General swap-based multiple neighborhood
adaptive search for the maximum balanced
biclique problem

Mingjie Li?, Jin-Kao Hao "¢ and Qinghua Wu ™

aSchool of Management, Huazhong University of Science and Technology, No.
1087, Luoyu Road, Wuhan, China, email: Imj@hust.edu.cn;
ginghuawul 005@gmail.com

PLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France,
email: jin-kao.hao@univ-angers.fr

¢Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France

Computers & Operations Research, 2020.
https://doi.org/10.1016/j.cor.2020.104922

Abstract

The maximum balanced biclique problem (MBBP) is to find the largest complete
bipartite subgraph induced by two equal-sized subsets of vertices in a bipartite
graph. MBBP is an NP-hard problem with a number of relevant applications. In
this work, we propose a general swap-based multiple neighborhood adaptive search
(SBMNAS) for MBBP. This algorithm combines a general k-SWAP operator which
is used in local searches for MBBP for the first time, an adaptive rule for neighbor-
hood exploration and a frequency-based perturbation strategy to ensure a global
diversification. SBMNAS is evaluated on 60 random dense instances and 25 real-life
large sparse instances from the popular Koblenz Network Collection. Computational
results show that our proposed algorithm attains all but one best-known solutions,
and finds improved best-known results for 19 instances (new lower bounds).

Keywords: Bipartite graph; balanced biclique; multiple neighborhood; heuristics;
k-SWAP.

1 Introduction

Given an undirected bipartite graph G = (U, V, E) with disjoint vertex sets
U,V and edge set E C U x V, let X be a subset of U, Y be a subset of

* Corresponding author.

Preprint submitted to Elsevier 1 March 2020



V,and G' = (X,Y,E(X UY)) be the subgraph induced by X UY. G' =
(X,)Y,E(X UY)) is a biclique if G’ is a complete bipartite subgraph, i.e.,
Ve € X,Vy € Y,{z,y} € E holds. If additionally, |X| = |Y] holds, G’ is
a balanced biclique and |X]| is its size. A maximum balanced biclique of G
has the largest biclique size among the balanced bicliques in G. Then the
maximum balanced biclique problem (MBBP) is to find a maximum balanced
biclique of a general graph. For simplify, we use (X,Y") to denote the biclique
G'=(X,Y,E(XUY)).

MBBP is known to be NP-hard [5,7] and is related to the classical maximum
clique problem (MCP) [17]. Like MCP which is an useful model for many
relevant problems, MBBP has a wide range of practical applications in various
domains such as biclustering on gene expression data [4,18], nanoelectronic
system design [1,13] and array folding in VLSI [11]. A typical example concerns
the problem of defecting tolerance for nanotechnology switches which is to find
the largest n x n defect-free crossbar [1]. A crossbar is composed of two sets of
orthogonal nanowires and a set of switches which are located at the intersection
of two nanowires (including both functional ones and defective ones, see Figure
1 (a) for an example). Due to the presence of the defects, some switches may
be unusable. Thus, one important task is to identify the largest subset of
n x n defect-free nanowires such that the switches between any two orthogonal
nanowires are functional. The problem can be formulated by building a graph
where the vertex sets U and V' correspond to the input nanowires and output
nanowires, and the edge set E corresponds to the functional switches. Then
the problem of identifying the largest n x n defect-free crossbar is equivalent
to finding the maximum balanced biclique in the corresponding graph (see
Figure 1 (b)).

@ : Functional

Q: Defective

Fig. 1. A defective nanoelectronic crossbar (a) and its associated bipartite graph

(b).



Due to the relevance of MBBP, a number of solution methods have been pro-
posed to solve the problem in the literature. On the one hand, there are some
exact methods which aim to find the optimal solutions. For instance, Tahoori
[13] proposed a recursive exact algorithm to search a maximum balanced bi-
clique with a given size, which was applied to optimally solve instances with
size up to (32,32). Recently, an enhanced branch and bound (B&B) algo-
rithm named ExtBBClq was proposed by Zhou et al. [23], which extends a
simple B&B algorithm by integrating a pre-computed upper bounds. A more
compact integer linear programming model was also introduced along with
the enhanced B&B algorithm by the authors. ExtBBClq was tested on both
random dense graphs and real-life large sparse graphs, showing an excellent
performance on real-life large graphs.

Exact algorithms can guarantee the optimality of the found solutions, how-
ever, their computation time increases exponentially with the size and the
density of the graph. For large and dense graphs, a number of heuristic and
metaheuristic algorithms have been proposed to find near-optimal solutions
in an acceptable computation time. For instance, Tahoori [13] first converted
MBBP into a maximum balanced independent set problem and then used a
greedy heuristic, which applies a vertex-deletion technique to remove vertices
with maximum degrees in the complement graph until the remaining vertices
become an independent set. Al-Yamani et al. [1] proposed an improved greedy
algorithm by removing the vertex connecting the maximum number of vertices
of the minimum degree. Yuan et al. [19,20] studied two other greedy heuristics
which remove the vertices adjacent to the maximum number of vertices in a
restricted set. The above greedy heuristics solve the equivalent maximum bal-
anced independent set problem and rely on different vertex-deletion rules to
remove vertices until a balanced independent set is obtained. Yuan et al. [21]
proposed an effective evolutionary algorithm combining structure mutation
and local search complemented with a repair-assisted restart process. Quin-
tana et al. [10] introduced a reduced variable neighborhood search (RVNS)
algorithm which relies on a random exploration of the considered neighbor-
hoods. Recently, Wang et al. [15] investigated a local search algorithm (called
PSRS), which alternates between an extension phase via adding vertex pairs
and a restarting phase via removing vertex pairs. In order to solve massive
MBBP instances, the authors introduced a two-mode perturbation heuristic
(TMP) and a k-bipartite core reduction rule (KCR), leading to an improved
algorithm called PSRS+ (PSRS with TMP and KCR). Very recently, Zhou
et al. [24] presented a highly effective local search method (TSGR) integrat-
ing two graph reduction techniques to shrink the given graph within the tabu
search framework. According to the computational results reported in [15,24],
PSRS (PSRS+) and TSGR show the best performance among the heuristic
approaches for MBBP.

In this work, we propose a general swap-based multiple neighborhood adaptive



search SBMNAS for MBBP. The proposed SBMNAS algorithm distinguishes
itself by several important features. First, we introduce an original and gen-
eralized k-SWAP move operator, which removes one vertex from the biclique
and adds £ > 1 vertices adjacent to all but the removed vertex to the biclique
such that the resultant biclique is still a feasible biclique. Second, to effec-
tively explore the search space, we propose an adaptive strategy (Section. 2.5)
to combine the neighborhoods induced by three different move operators in-
stead of using traditional union or token-ring neighborhood exploration meth-
ods. Finally, to ensure a more global diversification, we introduce a dedicated
frequency-based perturbation strategy which relies on a long-term memory to
restart the search process from a distant region of the search space.

To show the effectiveness of the proposed SBMNAS approach, we carry out
experiments on both random dense and real-life large sparse MBBP instances
commonly used in the literature. Extensive experimental tests disclose that
our SBMNAS approach exhibits an excellent performance. For the 60 ran-
dom dense instances, the proposed algorithm finds new best solutions for 18
instances, while matching the best-known solutions on all the remaining in-
stances. For the 25 real-life large sparse instances from the popular Koblenz
Network Collection (KONECT), our algorithm attains the best-known solu-
tions on all but one instances and improves one of the best-known results.

The rest of the paper is organized as follows. In Section 2, we present the pro-
posed algorithm and its key algorithmic ingredients. In Section 3, we provide
the computational results and comparisons with the current state-of-the-art
algorithms. In Section 4, we analyze several significant features of the proposed
algorithm, prior to conclusions shown in Section 5.

2 General swap-based multiple neighborhood adaptive search

In this section, we present our general swap-based multiple neighborhood
adaptive search (SBMNAS) for MBBP. SBMNAS integrates several impor-
tant features responsible for its effectiveness, including three complementary
neighborhoods defined by three basic move operators, an adaptive rule for
effective exploration of the neighborhoods, and a dedicated frequency-based
perturbation strategy for global diversification.

2.1 Main framework

The general procedure of the SBMNAS approach is shown in Algorithm 1.
Starting with an initial biclique (X,Y’) (not necessarily balanced), which is



generated by a randomized construction procedure (Section 2.3), SBMNAS
first applies its local search procedure (Sections 2.4-2.6) to improve the quality
of (X,Y) as far as possible by maximizing its balanced size. The local search
procedure jointly explores three neighborhoods and selects at each iteration
an admissible neighboring solution to replace the current solution according
to the search context. During the search process, each time the best biclique
is updated, the graph reduction procedure (Section 2.8) is triggered to reduce
the graph by removing vertices whose degrees are smaller than or equal to the
balanced size of the current best biclique. If the best biclique is not improved
for w consecutive iterations, the search is deemed to be trapped in deep local
optima. In this case, the frequency-based perturbation procedure (Section 2.7)
is activated to escape from local optima.

2.2 Search space and solution evaluation

For a given MBBP instance G = (U, V, E') with vertex sets U, V' and edge set
E, our algorithm explores an enlarged search space including both balanced
and unbalanced bicliques, i.e., the explored search space {2 is composed of all
complete bipartite subgraphs (X, Y):

Q={X,Y): XCUYCV,E(XUY)=X xY} (1)

Noted that it is easy to change an unbalanced biclique to a balanced one
by removing some vertices from the larger subset of the current biclique. As
shown in Figure 2, the biclique marked in red (X,Y) = {{us, us}, {ve, v3,v4}}
is an unbalanced biclique. Removing any vertex from Y = {vq, v3,v4} will lead
to a balanced biclique.

For any candidate biclique (X,Y) € (2, its quality is assessed by the following
evaluation function that indicates the size of the biclique:

f(X,Y) = min(|X], [Y]) (2)

Given two bicliques (A, B) and (C, D), (A, B) is better than (C, D) only if
f(A,B) > f(C, D).



Algorithm 1 The general swap-based multiple neighborhood adaptive search
Require: Input graph G = (U,V, E), time limit ¢,,,,, search depth of the
local search w
Ensure: The best biclique (X*,Y™*) found
1: Nolmprove < 0
2: 1+ 0
3: p < 0.5 /* pis a global parameter representing the probability of applying
ADD operator (Section 2.5) */

4: (X,Y) < (0,0)
5: (X,Y) < initial_construct(G) /* Section 2.3 */
6: (X*,Y") « (X,Y) /* (X*,Y") records the best biclique found so far */
7: while Time() < tq, do
8 if Nolmprove < w then
9: (X,Y) < local_search(X,Y) /* Section 2.5 */
10:  else
11: Nolmprove < 0
12: (X,Y) < frequency_based_perturbation(X,Y) /* Section 2.7 */
13:  end if
14: if f(X,Y) > f(X*,Y") then
15: Nolmprove < 0
16: (X*,Y*) «+ (X,Y) /* Update the best biclique found so far */
17: r < f(X*, V™)
18: G < graph_reduction(r,G) /* Section 2.8 */
19: else
20: Nolmprove <— Nolmprove + 1
21:  end if

22: end while
23: return (X* Y™*)

2.3 Randomized procedure for initial solutions

Our SBMNAS approach begins with an initial biclique S € (2 and then applies
the local search procedure to improve S as far as possible. The initial biclique
(X,Y) is constructed by alternatively adding vertices to the two sets X and
Y such that (X,Y") forms a biclique. In the odd iteration, we pick at random
a vertex x € U \ X subjected to the stipulation that x is adjacent to all
the vertices in Y (i.e., x is taken from the current candidate set Cx = {i :
i € U\ X,{i,j} € E,Vj € Y}). Then in the even iteration, we turn to
the set V' \ Y and randomly select a vertex y from V \ Y such that y is
connected to all the vertices in X (i.e., y is taken from the current candidate
set Cy ={j:jeV\Y, {i,j} € E,Vi € X}). This procedure is repeated until
the current considered set C'y or Cy becomes empty.



This construction procedure does not guarantee that the biclique is balanced.
This poses no problem to our SBMNAS approach given that it explores both
balanced and unbalanced bicliques.

2.4  Move operators and neighborhood structures

Typically, local search employs move operators to transform a given solution
S into a neighboring solution S’. Let mwv be a move operator, we use S’ =
S @ mv to denote such a transformation and N(S) to represent the set of
neighboring solutions of S. Our SBMNAS approach jointly uses three basic
move operators (denoted by ADD, DROP and k-SWAP). Among them, ADD
and DROP have previously been explored in [15,24] while k-SWAP is a new
operator we introduced in the work. These operators are based on two special
vertex subsets which are described below. For our presentation, we adapt
the notations used for the maximum weight clique problem [16] to MBBP.
Furthermore, for a vertex i € U, we use K (i) to denote the set of vertices
adjacent to i in V', ie., K(i) ={j: {i,j} € E,Vj € V}. Similarly, for a vertex
Jj €V, K(j) is the set of vertices adjacent to j in U, i.e., K(j) ={i: {i,j} €
E.Vie U}.

PA: This subset contains the vertices that are excluded from the current
biclique (X,Y’) and adjacent to all the vertices of X or Y. Hence, PA can
be divided into two disjoint subsets, denoted by PAy and PAy, such that
PAx ={i:ieU\X,{i,j} € E\NjeY},and PAy ={j:je V\Y, {i,j} €
E.Vi € X}. Note that adding all vertices in PAy (or PAy) once at a time to
the current solution (X,Y’) can strictly keep (X,Y") to be a feasible biclique.

OM: This subset is composed of the vertices that are excluded from the
biclique (X,Y’) and adjacent to all but one vertex of X or Y. Similarly, OM
can be divided into two disjoint subsets, denoted by OMyx and OMy, such
that OMx = {u:u e U\ X AN|K(u)NY|=1]Y| -1}, and OMy ={v:v €
VAYA|IK(v)NX|=|X]|—1}.



Fig. 2. A biclique and its associated subsets: X = {us,us}, Y = {vo,v3,v4},
PAX = @, PAY = {U5}, OMX = {’LLQ,’LLE,} and OMY = {Ul}.

An example to illustrate the relationship between a biclique (X,Y’) and its
associated subsets PA and OM is provided in Figure 2, where X = {ug, uy},
Y = {U27U37U4}7 PAX = @, PAY = {115}, OMX = {UQ,U5} and OMY = {Ul}.

The subsets PA and OM described above constitute the basis for defining
the ADD and k-SWAP move operators while the DROP move operator is
defined independently of these two subsets.

- ADD operator: This move operator (which is applied only when PA is not
empty) consists in adding all vertices in PAx to X (when min(|.X|,|Y|) =
| X|) or adding all vertices in PAy to Y (when min(|X|,|Y]) = |Y|). The
neighborhood induced by this move operator is defined by: Ny = {(X’,Y”) :
(XY =(X,)Y)®ADD(PAx), (X", Y') = (X,Y)® ADD(PAy)}. After
an ADD move, the change of the balanced size of current biclique (i.e., the
move gain denoted by Aspp) can be calculated as follows:

min{|X| + |PAx|, [Y]} — min{|X|,|Y]} if P = PAy

3
min{| X[, |Y|+ |PAy|} —min{|X|,|Y|} if P=PAy 3)

Aapp(P) = {

As the ADD moves insert vertices to the current solution, these moves

always lead to neighboring solutions with larger or equal balanced size.
Clearly, the size of this neighborhood is bounded by O(1).

- DROP operator: This move operator deletes a vertex ¢ from the current
biclique (X, Y’). The neighborhood induced by this move operator is defined
by: No = {(X",Y") : (X",Y") = (X,Y)® DROP(c),c € X UY}, The move
gain Aprop(c) of removing a vertex ¢ can be easily computed by:

min{|X| — 1, ||} — min{|X|,|Y|} ifceX

4
min{| X[, |Y'| — 1} — min{|X|,[V]} ifceV )

ADROP(C) = {

It is obvious that a DROP operator can only lead to a neighboring bi-
clique of equal or worse solution quality relative to the current biclique. The



Fig. 3. (a) A biclique and its associated subsets: X = {u1, ua, us,us}, ¥ = {v1,v2},
OMx = {us} and OMy = {vs,v4}; (b) The biclique after swapping u; with v3 and
vg; (¢) The biclique after swapping v, with us.

size of this neighborhood is clearly bounded by O(|[U U V).

- k-SWAP operator: This move operator (which is applied only when OM
is not empty) consists in exchanging one vertex ¢ in X (V) against k =
|OMy \ (OMy N K(c))| (k=|0Mx\ (OMx N K(c))|) vertices from the set
OMy (OMx) such that each of these k newly added vertices are commonly
unconnected with c. Note that since each of these k vertices are adjacent to
all vertices in X (V') except the removed one, a k-SWAP move always leads
to a feasible biclique. The neighborhood induced by this move operator is
defined by: N3 = {(X",Y") : (X,Y') = (X,Y) @ k-SWAP(c),c € X UY}.
The move gain Ay gwap induced by the k-SWAP move can be conveniently
calculated by:

A 0 {min{|X| —1,|Y| + |[OMy \ (OMy N K(c))|} —min{|X|,|Y|} ifce X
k-SWAP\C) =

min{|X| + |OMy \ (OMx N K(c))],[Y] - 1} — min{|X], Y]} ifceY
(5)

Clearly, each application of k-SWA P can increase the balanced size of (X,Y"),
keep its balanced size unchanged, or decrease the balanced size of (X,Y).
The size of this neighborhood is bounded by O(|U U V).

Figure 3 provides an example to illustrate the k-SWAP move operator. Sup-
pose that (X,Y) = {{uq,us,us,us},{v1,v2}} is the current biclique with a
balanced size of 2. When swapping u; € X with {vs,v4} € OMy, we ob-
tain an improved neighboring solution (X7, Y]) = {{uz, us, us}, {v1, ve,v3,v4}}



with a balanced size equal to 3. Similarly, we can also exchange vy, € Y with
{us} € OMyx, leading to a biclique (Xo, Ys) = {{u1, ua, us, ug, us}, {vo}} with
a balanced size equal to 1.

One notices that the special case 1-SWAP (i.e., with £k = 1) was previously
used in [24], which exchanges a vertex in the current biclique (X,Y’) against
another vertex outside the current biclique. Compared with 71-SWA P, our pro-
posed k-SWAP operator implies an enlarged neighborhood with more candi-
date neighboring solutions with £ > 1. A local search algorithm based on this
operator is offered a higher chance to find high-quality solutions. As demon-
strated in Section 4.1, the k-SWAP move operator plays a critical role to the
overall performance of the proposed SBMNAS algorithm. Finally, the k&-SWAP
operator shares the basic idea of the general PUSH operator introduced in [22]
for the related maximum clique problem. However, the PUSH operator inserts
one vertex to the clique and removes all vertices non-adjacent to the inserted
vertex from the clique, while the k-SWAP operator removes one vertex from
the biclique and inserts k vertices into the biclique such that each added vertex
is connected to all but the removed vertex in the biclique.

2.5 Adaptive local search procedure

As observed in previous studies such as [12,14], for strongly constrained op-
timization problems, strictly imposing problem constraints during the search
often prevent the search from exploring new promising areas and sometimes
may even make the search blocked. One effective method to avoid this situa-
tion is to relax the problem constraints and allow a controlled exploration of
infeasible solutions relative to the problem constraints. Following this idea, the
SBMNAS algorithm does not impose the balance constraint of candidate so-
lutions. Instead, it explores both balanced and unbalanced bicliques, knowing
that an unbalanced biclique can be transformed to a balanced one by simply
removing some vertices from the largest subset.

On the other hand, to improve the balanced size of a given biclique (X,Y),
we have to increase the size of the smaller subset during the search process.
As such, it is useless to consider moves expanding the larger subset since these
moves will not help to improve the quality of (X,Y’). More importantly, such
moves can make the situation even worse, since each newly inserted vertex in
the smaller subset needs to be adjacent to all vertices in the larger subset, a
larger number of vertices in the larger subset generally makes it more difficult
to insert vertices to the smaller subset. Thus, to improve the quality of a
biclique (X,Y"), we should definitively increase the size of the smaller subset
and keep the size difference between the two subsets as small as possible.

10



Based on the above consideration, we introduce the following local search
strategy to explore the search space of MBBP (see also Algorithm 2). For a
given solution (X,Y') with |X| > |Y|, the right adaptive search procedure is
triggered to add vertices to subset Y by applying the ADD or k-SWAP move.
If no ADD or k-SWAP move can be performed, some vertices are removed
from subset X. Similarly when | X| < |Y|, the left adaptive search procedure is
activated which works in the same way as the right adaptive search by adding
vertices to subset X or removing vertices from Y. When |X| = |Y|, these two
search procedures are selected to be performed with equal probability.

Algorithm 2 Adaptive local search procedure
Require: A biclique (X,Y)
Ensure: The maximum biclique (X*,Y™*) found
if | X| > |Y| then
(X,Y) < right_adaptive_search(X,Y)
else if | X| < |Y| then
(X,Y) « left_adaptive_search(X,Y)
else if | X| = |Y| then
if Random()%2 == 0 then
(X,Y) < right_adaptive_search(X,Y)
else
(X,Y) < left_adaptive_search(X,Y)
end if
: end if
: return (X, Y™)

—
N = O

When several basic neighborhoods are available, one key issue is how to com-
bine these neighborhoods so as to effectively explore the search space. There
are several methods to combine different neighborhoods, such as token-ring
search and neighborhood union. For instance, the neighborhoods induced by
the ADD and 1-SWAP moves are explored sequentially in [24]. One key mo-
tivation for considering combination of diverse neighborhoods is to allow the
search to go beyond local optima and continue its exploration toward better
solutions. In the right (left) adaptive search procedure of our SBMNAS ap-
proach, we propose an adaptive method to favor the selection of the particular
neighborhood that produces solutions of better quality.

Without loss of generality, Algorithm 3 summarized the main procedure of the
right adaptive search for the improvement of a biclique (X,Y") with | X| > |Y].
Specifically, we use p and 1—p to respectively indicate the probability of select-
ing the Ny and N3 neighborhoods. Before the first search, both neighborhoods
are selected with equal probability by setting p = 0.5. During the search, when
none of PAy and OMy is empty, we select one of the two neighborhoods ac-
cording to the given probability. For the ADD move, we add all non-tabu
(see Section 2.6) vertices of PAy into subset Y while for the k-SWAP move,

11



a non-tabu vertex x € X with the maximum number of non-adjacent ver-
tices in OMy is selected to be exchanged with these non-adjacent vertices
in OMy. Whenever a move improves the balanced size of the best solution
ever found, the probability of selecting such a move operator is increased by
A (0 < XA < 1) during the subsequent search. Finally, the DROP move which
randomly deletes a vertex of X is only applied when both PAy and O My are
empty. During the search process, in order to prevent the ADD and k-SWAP
operators from being applied with a too high or too low probability, we strictly
limit p in the range [¢, 1 — ¢], where ¢ (a parameter) takes its values in [0, 0.5].
The calibration of A and ¢ is explained in Section 3.1.

2.6 Tabu list and aspiration rule

Our SBMNAS algorithm employes a general tabu rule [6] to avoid short-term
cycles. Each time a vertex i € (X,Y) is removed from the current biclique
(X,Y) (by the DROP or k-SWAP move operator), i is marked tabu for the
next 7; iterations, during which ¢ cannot be put back into the current biclique
(X,Y). Similarly, when a vertex o ¢ (X,Y) is added to the current biclique
(X,Y) (by the ADD or k-SWAP move operator), o is marked tabu for the
next 7T, iterations, during this period o is forbidden to be removed from (X, Y).
Both T; and T, are called tabu tenure and adjusted dynamically according to
the balanced size of the current biclique (X,Y):

T; = min{tt, 0.2r + 0.1Random(r)} and
T, = min{0.6tt, 0.12r + 0.1 Random(0.67)}

where tt is a parameter called basic tabu tenure, r = min{|X|, |Y|} and the
function Random(L) returns a random integer number in {0, 1, ..., L—1}. One
notices that the tabu tenure 7; for i (the vertex leaving (X, Y")) is larger than
the tabu tenure T, for o (the vertex joining (X,Y’)). This can be explained
by fact that generally, there are much fewer vertices included in (X,Y’) than
outside (X,Y’). As a consequence, preventing vertices in the current biclique
(X,Y) from being removed is much more restrictive than preventing vertices
outside (X,Y’) from being added to (X,Y).

Finally, a move is declared tabu if one of its involved vertices is marked tabu.

The tabu status of a move is however ignored if it produces a solution better
than the best solution found so far.

12



Algorithm 3 Right adaptive search
Require: A biclique (X,Y) with | X| > |Y|
Ensure: The biclique (X*,Y™*) with largest balanced size
1: lf PAY 7é @ and OMY 7é @ then
if with fixed probability p then
(X,)Y)«— (X, Y)PADD(PAy)
if f(X,Y) > f(X*,Y*) then
p < p+ A /*Increase the probability of applying AD D operator by
A< A< */
end if
else
(X,)Y) «— (X,)Y)DPEk-SWAP(i)
if f(X,Y) > f(X*,Y*) then
10: p < p— A /*Increase the probability of applying k-SWAP operator
*
/
11: end if
12:  end if
13: else if OMy # () then
14:  (X,)Y) « (X, Y)PEk-SWAP(i)
15:  if f(X,Y) > f(X*,Y*) then
16: pP—p—A
17:  end if
18: else if PAy # () then
19: (X,)Y)« (X, Y)D ADD(PAy)
20: if f(X,Y) > f(X*,Y*) then
21: p—p+ A
22:  end if
23: else if OMy == () and PAy == () then
24:  (X,Y) «+ (X,Y)® DROP(1)
25: end if
26: if p < ¢ then
27 p<+ ¢
28: else if p > 1 — ¢ then
20: p<+1—9
30: end if
31: return (X*,Y™)

2.7 Frequency-based perturbation

The above tabu rule is able to prevent short-term cycles, but this mechanism
may be insufficient to escape deep local optima. To encourage the algorithm
to explore new areas in the search space, and therefore establish a more global
form of diversification, we introduce a dedicated perturbation strategy which
is triggered when the search is judged to be definitively stagnating (i.e., when

13



Algorithm 4 Frequency-based perturbation
Require: A biclique (X,Y"), perturbation strength coefficient [
Ensure: The biclique (X,Y") after perturbation
: L=« min(|X]|, |Y])
: for count =1,2,..., L do
select u with the highest frequency in X
select v with the highest frequency in Y
(X,Y) « (X,Y)® DROP(u)
(X,Y) «+ (X, Y)® DROP(v)
end for
return (X.,Y)

A RN i

the best biclique is not improved for w consecutive iterations).

The perturbation strategy is achieved by applying a destructive procedure to
remove vertices from the current biclique. To achieve better search diversi-
fication, we use frequency information gathered during the search to guide
the selection of vertices to be removed. Specifically, we maintain a long-term
frequency memory Fre(i),i € U UV to record the number of times that a
vertex has been moved. Our proposed perturbation strategy is summarized in
Algorithm 4 and can be described as follows.

1. Initially, set Fre(i) = 0 for each vertex i € U U V.

2. Subsequently during the local search, each time vertex ¢ is put into or re-
moved from the current biclique (X,Y’), the frequency of i is increased by
1.

3. During the destructive procedure, we select L vertices with the highest fre-
quency in X and L vertices with the highest frequency in Y and remove
these selected vertices from (X, Y). L is called perturbation strength and is
computed as L = § x min(|X]|,|Y]), where  is a parameter called pertur-
bation strength coefficient.

4. After the destructive procedure is applied, we refresh the frequency counters
by setting Fre(i) = 0 for each vertex ¢ € U U V. This refreshing strategy
definitively prevents a vertex from reaching a too high frequency and thus
always being selected during the whole search.

2.8 Graph reduction

Given a bipartite graph G = (U,V, E) and a known balanced size r of the
largest biclique found so far, if a vertex ¢ has at most r adjacent vertices
in the other subset, it is obviously impossible for ¢ to extend the current
biclique to a biclique with a balanced size larger than r. As a consequence,
such a vertex can be safely removed from the graph to shrink the graph. This

14



graph reduction technique was previously used in [15,24], and shown to be
very effective on massive sparse graphs. The graph reduction procedure can
be implemented in time O(|U U V| + |E|).

3 Computational assessment

In this section, we report the computational results of our proposed SBMNAS
algorithm on two sets of benchmark instances commonly used in the literature,
and show comparisons with state-of-the-art MBBP algorithms including three
heuristic algorithms (PSRS/PSRS+ [15], TSGR [24]), and one exact algorithm
(ExtBBClq [23]).

3.1 Benchmark instances and experimental protocol

For performance assessments, we used two sets of 85 benchmark instances
including random dense graphs and real-life large sparse graphs.

e The first set of benchmark instances includes 60 random dense instances,
including 30 smaller graphs introduced in [19,20] and 30 larger graphs pro-
duced recently [15]. In each graph, the two vertex subsets U and V have an
equal size. An edge between two vertices respectively in U and V' is generated
with uniform probability p; which characterizes the density of the graph. For
each combination of |U| € {250, 500, 1000, 5000} and p; € {0.85,0.90,0.95},
5 graphs are generated, leading to a total of 60 instances. These graphs are
named as < A > p < B > n < id > [15], where A denotes the size of the
graph, B represents the density of the graph, and id € {1,2,3,4,5}.

e The second set of benchmark instances includes 25 real-life large sparse
graphs selected from the Koblenz Network Collection (KONECT) [8]. The
KONECT dataset was originally collected from network analysis and con-
tains hundreds of networks from various real-life applications, such as rating
networks, affiliation networks, and interaction networks. These 25 selected
graphs are massive sparse ranging in size from 8294551 vertices and 1476
edges to 1,425,813+4,000,150 vertices and 8,649,016 edges.

Our SBMNAS algorithm is programmed in C++ and compiled by GNU g++
compiler on a computer with an Intel Core 15-8400 CPU (2.80GHz) and 16GB
RAM with the -O3 option flag under Linux.

SBMNAS requires five main parameters (see Table 1). In order to tune the

parameters, we use the IRACE software package which applies the iterated
racing method [2,3,9] to find an appropriate parameter configuration from a set

15



of finite parameter configurations. We run IRACE on 20 randomly selected
instances including 10 random dense instances and 10 real-life large sparse
instances, and set the tuning budget to 2000 executions with a time limit of
60s. The tested and the final values recommended by IRACE are shown in
Table 1.

Table 1
Settings of the parameters.
Parameter Section Description Considered values Final value
w 2 search depth of the local search (dense graph) {100, 300, 500, 700, 1000} 500
search depth of the local search (sparse graph) {30, 50, 70, 100, 150} 100
A 2.5 adjustment to the probability of applying the {0.03, 0.05, 0.07, 0.10, 0.15} 0.05
ADD and k-SWAP operators
1) 2.5 adjustment to the probability of applying the {0, 0.1, 0.2, 0.3, 0.4, 0.5} 0.2
ADD and k-SWAP operators
tt 2.6 basic tabu tenure (dense graph) {10, 15, 20, 25, 30} 25
basic tabu tenure (sparse graph) {5, 10, 15, 20, 25} 10
B 2.7 perturbation strength coefficient (dense graph) {0.04, 0.07, 0.10, 0.13, 0.16 } 0.10

perturbation strength coefficient (dense graph) {0.10, 0.30, 0.50, 0.70, 0.90 } 0.50

3.2 Computational results and comparisons with state-of-the-art methods

According to two recent studies [15,24], PSRS [15] and TSGR [24] exhibit
an overall best performance among all existing heuristics for random dense
instances while PSRS+ [15] and TSGR show an overall best performance for
real-life large sparse instances. Thus, these three approaches constitute state-
of-the-art heuristic algorithms for MBBP.

To make a fair comparison with the these reference algorithms (PSRS, PSRS+
and TSGR), we run their source codes as well as our algorithm under the same
stopping condition as that used by PSRS. That is, for random dense instances,
the time limit is set to 100 seconds for graphs with less than 1000 vertices, and
1000 seconds for larger graphs; for the KONECT graphs, the time limit is set to
1000 seconds. Due to the stochastic nature of these compared algorithms, each
instance is independently solved 10 times with different random seeds by each
method. To further verify the effectiveness of our SBMNAS algorithm, we also
include the results of the exact algorithm ExtBBClq [23] in our comparison.
For ExtBBClq, we run its source code under our computing platform under
the time limit of 3 hours as in [23]. Since ExtBBClq is an exact algorithm,
one run per instance suffices. Furthermore, as shown in [23], ExtBBClq is not
really effective for random dense graphs with more than 50 vertices, so we
only report the results of ExtBBClq on the real-life large sparse instances.

16



3.2.1 Computational results on random dense graphs

Table 2
Comparative results on the 30 small random dense graphs.

Instance fok PSRS TSGR SBMNAS

foest favg ts foest favg ts foest  favg ts Gap
250p95n1 68 68 68 0.28 68 68 0.00 68 68 0.00 0.00
250p95n2 66 66 66 0.86 66 66 0.01 66 66 0.01 0.00
250p95n3 70 70 70 0.47 70 70 0.01 70 70 0.01 0.00
250p95n4 68 68 68 1.34 68 68 0.03 68 68 0.01 0.00
250p95n5 68 68 68 12.37 68 68 0.07 68 68 0.01 0.00
250p90n1 44 44 44 0.30 44 44 0.00 44 44 0.00 0.00
250p90n2 45 45 45 3.83 45 45 0.10 45 45 0.02 0.00
250p90n3 44 44 44 0.91 44 44 0.01 44 44 0.04 0.00
250p90n4 45 45 45 3.74 45 45 0.09 45 45 0.05 0.00
250p90n5 45 45 45 2.26 45 45 0.02 45 45 0.02 0.00
250p85n1 33 33 33 0.87 33 33 0.01 33 33 0.02 0.00
250p85n2 33 33 33 0.44 33 33 0.01 33 33 0.00 0.00
250p85n3 34 34 33.9 22.46 34 34 0.09 34 34 0.13 0.00
250p85n4 33 33 33 0.24 33 33 0.01 33 33 0.01 0.00
250p85n5 33 33 33 2.31 33 33 0.06 33 33 0.01 0.00
500p95n1 93 93 92.6 38.73 93 93 0.91 93 93 0.13 0.00
500p95n2 91 91 91 30.75 91 91 0.76 91 91 0.20 0.00
500p95n3 91 91 90.1 22.52 91 90.6 8.28 91 91 2.47 0.00
500p95n4 90 89 89 13.68 90 90 4.39 90 90 2.77 0.00
500p95n5 91 91 91 31.35 91 91 0.75 91 91 0.19 0.00
500p90n1 56 56 55.8 33.60 56 56 0.78 56 56 0.32 0.00
500p90n2 56 56 56 34.36 56 56 0.20 56 56 0.21 0.00
500p90n3 56 56 55.1 77.11 56 56 2.20 56 56 8.49 0.00
500p90n4 56 56 55.1 26.48 56 56 0.23 56 56 2.52 0.00
500p90n5 56 56 55.9 55.67 56 56 3.07 56 56 1.17 0.00
500p85nl 40 40 40 29.97 40 40 0.40 40 40 0.16 0.00
500p85n2 41 41 41 22.90 41 41 0.31 41 41 0.31 0.00
500p85n3 41 41 40.4 39.88 41 41 4.17 41 41 7.33 0.00
500p85n4 40 40 40 11.47 40 40 0.17 40 40 0.12 0.00
500p85n5 41 41 40.9 36.02 41 41 0.38 41 41 0.39 0.00
#Best 29 20 0/29 30 29 13/29 30 30 21/29
p-value 0.32 1.60e-3 7.24e-8 1.00 0.32 0.20

Table 2 summarizes the comparative results of these three compared heuristic
algorithms on the 30 small random dense graphs with 250 and 500 vertices.
In Table 2, column ‘fy;” presents the previous best-known results reported in
the literature, column ‘Gap’ gives the percent gap between the best balanced
size obtained with SBMNAS and the best-known balanced size fy, which is
computed as 100 * (for — frest)/ for- For each compared approach, columns
frest’s ‘favg’ and ‘ty’ respectively show the best balanced size, the average bal-
anced size and the average computation time in seconds used to reach the
best solution. The best values in terms of fy.s" and ‘f4,," among the com-
pared algorithms are marked in bold. The row ‘#Best’ indicates the number
of cases for which each algorithm obtains the best results among the compared
methods. Row ‘p-value’ shows the results from the non-parametric Friedman
test applied to the results of SBMNAS and each compared algorithm, and a p-
value smaller than 0.05 implies a significant difference between the compared
results. Note that to compute the p-values in terms of average computation
time (ts), the Friedman test is conducted only on these instances where the
compared algorithms reach the same biclique size, this indeed shows how fast
an algorithm finds a solution of same quality.

From Table 2, we observe that TSGR and SBMNAS match all the current
best-known results for these 30 small random dense instances while PSRS

17



misses the best result for one instance. In terms of the average objective values,
SBMNAS yields the best values on all 30 instances whereas PSRS and TSGR
produce the best values on 20 and 29 instances respectively. Among the 29
instances where the compared algorithms obtain the same best objective value,
SBMNAS requires the shortest computation times for 21 instances against 0
case for PSRS and 12 cases for TSGR.

The non-parametric Friedman test applied to the results between SBMNAS
and the two reference algorithms leads to the following p-values: 0.32 for PSRS,
and 1.00 for TSGR in terms of best objective values; 1.60e-3 for PSRS, and
0.32 for TSGR in terms of average objective values; 7.24e-8 for PSRS, and 0.20
for TSGR in terms of average computation time. These results reveal that for
the set of small dense instances, the difference between SBMNAS and TSGR is
not statistically significant in terms of the used comparison indicators, while
the difference between SBMNAS and PSRS is significant in both terms of
average objective values and average computation time, but not statistically
significant in terms of best objective values.

Table 3
Comparative results on the 30 large random dense graphs.

Instance For PSRS TSGR SBMNAS

fvest favg ts foest favg ts fvest  favg ts Gap
1000p95nl 114 114 113.8 321.36 114 113.7 230.31 115 114.2 912.71 -0.88
1000p95n2 114 115 114.8 387.17 115 114.4 237.59 116 115.7 355.35 -1.75
1000p95n3 115 114 113.7 424.70 114 113.6 269.01 115 114.1 798.54 0.00
1000p95n4 115 114 113.4 341.41 114 113.4 125.19 115 114.1 854.63 0.00
1000p95n5 115 114 113.9 325.56 114 113.5 201.85 115 114.2 965.32 0.00
1000p90n1 66 66 66 312.17 66 66 32.73 67 67 368.15 -1.52
1000p90n2 67 67 66.6 455.19 67 66.3 182.05 67 67 40.98 0.00
1000p90n3 66 66 66 305.63 66 66 32.96 67 67 240.49 -1.52
1000p90n4 67 67 66.7 315.72 67 67 240.55 67 67 9.62 0.00
1000p90n5 67 67 66.7 483.92 67 66.5 221.61 67 67 14.19 0.00
1000p85n1 47 a7 46.3 233.80 a7 a7 119.42 a7 47 11.36 0.00
1000p85n2 47 a7 46.2 611.13 a7 46.9 120.48 a7 a7 21.78 0.00
1000p85n3 47 47 46.7 201.57 47 47 41.30 48 48 261.49 -2.13
1000p85n4 47 47 46.7 532.62 47 47 96.93 47 47 3.13 0.00
1000p85n5 47 a7 46.4 389.70 a7 a7 88.57 a7 a7 6.55 0.00
5000p95n1 159 159 158 883.47 156 155.7 234.09 161 160.3 461.68 -1.26
5000p95n2 158 159 157.5 521.38 156 155.7 181.16 161 160.1 564.79 -1.90
5000p95n3 159 158 157.3 565.53 156 155.6 350.58 161 160 842.32 -1.26
5000p95n4 158 159 158 702.56 156 155.6 145.91 162 160.6 240.75 -2.53
5000p95n5 158 159 157.4 830.08 156 155.5 214.23 161 160.1 866.69 -1.90
5000p90n1 86 85 83.6 925.85 85 84.8 152.39 86 85.3 842.24 0.00
5000p90n2 85 84 83.7 406.00 86 85.1 195.66 86 85.2 353.89 -1.18
5000p90n3 86 85 83.7 765.43 85 84.9 156.86 86 85.3 581.86 0.00
5000p90n4 85 85 83.9 513.07 85 84.7 135.68 86 85.1 7.01 -1.18
5000p90n5 85 85 84.2 603.86 85 84.7 179.43 86 85.1 875.12 -1.18
5000p85n1 57 57 56.9 571.99 59 57.9 169.95 59 58.8 468.00 -3.51
5000p85n2 58 57 56.7 451.83 58 57.9 153.15 59 58.9 445.08 -1.72
5000p85n3 58 57 56.6 452.84 58 57.9 197.13 59 58.8 434.87 -1.72
5000p85n4 57 57 56.4 737.23 58 57.7 131.64 59 59 393.41 -3.51
5000p85n5 57 58 56.8 248.34 58 57.8 160.57 59 58.8 440.40 -3.51
#Best 7 0 0/7 9 4 0/7 30 30 77
p-value 1.62e-6 4.32e-8 8.15e-3 4.59e-6 3.41e-7 8.15e-3

Table 3 summarizes the comparative results of these three compared heuristic
algorithms on the 30 large random dense graphs with 1000 and 5000 vertices.
It can be seen from Table 3 that, our SBMNAS algorithm achieves excellent
results with respect to the previous best-known results reported in the liter-
ature. Precisely, SBMNAS improves the best-known results for 18 instances

18



(indicated by negative ‘Gap’ values), and matches all the best-known results on
the remaining 12 instances. When comparing SBMNAS with the two reference
algorithms, the results obtained with SBMNAS remain highly competitive. In
terms of the best objective values, SBMNAS achieves the best results on all
30 instances, while PSRS and TSGR yield the best results on 7, and 9 cases
respectively. In terms of the average objective values, SBMNAS yields the best
values on all 30 instances whereas PSRS and TSGR attain the best values only
on 0 and 4 instances. In terms of the average computation time, one observes
that to reach the same objective value, SBMNAS runs faster than PSGR and
TSGR.

The small p-values (<0.05, see Table 3, row ‘p-value’) from the non-parametric
Friedman test further confirm the differences between SBMNAS and the two
reference algorithms on the set of large random dense instances. This exper-
iment shows the effectiveness of our SBMNAS algorithm on the set of large
random dense graphs.

3.2.2  Computational results on the real-life large sparse graphs

Table 4 summarizes the comparative results of the three compared heuris-
tic algorithms PSRS+, TSGR, and SBMNAS on the 25 real-life large sparse
graphs. In Table 4, we also include the results of the exact algorithm ExtBB-
Clg. Optimal values proven by ExtBBClq are marked with a ‘*’ symbol.

From Table 4, we can make the following observations. First, ExtBBClq is
able to optimally solve 21 (out of 25) instances and attains 23 best-known re-
sults. Both SBMNAS and TSGR attains the best-known results for 24 out of
the 25 instances including the 21 optimal results proved by ExtBBClq, while
PSRS+ reports 22 best-known results (it misses one optimal result). Interest-
ingly, SBMNAS improves the best-known result for one graph (edit-frwiki). In
terms of the average objective values, SBMNAS reaches the best results on 23
instances, while both PSRS+ and TSGR yield the best results on 21 cases. In
terms of average computation time, SBMNAS runs the fastest on 10 instances,
while PSRS+ and TSGR yield the best time on 7 and 8 cases respectively.
For the performance indicators, the obtained p-values with the Friedman test
(8.32e-2, 0.18 and 7.36e-2 for SBMNAS vs PSRS+, 1.00, 0.41 and 0.18 for
SBMNAS vs TSGR) indicate the performances of the three compared heuris-
tic algorithms (SBMNAS, PSRS+ and TSGR) are only marginally different
on the 25 real-life large sparse graphs. When comparing SBMNAS with the ex-
act algorithm ExtBBClq, the Friedman test results reveal that, the difference
between SBMNAS and ExtBBClq is not statistically significant in terms of
best objective values, but SBMNAS runs significantly faster than ExtBBClq
in terms of average computation time.

19



v-ovel 910 810 7o 00°T Co9€°L 810 7-9CE'8 anyea-d

2e/0t € ¥T ce/1 44 ce/8 4 24 TT/L 12 [44 ysog#

000 060 gTI TI €9 *CT T0'T (43 (43 10'C [33 (33 «CT sdiyszequewdnois-aqninos
000 0¥'8T 96 PI 1'81 VT 10T 141 141 80°¢G VI v mas yeo-uo-INIm
000 1£0 6 6 200 %6 6566 8'8 6 Sz'0 6 6 %6 MOYI0A0NOR)S-0SURYOXONIRIS
000 000 [+ [ Te VI %S 200 [+ [+ 00°0 g g %G wniogon-[yesdo
000 200 8 8 210 *8 10°0 8 8 90°0 8 8 «8 uorjeIoqe[od-[qesdo
00°0 00°0 (4 (4 90°0 *C 00°0 (4 (4 00°0 H4 z «C QUILID~OUDIOWT
000 €10 TI TI Te18 *CT 161 4 44 810 4 4 #CT qnuys
9€'87 82'€9T 1€ 8F 00801 9g 81°8¥ L9 L9 16'16€ 44 %4 29 sdrysiequiowrdnols-1yory
000 €0t 6T 6T 2989 *6T 90°F¥T 6T 6T 91°82¢ TLT 8T +6T AIRUOTIIMIJ-41PO
L0°LT- €0°08€ 8% 8% 00801 ov 9T'67¢ £'0¢ L€ 89'98¢ o€ €€ 84 I{IMI3-31Po
000 gL't 8¢ 8¢ 00801 8¢ L0°091 g'LE 8¢ 88°0€ 8¢ 8¢ 8¢ o143s"s800sIp
000 €10 ST ST 190 *GT 76’7 gt 34 19T 34 34 #GT 21ua3("s802s1p
000 ¢9%c 9% 9T 16768 14 (484 9z 9z 879 9z 9T +9% uoryeryye-s80os1p
000 200 9 9 820 *9 200 9 9 100 9 9 %9 10311m-e1padqp
000 1S°T 9 9 G€g01 *9 90'FF1T g'g 9 z0'9 9 9 %9 ureaj-erpadqp
000  ST°0 9 9 er'e %9 200 9 9 00 9 9 %9 Surirejs-erpedqp
000 V00 9 9 9811 *9 900 9 9 £0°0 9 9 %9 [eqe[piodai-eipedqp
000 00 9 9 8€°0 *9 T0°0 9 9 20°0 9 9 %9 190npoid-erpadqp
000 %00 9 9 gL0 %9 10T 9 9 90°0 9 9 %9 uoryednooo-erpadqp
000 00 [+ [ Tvo %S 010 [+ [+ £0°0 g g %G uorjeoo[-eipedqp
000 110 L L ¥9'¢ Wk G0'T L L 520 L L ") saueS-erpadqp
000 9Tz O OT ¥'el *0T 90T 0T ot T1'88Y 01 [} %01 toyyne-diqp
000 990 €I €I 8€°9%C *€T [ A 1 1 10°0€ 34 34 +€T Suryer-[[ny-Suissoioyooq
000 800 8 8 ¥6'G *8 900 8 8 1'% 8 8 «8 mg-Auwouosqrq
000 1S°CL 8 8 1€°968 *8 62°0 8 8 z1°02¢ VL 8 %8 9TAOUI-1030%
dvo 57 m;d& 159qf 57 ¥52q) 59 m;dx 152q) 57 mpsk. ¥52qf say S

SVNINES bipggIxd UDSL +syusd

"LOHANOD wolj soour)sul oasieds o81e[ ofi[-[eal Gz 93} U0 sjnsal [euoryeinduo))
¥ o198l

20



4 Analysis

In this section, we analyze several essential ingredients of our proposed SBM-
NAS algorithm to shed lights on their influences on the performance of the
algorithm. We study in particular the k-SWAP move operator, the adaptive

strategy to explore the neighborhood, and the frequency-based perturbation
strategy.

4.1 Impact of the k-SWAP operator

40 —#— k-SWAP| 404 —%— k-SWAP)
—— 1-SWAP o 1-SWAP

2.0 4

Gap to the best-known solution (%)
S
1
Gap to the best-known solution (%)

0.0 0.0 A

T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60

T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60
Instance Instance

(a) Best results on random dense graphs (b) Average results on random dense
graphs

—+— k-SWAP 60 —¥— k-SWAP)
—— 1-SWAP) 55 —<— I-SWAP)

N
S
1

w
&
1

20

Gap to the best-known solution (%)
Gap to the best-known solution (%)

i i S S S S | AV S §
5 10 15 20 25 : ) ) y y

5 10 1 20 25
Instance Instance
(c) Best results on real-life large sparse (d) Average results on real-life large
graphs sparse graphs

Fig. 4. Comparisons of SBMNAS with its variant that uses the 1-SWAP operator.

As described in Section 2.4, SBMNAS introduces a general k-SWAP move
operator which consists in removing one vertex from the biclique and adding
k (k > 1) vertices to the biclique such that each added vertex is adjacent to all
but the removed vertex in the other subset. Compared to the 1-SW AP move
operator previously applied in studies like [24], our k-SWAP move operator

21



leads to an enlarged neighborhood containing more neighboring solutions, in-
creasing the chance for the algorithm to find solutions of better quality. To
show the merit of the k-SWAP move operator, we compare our SBMNAS
approach with a variant that relies on the 1-SW AP move operator. To im-
plement this variant, we simply replace the k-SWAP move operator by the
1-SW AP move operator in our SBMNAS approach. Each algorithm is run
under the same experimental protocol as described in Section 3.1 to solve each
of the 85 instances. We compute for each instance the absolute gap between
the best and average results obtained by each algorithm and the best-known
results. The best-known results include the results reported by our SBMNAS
algorithm in Section 3. The comparative results are summarized in Figure 4.

From Figure 4, one observes that our SBMNAS approach performs signifi-
cantly better than its variant based on the 1-SW AP move operator. Indeed,
for each of the 85 tested instances, SBMNAS with the k-SWAP move operator
is able to achieve a smaller or equal gap to the best-known results than the
SBMNAS variant with the 1-STW AP move operator in terms of both best and
average results. This experiment highlights the contribution of the k-SWAP
operator for our SBMNAS algorithm to solve MBBP.

4.2 Effect of the adaptive neighborhood exploration strategy

When several neighborhoods are available, one key issue is how to combine
these neighborhoods so as to efficiently explore the search space. In our work,
we proposed an adaptive strategy to combine the neighborhoods which favors
the selection of a particular neighborhood that produces solutions of better
quality. To show the effectiveness of the proposed adaptive neighborhood ex-
ploration strategy, we compared it with a popular method to combine the
neighborhoods in the literature, i.e., the neighborhood union method which
selects the best non-tabu neighboring solution from all considered neighbor-
hoods. This neighborhood union method was shown to be quite effective in
the context of multiple neighborhood search for the related maximum weight
clique problem [16] and is capable of making an aggressive examination of the
search space.

By keeping other ingredients unchanged, we experiment both strategies within
our SBMNAS algorithm using the same experimental protocol as described
in Section 3.1. We denote the variant with the neighborhood union strategy
by SBMNAS_UNION. Figure 5 summarizes the comparative results between
these two methods on all 85 instances. From Figure 5, one observes that our
proposed adaptive neighborhood exploration method shows an overall better
performance than the neighborhood union method for the 85 tested graphs.
In terms of the best results obtained by two methods, SBMNAS achieves

22



6.0

—*%— SBMNAS —#— SBMNAS
S 55 —v— SBMNAS UNION| ~— 6.5+ —v— SBMNAS_UNION|

X S 55
i Y

4.0 5.0 Y

45+
3.5

4.0

v
3.04 35 Y
2.5 L 304 Y
2.0 254
1.5+ 2.0 -
A 154 X 7

K V 7

. . ¥

- | |

T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60

%
s o
S =Y
TR
I
)
1

ap to the best-known solution ('

P
1
ap to the best-known solution

G
o
o
1
=}
1

o
o
G
o
13
L

o
o

T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60
Instance Instance

(a) Best results on random dense graphs (b) Average results on random dense
graphs

®
S
1

70 —#— SBMNAS
—v— SBMNAS_UNION
60

—*— SBMNAS
—<— SBMNAS UNION|

@ ~
=} =}
1 1

o
S
1

Gap to the best-known solution (%)
S 8
1 1

Gap to the best-known solution (%)
e ¢

o
1

T T T T T
T T
5 10 15 20 25 5 10 15 20 25

Instance Instance
(c) Best results on real-life large sparse (d) Average results on real-life large
graphs sparse graphs

Fig. 5. Comparisons of SBMNAS with its variant SBMNAS_UNION.

better results than SBMNAS_UNION for 22 instances, while in terms of the

average results, SBMNAS reaches better results than SBMNAS_UNION for
27 instances.

Furthermore, the results of the non-parametric Friedman test also demonstrate
that SBMNAS performs significantly better than SBMNAS_UNION (p-value
= 2.73e-6 in terms of the best results and p-value = 1.18e-9 in terms of the
average results). The above observation confirms that our adaptive method

for exploring the search space constitutes an important feature to enhance the
performance of the local search approach.

4.8  Usefulness of the frequency-based perturbation

As shown in Section 2.7, our SBMNAS approach applies a frequency-based
perturbation strategy to ensure a more global diversification. The frequency-
based perturbation strategy operates by dropping several vertices with high
move frequency from the solution. To evaluate the effect of the frequency-

23



based perturbation, we compare it with a random perturbation strategy where
the vertices to be removed are randomly selected from the biclique (denoted
as SBMNAS Random). To make a fair comparison, we run both strategies
under the same experimental protocol as described in Section 3.1. Figure 6
summarizes the comparative results between these two perturbation strategies.
From Figure 6, we observe that SBMNAS performs better than its variant
SBMNAS_Random in terms of both best and average results. Indeed, in terms
of the best results, SBMNAS outperforms SBMNAS_Random for 10 out of the
85 instances, and matches SBMNAS_Random for the remaining 75 instances.
In terms of the average results, SBMNAS outperforms SBMNAS_Random for
28 out of the 85 instances , and matches SBMNAS_Random for the remaining
57 instances. Furthermore, the Friedman test in terms of the best and average
results reveals a significant difference (p-value = 1.6e-3 in terms of the best
results and p-value = 1.21e-7 in terms of average results) between these two
strategies, further confirming that the frequency-based perturbation strategy
plays an important role to the performance of the SBMNAS approach.

N
o
1

—*— SBMNAS 25 —*— SBMNAS
—v— SBMNAS Random) —<— SBMNAS Random|

1.54
0.0 K

T T T T T
5 10 15 20 25 30 35 40 45 50 85 60 5 10 15 20 25 30 35 40 45 50 55 60
Instance Instance
(a) Best results on random dense graphs (b) Average results on random dense
graphs

= = N
o o o
1 1 1

Gap to the best-known solution (%)
&
1

Gap to the best-known solution (%)

=3
1)

~
=}
1
®
S
1

—*%— SBMNAS —¥— SBMNAS
—v— SBMNAS_Random| —v— SBMNAS_Random|

@
S
1
~
r=}
1

33
=}
1
@
=}
1

IN
S
1
133
=}
1

= N w
o S S
1 1 1

N w

1=} =}

1 1

Gap to the best-known solution (%)
T

Gap to the best-known solution (%)
»
1

o
1

o
1

T T T T T

T T
5 10 15 20 25 M 10 15 20 25
Instance Instance

(c) Best results on real-life large sparse (d) Average results on real-life large
graphs sparse graphs

Fig. 6. Comparisons of SBMNAS with its variant SBMNAS_Random.

24



5 Conclusion

The maximum balanced biclique problem (MBBP) is an NP-hard problem
with many practical applications. In this work, we proposed a general swap-
based multiple neighborhood adaptive search (SBMNAS) for MBBP. The pro-
posed SBMNAS approach jointly uses three neighborhoods induced by three
types of move operators (ADD, DROP and k-SWAP) and applies an adap-
tive strategy to select the neighborhood according to changing probabilities.
The k-SWAP move operator which is a new operator proposed in the study
for MBBP consists in removing a vertex in one subset of the biclique and
adding k vertices to the other subset such that each newly added vertex is
connected to all but the removed vertex in the other subset. To escape deep
local optima, SBMNAS also combines a guided frequency-based perturbation
strategy to ensure a more global diversification.

We evaluated the performance of the proposed SBMNAS approach on two
sets of 85 commonly used MBBP instances and show its effectiveness in com-
parison with two leading reference MBBP algorithms in the literature. The
experimental results show that SBMNAS attains the best-known results for all
but one graphs and find improved best-known results (i.e., new lower bounds)
for 19 graphs, including 18 random dense graphs and 1 real-life large sparse
graph from KONECT. Moreover, we carried out additional experiments to
demonstrate the key role of the proposed k-SWAP move operator and inves-
tigate the impact of the adaptive neighborhood exploration strategy as well
as the dedicated frequency-based perturbation strategy over the performance
of the algorithm.

To go beyond the SBMNAS algorithm, we can consider the population based
memetic framework by using SBMNAS as its key local search procedure. More-
over, the proposed adaptive neighborhood exploration strategy is of general
nature and can be used in other local search procedures to effectively explore
the search space when different neighborhoods are available.

Acknowledgments

We are grateful to the reviewers for their helpful comments. This work is
partially supported by the National Natural Science Foundation Program of
China [Grant No. 71771099, 71821001,71620107002, 71931005, 71831007].

25



References

[1] Al-Yamani, A. A., Ramsundar, S., & Pradhan, D. K. (2007). A defect tolerance
scheme for nanotechnology circuits. IEEE Transactions on Circuits and Systems
I, 54(11), 2402-2409.

[2] Balaprakash, P., Birattari, M., & Stiitzle, T., (2007). Improvement strategies
for the F-race algorithm: sampling design and iterative refinement. In: Bartz-
Beielstein, T., Blesa, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G.,
Sampels, M. (Eds.), Hybrid Metaheuristics. Lecture Notes in Computer Science,
Vol. 4771. Springer, Heidelberg, Germany, pp. 108-122.

[3] Birattari, M., Stiitzle, T., Paquete, L., & Varrentrapp, K., (2002). A Racing
Algorithm for Configuring Metaheuristics. In Langdon, W.B. et al. (Eds.),
Proceedings of the Genetic and Evolutionary Computation Conference, Morgan
Kaufman, San Francisco, CA, pp. 11-18.

[4] Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. In
International Conference on Intelligent Systems for Molecular Biology, Menlo
Park, AAAT Press, pp. 93-103.

[5] Garey M. R.,& Johnson D. S. (1979). Computers and intractability: a guide to
the theory of NP-completeness. W.H. Freeman & Co Ltd.

[6] Glover, F., & Laguna, M. (1997). Tabu Search, Kluwer Academic. Boston, USA.

[7] Johnson, D. S. (1985). The NP-completeness column: an ongoing guide. Journal
of Algorithms, 6(3), 434-451.

[8] Kunegis J. (2013). KONECT — The Koblenz Network Collection. In Proceedings
of the 22nd International Conference on World Wide Web (Companion), pp.
1343-1350.

[9] Lépez-Ibanez, M., Dubois-Lacoste, J., Céceres, L. P., Birattari, M., & Stiitzle, T.
(2016). The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3, 43-58.

[10] Quintana, J. D., Sanchez-Oro, J., & Duarte, A. (2019). Finding balanced
bicliques in bipartite graphs using variable neighborhood search. In Proceedings
of International Conference on Variable Neighborhood Search. Lecture Notes in
Computer Science, volume 11328, pp. 114-124.

[11] Ravi, S. S., & Lloyd, E. L. (1988). The complexity of near-optimal
programmable logic array folding. STAM Journal on Computing, 17(4), 696-710.

[12] Sun, W., Hao, J. K., Lai, X., & Wu, Q. (2018). Adaptive feasible and infeasible
tabu search for weighted vertex coloring. Information Sciences, 466, 203-219.

[13] Tahoori, M. B. (2006). Application-independent defect tolerance of
reconfigurable nanoarchitectures. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 2(3), 197-218.

26



[14] Wang, W., Hao, J. K., & Wu, Q. (2018). Tabu search with feasible and
infeasible searches for equitable coloring. Engineering Applications of Artificial
Intelligence, 71, 1-14.

[15] Wang, Y., Cai, S., & Yin, M. (2018). New heuristic approaches for maximum
balanced biclique problem. Information Sciences, 432, 362-375.

[16] Wu, Q., Hao, J. K., & Glover, F. (2012). Multi-neighborhood tabu search for
the maximum weight clique problem. Annals of Operations Research, 196(1),
611-634.

[17] Wu, Q., & Hao, J. K. (2015). A review on algorithms for maximum clique
problems. European Journal of Operational Research, 242(3), 693-709.

[18] Yang, J., Wang, H., Wang, W., & Yu, P. (2003). Enhanced biclustering
on expression data. In Third IEEE Symposium on Bioinformatics and
Bioengineering, IEEE, pp. 321-327.

[19] Yuan, B., & Li, B. (2011). A low time complexity defect-tolerance algorithm
for nanoelectronic crossbar. In International Conference on Information Science
and Technology, IEEE, pp. 143-148.

[20] Yuan, B., & Li, B. (2014). A fast extraction algorithm for defect-free
subcrossbar in nanoelectronic crossbar. ACM Journal on Emerging Technologies
in Computing Systems, 10(3), 25.

[21] Yuan, B., Li, B., Chen, H., & Yao, X. (2014). A new evolutionary algorithm
with structure mutation for the maximum balanced biclique problem. IEEE
Transactions on Cybernetics, 45(5), 1054-1067.

[22] Zhou, Y., Hao, J. K., & Goéffon, A. (2017). PUSH: A generalized operator for
the maximum vertex weight clique problem. European Journal of Operational
Research, 257(1), 41-54.

[23] Zhou, Y., Rossi, A., & Hao, J. K. (2018). Towards effective exact methods for
the Maximum Balanced Biclique Problem in bipartite graphs. European Journal
of Operational Research, 269(3), 834-843.

[24] Zhou, Y., & Hao, J. K. (2019). Tabu search with graph reduction for finding
maximum balanced bicliques in bipartite graphs. Engineering Applications of
Artificial Intelligence, 77, 86-97.

27



