchmark in-
stances widely used in the literature, the flow based formulation can solve larger instances to optimal-
ity and produce better lower bounds (LBs) than existing MIP formulations. In addition, the proposed
RL-SO algorithm performs statistically better than state-of-the-art algorithms on the benchmark in-
stances by reaching all but two previous best-known solutions (i.e., UBs) and discovering new UBs for
43 out of 99 tested instances.

The remainder of this paper is organized as follows: Section 2 describes the FBMIP formulation for the
CDAP; Section 3 explains the general framework of the RL-SO and its key algorithmic components; Section
4 presents the computational results and compares them with the current best-performing formulations and
state-of-the-art algorithms; Section 5 analyzes some of the important characteristics of the proposed RL-SO
algorithm; Finally, Section 6 concludes the study and provides directions for future research.

2. Problem statement and mathematical formulation

As discussed in Section 1, many CDAP models have been proposed in the literature by considering
different capacity and assignment constraints and various cross-docking terminal shapes (Buijs et al., 2014;
Boysen & Fliedner, 2010; Gelareh et al., 2020; Van Belle et al., 2012). Following the mainstream research on
the problem, this study focuses on the CDAP model first proposed by Zhu et al. (2009) and widely studied
in the literature (Zhu et al., 2009; Guignard et al., 2012; Nassief et al., 2016; Guemri et al., 2019; Gelareh
et al., 2020). This model considers an I-shaped cross-dock and assigns each incoming/outgoing truck to an
available inbound/outbound door while ensuring the capacity constraint of each inbound/outbound door.

6

The objective is to minimize the total cost of transporting pallets from inbound to outbound doors within
the cross-docking terminal. This model is the basis of many CDAP variants and has been extended to many
other similar CDAP models.

Table 1: The sets, parameters and variables used to formulate the CDAP

Notation Description

Sets:
M Set of incoming trucks (origins)
N Set of outgoing trucks (destinations)
I Set of inbound doors
J Set of outbound doors

Parameters:
Ci Capacity of an inbound door i ∈ I
Cj Capacity of an outbound door j ∈ J
Dij Distance between the inbound door i ∈ I and the outbound door j ∈ J
Tmn Number of pallets to be transported from origin m ∈M to destination n ∈ N
Um Total number of pallets delivered from origin m ∈M, which equals to

∑
n∈N Tmn

Vn Total number of pallets moved to destination n ∈ N , which equals to
∑

m∈M Tmn

Variables:
xmi A binary decision variable taking the value of 1 if incoming truck m ∈M is assigned to

the inbound door i ∈ I, and 0 if otherwise
ynj A binary decision variable taking the value of 1 if outgoing truck n ∈ N is assigned to

the outbound door j ∈ J , and 0 if otherwise
wmij A continuous variable represents the pallets of truck m ∈M transporting from inbound

door i ∈ I to outbound door j ∈ J

2.1. Nonlinear integer programming formulation

Table 1 summarizes the sets, parameters, and variables used to formulate the CDAP. Based on these
defined notations, the CDAP can be formulated using the following mixed integer nonlinear programming
(MINP) formulation:

min F =
∑

m∈M

∑
i∈I

∑
n∈N

∑
j∈J

DijTmnxmiynj , (1)

s.t.
∑
i∈I

xmi = 1, ∀m ∈M, (2)∑
j∈J

ynj = 1, ∀n ∈ N , (3)

∑
m∈M

Umxmi ≤ Ci, ∀i ∈ I, (4)∑
n∈N

Vnynj ≤ Cj , ∀j ∈ J , (5)

xmi ∈ {0, 1}, ∀m ∈M, ∀i ∈ I, (6)

ynj ∈ {0, 1}, ∀n ∈ N , ∀j ∈ J . (7)

The objective (1) minimizes the total pallet-handling cost inside the cross-docking terminal. Constraints
(2) and (3) guarantee that each origin/destination is assigned to exactly one inbound/outbound door.

7

Cross-dock

Truck 1 Truck 4

Truck 6

Truck 2

Door 1 Door 3

Door 2 Door 4

D13=5 D14=9

D23=11 D24=6

Truck 3

Truck 5

Truck 7

Figure 1: An example of the CDAP.

Constraints (4) and (5) ensure that the capacity of each inbound/outbound door is satisfied. Constraints
(6) and (7) specify that the decision variables are binary.

Figure 1 shows an example of the CDAP model considered in this study. Trucks 1, 2, and 3 are incoming
trucks with three pallets, whereas trucks 4, 5, 6, and 7 are outgoing trucks. A circle represents a pallet,
and pallets of the same color are from the same incoming truck. Truck 1 needs to send 1/0/1/1 pallet to
trucks 4/5/6/7, truck 2 needs to send 1/1/1/0 pallet to trucks 4/5/6/7, and truck 3 needs to send 1/1/0/1
pallet to trucks 4/5/6/7. Doors 1 and 2 are inbound, whereas doors 3 and 4 are outbound. Each door has
a six-pallet capacity. The distances between each pair of inbound/outbound doors are D13 = 5, D14 = 9,
D23 = 11, and D24 = 6. A solution with a total pallet-handling cost of 70 is obtained, calculated as
F = (T14 + T24 + T25)×D13 + (T16 + T17 + T26)×D14 + (T34 + T35)×D23 + T37 ×D24 = 70 by assigning
trucks 1 and 2 to door 1, truck 3 to door 2, trucks 4 and 5 to door 3, and trucks 6 and 7 to door 4.

2.2. Flow based three indexed MIP formulation

Inspired by the formulation of the quadratic assignment problem (Erdoğan & Tansel, 2007), the following
flow based MIP formulation is obtained based on the definition of wmij as the pallets of truck m transported
from door i to door j:

min F =
∑

m∈M

∑
i∈I

∑
j∈J

Dijwmij , (8)

s.t. (2)− (7),∑
j∈J

wmij = Umxmi,∀m ∈M, i ∈ I, (9)

∑
i∈I

wmij =
∑
n∈N

Tmnynj ,∀m ∈M, j ∈ J , (10)

wmij ≥ 0,∀m ∈M, i ∈ I, j ∈ J . (11)

The objective (8) is equivalent to the objective (1). Constraints (9) and (10) are the multi-commodity
flow balance equations for the pallets. Constraints (9) ensure that if truck m is assigned to door i, all pallets
delivered by truck m must be transported from door i to the other doors. Constraints (10) ensure that
all pallets between incoming truck m and other outgoing trucks assigned to door j must travel to door j
from the door to which truck m is assigned. Using pallet flow based constraints in the CDAP enabled the
formulation of the problem with three indexed variables rather than four indexed variables as all current
MIP formulations for the CDAP.

8

Table 2 compares the number of variables and constraints in the FBMIP model with the M2′,0 model
(Gelareh et al., 2020), the current best-performing MILP formulation in the literature (Appendix A). As

shown in Table 2, the FBMIP model has significantly fewer variables and constraints than the M2′,0. There-

fore, the FBMIP is expected to be computationally advantageous compared to the M2′,0, as demonstrated
in Section 4.

Table 2: Number of variables and constraints in the FBMIP and M2′,0 (Gelareh et al., 2020).

FBMIP M2′,0

#Continuous variables |M||I||J | |M||N ||I||J |
#Binary variables |M||I|+ |N ||J | |M||I|+ |N ||J |
#Constraints |M||I|+ |M||J |+ |M|+ |I|+ |N |+ |J | |M||N ||I|+ |M||N ||J |+ |M|+ |I|+ |N |+ |J |

Theorem 1. Let (x,y) be a feasible solution to the CDAP with objective value FMINP(x,y). Then, a unique
solution (x,y,w) exists, such that (x,y,w) is feasible to FBMIP with objective value FFBMIP(x,y,w) =
FMINP(x,y).

Proof. The feasibility of (x ,y ,w) can be guaranteed by the assignment constraints (i.e., constraints (2),
(3), (6), and (7)) and capacity constraints (i.e., constraints (4), (5), (6), and (7)).

For each m ∈M, let em present the door i that truck m is assigned to (i.e., xmi = 1). For each i ∈ I, let
Ei be the set containing all trucks m ∈ M assigned to door i (i.e., xmi = 1). Similarly, for each n ∈ N , let
en present the door j, where truck n is assigned (i.e., xnj = 1). For each j ∈ J , let Ej be the set containing
all trucks n ∈ N assigned to door j (i.e., ynj = 1).

Given that xmi = 0,∀i 6= em, constraints (9) and (11) ensure that wmij = 0,∀i 6= em,m ∈ M. The
left of constraints (10) is wmemj because all terms except i = em are zero. The right of constraints (10) is∑

n∈Ej
Tmn because all terms except n ∈ Ej are zero. Therefore, w is uniquely determined by the following

equations: wmemj =
∑

n∈Ej
Tmn,∀j ∈ J ,m ∈ M and wmij = 0,∀i 6= em,m ∈ M, j ∈ J . Thus, given a

solution (x ,y) to MINP, a solution (x ,y ,w) can be constructed to FBMIP.
Such a constructed solution guarantees that constraints (10) and (11) are satisfied. Then, constraints

(9) need to be checked to ensure that they are also satisfied. If i 6= em, then both sides of constraints (9)
are zero. If i = em, the left side is

∑
j∈J wmemj , and the right side is Um. Given that wmemj =

∑
n∈Ej

Tmn

by construction, the left side is
∑

j∈J
∑

n∈Ej
Tmn. According to constraints (3), every truck n ∈ N is

assigned to exactly one door j ∈ J . Hence,
∑

j∈J
∑

n∈Ej
Tmn =

∑
n∈N Tmn, which equals Um. All the

abovementioned constraints ensure that if (x ,y) is a feasible solution to MINP, then a unique and feasible
solution (x ,y ,w) exists for FBMIP.

FFBMIP(x ,y ,w) = FMINP(x ,y) is proved by observing that every term DijTmnxmiynj = 0 unless
m ∈ Ei and n ∈ Ej . Therefore, the MINP objective is

∑
i∈I
∑

j∈J
∑

m∈Ei

∑
n∈Ej

DijTmn. Given that

wmemj =
∑

n∈Ej
Tmn,∀j ∈ J ,m ∈ M and wmij = 0,∀i 6= em,m ∈ M, j ∈ J , the objective of FBMIP is∑

i∈I
∑

j∈J
∑

m∈Ei

∑
n∈Ej

DijTmn, which is the same as that of MINP.

3. RL-SO for the CDAP

This section presents the proposed RL-SO approach for the CDAP. The algorithm integrates several key
components responsible for its performance, including a Q-learning mechanism that guides the algorithm
towards promising areas based on the search history, an SO method that explores both feasible and infeasible
solution spaces, and a mixed tabu strategy that combines two memory mechanisms to prevent search cycling.

3.1. Main scheme

The RL-SO algorithm integrates the SO approach into a general Q-learning based framework. Algorithm
1 summarizes the general scheme of the RL-SO. The learning functions Q and R are initialized only once

9

Algorithm 1: Pseudocode of RL-SO for the CDAP
Input: The CDAP instance, time limit tmax.
Output: The best solution S∗ found so far.

1 t0 ← T ime()
2 Q,R← Linear relaxation formulation based estimation (FBMIP) Section 3.2.2
3 while T ime()− t0 < tmax do
4 S ← Q-learning reinforced truck-to-door assignment (Q,R) Section 3.2
5 Sl ← Strategic oscillation (S) Section 3.3
6 R← Reward updating (S, Sl, R) Section 3.4
7 if f(Sl) < f(S∗)) then
8 S∗ ← Sl

9 return S∗

at the beginning of the algorithm (Line 2). Subsequently, the algorithm enters its main loop (Lines 3-8)
comprising three key components: a Q-learning reinforced truck-to-door assignment procedure (Section 3.2)
to generate an initial solution S based on functions Q and R, an SO phase (Section 3.3) to improve the
initial solution produced by the Q-learning reinforced truck-to-door assignment procedure, and a reward
updating phase (Section 3.4) to update the reward function R by comparing the initial solution S and the
improved local optimum solution Sl. The algorithm iterates these three main procedures until a given time
limit tmax is reached. The best solution S∗ found during the search is finally returned as the result of the
algorithm. The succeeding subsections describe the three key components of the RL-SO approach in detail.

3.2. Reinforcement learning procedure

Recently, machine learning, particularly RL, has been successfully applied to solve many typical com-
binatorial optimization problems (Mazyavkina et al., 2021) such as the traveling salesman problem (Khalil
et al., 2017; Zheng et al., 2021), the bin packing problem (Zhao et al., 2021; Jiang et al., 2021), the maxi-
mum independent set problem (Manchanda et al., 2020), the graph coloring problem (Zhou et al., 2016), and
other difficult problems (Khalil et al., 2017; Benlic et al., 2017; Wang et al., 2020; Alicastro et al., 2021; Gu
et al., 2022). Building upon this trend, this study proposes a Q-learning reinforced method for constructing
high-quality starting solutions for the SO procedure.

3.2.1. Q-learning reinforced truck-to-door assignment

Q-learning is an RL method combining the Monte Carlo algorithm and dynamic programming (Watkins
& Dayan, 1992). The relevant notations in the Q-learning framework, such as states, actions, transitions,
and rewards, are described below. This study only considers the assignment of trucks in M to doors in I
to present the Q-learning procedure because the assignment of trucks in N to doors in J can be completed
similarly.

� States (ST): The Q-learning reinforced method constructs a solution incrementally by assigning a
truck m ∈M to a door i ∈ I. The current state st ∈ ST of the system is the truck just assigned to a
door in the partial solution.

� Actions (AC): In a state st, an action ami should be selected according to the transition strategy,
extending the partial solution by assigning a truck m ∈M to a door i ∈ I.

� Transition: When action ami is performed, the algorithm initiates a transfer to a new state sm
because truck m has just been assigned.

� Transition strategy: To select an action ami in a state st, the algorithm employs an ε-greedy
transition strategy. This strategy selects the action ami with the largest value of Q(st, ami) with a
probability of ε, while randomly selecting an action with a probability of 1 − ε. The action-value
function Q(st, ami) is a mapping from states (ST) and actions (AC) into real numbers Q: ST ×AC →
Q. It operates on the matrix Q (Figure 2), where the element Qt,(m−1)|I|+i is an estimation of the
action value obtained by performing action ami in state st.

10

� Rewards: The reward function R(st, ami) is also a mapping from states (ST) and actions (AC) into
real numbers R: ST ×AC → R (Figure 2). It operates on a matrix R, where its element Rt,(m−1)|I|+i

takes a real number indicating the reward for selecting the action ami in the current state st. The
reward function R is updated after the constructed solution is improved through the SO method by
checking the differences between the starting solution S and the local optimum solution Sl. The
detailed updating method is described in Section 3.4.

Based on the above notations, the Q-learning procedure for constructing a solution comprises a sequence
of steps {1, ..., |M |}. In step k, the procedure is in a state st and performs an action ami to assign a truck to
a door, selected according to the transition strategy. Subsequently, it goes to a new state st′ . Meanwhile, a
one-step temporal-difference control (Sutton & Barto, 2018) is applied as follows to update the action-value
function Q(st, ami) with reward R(st, ami):

Q(st, ami) = (1− γ)Q(st, ami) + α[R(st, ami) + γ max
am′i′∈AT

Q(st′ , am′i′)], (12)

where st is the current state, ami is the current action, st′ is the next state, am′i′ is the next action, γ ∈ [0, 1]
is the discount factor, α ∈ [0, 1] is the learning rate, R(st, ami) is the reward to choose this current action
(Section 3.4), and Q(st′ , am′i′) is the action-value for the next state.

-
7
6

-
4
5

5
-
3

8
-
7

7
11
-

4
3
-

-
2
1

-
1
0

3
-
1

1
-
3

3
3
-

2
2
-

R

Q

Q

-
7
6

-
4
5

5
-
3

8
-

12

7
11
-

4
3
-

Solution: (s0,a31)

Solution: (s0,a31), (s3,a22)

Solution: (s0,a31), (s3,a22), (s2,a11)

s1

s2

s3

s1

s2

s3

s1

s2

s3

a11 a12 a21 a22 a31 a32

Q

2nd Step

3rd Step

1st Step s0 3 2 0 2 1 2

5 6 8 5 9 5s0

s0 5 6 8 5 10 5

-
7
6

-
4
5

5
-
3

8
-

12

7
11
-

4
3
-

5 6 8 5 10 5
s1

s2

s3

s0

a11 a12 a21 a22 a31 a32

a11 a12 a21 a22 a31 a32

Figure 2: An example of the Q-learning reinforced truck-to-door assignment procedure.

Figure 2 illustrates how the Q-learning procedure works on an instance with three trucks and two doors.
In Figure 2, the action-value function Q(st, ami) operates on matrix Q, where the rows correspond to
states, and the columns correspond to the actions. Moreover, an element Qt,2(m−1)+i is the expected action
value of ami in state st. Similarly, the reward function R(st, ami) operates on matrix R, where its element
Qt,2(m−1)+i is the expected reward value of ami in state st. In the first step, the state is s0, and no truck

11

has yet been assigned. One of the six feasible actions marked in gray in the first row can be selected. It
is assumed that ε = 1, reducing to a completely greedy strategy. Thus, action a31 is selected according to
the greedy strategy. Subsequently, the state transits to s3 because truck 3 is the last assigned truck. The
value of Q(s0, a31) is updated according to Equation (12) (with the assumption that α = 1 and γ = 0.5).
In the second step, the state is s3, and action a22 is selected to be performed by the transition strategy (in
the row of state s3, only the actions marked in gray can be considered because it is impossible to assign
truck m to any door if truck m has already been assigned). The value of Q(s3, a22) is updated accordingly.
Subsequently, the procedure proceeds to state s2 in step 3, where a11 is selected, and Q(s2, a11) is updated.
After these three steps, each truck is assigned to a door, and the Q-learning procedure terminates.

3.2.2. Linear relaxation formulation based estimation for action-value function

A reasonable initialQ estimation enables the algorithm to generate a good initial solution, thereby rapidly
guiding the search toward a promising region. This study is the first to introduce a linear programming
relaxation formulation based estimation for initializing Q to obtain a reasonable initial Q. This approach is
new in the field of Q-learning and has the potential to enhance the efficiency and effectiveness of Q-learning
methods. Specifically, constraints (6) and (7) in the FBMIP formulation are relaxed as follows:

0 ≤ xmi ≤ 1, ∀m ∈M, ∀i ∈ I, (13)

0 ≤ ynj ≤ 1, ∀n ∈ N , ∀j ∈ J . (14)

The relaxed FBMIP formulation can be optimally solved by relaxing the decision variables x and y from
binary to continuous variables. The value for xmi,∀m ∈ M, i ∈ I can be directly applied to initialize each
action value in Q for action ami in all states st (the same technique is also applied to ynj ,∀n ∈ N , j ∈ J
in the Q-learning procedure). The rationale behind this initialization is that a large value of xmi in the
optimum solution to the linear relaxation of the CDAP formulation generally implies a high probability
that truck m is assigned to door i in the optimum integer solution. Thus, each action ami comprising the
assignment of truck m to door i is associated with a large action value in Q in all states st. Each element
in R is initially set to be the same as each element in Q at the beginning of the Q-learning procedure.

3.3. Strategic oscillation

The SO method (Glover, 1997) allows for exploration of the infeasible search space to provide more
search freedom. As demonstrated in several studies on strongly constrained problems (Liu et al., 2014; Qin
et al., 2016; Li et al., 2022), visiting intermediary infeasible solutions during the search process can efficiently
enhance the performance of neighborhood based local searches because it may facilitate transitions between
structurally different feasible solutions. Following the above idea, the search is allowed to oscillate between
feasible and infeasible search spaces by relaxing the capacity constraints. This study designed an extended
evaluation function Z combining the objective function of the CDAP (total pallet-handling cost; refer to
Section 2) with a penalty function associated with the violation degree of the capacity constraints (Section
3.3.2).

Algorithm 2 summarizes the general scheme of the SO, while the subsequent subsections detail its main
components. Starting from an initial feasible or infeasible solution S, each iteration of the SO procedure
involves determining the overall best admissible solution (i.e., a solution that is not forbidden by the tabu
strategy and has the maximum extended evaluation function value) from the neighborhood of the current
solution S′ produced by the four move operators (shift, swap, multishift, and multiswap). During the search
process, the best-found solution Sl is updated with S′ if S′ is feasible and is better than Sl in terms of the
total pallet-handling cost. If an improvement in terms of the objective function is not achieved during ω
consecutive iterations, the best feasible solution Sl found during the search is returned as the final output
of the SO procedure.

3.3.1. Neighborhoods and fast evaluation technique

A solution of the CDAP corresponds to a partition of the set of trucks M∪ N into |I ∪ J | disjoint
subsets, where Ek (k ∈ I ∪ J) denotes the set of trucks assigned to door k. Ek (k ∈ I) and Ek (k ∈ J)

12

Algorithm 2: Pseudocode of SO
Input: A starting solution S.
Output: The local optimum feasible solution Sl.

1 ϕ← 0 /*Initializing the penalty strength*/
2 N ← 0 /*Initializing the number of the consequent non-improve iterations*/
3 Ol ← +∞ /*Objective value of the local optimum feasible solution*/
4 while N < ω do
5 S′ ← The best admissible neighboring solution of S
6 if S′ is a feasible solution and Z(S′) < Ol then
7 Ol ← Z(S′), Sl ← S′, S ← S′, N ← 0;

8 else if S′ is an infeasible solution and Z(S′) < Z(S) then
9 S ← S′, N ← 0;

10 else
11 S ← S′, N ← N + 1;

12 if five consecutive solutions are feasible then
13 ϕ← ϕ− τ /*Reduce penalty strength*/

14 else if five consecutive solutions are infeasible then
15 ϕ← ϕ+ τ /*Boost penalty strength*/

16 iter ← iter + 1

17 return Sl

can receive trucks only from M and N , respectively. Therefore, a solution of the CDAP can be denoted by
S = {Ek|k ∈ I ∪ J }.

Local search typically employs move operators to transform a given solution S into a neighboring solution
S′. The proposed approach jointly uses four move operators to generate neighboring solutions (denoted by
shift, swap, multi-shift, and multi-swap). To describe these operators concisely, only the relevant moves
on the inbound side are considered while the operations on the outbound side are determined in a similar
manner.

� Shift: Transfer a truck m from its current door i to another door i′.

� Swap: Exchange two trucks m and m′ from two different doors em and em′ .

� Multi-shift: Transfer all trucks in Ei from their current door i to another door i′.

� Multi-swap: Exchange all trucks between two different doors i and i′.

The method proposed by Guemri et al. (2019) is adopted to ensure a fast evaluation of the move gain
values, indicating the change to objective F (Equation (1) in Section 2) brought by these move operators.
This method uses efficient data structures to accelerate neighborhood evaluations.

3.3.2. Feasible and infeasible search

The search space Ω explored by the proposed algorithm comprises all feasible and infeasible solutions
(an infeasible solution violates capacity constraints). Given an inbound/outbound door k ∈ I ∪ J , let
Wk(k ∈ I ∪ J) be the total number of pallets allocated to door k:

Wk =

{ ∑
m∈Ek

Um , if k ∈ I,∑
n∈Ek

Vn , if k ∈ J . (15)

The penalty function P (S) corresponds to the violation degree of S with respect to the capacity con-
straints, given by the overall overloaded parts of all the doors to the capacity limit, i.e., P (S) =

∑
k∈I∪J tk,

where

tk =

{
Wk − Ck , if Wk > Ck,
0 , if otherwise.

(16)

13

Subsequently, given a candidate solution S ∈ Ω in the enlarged search space, its quality is evaluated by
an extended evaluation function (fitness) Z(S), which is a linear combination of the objective function F (S)
and the penalty function P (S) as follows:

Z(S) = F (S) + ϕP (S), (17)

where ϕ is a parameter used to control the relative importance of the penalty function P (S). Increasing
ϕ decreases the favorability of infeasible solutions, whereas decreasing ϕ encourages infeasible solutions.
In this study, ϕ is adaptively adjusted according to the search context. In particular, ϕ is increased by
setting ϕ = ϕ + τ if five consecutively visited solutions are all feasible. By contrast, ϕ is decreased by
setting ϕ = ϕ− τ if five consecutively visited solutions are all infeasible. The rationale behind this adaptive
strategy is to maintain a balance between feasible and infeasible searches. When the search is confined in
feasible regions, it is encouraged to move into infeasible regions by reducing ϕ. Conversely, when too many
infeasible solutions are visited, the search is forced to move back to the feasible search space by increasing
ϕ. The move gain of a candidate solution can be rapidly updated as follows:

∆Z(mv) = ∆F (mv) + ϕ∆P (mv). (18)

The move gain ∆F (mv) of each move mv relative to the objective function F can be efficiently calculated
based on the method described in Guemri et al. (2019). Similarly, given that each move induced by shift,
swap, multi-shift, and multi-swap involves only two doors, the total number of pallets of the two doors can
be directly computed. Subsequently, with the assistance of an (|I|+ |J |)-dimensional vector W , where Wk

(k ∈ I ∪J) records the total number of pallets allocated to k, the move value ∆P (mv) of a given move mv
related to the change in terms of the penalty function P can be conveniently determined using Equation
(16) in constant time O(1).

3.3.3. Mixed tabu strategy

This study proposes a mixed tabu strategy combining the advantages of the attribute-based (Glover,
1997) and solution-based (Woodruff & Zemel, 1993; Wang et al., 2017; Wu et al., 2020) tabu strategies to
prevent the neighborhood based local search from short- or long-term cycling.

An attribute-based tabu search is accomplished by forbidding the reverse of a performed move in the
next few iterations. The tabu strategy has been widely used in the literature. However, this tabu search
can only prevent the search from falling into short-term cycling. Some early tabu decisions become obsolete
after several iterations. Thus, the same solution can be revisited several times.

The solution-based tabu strategy employs hashing techniques (Woodruff & Zemel, 1993) to mark visited
solutions effectively and determine the tabu status of a new solution rapidly. A solution-based tabu search
can prevent a search from any short- or long-term cycling by accurately recording each visited solution, given
that no visited solution is revisited. However, the absolute prohibition of all visited solutions may prevent
the algorithm from exploring promising trajectories. This study proposes a mixed tabu strategy that takes
advantage of these two strategies. In the proposed mixed tabu strategy, each solution is allowed to be visited
at most β times during the search. The same hashing techniques adopted in a solution-based tabu search
are applied to keep track of the number of times each solution is visited during the search (Wang et al., 2017;
Wu et al., 2020). In addition, the traditional attribute-based tabu strategy is used, where the reverse move
of a performed move is forbidden for the next few iterations to prevent the search from rapidly returning to
the recently visited solution or avoid short-term cycles between two or more consecutively visited solutions.
Only the solutions meeting the following criteria are allowed in the proposed mixed tabu strategy: (1) The
solution is induced by allowed moves. Each time a truck m is moved from its original door i to another door
i′, moving the truck m back to door i for the next tt subsequent iterations is forbidden, where tt denotes
the tabu tenure; (2) The number of times the solution is visited is less than β, where β is a parameter. The
detailed implementation of the mixed tabu strategy is provided in the Appendix B.

14

3.4. Reward updating procedure

After the SO procedure is applied to improve the initial solution produced by the Q-learning truck-to-
door assignment procedure, a reward updating procedure is triggered to gather useful information from the
discovered local optimum solution. This procedure is applied during the subsequent search process to guide
the proposed RL-SO approach toward new promising areas. The RL-SO iteratively explores the search
space by alternating between the SO procedure and the Q-learning reinforced method to balance search
intensification and diversification.

The reward updating procedure updates matrix R by comparing the starting solution S with local
optimum solution Sl by checking whether a truck in Sl is moved from its original door to another door or
if it stays in the same door as in S. Subsequently, the reward updating procedure rewards the unchanged
(correct) door, penalizes the changed (incorrect) door, and compensates for the expected door using a
reward value rwd, which is adaptively set according to the quality of the solution Sl and favors high-quality
solutions. In particular, if the local optimum solution Sl is better than the best solution found thus far, the
reward rwd is set to ibsc+1, where ibsc records the number of times the best solution has been consecutively
updated. Otherwise, reward rwd is set to 1.

If the assigned door i of each truck m remains unchanged from S to Sl, then its originally assigned door
i is rewarded, and its value R(st, ami) in matrix R is updated as follows:

R(st, ami) = R(st, ami) + rwd, ∀t ∈ {0} ∪M. (19)

If the truck m is moved from its original door i to another door i′ in the local optimum solution Sl, its
former door i is penalized as follows:

R(st, ami) = R(st, ami)− rwd, ∀t ∈ {0} ∪M. (20)

The new door i′ is also compensated by updating its value in matrix R as follows:

R(st, ami′) = R(st, ami′) + rwd, ∀t ∈ {0} ∪M. (21)

We also give an additional reward rwd to the corresponding state-action pair when the starting solution
S is constructed. If ami is performed in state st in the Q-learning procedure, its reward value R(st, ami) is
updated as:

R(st, ami) = R(st, ami) + rwd. (22)

After the reward updating procedure is applied to the reward function R, a reward smoothing technique
is employed for the following reasons. Decisions made long ago can be useless and may mislead the search.
Therefore, these decisions are considered less critical and should be removed periodically. The reward
smoothing technique is inspired by the forgetting mechanisms in local search algorithms for satisfiability
(Hutter et al., 2002). It works as follows. If the value of each element R(st, ami) achieves a predefined
threshold r0, then it is reduced by multiplying a smoothing coefficient ρ (0 < ρ < 1) to forget some earlier
decisions. This study experimentally set r0 = 100 and ρ = 0.5.

4. Computational results

This section reports the extensive computational results of the FBMIP formulation and the proposed RL-
SO algorithm on benchmark instances widely used in the literature and compares them with state-of-the-art
formulations and solution approaches on the CDAP.

15

Table 3: Settings of the parameters.

Parameter Section Description Considered values Final value

α 3.2 Learning rate of Q-learning {0.3, 0.5, 0.6, 0.7, 0.8} 0.5
γ 3.2 Discount factor of Q-learning {0.3, 0.5, 0.6, 0.7, 0.8} 0.5
ε 3.2 Probability of ε-greedy {0.6, 0.7, 0.8, 0.9, 0.95} 0.8
ω 3.3 Search depth of the SO {1e3, 2e3, 3e3, 4e3, 5e3} 2e3
tt 3.3 Tabu tenure {5, 10, 15, 20, 25} 10
β 3.3 The allowed visit time for each solution {2, 5, 10, 12, 20} 5

4.1. Benchmark instances and parameter setting

The computational assessments were based on two sets of 99 benchmark instances in the literature
proposed by Guignard et al. (2012).

� SetA. This set includes 50 instances and is generated as follows. The number of origins is set to be
equal to that of the destinations selected from {8, 9, 10, 11, 12, 15, 20}. Moreover, the number of
inbound doors is equal to that of the outbound doors, selected from {4, 5, 6, 7, 10}. The distance
between a pair of inbound/outbound doors depends on the positions of the two doors in the cross-
docking terminal. The distance between two face-to-face doors is set to 8. By contrast, the distance
between two doors that are not face-to-face is set to 8+I, where I is the I-th successive door counted
from its faced door. The number of pallets moving from the origin to the destination is defined by a
flow matrix produced by setting the values of 25% of the elements in this matrix as random integers
taken from the interval [10, 50] while setting the values of the remaining elements to zero. The capacity
of each door is set to an identical value computed by dividing the total number of pallets from all
origins by the total number of doors and then adding a capacity slack to this quotient. The capacity
slack is set to be {5%,10%,15%,20%,30%} of the door capacity.

� SetB. This set includes 49 large-scale instances generated in the same manner as in SetA. The
number of origins/destinations in this set is selected from {25, 50, 75, 100}, and the number of
inbound/outbound doors is selected from {10, 20, 30, 43}.

All instances in the two sets are named according to the format “aa×bbScc”, where “aa” refers to the
number of origins/destinations, “bb” presents the number of inbound/outbound doors, and “cc” denotes
the capacity slack.

The proposed RL-SO algorithm was implemented in C++ and compiled using GNU g++ with the -O3
option flag 1. All experiments were performed on a 2.6 GHz Intel E5-2670 computer with 2G RAM, running
Linux. The FBMIP formulation was solved using the general MIP solver CPLEX 22.1.0.

RL-SO requires six parameters (Table 3). IRACE (Birattari et al., 2002), a tool for automatic parameter
configuration, was used to tune these parameters. IRACE was run using 20 randomly selected instances.
The tuning budget was set to 2000 RL-SO executions, with a time limit of 300 s per execution. Table 3 lists
the parameter settings recommended by IRACE. This setting can be considered the default setting of the
algorithm and was used for all experiments in this study.

4.2. Computational results of the FBMIP formulation and comparisons with existing MIP formulations

Various MIP formulations for the CDAP have been reported. Gelareh et al. (2020) introduced eight MIP
formulations and compared them with three previous MIP formulations of the CDAP, one investigated by
Zhu et al. (2009) and the other two introduced by Nassief et al. (2016). Gelareh et al. (2020) conducted
a comprehensive comparative analysis to identify the best MIP formulation among the 11 compared for-

mulations. Their analysis identified the formulation proposed by Gelareh et al. (2020) (denoted by M2′,0

in this work, see Appendix A) as the overall best formulation. Most of these compared formulations are

1The code of the proposed algorithm will be publicly available at https://github.com/MINGJIE666/CDAP.

16

Table 4: Comparison between FBMIP and M2′,0 (Gelareh et al., 2020).

FBMIP M2′,0 FBMIP M2′,0

Instance UB GAP T(s) UB GAP T(s) Instance UB GAP T(s) UB GAP T(s)

8×4S5 5174 0 0.08 5174 0 0.19 12×6S30 10228 0 2.26 10228 0 7.40
8×4S10 5169 0 0.11 5169 0 0.19 15×6S5 13927 0 21.01 13927 0 31.14
8×4S15 5112 0 0.08 5112 0 0.16 15×6S10 13803 0 41.03 13803 0 61.32
8×4S20 5086 0 0.11 5086 0 0.19 15×6S15 13765 0 111.62 13765 0 39.62
8×4S30 5063 0 0.05 5063 0 0.17 15×6S20 13720 0 76.51 13720 0 13.14
9×4S5 6047 0 0.06 6047 0 0.33 15×6S30 13567 0 66.47 13567 0 11.13
9×4S10 6027 0 0.08 6027 0 0.38 15×7S5 15054 0 105.85 15054 0 220.38
9×4S15 5976 0 0.08 5976 0 0.20 15×7S10 14810 0 239.41 14810 0 316.23
9×4S20 5937 0 0.06 5937 0 0.14 15×7S15 14657 0 180.16 14657 0 250.24
9×4S30 5904 0 0.06 5904 0 0.13 15×7S20 14514 0 136.78 14514 0 95.65
10×4S5 6518 0 0.13 6518 0 0.69 15×7S30 14409 0 153.62 14409 0 29.94
10×4S10 6325 0 0.06 6325 0 0.48 20×10S5 29945 3.92 7200.00 30233 10.1 7200.00
10×4S15 6296 0 0.08 6296 0 0.59 20×10S10 29367 4.62 7200.00 29638 9.77 7200.00
10×4S20 6267 0 0.13 6267 0 0.20 20×10S15 29135 5.15 7200.00 29446 9.56 7200.00
10×4S30 6193 0 0.08 6193 0 0.28 20×10S20 28945 5.56 7200.00 28972 9.9 7200.00
10×5S5 6616 0 0.22 6616 0 0.26 20×10S30 28549 5.91 7200.00 28826 8.31 7200.00
10×5S10 6476 0 0.17 6476 0 1.19 25×10S10 48999 10.91 7200.00 50720 18.76 7200.00
10×5S15 6397 0 0.13 6397 0 1.05 25×10S20 48357 11.21 7200.00 49247 14.8 7200.00
10×5S20 6342 0 0.16 6342 0 0.63 25×10S30 47825 12.73 7200.00 49030 15.66 7200.00
10×5S30 6308 0 0.17 6308 0 0.94 50×10S10 191913 19.29 7200.00 208111 26.47 7200.00
11×5S5 7812 0 0.66 7812 0 1.78 50×10S20 189620 18.7 7200.00 204344 25.4 7200.00
11×5S10 7572 0 1.06 7572 0 1.56 50×10S30 185238 16.7 7200.00 199146 23.19 7200.00
11×5S15 7535 0 1.11 7535 0 1.41 50×20S10 263508 40.54 7200.00 283869 45.46 7200.00
11×5S20 7439 0 0.59 7439 0 0.75 50×20S20 246567 37.03 7200.00 267271 42.07 7200.00
11×5S30 7420 0 0.95 7420 0 0.95 50×20S30 231687 32.28 7200.00 254322 39.13 7200.00
12×5S5 8072 0 0.23 8072 0 1.12 50×30S20 288761 46.78 7200.00 - - 7200.00
12×5S10 7978 0 2.13 7978 0 1.55 50×30S30 282898 45.71 7200.00 - - 7200.00
12×5S15 7939 0 2.25 7939 0 0.88 75×10S10 443921 22.16 7200.00 - - 7200.00
12×5S20 7939 0 1.80 7939 0 1.89 75×20S10 549656 38.64 7200.00 - - 7200.00
12×5S30 7923 0 2.33 7923 0 1.75 75×30S10 747982 54.38 7200.00 - - 7200.00
12×6S5 10891 0 4.02 10891 0 6.20 100×10S10 781671 23.82 7200.00 - - 7200.00
12×6S10 10456 0 3.64 10456 0 6.50 100×20S10 1013862 40.39 7200.00 - - 7200.00
12×6S15 10362 0 2.84 10362 0 5.40 100×30S10 1267570 52.18 7200.00 - - 7200.00
12×6S20 10312 0 3.26 10312 0 3.20

four indexed formulations that linearize the quadratic formulation MINP in Section 2 by introducing a four
indexed binary variable zminj = xmiynj .

The FBMIP formulation was compared with the best-performing formulation M2′,0. Both formulations
were solved using CPLEX 22.1.0 on the same computer to ensure a fair comparison. CPLEX 22.1.0 stops
when the given instance is solved to optimality or when the given time limit of 2 h is reached. Table 4
summarizes the comparative results of the two formulations. For each instance, we report the achieved
upper bound (UB), the percentage gap between the lower bound (LB) and UB (GAP), and the running
time in seconds (T(s)) required to reach the optimum solution. If an instance cannot be solved to optimality
within the time limit, the reported value for T(s) will be 7200 s.

The results reported in Table 4 demonstrate the competitiveness of the FBMIP formulation on the
tested instances. In particular, both approaches can obtain optimal solutions for all instances with up to 15

incoming trucks. However, the FBMIP formulation reached the optimum solution faster than the M2′,0 in
most cases. Both formulations failed to solve these instances to optimality within the given time limit when
the large instances with 20 or more incoming trucks were considered. However, the FBMIP outperformed

the M2′,0 on each instance by producing smaller UB and larger LB. In particular, the FBMIP obtained

feasible solutions for all large instances with at least 50 incoming trucks. By contrast, the M2′,0 failed to
produce feasible solutions within the given time limit.

Table 5: Comparison between MILP and M2′,0 (Gelareh et al., 2020) on median size instances.

FBMIP M2′,0 FBMIP M2′,0

Instance UB GAP T(s) UB GAP T(s) Instance UB GAP T(s) UB GAP T(s)

16×8S5 17254 0 543.65 17254 0 1052.32 18×8S5 20156 0 4232.41 21532 3.2 7200.00
16×8S10 17012 0 458.96 17012 0 987.45 18×8S10 19564 0 4459.64 20586 3.1 7200.00
16×8S15 16852 0 475.32 16852 0 864.65 18×8S15 19123 0 3745.21 19423 1.5 7200.00
16×8S20 16234 0 412.39 16234 0 854.67 18×8S20 18952 0 4005.63 18952 0 6400.21
16×8S30 15923 0 395.68 15923 0 683.52 18×8S30 18536 0 3598.32 18536 0 6932.63
17×8S5 18357 0 1202.31 18357 0 2403.21 19×8S5 26412 0 6235.41 27123 7.3 7200.00
17×8S10 18001 0 1525.85 18001 0 2031.85 19×8S10 26341 0 4432.21 26852 6.5 7200.00
17×8S15 17821 0 1763.42 17821 0 1502.64 19×8S15 26121 0 3583.12 26556 7.1 7200.00
17×8S20 17513 0 2054.39 17513 0 1203.21 19×8S20 25864 0 5612.37 26153 5.8 7200.00
17×8S30 17356 0 2563.46 17356 0 1007.35 19×8S30 25743 0 4621.62 26054 5.2 7200.00

17

To further demonstrate the effectiveness of the FBMIP formulation, we produced 20 medium-sized in-
stances using the same method as SetA and SetB. Each instance has a number of incoming trucks ranging

from 16 to 19. Table 5 summarizes the comparative results between the FBMIP and the M2′,0 on these
instances. The results show that the FBMIP was able to solve all 20 instances with up to 19 incoming trucks

to optimality. By contrast, the M2′,0 formulation failed to solve three instances with 18 incoming trucks and
five instances with 19 incoming trucks to optimality.

4.3. Comparative results of RL-SO with state-of-the-art methods

The following six leading algorithms from the literature were compared with the proposed RL-SO algo-

rithm: the best-performing MIP formulation M2′,0 (Gelareh et al., 2020), two local search based heuristics
named LS1 and LS2 (Guignard et al., 2012), the convex hull relaxation heuristic CHR proposed by Guignard
et al. (2012), and two probabilistic tabu search heuristics PTS1 and PTS2 proposed by Guemri et al. (2019).

LS1 and LS2 were run on an AMD Phenom 9600 with a 2.31 GHz processor running Windows XP OS.
The CHR was run on a 3.00 GHz Intel Xeon CPU E5450 processor running Linux (Guignard et al., 2012).
PTS1 and PTS2 were implemented in Java and executed on an Intel Xeon E3-1505 M v5 processor with a
2.80 GHz CPU and 16 GB RAM. The stopping condition for PTS1 and PTS2 is defined by the maximum
number of iterations in the local search, which is set to 105 for SetA and 2× 105 for SetB. PTS1 and PTS2

were run 10 times using different random seeds (Guemri et al., 2019). M2′,0 was solved using CPLEX 22.1.0
with a time limit of 7200 s (Gelareh et al., 2020). A completely fair comparison between the proposed
RL-SO and these reference algorithms is challenging due to the differences in computing platforms, coding
languages, compiling options, and termination conditions. Thus, this study focused on the solution quality
in terms of objective values and provided timing information for indicative purposes.

Given the stochastic nature of the proposed RL-SO, similar to Guemri et al. (2019), the algorithm was
executed 10 times independently per instance. The time limit of the RL-SO per run was set to 3|M| s,
where |M| is the number of incoming trucks. Because the source codes of these reference algorithms were

unavailable, the computation results reported by these comparative approaches, except those of the M2′,0,
were directly compiled from their corresponding papers.

Tables 6 and 7 summarize the computational results of the proposed RL-SO compared with the reference
algorithms for SetA and SetB, respectively. In these tables, the first column presents the name of each
instance. The second column, “BKS”, presents the objective value of the best-known solution reported in
the literature for each instance. Columns “OF” and “AVG” report the best and average objective values
achieved by each algorithm on all tested runs, respectively. Finally, column “T(s)” reports the average
running time in seconds required by each algorithm to reach its best objective value.

Table 6 shows that the results obtained by the proposed RL-SO algorithm were highly competitive
compared with those obtained by the reference algorithms in terms of the best and average objective values.

In particular, the M2′,0 achieved optimal solutions for instances with up to 15 incoming trucks and seven
inbound doors. The proposed RL-SO algorithm obtained optimum solutions for all instances with a known
optimum solution within 2 s. For large instances with at least 15 incoming trucks, the exact method could
not achieve an optimal solution within the given time limit. For these large instances, the proposed RL-SO
obtained a better (smaller) objective value than the exact algorithm, except for 20×10S15. When the six
heuristic approaches were compared, the RL-SO, PTS1, and PTS2 performed better than the LS1, LS2, and
CHR in terms of the best objective values achieved. The RL-SO, PTS1, and PTS2 reached the best-known
solutions for 49 of the 50 SetA instances. By contrast, the LS1, LS2, and CHR reached the best-known
solutions only for 28, 26, and 27 instances, respectively. Moreover, the proposed RL-SO algorithm is more
robust than the PTS1 and PTS2 in terms of the average objective value because it consistently reached
the same objective value equal to its best objective value for all 10 runs within 2 s. Finally, the Wilcoxon

signed-rank test revealed statistically significant differences between RL-SO and M2′,0, LS1, LS2, and CHR
in terms of the best objective values, as indicated by the small p-values (< 0.05). Additionally, the small
p-values (< 0.05) between RL-SO and PTS1 and PTS2 in terms of the average objective values confirm the
robustness of the proposed RL-SO.

18

Table 6: Comparative results on 50 “SetA” instances with M2′,0(Gelareh et al., 2020), LS1 (Guignard et al., 2012), LS2
(Guignard et al., 2012), CHR (Guignard et al., 2012), PTS1 (Guemri et al., 2019), and PTS2 (Guemri et al., 2019).

M2′,0 LS1 LS2 CHR PTS1 PTS2 RL-SO

Instance BKS OF T(s) OF T(s) OF T(s) OF T(s) OF AVG T(s) OF AVG T(s) OF AVG T(s)

8×4S5 5174* 5174 0.08 5174 1 5174 2 5174 13 5174 5174.0 3.87 5174 5174.0 1.69 5174 5174.0 0.08
8×4S10 5169* 5169 0.11 5169 2 5169 3 5169 14 5169 5169.0 3.68 5169 5169.0 1.12 5169 5169.0 0.09
8×4S15 5112* 5112 0.08 5112 2 5112 2 5112 9 5112 5112.0 3.46 5112 5112.0 0.98 5112 5112.0 0.10
8×4S20 5086* 5086 0.11 5086 2 5086 3 5086 17 5086 5086.0 3.29 5086 5086.0 0.87 5086 5086.0 0.11
8×4S30 5063* 5063 0.05 5063 2 5063 2 5063 17 5063 5063.0 3.20 5063 5063.0 0.83 5063 5063.0 0.12
9×4S5 6047* 6047 0.06 6047 2 6047 3 6047 15 6047 6047.0 4.50 6047 6047.0 1.25 6047 6047.0 0.08
9×4S10 6027* 6027 0.08 6027 2 6027 3 6027 17 6027 6027.0 4.11 6027 6027.0 1.09 6027 6027.0 0.07
9×4S15 5976* 5976 0.08 5976 3 5976 3 5976 21 5976 5976.0 3.93 5976 5976.0 0.92 5976 5976.0 0.09
9×4S20 5937* 5937 0.06 5937 2 5937 2 5937 19 5937 5937.0 3.90 5937 5937.0 0.97 5937 5937.0 0.10
9×4S30 5904* 5904 0.06 5904 2 5904 2 5904 14 5904 5904.0 3.74 5904 5904.0 0.90 5904 5904.0 0.12
10×4S5 6518* 6518 0.13 6518 5 6518 6 6518 16 6518 6518.0 5.10 6518 6518.0 1.38 6518 6518.0 0.06
10×4S10 6325* 6325 0.06 6325 3 6325 3 6325 30 6325 6325.0 4.87 6325 6325.0 1.09 6325 6325.0 0.08
10×4S15 6296* 6296 0.08 6296 3 6296 3 6296 28 6296 6296.0 4.55 6296 6296.0 0.98 6296 6296.0 0.09
10×4S20 6267* 6267 0.13 6267 3 6267 4 6267 26 6267 6267.0 4.40 6267 6267.0 0.97 6267 6267.0 0.11
10×4S30 6193* 6193 0.08 6193 3 6193 3 6193 19 6193 6193.0 4.13 6193 6193.0 1.07 6193 6193.0 0.11
10×5S5 6616* 6616 0.22 6616 6 6616 6 6616 13 6616 6616.0 4.54 6616 6616.0 1.80 6616 6616.0 0.10
10×5S10 6476* 6476 0.17 6476 4 6476 5 6476 23 6476 6476.0 4.45 6476 6476.0 1.51 6476 6476.0 0.13
10×5S15 6397* 6397 0.13 6397 3 6397 4 6397 16 6397 6397.0 4.14 6397 6397.0 1.37 6397 6397.0 0.10
10×5S20 6342* 6342 0.16 6374 3 6363 4 6354 18 6342 6342.0 4.02 6342 6342.0 1.32 6342 6342.0 0.09
10×5S30 6308* 6308 0.17 6324 3 6333 4 6333 18 6308 6308.0 3.86 6308 6308.0 1.31 6308 6308.0 0.13
11×5S5 7812* 7812 0.66 7812 12 7812 12 7812 16 7812 7812.0 5.23 7812 7812.0 2.12 7812 7812.0 0.11
11×5S10 7572* 7572 1.06 7572 5 7572 6 7572 18 7572 7572.0 4.95 7572 7572.0 1.61 7572 7572.0 0.21
11×5S15 7535* 7535 1.11 7542 5 7542 5 7542 20 7535 7535.0 4.76 7535 7535.0 1.36 7535 7535.0 0.25
11×5S20 7439* 7439 0.59 7465 5 7465 5 7478 17 7439 7439.0 4.47 7439 7439.0 1.29 7439 7439.0 0.36
11×5S30 7420* 7420 0.95 7428 4 7424 5 7420 18 7420 7420.0 4.23 7420 7421.6 1.36 7420 7420.0 0.12
12×5S5 8072* 8072 0.23 8072 5 8072 7 8072 13 8072 8072.0 5.81 8072 8072.0 1.76 8072 8072.0 0.85
12×5S10 7978* 7978 2.13 7978 4 7988 5 7991 15 7978 7978.0 5.53 7978 7978.0 1.58 7978 7978.0 0.41
12×5S15 7939* 7939 2.25 7939 4 7939 6 7939 18 7939 7939.0 5.36 7939 7939.0 1.48 7939 7939.0 0.52
12×5S20 7939* 7939 1.80 7939 5 7939 6 7939 18 7939 7939.0 5.06 7939 7939.0 1.43 7939 7939.0 0.63
12×5S30 7923* 7923 2.33 7942 6 7925 6 7925 21 7923 7923.0 4.68 7923 7923.0 1.40 7923 7923.0 0.74
12×6S5 10891* 10891 4.02 10891 10 10894 14 10894 14 10891 10891.0 5.36 10891 10891.0 2.72 10891 10891.0 0.32
12×6S10 10456* 10456 3.64 10475 6 10496 7 10480 14 10456 10456.0 5.13 10456 10456.0 1.98 10456 10456.0 0.95
12×6S15 10362* 10362 2.84 10395 5 10420 6 10374 17 10362 10362.0 4.89 10362 10378.5 1.82 10362 10362.0 0.63
12×6S20 10312* 10312 3.26 10331 7 10339 6 10323 16 10312 10312.0 4.61 10312 10312.0 1.92 10312 10312.0 0.84
12×6S30 10228* 10228 2.26 10228 6 10228 7 10277 20 10228 10228.0 4.22 10228 10228.0 1.84 10228 10228.0 0.63
15×6S5 13927* 13927 21.01 13960 13 13927 16 13983 18 13927 13927.0 7.32 13927 13927.0 2.47 13927 13927.0 0.71
15×6S10 13803* 13803 41.03 13856 11 13852 11 13872 15 13803 13803.0 7.02 13803 13810.7 2.20 13803 13803.0 0.85
15×6S15 13765* 13765 111.62 13769 9 13799 12 13765 18 13765 13765.0 6.54 13765 13792.3 2.23 13765 13765.0 1.01
15×6S20 13720* 13720 76.51 13769 10 13754 11 13720 17 13720 13720.0 6.17 13720 13750.0 2.31 13720 13720.0 0.96
15×6S30 13567* 13567 66.47 13567 10 13567 10 13626 16 13567 13567.0 5.68 13567 13585.2 2.22 13567 13567.0 0.82
15×7S5 15054* 15054 105.85 15054 25 15054 25 15096 26 15054 15054.0 6.90 15054 15063.1 3.36 15054 15054.0 0.96
15×7S10 14810* 14810 239.41 14841 15 14818 17 14810 22 14810 14810.0 6.49 14810 14843.1 2.70 14810 14810.0 1.01
15×7S15 14657* 14657 180.16 14678 13 14680 14 14678 22 14657 14657.2 6.16 14657 14658.2 2.68 14657 14657.0 1.36
15×7S20 14514* 14514 136.78 14596 14 14533 16 14533 19 14514 14514.0 5.80 14514 14537.6 2.72 14514 14514.0 1.12
15×7S30 14409* 14409 153.62 14415 13 14423 13 14414 19 14409 14409.0 5.31 14409 14413.2 2.61 14409 14409.0 0.85
20×10S5 29907 30233 7200.00 29945 254 30033 45 29933 87 29907 29909.6 9.16 29907 30004.4 6.39 29907 29907.0 0.71
20×10S10 29236 29638 7200.00 29286 36 29286 36 29498 52 29236 29253.3 8.49 29236 29567.3 5.01 29236 29236.0 1.06
20×10S15 29134 29446 7200.00 29278 35 29184 37 29529 65 29135 29135.5 7.77 29135 29345.7 4.81 29135 29135.0 1.63
20×10S20 28945 28972 7200.00 29130 38 28992 40 29089 63 28945 28951.2 7.18 28945 29051.5 4.81 28945 28945.0 0.95
20×10S30 28533 28826 7200.00 28800 39 28541 41 28571 62 28533 28539.6 6.85 28533 28741.3 4.82 28533 28533.0 1.21

AVG 10741.8 10769.0 743.3 10764.7 13.6 10755.5 10.3 10768.5 22.8 10741.9 10742.5 5.2 10741.9 10764.4 2.0 10741.9 10741.9 0.5
#BEST 50 45 28 26 27 49 49 49
p-value 3.2E-01 4.3E-02 4.0E-05 2.7E-05 2.7E-05 1 2.8E-02 1 4.4E-04

*: the result is proved to optimality.

Table 7 shows that the RL-SO improved the best-known results for 43 of the 49 instances in SetB.
Compared with the LS1, LS2, CHR, PTS1, and PTS2, the proposed RL-SO algorithm delivered highly
competitive results in terms of the best and average objective values. In particular, the RL-SO achieved
better results in terms of the best objective value on 49, 49, 49, 44, and 45 cases and worse results on 0,
0, 0, 1, and 0 cases. The small p-values (< 0.05) from the Wilcoxon signed-rank test further confirmed the
statistically significant differences between the RL-SO and reference algorithms in terms of the best and
average objective values.

In summary, this comparative assessment confirmed the effectiveness and robustness of the proposed
RL-SO algorithm on the CDAP datasets.

4.4. RL-SO for other combinatorial optimization problems

Given the general nature of the main components of the proposed RL-SO algorithm, such as the Q-
learning procedure, the feasible and infeasible search, and the mixed tabu strategy, the RL-SO algorithm
can be used to solve other combinatorial optimization problems. To demonstrate this, we tested the RL-
SO algorithm on two other widely studied problems, namely the uncapacitated cross-dock door assignment
problem (UCDAP) and the quadratic knapsack problem with conflict graph (QKPCG).

19

Table 7: Comparative results on 49 “SetB” instances with LS1 (Guignard et al., 2012), LS2 (Guignard et al., 2012), CHR
(Guignard et al., 2012), PTS1 (Guemri et al., 2019), and PTS2 (Guemri et al., 2019).

LS1 LS2 CHR PTS1 PTS2 RL-SO

Instance BKS OF T(s) OF T(s) OF T(s) OF AVG T(s) OF AVG T(s) OF AVG T(s)

25×10S5 49013 49144 194 49335 198 49904 105.5 49013 49014.8 26.11 49013 49013.0 13.81 49013 49013.0 0.14
25×10S10 48672 48949 116 48941 129 49332 138.9 48672 48699.3 23.49 48740 48869.5 12.50 48672 48672.0 0.16
25×10S15 48407 48556 122 48504 131 48770 132.5 48407 48415.6 20.08 48407 48477.0 12.10 48407 48407.0 1.48
25×10S20 47926 48215 85 48235 90 48338 120.0 47934 47949.3 19.11 47926 47977.6 12.24 47926 47926.0 0.27
25×10S30 47314 47480 77 47426 81 47652 113.5 47314 47356.5 19.61 47314 47368.1 12.25 47314 47314.0 0.44
25×20S30 51533 51921 181 51741 200 52447 112.0 51533 51618.4 19.81 51562 52334.2 28.51 51523 51523.0 12.99
50×10S5 191160 191773 4039 191788 4496 192114 178.0 191160 191241.3 78.29 191186 192350.7 26.58 191040 191062.0 56.94
50×10S10 189166 189409 5345 189833 5313 190508 155.9 189166 189478.5 66.16 189573 190316.3 26.19 189134 189190.0 77.04
50×10S15 187315 188006 3363 188264 3120 187753 164.0 187315 187417.9 69.16 187377 188834.9 26.45 187256 187257.2 60.10
50×10S20 186085 186800 3854 186578 3729 187901 181.7 186085 186246.2 72.28 185975 186788.2 26.24 185975 185996.9 95.92
50×10S30 183249 183961 1652 184013 1567 184532 195.8 183249 183373.7 79.04 183234 183943.9 25.85 183145 183178.3 94.33
50×20S5 237656 238048 7074 239673 7308 240288 504.0 237656 238244.5 59.28 239835 241379.3 50.66 237396 237490.2 69.84
50×20S10 233341 235178 7877 234807 7741 236124 626.8 233341 234045.4 44.56 235326 236932.9 51.59 233319 233843.4 74.52
50×20S15 229638 230758 7815 230666 7490 233324 604.8 229638 230429.2 45.58 230375 233110.0 48.04 229342 229756.7 84.32
50×20S20 226448 227698 7161 227883 7328 228918 472.0 226448 227134.2 45.65 228332 230201.4 50.93 226051 226512.0 74.02
50×20S30 220748 221892 7138 222060 6951 223687 357.0 220748 221313.8 48.48 221322 223423.5 45.85 220291 220659.3 80.16
50×30S15 273166 275973 5975 275121 6950 276237 262.7 273166 274455.9 50.52 276938 278798.1 91.23 272504 273507.1 105.56
50×30S20 261725 264199 2467 263790 3056 264971 389.9 261725 263099.9 43.55 264729 267802.5 86.29 260923 262330.6 95.70
50×30S30 252639 254056 1879 254795 1962 257529 260.9 252639 253680.2 45.23 255151 258277.8 77.02 251956 252318.5 75.44
50×43S30 330285 332318 6977 330661 7381 332947 323.0 330285 332378.3 47.46 335036 341233.4 121.07 329309 330412.3 93.35
75×10S5 439055 440248 9114 440420 9446 442749 168.7 439055 439478.3 158.11 440181 441088.8 44.82 438575 438712.0 108.32
75×10S10 434275 435985 8842 435970 9178 437642 219.8 434275 435134.7 157.91 435595 437051.9 44.88 433876 434143.1 126.28
75×10S15 430005 431405 8429 431686 8521 432086 209.8 430005 430781.3 171.16 430663 432183.0 45.28 429758 430152.5 115.27
75×10S20 426385 427468 8772 427522 8127 429513 78.2 426385 427176.8 179.44 427168 428920.9 44.74 426431 426680.4 138.27
75×10S30 419651 420851 6754 420660 6643 421983 215.0 419651 420123.3 198.28 420619 421566.1 44.48 419526 419565.3 110.55
75×20S5 529131 531762 8174 532873 8746 533701 789.0 529131 529964.2 86.09 532968 535724.6 72.92 528769 529105.9 131.81
75×20S10 520127 523447 9269 521970 9665 525098 803.0 520127 521708.1 86.09 524001 526829.3 72.91 519927 520569.6 99.70
75×20S15 512170 514760 9778 514981 9614 513166 602.0 512170 512788.7 87.11 515098 519040.7 73.93 512114 512366.2 121.13
75×20S20 504502 506346 8617 506114 9793 508862 627.8 504502 505141.8 90.33 506313 511407.4 72.29 504434 504823.7 120.67
75×20S30 491796 493417 9549 493977 9855 494897 412.9 491796 492429.4 97.83 493403 498179.1 73.09 491774 492037.6 123.36
75×30S10 630259 636697 6898 634304 6986 636740 2087.7 630259 631982.2 78.17 637957 644569.3 113.86 628585 629374.6 152.93
75×30S15 613001 620356 7481 618688 7491 617984 1454.7 613001 614840.5 81.81 621149 626365.0 112.66 611439 612324.0 146.96
75×30S20 599329 600422 8697 601199 8389 604486 1773.0 599329 601011.5 84.85 605055 610181.4 114.44 597785 598392.3 140.36
75×30S30 577843 580490 9236 582766 9159 582388 1203.0 577843 579640.3 88.66 583551 586215.3 103.99 576926 578071.2 174.83
100×10S5 771172 773971 5571 773498 5339 777008 229.0 771172 771976.4 319.05 771368 774128.9 68.89 771074 771644.8 141.20
100×10S10 762282 764866 5024 763908 5399 766119 241.0 762282 763320.3 311.69 763469 765036.1 69.55 761741 762470.3 150.95
100×10S15 755040 757159 5832 757046 5333 757289 296.6 755040 755955.7 348.72 756236 758154.4 68.04 754485 754810.0 178.22
100×10S20 748611 750658 5150 750394 5160 751662 274.0 748611 749327.1 367.73 750047 751747.3 68.52 748605 749108.6 220.42
100×10S30 736248 738033 4375 737694 4886 739024 295.5 736248 737063.8 415.95 737505 739087.7 68.69 735783 736235.5 149.02
100×20S5 961900 966474 4920 970189 4500 970464 465.0 961900 964422.8 142.32 968861 973939.2 104.34 961620 962419.6 181.42
100×20S10 945835 951882 4474 949715 4940 958608 499.0 945835 948003.6 145.08 952317 958369.8 102.84 945453 946951.9 159.51
100×20S15 931525 935443 5047 936227 5007 936565 499.7 931525 933518.5 151.57 935246 940053.2 102.65 930568 931289.5 197.61
100×20S20 916505 921746 4938 922768 5203 925019 360.0 916505 918597.7 157.15 920851 923581.8 102.52 916096 917149.3 180.46
100×20S30 892755 894685 5555 896656 5332 903289 360.0 892755 894825.9 171.95 896202 899657.8 104.15 892547 893693.6 176.12
100×30S5 1154077 1170457 2818 1167044 2729 1173214 1814.0 1154077 1159790.8 121.82 1164617 1174570.3 141.40 1150550 1152976.9 248.14
100×30S10 1127161 1145700 4153 1142881 4307 1144807 1042.7 1127161 1130487.3 126.65 1140965 1149830.1 145.87 1125044 1127892.4 199.40
100×30S15 1103176 1113552 4482 1119040 4616 1121865 1116.0 1103176 1105138.4 130.40 1116441 1123978.2 146.01 1101454 1104339.4 196.40
100×30S20 1081933 1093126 4928 1096146 4806 1097480 943.0 1081933 1086086.7 133.10 1093174 1100436.0 143.75 1080706 1082370.1 222.37
100×30S30 1044499 1052682 5038 1057544 4958 1057666 900.0 1044499 1046736.6 140.48 1055745 1061462.5 138.23 1043537 1045586.4 200.54

AVG 501137.43 504253.5 5414.4 504448.9 5496.9 506013.3 518.1 501137.6 502307.1 117.4 504369.7 507363.0 70.5 500605.7 501257.78 117.7
#BEST 6 0 0 0 5 4 48
p-value 1.2E-08 1.1E-09 1.1E-09 1.1E-09 8.3E-09 1.1E-09 7.6E-09 1.6E-09

In the UCDAP, several incoming and outgoing trucks arrive at the yard of a cross-docking terminal, and
each incoming/outgoing truck must be assigned to an inbound/outbound door. Each inbound/outbound
door can accommodate at most one incoming/outgoing truck without considering any capacity requirement.
The objective is to minimize the total pallet-handling cost inside the cross-docking terminal. Tsui & Chang
(1990) first proposed the UCDAP. Several solution approaches have been proposed for solving the UCDAP,
including the genetic algorithm (GA) proposed by Bermudez et al. (2001), the scatter search (SS) proposed
by Tarhini et al. (2016), the greedy algorithm (GD) proposed by Zhang et al. (2018), and the ant colony
system algorithm (ACS) proposed by Zhang et al. (2018). Since the UCDAP can be considered as a special
case of the CDAP, the RL-SO algorithm can be directly applied to solve the UCDAP by setting the capacity
of all doors and the amount of pallets in all trucks to the same value. To evaluate the RL-SO algorithm
on the UCDAP, we used the same 40 instances in Zhang et al. (2018) and independently ran the RL-SO
algorithm on each instance ten times under the same time limit as adopted in Zhang et al. (2018) (Table 8).

The QKPCG involves a knapsack with a capacity C and a set of items V = 1, ..., n, where each item i
has a weight wi and a profit pi. Let E be the set of incompatible couples of items such that a couple of
two items i and j belonging to E cannot be packed simultaneously in the knapsack (i.e., the disjunctive
constraint). The objective of the problem is to select a subset S ⊆ V of pairwise compatible items such that
the total profit of the selected items is maximized while ensuring that the total weight of all selected items
does not exceed the knapsack capacity C (i.e., the knapsack capacity constraint). The QKPCG was first
proposed by Shi et al. (2017), and a variety of solution methods have been proposed in the literature to solve

20

Table 8: Time limit for each UCDAP instance set.

Instance set #Instance Time limit(s) Instance set #Instance Time limit(s)

FC12 5 0.2 SC48 5 3
FC24 5 1 SC64 5 5
FC48 5 3 SC96 5 15
FC96 5 15 SC192 5 100
FC192 5 100 SC300 5 200

Table 9: Summarized comparisons of the RL-SO algorithm against the best-known values and the reference algorithms GA
(Bermudez et al., 2001), SS (Tarhini et al., 2016), GD (Zhang et al., 2018), and ACS (Zhang et al., 2018) on the 40 UCDAP
instances, the symbol ‘-’ indicates that the corresponding results are not reported.

Best AVG

Algorithm pair #Win #Tier #Lose p-value #Win #Tier #Lose p-value

RL-SO vs. BKS 34 6 0 2.1E-05 - - - -
RL-SO vs. GD 40 0 0 1.8E-12 - - - -
RL-SO vs. SS 36 4 0 1.7E-07 40 0 0 1.8E-12
RL-SO vs. GA 36 4 0 1.7E-07 40 0 0 1.8E-12
RL-SO vs. ACS 34 6 0 2.1E-05 37 3 0 1.1E-07

the problem, including the GLPK solver (Shi et al., 2017), the neighborhood search based metaheuristic
(NSBM) proposed by Shi et al. (2017), the modified descent method based heuristic (MDM) proposed by
Dahmani & Hifi (2021), and the population based search algorithm (PBSA) proposed by Dahmani et al.
(2020). To adapt our RL-SO algorithm to solve the QKPCG, we made two minor modifications to the RL-
SO algorithm while keeping other ingredients unchanged. Firstly, we extended the SO strategy in RL-SO
for the CDAP to handle both the knapsack capacity constraint and the disjunctive constraint. Secondly,
in the Q-learning procedure, a state is the latest chosen item, while an action consists of assigning an item
to the knapsack. To evaluate our RL-SO algorithm on the QKPCG, we used the same 45 instances tested
in Dahmani & Hifi (2021) and Dahmani et al. (2020). We independently ran RL-SO on each instance ten
times under a time limit of 200 s, as adopted in Dahmani & Hifi (2021) and Dahmani et al. (2020).

Tables 9 and 10 provide a summary of the comparative results between the RL-SO algorithm and
the state-of-the-art algorithms in the literature for the 40 UCDAP instances and 45 QKPCG instances,
respectively. The reference results of the compared algorithms were obtained from the original paper.
The first column in both tables shows the compared algorithm pair, where BKS in the first row denotes
the best-known results reported in the literature. Columns “#Win”, “#Tier” and “#Lose” present the
number of instances for which the RL-SO algorithm obtained a better (#Win), equal (#Tier), or worse
(#Lose) result compared to each reference algorithm in terms of the best solution value (“Column Best”)
and average solution value (“Column AVG”). Column “p-value” displays the p-values obtained from the
Wilcoxon signed-rank test (with a significance level of 0.05).

As shown in Tables 9 and 10, our RL-SO algorithm outperforms the current best-known results on 34 and
3 instances for the UCDAP and the QKPCG, respectively. When compared with each reference algorithm,
the RL-SO algorithm clearly shows an overall better performance in terms of the best solution value and
average solution value. Moreover, the small p-value (< 0.05) indicates that the performance difference
between RL-SO and each reference algorithm is statistically significant for both considered problems, further
confirming the superiority of the RL-SO algorithm. Finally, Tables C.13 and C.14 in the Appendix C present
the detailed results of RL-SO for the two considered problems.

5. Analysis

This section analyzes three essential components of the RL-SO algorithm: the Q-learning strategy that
guides the search toward promising areas, the SO method that adaptively explores feasible and infeasible
search spaces, and the mixed tabu strategy that prevents the search from falling into cycling.

21

Table 10: Summarized comparisons of the RL-SO algorithm against the best-known values and the reference algorithms GLPK
(Shi et al., 2017), NSBM (Shi et al., 2017), MDM (Dahmani & Hifi, 2021), and PBSA (Dahmani et al., 2020) on the 45 QKPCG
instances, the symbol ‘-’ indicates that the corresponding results are not reported.

Best AVG

Algorithm pair #Win #Tier #Lose p-value #Win #Tier #Lose p-value

RL-SO vs. BKS 3 42 0 0.11 - - - -
RL-SO vs. GLPK 45 0 0 5.7E-14 - - - -
RL-SO vs. NSBM 37 8 0 1.1E-07 43 2 0 1.6E-08
RL-SO vs. MDM 15 30 0 4.4E-04 - - - -
RL-SO vs. PBSA 3 42 0 0.11 36 9 0 1.7E-07

5.1. Effect of the Q-learning strategy

75×
10S5

75×
10S10

75×
10S15

75×
10S20

75×
10S30

75×
20S5

75×
20S10

75×
20S15

75×
20S20

75×
20S30

75×
30S10

75×
30S15

75×
30S20

75×
30S30

100×
10S5

100×
10S10

100×
10S15

100×
10S20

100×
10S30

100×
20S5

100×
20S10

100×
20S15

100×
20S20

100×
20S30

100×
30S5

100×
30S10

100×
30S15

100×
30S20

100×
30S30

Instance

0.0

0.1

0.2

0.3

0.4

0.5

G
ap

to
th
e
b
es
t-
kn
ow

n
so
lu
ti
on

(%
)

RL-SO1(best)

RL-SO2(best)

RL-SO(best)

RL-SO1(avg)

RL-SO2(avg)

RL-SO(avg)

Figure 3: Comparisons of RL-SO with its variants RL-SO1 and RL-SO12.

Table 11: Wilcoxon signed-rank test for the results of each compared algorithm pair.

Algorithm pair OF AVG

RL-SO vs. RL-SO1 2.9E-04 4.8E-06
RL-SO vs. RL-SO2 1.5E-03 2.6E-06

As the core component of the RL-SO algorithm, a Q-learning strategy is applied to generate an initial
solution for the SO procedure and guide the search toward promising regions (Section 3.2). The RL-
SO algorithm was compared with two algorithmic variants (RL-SO1 and RL-SO2) to demonstrate the
effectiveness of the Q-learning strategy. The RL-SO1 removes the Q-learning strategy and keeps the other
components unchanged. A random multistart procedure was used for the RL-SO2 to replace the Q-learning
framework, in which the initial solution for each round of the SO search was constructed by randomly
assigning an incoming (outgoing) truck to an inbound (outbound) door. The three methods were compared
using the 29 instances with the largest size under the same experimental protocol described in Section 4.1.

Figure 3 summarizes the comparative results between the RL-SO and its two variants. The RL-SO
dominated the RL-SO1 and RL-SO2 in terms of the best and average objective values, respectively. For
each instance, the RL-SO performed better than the other two variants. The RL-SO performed well in large
instances with more than 75 incoming trucks. The p-values (<0.05) from the Wilcoxon signed-rank test
shown in Table 11 indicated statistically significant differences between the RL-SO and its variants. This
finding confirms the superiority of the RL-SO over the two variants.

22

Table 12: Comparative results on 29 “SetB” instances of RL-SO3 with RL-SO.

RL-SO3 RL-SO

Instance OF AVG T(s) OF AVG T(s)

75×10S5 438783 439451.2 95.12 438575 438712.0 108.32
75×10S10 434973 435326.2 94.23 433876 434143.1 126.28
75×10S15 430882 432452.3 58.32 429758 430152.5 115.27
75×10S20 427089 429521.3 64.13 426431 426680.4 138.27
75×10S30 419599 421325.1 105.69 419526 419565.3 110.55
75×20S5 529297 530123.5 165.21 528769 529105.9 131.81
75×20S10 520762 521953.8 101.16 519927 520569.6 99.70
75×20S15 512648 516346.6 112.31 512114 512366.2 121.13
75×20S20 505902 508352.3 150.21 504434 504823.7 120.67
75×20S30 492226 493296.4 135.19 491774 492037.6 123.36
75×30S10 631205 634325.1 167.36 628585 629374.6 152.93
75×30S15 614326 616365.4 145.13 611439 612324.0 146.96
75×30S20 598928 601325.6 134.35 597785 598392.3 140.36
75×30S30 579458 581362.6 124.25 576926 578071.2 174.83
100×10S5 772277 774235.6 130.78 771074 771644.8 141.20
100×10S10 763175 764568.9 138.32 761741 762470.3 150.95
100×10S15 755698 758594.8 164.12 754485 754810.0 178.22
100×10S20 750069 753641.7 185.32 748605 749108.6 220.42
100×10S30 736538 739846.1 251.32 735783 736235.5 149.02
100×20S5 964569 968357.4 210.29 961620 962419.6 181.42
100×20S10 950638 952879.3 168.36 945453 946951.9 159.51
100×20S15 933153 935647.1 201.21 930568 931289.5 197.61
100×20S20 919310 923567.6 140.23 916096 917149.3 180.46
100×20S30 897209 899368.1 196.74 892547 893693.6 176.12
100×30S5 1157235 1159635.1 265.85 1150550 1152976.9 248.14
100×30S10 1131514 1138521.8 168.85 1125044 1127892.4 199.40
100×30S15 1108038 1111237.3 143.56 1101454 1104339.4 196.40
100×30S20 1085633 1090654.9 263.12 1080706 1082370.1 222.37
100×30S30 1049995 1054364.8 209.46 1043537 1045586.4 200.54

AVG 727969.97 730574.07 154.83 725489.03 726388.16 159.04
#BEST 0 0 16 29 29 13
p-value 2.6E-06 2.6E-06 0.46

5.2. Importance of the SO method

As discussed in Section 3.3.2, the RL-SO algorithm employs feasible and infeasible search mechanisms
to explore the search space of the CDAP. The RL-SO was compared with an RL-SO variant (RL-SO3) to
verify the importance of the mixed search mechanism. Only feasible solutions were allowed for the RL-SO
variant. Any infeasible solution was penalized by setting the penalty coefficient ϕ of the extended evaluation
function ((Equation (17), Section 3.3.2) to an extremely large value to implement the RL-SO3 variant.

Table 12 summarizes the comparative results between the RL-SO and the RL-SO3. The RL-SO dom-
inated the RL-SO3 in terms of the best and average objective values. The small p-values confirmed the
statistically significant difference between the RL-SO and the variant RL-SO3. In terms of the average
computation time, the RL-SO required slightly more time than the RL-SO3 (159.04 s vs. 154.83 s) to reach
the best solutions. However, the quality of the solution produced by the RL-SO was significantly better
than that produced by the RL-SO3. This experiment demonstrated that the feasible and infeasible search
mechanism positively contributes to the performance of the algorithm.

5.3. Importance of the mixed tabu strategy

The mixed tabu strategy described in Section 3.3.3 is a critical component of the proposed RL-SO
algorithm. To demonstrate the benefits of this strategy, the RL-SO was compared with an RL-SO variant
(RL-SO4), which relies only on the traditional tabu search strategy.

The two compared algorithms were tested on the 29 largest instances with at least 75 incoming trucks
(Figure 4). Each algorithm was independently run ten times, and each run was given a time limit of 3|M | s
to solve each instance. Figure 4 shows a statistically significant difference between the RL-SO and RL-SO4
in terms of the best and average objective values, indicated by the p-values from the Wilcoxon signed-rank
test (4.31E-04 and 2.56E-06 in terms of the best and average objectives, respectively). This experiment
indicates that the mixed tabu strategy positively contributes to the performance of the algorithm.

6. Conclusion

This study investigated the cross-dock door assignment problem (CDAP), a complex and vital decision
problem in supply chain management. A flow based three indexed mixed integer programming (MIP) for-
mulation was introduced for the CDAP. The formulation is based on the flow of goods from incoming trucks

23

75×
10S5

75×
10S10

75×
10S15

75×
10S20

75×
10S30

75×
20S5

75×
20S10

75×
20S15

75×
20S20

75×
20S30

75×
30S10

75×
30S15

75×
30S20

75×
30S30

100×
10S5

100×
10S10

100×
10S15

100×
10S20

100×
10S30

100×
20S5

100×
20S10

100×
20S15

100×
20S20

100×
20S30

100×
30S5

100×
30S10

100×
30S15

100×
30S20

100×
30S30

Instance

0.0

0.1

0.2

0.3

0.4

0.5

G
ap

to
th
e
b
es
t-
kn
ow

n
so
lu
ti
on

(%
)

RL-SO4(best)

RL-SO(best)

RL-SO4(avg)

RL-SO(avg)

Figure 4: Comparisons between RL-SO with its variant RL-SO4

passing through inbound and outbound doors. It uses three indexed continuous variables rather than four
indexed variables to tackle the quadratic term in the objective of the CDAP. This study proposed an effective
reinforcement learning (RL) based local search algorithm (denoted by RL-SO) integrating a Q-learning pro-
cedure and a strategic oscillation (SO) approach. The Q-learning procedure uses the RL technique to gain
useful information from historically visited solutions to produce new promising truck-to-door assignments.
To further improve the learning abilities of the Q-learning procedure, a linear programming (LP) relax-
ation formulation based estimation was used to initialize the action-value function, significantly shortening
the learning process. The SO approach adaptively explores feasible and infeasible search regions to obtain
high-quality solutions. Moreover, it employs a mixed tabu strategy that takes advantage of the traditional
attribute-based and solution-based tabu strategies to avoid being trapped in search cycling and missing
high-quality solutions.

The performances of the FBMIP formulation and the proposed RL-SO algorithm were tested on two sets
of benchmark instances in the literature. Compared with the best MIP formulation in the literature, the
FBMIP enables solving eight more problem instances optimally and produces better LBs and UBs for the
unsolved instances. Moreover, the proposed RL-SO algorithm proved to be highly competitive compared
with state-of-the-art CDAP algorithms in the literature. In particular, it obtained improved best-known
results (i.e., new UBs) for 43 of the 99 tested instances. To show the generality of the algorithm, we also tested
it on two other well-studied problems, namely the Uncapacitated Cross-dock Door Assignment Problem
(UCDAP) and the Quadratic Knapsack Problem with Conflict Graph (QKPCG), and highly competitive
results were achieved by the algorithm.

Additional experiments were performed to study the impact of the essential components of the proposed
RL-SO, confirming the usefulness of the Q-learning procedure, the feasible and infeasible search, and the
mixed tabu strategy. Since these strategies have a general nature and significantly contribute to the perfor-
mance of the proposed RL-SO algorithm, it would be interesting for future research to explore the application
of the RL-SO algorithm to address other dock door assignment problems with different objective functions
and practical operational rules, or other strongly constrained combinatorial optimization problems.

Acknowledgments

We would like to thank Prof. Monique Guignard, and Dr. Placide Nduwayo with his coauthors, for
sharing the benchmark instances. We are grateful to the reviewers for their constructive comments, which
helped us to significantly improve this paper. This work was partially supported by the National Natural
Science Foundation Program of China (Grant No. 72122006).

24

References

Alicastro, M., Ferone, D., Festa, P., Fugaro, S., & Pastore, T. (2021). A reinforcement learning iterated local search for
makespan minimization in additive manufacturing machine scheduling problems. Computers & Operations Research, 131 ,
105272.

Bartholdi, J. J., & Gue, K. R. (2004). The best shape for a crossdock. Transportation Science, 38 , 235–244.
Bartholdi III, J. J., & Gue, K. R. (2000). Reducing labor costs in an ltl crossdocking terminal. Operations Research, 48 ,

823–832.
Battiti, R., & Tecchiolli, G. (1994). The reactive tabu search. ORSA journal on computing, 6 , 126–140.
Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with reinforcement

learning. arXiv preprint arXiv:1611.09940 , .
Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: a methodological tour d’horizon.

European Journal of Operational Research, 290 , 405–421.
Benlic, U., Epitropakis, M. G., & Burke, E. K. (2017). A hybrid breakout local search and reinforcement learning approach to

the vertex separator problem. European Journal of Operational Research, 261 , 803–818.
Bermudez, R., Cole, M. H., & Center, M.-B. T. (2001). Genetic Algorithm Approach to Door Assignments in Breakbulk

Terminals. Technical Report.
Bertsekas, D. (2012). Dynamic programming and optimal control: Volume I volume 1. Athena scientific.
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K. et al. (2002). A racing algorithm for configuring metaheuristics. In

Gecco (pp. 11–18). volume 2.
Bodnar, P., de Koster, R., & Azadeh, K. (2017). Scheduling trucks in a cross-dock with mixed service mode dock doors.

Transportation Science, 51 , 112–131.
Boysen, N., & Fliedner, M. (2010). Cross dock scheduling: Classification, literature review and research agenda. Omega, 38 ,

413–422.
Buijs, P., Vis, I. F., & Carlo, H. J. (2014). Synchronization in cross-docking networks: A research classification and framework.

European Journal of Operational Research, 239 , 593–608.
Cai, Q., Hang, W., Mirhoseini, A., Tucker, G., Wang, J., & Wei, W. (2019). Reinforcement learning driven heuristic optimiza-

tion. arXiv preprint arXiv:1906.06639 , .
Chang, J., Wang, L., Hao, J.-K., & Wang, Y. (2021). Parallel iterative solution-based tabu search for the obnoxious p-median

problem. Computers & Operations Research, 127 , 105155.
Chen, Y., Hao, J.-K., & Glover, F. (2016). An evolutionary path relinking approach for the quadratic multiple knapsack

problem. Knowledge-Based Systems, 92 , 23–34.
Cohen, Y., & Keren, B. (2009). Trailer to door assignment in a synchronous cross-dock operation. International Journal of

Logistics Systems and Management , 5 , 574–590.
Corberán, Á., Peiró, J., Campos, V., Glover, F., & Mart́ı, R. (2016). Strategic oscillation for the capacitated hub location

problem with modular links. Journal of Heuristics, 22 , 221–244.
Dahmani, I., & Hifi, M. (2021). A modified descent method-based heuristic for binary quadratic knapsack problems with

conflict graphs. Annals of Operations Research, 298 , 125–147.
Dahmani, I., Hifi, M., Saadi, T., & Yousef, L. (2020). A swarm optimization-based search algorithm for the quadratic knapsack

problem with conflict graphs. Expert Systems with Applications, 148 , 113224.
Erdoğan, G., & Tansel, B. (2007). A branch-and-cut algorithm for quadratic assignment problems based on linearizations.

Computers & Operations Research, 34 , 1085–1106.
Galinier, P., & Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of combinatorial optimization,

3 , 379–397.
Gaudioso, M., Monaco, M. F., & Sammarra, M. (2021). A lagrangian heuristics for the truck scheduling problem in multi-door,

multi-product cross-docking with constant processing time. Omega, 101 , 102255.
Gelareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P., & Todosijević, R. (2020). A comparative study of formulations

for a cross-dock door assignment problem. Omega, 91 , 102015.
Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management science,

40 , 1276–1290.
Gendreau, M., Laporte, G., & Semet, F. (1998). A tabu search heuristic for the undirected selective travelling salesman

problem. European Journal of Operational Research, 106 , 539–545.
Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the maximum clique problem using a tabu search approach. Annals

of operations research, 41 , 385–403.
Glover, F. (1997). Tabu search and adaptive memory programming—advances, applications and challenges. In Interfaces in

Computer Science and Operations Research (pp. 1–75). Springer.
Glover, F., & Hao, J.-K. (2011). The case for strategic oscillation. Annals of Operations Research, 183 , 163–173.
Glover, F., & Lü, Z. (2021). Focal distance tabu search. Science China Information Sciences, 64 , 1–12.
Gu, X., Zhao, S., & Wang, Y. (2022). Reinforcement learning enhanced multi-neighborhood tabu search for the max-mean

dispersion problem. Discrete Optimization, 44 , 100625.
Gue, K. R. (1999). The effects of trailer scheduling on the layout of freight terminals. Transportation Science, 33 , 419–428.
Guemri, O., Nduwayo, P., Todosijević, R., Hanafi, S., & Glover, F. (2019). Probabilistic tabu search for the cross-docking

assignment problem. European Journal of Operational Research, 277 , 875–885.
Guignard, M., Hahn, P. M., Pessoa, A. A., & da Silva, D. C. (2012). Algorithms for the cross-dock door assignment problem.

In Proceedings of the Fourth International Workshop on Model-based Metaheuristics (pp. 145–162).

25

Hanafi, S., Wang, Y., Glover, F., Yang, W., & Hennig, R. (2023). Tabu search exploiting local optimality in binary optimization.
European Journal of Operational Research, .

He, Y., Jia, T., & Zheng, W. (2023). Tabu search for dedicated resource-constrained multiproject scheduling to minimise the
maximal cash flow gap under uncertainty. European Journal of Operational Research, .

Hutter, F., Tompkins, D. A., & Hoos, H. H. (2002). Scaling and probabilistic smoothing: Efficient dynamic local search for
sat. In International Conference on Principles and Practice of Constraint Programming (pp. 233–248). Springer.

Jiang, Y., Cao, Z., & Zhang, J. (2021). Learning to solve 3-d bin packing problem via deep reinforcement learning and constraint
programming. IEEE Transactions on Cybernetics, (pp. 1–12).

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial optimization algorithms over graphs.
Advances in neural information processing systems, 30 .

Laguna, M. (2018). Tabu search. In Handbook of heuristics (pp. 741–758). Springer.
Lai, X., Hao, J.-K., & Yue, D. (2019). Two-stage solution-based tabu search for the multidemand multidimensional knapsack

problem. European Journal of Operational Research, 274 , 35–48.
Lai, X., Yue, D., Hao, J.-K., & Glover, F. (2018). Solution-based tabu search for the maximum min-sum dispersion problem.

Information Sciences, 441 , 79–94.
Li, M., Hao, J.-K., & Wu, Q. (2022). Learning-driven feasible and infeasible tabu search for airport gate assignment. European

Journal of Operational Research, 302 , 172–186.
Liu, R., Xie, X., & Garaix, T. (2014). Hybridization of tabu search with feasible and infeasible local searches for periodic home

health care logistics. Omega, 47 , 17–32.
Lu, Y., Benlic, U., & Wu, Q. (2018). A memetic algorithm for the orienteering problem with mandatory visits and exclusionary

constraints. European Journal of Operational Research, 268 , 54–69.
Lu, Z., Mart́ınez-Gavara, A., Hao, J.-K., & Lai, X. (2023). Solution-based tabu search for the capacitated dispersion problem.

Expert Systems with Applications, 223 , 119856.
Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu, S., & Singh, A. (2020). Gcomb: Learning budget-constrained

combinatorial algorithms over billion-sized graphs. Advances in Neural Information Processing Systems, 33 , 20000–20011.
Martin-Santamaria, R., Sánchez-Oro, J., Pérez-Peló, S., & Duarte, A. (2022). Strategic oscillation for the balanced minimum

sum-of-squares clustering problem. Information Sciences, 585 , 529–542.
Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning for combinatorial optimization: A

survey. Computers & Operations Research, 134 , 105400.
Nassief, W., Contreras, I., & As’ Ad, R. (2016). A mixed-integer programming formulation and lagrangean relaxation for the

cross-dock door assignment problem. International Journal of Production Research, 54 , 494–508.
Oh, Y., Hwang, H., Cha, C. N., & Lee, S. (2006). A dock-door assignment problem for the korean mail distribution center.

Computers & Industrial Engineering, 51 , 288–296.
Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades

of research. Engineering Applications of Artificial Intelligence, 60 , 97–116.
Peng, N., Xi, Y., Rao, J., Ma, X., & Ren, F. (2021). Urban multiple route planning model using dynamic programming in

reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 23 , 8037–8047.
Qin, J., Xu, X., Wu, Q., & Cheng, T. (2016). Hybridization of tabu search with feasible and infeasible local searches for the

quadratic multiple knapsack problem. Computers & Operations Research, 66 , 199–214.
Sánchez-Oro, J., López-Sánchez, A., Hernández-Dı́az, A., & Duarte, A. (2022). Grasp with strategic oscillation for the α-

neighbor p-center problem. European Journal of Operational Research, 303 , 143–158.
Scavuzzo, L., Chen, F., Chételat, D., Gasse, M., Lodi, A., Yorke-Smith, N., & Aardal, K. (2022). Learning to branch with tree

mdps. Advances in Neural Information Processing Systems, 35 , 18514–18526.
Sghir, I., Hao, J.-K., Jaafar, I. B., & Ghédira, K. (2015). A multi-agent based optimization method applied to the quadratic

assignment problem. Expert Systems with Applications, 42 , 9252–9262.
Shi, X., Wu, L., & Meng, X. (2017). A new optimization model for the sustainable development: Quadratic knapsack problem

with conflict graphs. Sustainability, 9 , 236.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Tang, Y., Agrawal, S., & Faenza, Y. (2020). Reinforcement learning for integer programming: Learning to cut. In International

conference on machine learning (pp. 9367–9376). PMLR.
Tarhini, A. A., Yunis, M. M., & Chamseddine, M. (2016). Natural optimization algorithms for the cross-dock door assignment

problem. IEEE Transactions on Intelligent Transportation Systems, 17 , 2324–2333.
Tsui, L. Y., & Chang, C.-H. (1990). A microcomputer based decision support tool for assigning dock doors in freight yards.

Computers & Industrial Engineering, 19 , 309–312.
Tsui, L. Y., & Chang, C.-H. (1992). An optimal solution to a dock door assignment problem. Computers & Industrial

Engineering, 23 , 283–286.
Van Belle, J., Valckenaers, P., & Cattrysse, D. (2012). Cross-docking: State of the art. Omega, 40 , 827–846.
Wang, Y., Pan, S., Li, C., & Yin, M. (2020). A local search algorithm with reinforcement learning based repair procedure for

minimum weight independent dominating set. Information Sciences, 512 , 533–548.
Wang, Y., Wu, Q., & Glover, F. (2017). Effective metaheuristic algorithms for the minimum differential dispersion problem.

European Journal of Operational Research, 258 , 829–843.
Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8 , 279–292.
Wei, Z., & Hao, J.-K. (2021). Multistart solution-based tabu search for the set-union knapsack problem. Applied Soft Com-

puting, 105 , 107260.
Woodruff, D. L., & Zemel, E. (1993). Hashing vectors for tabu search. Annals of Operations Research, 41 , 123–137.

26

Wu, Q., Wang, Y., & Glover, F. (2020). Advanced tabu search algorithms for bipartite boolean quadratic programs guided by
strategic oscillation and path relinking. INFORMS Journal on Computing, 32 , 74–89.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2009). A guided tabu search for the vehicle routing problem with
two-dimensional loading constraints. European Journal of Operational Research, 195 , 729–743.

Zhang, Y.-H., Gong, Y.-J., Chen, W.-N., Gu, T.-L., Yuan, H.-Q., & Zhang, J. (2018). A dual-colony ant algorithm for the
receiving and shipping door assignments in cross-docks. IEEE Transactions on Intelligent Transportation Systems, 20 ,
2523–2539.

Zhao, H., She, Q., Zhu, C., Yang, Y., & Xu, K. (2021). Online 3d bin packing with constrained deep reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 741–749). volume 35.

Zheng, J., He, K., Zhou, J., Jin, Y., & Li, C.-M. (2021). Combining reinforcement learning with lin-kernighan-helsgaun
algorithm for the traveling salesman problem. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 12445–
12452). volume 35.

Zhou, Y., Hao, J.-K., & Duval, B. (2016). Reinforcement learning based local search for grouping problems: A case study on
graph coloring. Expert Systems with Applications, 64 , 412–422.

Zhu, Y.-R., Hahn, P. M., Liu, Y., & Guignard, M. (2009). New approach for the cross-dock door assignment problem. In
Proceedings of the XLI Brazilian Symposium on Operations Research (pp. 1226–1236).

27

Appendix A. The CDAP formulation in the literature

We recall the M2′,0 formulation introduced by Gelareh et al. (2020):

min F =
∑

m∈M

∑
i∈I

∑
n∈N

∑
j∈J

DijTmnzminj (A.1)

s.t. (2)− (7),∑
i∈I

zminj = ynj ,∀m ∈M, n ∈ N , j ∈ J (A.2)∑
j∈J

zminj = xmi,∀m ∈M, n ∈ N , i ∈ I (A.3)

0 ≤ zminj ≤ 1,∀m ∈M, n ∈ N , i ∈ I, j ∈ J (A.4)

Appendix B. Implementation of the mixed tabu strategy

Our mixed tabu strategy is a combination of the traditional attribute-based tabu strategy (Glover, 1997)
and the solution-based tabu strategy (Woodruff & Zemel, 1993; Wang et al., 2017; Wu et al., 2020). The
basic idea behind the solution-based tabu strategy involving marking each visited solution by multiple hash
vectors and checking whether a candidate neighboring solution was previously visited by comparing it with
each marked solution. Given a solution denoted by S, where xmi = 1 if truck m is assigned to door i and
xmi = 0 if otherwise, we associate the assignment of truck m to door i with a dummy weight µmi. We adopt
the following type of hash function h, whose hash values can be calculated easily.

h (S) = (
∑

m∈M

∑
i∈I

µmixmi +
∑
n∈N

∑
j∈J

µnjynj) mod L (B.1)

where L is the length of the hashing vectors, and each dummy weight takes a prefixed value randomly
generated in [0, ..., 10000]. We obtain the three hash functions, h1(S), h2(S), and h3(S), by setting different
values of µij .

The hash value of a neighboring solution S′ by operating shift(m, i, i′) move can be computed as follows:

h(S′) = h(S)− µmi + µmi′ mod L (B.2)

The time complexity to compute the hash function value of any neighboring solution induced by shift(m, i, i′)
or swap(m,m′) is O(1).

The hash value of a neighboring solution S′ by operating multi-shift(i, i′) move can be computed by:

h(S′) = h(S)−Bii +Bii′ mod L (B.3)

where Bii′ =
∑

m∈Ei
µmi′ presents the total weight obtained by assigning all trucks m ∈ Ei to door i′.

The time complexity to compute the hash function value of any neighboring solution in multi-shift(i, i′) or
multi-swap(i, i′) is O(1) by using B. B is updated in O(|M ||I|) time after each iteration.

We calculate the hash values hk(S′) (k = 1, 2, 3) of S′ using Equation (B.2) or (B.3), and the indexes
hk(S′) of hash vectors Hk (k = 1, 2, 3) are increased by one, i.e., the visiting time of solution S′ is increased
by one.

Hk[hk(S′)] = Hk[hk(S′)] + 1, k = 1, 2, 3 (B.4)

For any truck m involved in the move, moveing m back to its original door i for the next tt iterations is
forbidden.

tl(mi) = iter + tt (B.5)

Only solutions meeting the following criteria are allowed: (1) tl(mi) < iter and (2) H1[h1(S′)] < β or
H2[h2(S′)] < β or H3[h3(S′)] < β. Such solutions are defined as eligible solutions.

Appendix C. Computational results on UCDAP and QKPCG.

28

Table C.13: Comparative results on 40 UCDAP instances with GD (Zhang et al., 2018), SS (Tarhini et al., 2016), GA (Bermudez
et al., 2001), and ACS (Zhang et al., 2018).

GD SS GA ACS RL-SO

Instance BKS OF OF AVG OF AVG OF AVG OF AVG T(s)

FC12a 19151.06 19790.84 19151.06 19164.22 19151.06 19361.71 19151.06 19190.55 19151.06 19151.06 0.00
FC12b 36643.11 39000.21 36643.11 36661.25 36643.11 36882.78 36643.11 36643.11 36643.11 36643.11 0.00
FC12c 56695.52 60453.89 56695.52 56697.11 56695.52 56777.77 56695.52 56695.52 56695.52 56695.52 0.00
FC12d 87732.20 90425.56 87732.20 88312.19 87732.20 88120.47 87732.20 87732.20 87732.20 87732.20 0.00
FC24a 56349.74 73829.01 56660.19 61509.70 58960.66 61227.21 56349.74 56764.96 56295.83 56295.83 0.06
FC24b 138190.85 166894.92 138696.30 146341.73 140748.27 146973.05 138190.85 141568.18 138190.85 138190.85 0.02
FC24c 227278.56 271550.22 230661.22 234741.43 231110.10 234914.21 227278.56 230489.16 227278.56 227278.56 0.05
FC24d 340710.01 372523.80 342875.16 346313.55 344238.56 347422.15 340710.01 342590.87 340710.01 340710.01 0.07
FC48a 214678.32 291638.75 228944.22 240301.34 233844.41 249233.61 214678.32 222881.03 208094.23 209159.74 1.67
FC48b 563028.09 700302.36 572269.02 594699.07 598401.58 619560.75 563028.09 575359.25 549417.03 553747.66 1.42
FC48c 1051025.67 1216516.44 1055544.92 1086056.44 1086430.53 1104812.88 1051025.67 1063927.48 1039297.50 1042290.10 2.25
FC48d 1491426.12 1643617.72 1492960.38 1519199.33 1521410.64 1538809.15 1491426.12 1502554.95 1481308.79 1482501.89 1.64
FC96a 1146614.90 1611540.72 1176080.77 1237016.32 1315069.72 1366079.32 1146614.90 1192038.88 1115370.06 1120371.91 8.21
FC96b 2919418.33 3612130.64 2964379.62 3027248.75 3106296.61 3212751.50 2919418.33 2971180.02 2866490.01 2878524.85 6.44
FC96c 4782081.58 5509100.39 4789727.59 4856046.84 4963458.85 5061254.58 4782081.58 4812146.75 4692190.09 4711156.22 7.25
FC96d 7236850.63 7832802.77 7265340.38 7312004.01 7393625.95 7459814.73 7236850.63 7271295.54 7188103.89 7192722.60 7.87
FC192a 5178822.30 6798878.87 5209296.17 5270447.67 5796335.14 5946671.38 5178822.30 5243792.56 4891863.53 4925118.50 59.29
FC192b 11855968.63 13964856.36 11870904.81 11951968.07 12568533.12 12768173.58 11855968.63 11918365.21 11540994.27 11558457.94 63.48
FC192c 18609180.31 20722213.60 18648235.98 18764655.03 19354990.05 19613982.17 18609180.31 18713729.83 18330991.61 18348774.78 55.69
FC192d 27149822.94 28921027.07 27155541.75 27243191.59 27730048.36 27923306.76 27149822.94 27202833.20 26903925.51 26919385.47 35.73
SC48a 243029.61 287139.83 243659.41 247053.88 244863.69 251402.99 243029.61 245955.32 242960.63 242960.63 0.87
SC48b 559026.09 620569.20 560020.56 567203.62 562387.72 568986.22 559026.09 562369.29 558890.55 558890.55 0.27
SC48c 949636.78 1041376.04 951372.20 956636.16 955850.07 960743.09 949636.78 953221.73 949636.78 949636.78 0.26
SC48d 1334062.19 1410908.81 1335715.58 1339204.16 1336933.98 1343062.22 1334062.19 1338859.53 1334062.19 1334062.19 0.39
SC64a 446653.50 548131.48 446653.50 455557.26 455187.34 464936.15 447630.84 452989.42 445411.12 445935.82 2.32
SC64b 1025689.93 1191997.35 1028973.38 1041385.88 1037583.36 1050611.90 1025689.93 1033733.93 1024634.17 1024676.14 2.39
SC64c 1632907.57 1804211.30 1633641.39 1643659.05 1642391.08 1649550.25 1632907.57 1637768.39 1629865.46 1630201.05 2.39
SC64d 2257359.48 2374841.05 2257335.06 2267789.10 2266725.65 2274744.09 2257359.48 2264420.02 2256563.85 2256629.96 3.10
SC96a 1093760.68 1294226.62 1093760.68 1112837.80 1120573.50 1138542.86 1097244.29 1114206.19 1087201.96 1087394.26 6.33
SC96b 2501125.05 2849290.12 2506841.11 2533649.08 2537052.25 2560055.06 2501125.05 2522159.93 2499351.20 2500021.61 10.02
SC96c 3854540.75 4164282.98 3867741.11 3889926.09 3892131.30 3916201.93 3854540.75 3880443.27 3852744.90 3853090.52 8.67
SC96d 5380388.39 5711507.32 5382754.44 5407996.25 5411594.57 5439763.81 5380388.39 5410317.62 5380130.63 5380361.62 8.36
SC192a 5777475.55 7118906.79 5800374.05 5877762.37 5970586.38 6046223.64 5777475.55 5852008.89 5726836.88 5728903.87 58.46
SC192b 12921073.98 14642126.67 12928441.98 13021704.61 13103982.22 13237988.15 12921073.98 13002310.47 12852429.05 12854418.54 49.76
SC192c 19736893.76 21414021.44 19736893.76 19835367.87 19915108.44 20045848.79 19738043.91 19825934.94 19653535.27 19656832.40 58.75
SC192d 27910134.02 29452942.33 27935918.04 28026272.43 28111883.59 28173283.24 27910134.02 28006066.81 27860099.45 27861921.84 54.37
SC300a 4320268.66 17032541.30 14431764.18 14561572.14 14864949.90 15054465.63 4320268.66 14489309.81 14276938.29 14285147.95 143.62
SC300b 31913740.31 35669638.69 31923025.74 32155457.57 32571902.72 32741426.25 31913740.31 32093159.21 31816411.01 31842164.15 126.21
SC300c 50021193.15 53981808.28 50057517.64 50212334.74 50534100.07 50737469.08 50021193.15 50162149.78 49872756.00 49949773.12 156.68
SC300d 68299555.48 71478678.01 68376779.86 68469274.90 68714408.02 68877012.86 68299555.48 68411154.51 68228377.88 68237238.63 116.68

Table C.14: Comparative results on 45 QKPCG instances with GLPK (Shi et al., 2017), NSBM (Shi et al., 2017), MDM
(Dahmani & Hifi, 2021), and PBSA (Dahmani et al., 2020).

GLPK NSBM MDM PBSA RL-SO

Instance BKS OF OF AVG OF OF AVG OF AVG T(s)

1qkpcg1 17071 15482 16642 6280.20 17061 17071 16859.50 17071 17071.00 98.14
1qkpcg2 13500 11774 12272 12006.20 13500 13500 13369.80 13500 13500.00 56.88
1qkpcg3 16156 15129 15843 15612.60 16156 16156 16111.50 16156 16156.00 113.02
1qkpcg4 19921 17151 19659 19594.20 19921 19921 19806.50 19921 19921.00 59.01
1qkpcg5 16870 15147 15499 15378.80 16870 16870 16843.70 16870 16870.00 123.21
2qkpcg1 11217 9018 11205 10895.00 11172 11217 11181.00 11217 11217.00 87.84
2qkpcg2 10933 9150 10565 10438.20 10911 10933 10842.60 10933 10933.00 52.32
2qkpcg3 11248 10002 11163 11084.80 11232 11248 11218.10 11312 11312.00 78.62
2qkpcg4 15599 12589 15599 15599.00 15599 15599 15599.00 15599 15599.00 27.10
2qkpcg5 12580 10810 12580 12541.60 12580 12580 12520.60 12580 12580.00 77.51
3qkpcg1 7455 5843 7455 7337.00 7455 7455 7455.00 7455 7455.00 5.31
3qkpcg2 7343 6068 7343 7343.00 7343 7343 7343.00 7343 7343.00 59.10
3qkpcg3 7285 6091 7258 7200.60 7285 7285 7285.00 7285 7285.00 66.84
3qkpcg4 8006 7978 7991 7988.60 8006 8006 8006.00 8006 8006.00 95.95
3qkpcg5 7350 6290 7350 7156.40 7350 7350 7307.60 7350 7350.00 87.65
4qkpcg1 20726 18025 19457 18931.40 20401 20726 20116.40 20726 20726.00 80.90
4qkpcg2 21677 17049 19240 18749.00 21677 21677 21406.80 21677 21677.00 59.69
4qkpcg3 21953 15835 20864 20538.20 21897 21953 21332.20 21953 21953.00 128.42
4qkpcg4 31123 26428 31082 30737.80 31123 31123 31123.00 31123 31123.00 72.07
4qkpcg5 20792 15768 18727 18083.40 20788 20792 20660.60 20792 20792.00 100.96
5qkpcg1 15517 10663 14871 14745.00 15353 15517 15189.90 15517 15517.00 79.74
5qkpcg2 15529 10720 15068 14956.20 15529 15529 15511.10 15594 15594.00 63.80
5qkpcg3 15370 10846 15132 14946.20 15178 15370 15086.10 15370 15370.00 77.24
5qkpcg4 18954 13639 18380 18272.20 18954 18954 18938.80 18954 18954.00 122.98
5qkpcg5 15715 10883 15607 15313.20 15715 15715 15702.20 15715 15715.00 74.55
6qkpcg1 8969 6032 8969 8840.00 8712 8969 8688.00 8969 8969.00 113.67
6qkpcg2 9658 6041 9193 9098.80 9658 9658 9403.50 9658 9658.00 79.77
6qkpcg3 8578 6429 8508 8504.40 8578 8578 8555.10 8578 8578.00 83.05
6qkpcg4 9657 7366 9630 9156.40 9657 9657 9657.00 9657 9657.00 50.15
6qkpcg5 9338 5866 9335 9335.00 9338 9338 9338.00 9338 9338.00 102.84
7qkpcg1 27010 18900 24602 24187.80 27010 27010 26659.40 27010 27010.00 75.89
7qkpcg2 30343 22545 28686 28354.60 30290 30343 30115.50 30343 30343.00 108.75
7qkpcg3 26685 15637 23420 22444.60 26685 26685 26497.40 26685 26685.00 4.74
7qkpcg4 34110 27146 32641 32350.20 34110 34110 33687.20 34110 34110.00 80.62
7qkpcg5 25947 18714 22735 21762.40 25947 25947 25815.40 25947 25947.00 85.55
8qkpcg1 18668 12388 18583 18583.00 18628 18668 18331.90 18668 18668.00 83.79
8qkpcg2 20021 13221 19620 19406.20 19841 20021 19813.50 20021 20021.00 76.97
8qkpcg3 17911 11054 17469 16998.60 17911 17911 17806.90 17974 17974.00 25.59
8qkpcg4 21168 13060 20715 20524.00 21168 21168 21168.00 21168 21168.00 97.09
8qkpcg5 18757 12960 18480 18000.40 18757 18757 18701.50 18757 18757.00 78.94
9qkpcg1 11180 6823 11180 11180.00 11180 11180 10914.00 11180 11180.00 100.45
9qkpcg2 10598 7673 10577 10534.20 10598 10598 10338.60 10598 10598.00 59.83
9qkpcg3 11022 5291 10869 10852.60 11022 11022 10849.30 11022 11022.00 87.70
9qkpcg4 11751 8241 11751 11308.00 11751 11751 11707.00 11751 11751.00 15.09
9qkpcg5 10761 6792 10713 10602.40 10743 10761 10517.10 10761 10761.00 110.35

29

	Introduction
	Related work
	The CDAP formulations and solution approaches
	Reinforcement learning with optimization methods for combinatorial optimization
	Strategic oscillation for strongly constrained optimization problems
	Different tabu strategies under the tabu search framework

	Research gaps and our contributions

	 Problem statement and mathematical formulation
	Nonlinear integer programming formulation
	Flow based three indexed MIP formulation

	RL-SO for the CDAP
	Main scheme
	Reinforcement learning procedure
	Q-learning reinforced truck-to-door assignment
	Linear relaxation formulation based estimation for action-value function

	Strategic oscillation
	Neighborhoods and fast evaluation technique
	Feasible and infeasible search
	Mixed tabu strategy

	Reward updating procedure

	Computational results
	Benchmark instances and parameter setting
	Computational results of the FBMIP formulation and comparisons with existing MIP formulations
	Comparative results of RL-SO with state-of-the-art methods
	RL-SO for other combinatorial optimization problems

	Analysis
	Effect of the Q-learning strategy
	Importance of the SO method
	Importance of the mixed tabu strategy

	Conclusion
	The CDAP formulation in the literature
	Implementation of the mixed tabu strategy
	Computational results on UCDAP and QKPCG.

