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Abstract

The Close-Enough Traveling Salesman Problem (CETSP) is a variant of the
well-known Traveling Salesman Problem (TSP). Unlike the TSP, each target in
the CETSP has a disk neighborhood, and the target is considered visited when
any point in its neighborhood is visited. This feature makes the CETSP a suitable
model for many real-world applications. In this work, we propose an effective
memetic algorithm that integrates a carefully designed crossover operator and an
effective local optimization procedure with original search operators. Experimental
results on the 62 well-known benchmark instances show that the algorithm is
highly competitive with the state-of-the-art methods, reporting 30 new best upper
bounds. We demonstrate the usefulness of the algorithm on a real laser welding
robot path planning problem. We provide insights into the understanding of the
algorithm design.

Keywords: Traveling salesman problem; Close-enough traveling salesman problem;
Combinatorial optimization; Heuristics.

1 Introduction

The Close-Enough Traveling Salesman Problem (CETSP) [1] is a variant of
the popular Traveling Salesman Problem (TSP). The CETSP can be defined
as follows. Given a set of N targets V = {v1, v2, ..., vN} and a depot p0 in the
Euclidean plane, each target vi has a disk neighborhood Ni of radius ri. The
objective is to find the shortest Hamiltonian cycle S = {p0, p1, p2, ..., pN , p0}
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that starts and ends at the depot p0 and passes through a point (also called
position hereafter) pi in the disk neighborhoodNi of every target vi. Let d(x, y)
be the distance between points x and y. The CETSP is defined as follows.

(CETSP) Min f(S) =
N−1∑
i=0

d(pi, pi+1) + d(pN , p0),

subject to S = {p0, p1, . . . , pN , p0}, pi ∈ Ni, i = 1, . . . , N

(1)

Fig. 1. Example of a CETSP tour (solid line) and a standard TSP tour (dotted line)

The CETSP is a complex problem that combines the discrete optimization
of the visiting sequence, as in the TSP, with the continuous optimization of
the visiting positions for the targets. In contrast to the standard TSP, where
the salesman must visit the targets, in the CETSP, it is only necessary to
pass through any point within the disk neighborhood of each target. The
special feature of the CETSP may result in shorter tours than the standard
TSP, which is useful in many practical situations. For instance, in the graph of
Figure 1, the black triangle indicates the depot, the black nodes are the targets
with their disk neighborhood. For this example, the CETSP tour is obviously
shorter than the TSP tour. The CETSP can be seen as a generalization of
the TSP. In fact, if all the disk neighborhoods have a radius of 0, the CETSP
reduces to the standard TSP. As a result, the CETSP is an NP-hard problem
and is computationally difficult to solve [2].

The CETSP occurs naturally in various real-world applications, such as
automated meter reading with radio frequency identification (RFID) [1],
solar panel diagnostic reconnaissance [3], and laser welding robot path
planning [4]. With the development of unmanned aerial vehicles (UAVs), the
CETSP can be extended to model various missions, such as aerial
reconnaissance, supply delivery, and pipeline surveillance, etc.

Given the relevance of the CETSP, a number of solution methods have been
developed. In Section 2, we provide a literature review of the related works.
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Since the problem was introduced in [1], there has been a steady stream of
important progress. However, it has been observed that even the
best-performing methods do not perform consistently well on the existing
benchmark instances and may require considerable computational time to
achieve their best results. In this work, we aim to advance the
state-of-the-art in effectively solving this challenging problem and to provide
a useful tool that can benefit researchers and practitioners working on the
CETSP and related problems. To this end, we introduce a highly effective
memetic algorithm for the CETSP that combines population-based genetic
search with local optimization based on variable neighborhood descent.

Our contributions are twofold.

• The algorithm features a dedicated crossover operator that is able to
inherit good features from parent solutions and guide the algorithm to
promising search regions. Its local optimization component is based on
the VND method and integrates new effective local search operators, i.e.,
the disk-constrained position optimization and the joint optimization of
sequence and position.
• We report 30 new best solutions (updated upper bounds) and 32 equal

best-known solutions including 23 known optimal solutions, for a total
of 62 benchmark instances tested in the literature. In addition, we
showcase the usefulness of the algorithm on a real laser welding robot
path planning problem. We perform additional experiments and
analyses to shed light on the search components of the proposed
algorithm. We make the code of the algorithm available online to enable
its use in research and applications.

The remainder of this paper is structured as follows. Section 2 provides a
literature review on the CETSP. Section 3 presents the proposed algorithm
for solving the CETSP. Section 4 shows computational results on benchmark
instances and comparisons with state-of-the-art methods. Section 5 examines
the application of the proposed algorithm to a real-world problem. Section
6 provides an analysis of the main components of the algorithm. Section 7
concludes the paper and discusses future research directions.

2 Literature review

The CETSP has attracted significant research interest over the past two
decades.

Table 1 summarizes the solution methods for the CETSP in the literature.
With the introduction of the CETSP, Gulczynski et al. [1] (2016) presented
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Table 1
Summary of the algorithms for CETSP in the literature

Algorithm Year Method Characteristics

Gulczynski et al. [1] 2006 heuristics 3-phase heuristics, Steiner-zone

Mennell et al. [5,2] 2009, 2011 heuristics 3-phase heuristics, Steiner-zone, SOCP

Behdani and Smith [6] 2014 exact algorithm MIP, discretization

B&B [7] 2016 exact algorithm branch and bound, SOCP

Carrabs et al. [8] 2017 heuristics discretization, MIP

Carrabs et al. [9] 2017 heuristics discretization, SOCP

HA [10] 2018 heuristics PSO, GA

SZVNS [11] 2019 heuristics VNS, Steiner-zone

(ul/bl)Alg [12] 2020 heuristics discretization, carousel greedy algorithm

GA [3] 2022 heuristics GA, SOCP

six heuristics (Steiner-zone, sweeping circle, radial adjacency, etc.) to solve
the problem. These heuristics follow three common steps: (1) find a feasible
supernode set S, (2) generate a feasible tour T on the points in S, and (3)
improve the found feasible tour T . These algorithms formed the first
foundation for solving the CETSP heuristically.

Building on this work, a three-phase Steiner-zone heuristic [5,2] (2009, 2011)
was proposed to solve the CETSP. This heuristic first identifies a set of
Steiner zones covering all targets, which are the non-empty intersections of
disk neighborhoods. It then discretizes these Steiner zones to obtain a set of
points S and generates a feasible tour T by solving the TSP in S. Finally,
the found feasible tour T is improved by modifying the positions of the
discretization points. In the third phase, the problem is formulated as a
Touring Steiner Zones Problem and solved by a powerful optimization
technique called the second-order cone programming (SOCP) [13]. By
decomposing the problem into sub-problems, this three-phase approach helps
to manage the complexity of the overall problem. However, the solution
quality of this approach depends heavily on the quality of the supernodes,
and the search can be trapped in poor local optima.

In 2019, Wang et al. [11] also used the concept of Steiner-zones and proposed
a fast three-step heuristic (SZVNS) based on the Variable Neighborhood
Search (VNS) approach to solve the CETSP. The first step involves data
cleaning to reduce the problem size and to improve the running time. The
second step constructs Steiner-zones and generates a feasible tour that
passes through all Steiner-zones. The third step uses iterative variable
neighborhood search to improve the feasible solution. This is achieved by
applying six operators, including TSP heuristics, Steiner point selection,
one-point insertion, two-point insertion, string insertion, and Steiner zone
reconstruction. In the Steiner point selection operator, a greedy method is
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used to determine the visiting positions. Furthermore, while the three
insertion operators are effective because they consider both the sequence and
positions simultaneously, their study revealed that these operators are also
very time consuming.

The first exact algorithm for the CETSP was proposed in [6]. The authors
formulated a mixed integer programming model (MIP) based on a
discretization scheme that provides both lower and upper bounds. However,
the quality of the solution depends on the granularity of the discretization
scheme, which limits the applicability of this approach. Another exact
algorithm [7], based on branch-and-bound and second-order cone
programming (SOCP), can reach some optimal solutions in a finite number
of steps. These exact algorithms can provide optimal solutions for instances
of reasonable size. However, they are not practical for solving large instances.

There are also several discretization-based heuristic methods for solving the
CETSP. Carrabs et al. [8] proposed two discretization schemes, namely the
perimetral discretization scheme (PDS) and the internal discretization scheme
(IDS), to transform the CETSP into a Generalized TSP (GTSP), which is then
solved via a mixed integer programming model (MIP). Building on this work,
they presented an improved version of the adaptive internal discretization
scheme in [9], which combines the discretization scheme with second-order
cone programming (SOCP).

In 2020, Carrabs et al. [12] developed a meta-heuristic method called
(lb/ub)Alg based on their previous work [9]. The method used an innovative
discretization scheme and a carousel greedy algorithm [14] to select
appropriate neighborhoods to extend the partial solution until a feasible
solution is generated. This method can produce very high-quality solutions
in a short amount of time. The discretization scheme is a useful approach for
dealing with continuous problems. However, it can impose restrictions on the
search space and potentially degrade the quality of the final solution.

Very recently (2022), Di Placido et al. [3] proposed an effective genetic
algorithm (GA) for solving the CETSP. They designed a crossover operator,
which can be considered as a kind of multi-point crossover, and a
diversification-oriented mutation operator. The algorithm also includes three
improvement procedures: 2-opt operator, SOCP, and a greedy algorithm
called 3Alg, which was inspired by [11]. GA produced 32 new best solutions
out of 62 benchmark instances and matched 27 best-known solutions
discovered by other methods. These impressive results highlight the potential
of population-based search approaches for solving the CETSP and motivate
our work reported in this paper.

In addition to these studies, Yang et al. [10] (2018) addressed the more general
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TSP with arbitrary neighborhoods (TSPN), which includes the CETSP as a
special case. They introduced a double-loop hybrid algorithm (HA), which
integrates particle swarm optimization and genetic algorithms. In their work,
a linear descending inertia weight particle swarm optimization is used in the
outer loop to explore continuous visiting positions, while the inner loop uses
a genetic algorithm to optimize the discrete visiting sequence. Given that
the HA algorithm is designed for the more general TSPN, the results on the
CETSP instances are not competitive with those obtained by recent CETSP
algorithms such as SZVNS [11], (lb/ub)Alg [12], and GA [3].

This review shows that the state-of-the-art in solving the CETSP has
continuously improved. However, none of the existing methods perform
consistently well on the well-known benchmark instances. In what follows,
we present a highly effective memetic algorithm to extend our ability to
better solve the CETSP.

3 Memetic algorithm for the CETSP

In this section, we introduce the proposed memetic algorithm for solving the
CETSP (MA-CETSP). Memetic algorithms [15,16] are a hybrid evolutionary
method that combines the genetic search framework with local optimization.
This approach has been shown to be highly effective and efficient in solving
various combinatorial optimization problems with a permutation
representation [17–21], such as the CETSP studied in this paper. Our
MA-CETSP algorithm includes three main original components: a dedicated
crossover tailored to the CETSP, a powerful VND-based local optimization
procedure, and a fitness-and-distance based population management
procedure. It also integrates a preprocessing procedure to reduce the input
problem and a mutation operator to promote diversity.

3.1 General approach

The CETSP is a complex problem that involves both discrete optimization
of finding the shortest tour like the TSP and continuous optimization of
finding optimal visiting positions. To handle the complexity of the problem,
we use a decomposition approach where we use genetic search to deal with
the discrete optimization part, focusing on exploring alternative sequences
on a set of fixed points, while we use local optimization to improve the
solution by addressing both the discrete and continuous optimization
through carefully designed operators.
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Algorithm 1 Main framework of MA-CETSP

1: Input: Instance I, Maximum number of generations Itermax, Patience for
stagnation generations ρ.

2: Output: The best solution S∗.
3: Iter ← 0, Iterst ← 0 /* current generation and stagnation generation

counter */
4: I ← Preprocessing(I) /* Section 3.2 */
5: P ← Initialization(I) /* Section 3.3.1 */
6: S∗ ← BestSolution(P ) /* record current best solution */
7: while Iter ≤ Itermax & Iterst ≤ ρ do
8: SA, SB ← RandomParents(P )
9: S ′ ←MSX(SA, SB) /* Section 3.3.2 */

10: S ′ ←Mutation(S ′) /* Section 3.3.3 */
11: S ′ ← V ND(S ′) /* Section 3.4 */
12: P ← PopulationManagement(S ′, P ) /* Section 3.3.4 */
13: Sbest ← BestSolution(P ) /* the best solution in this generation */
14: if f(Sbest) < f(S∗) then
15: S∗ ← Sbest /* update the best solution */
16: else
17: Iterst ← Iterst + 1 /* stagnation counter is incremented */
18: end if
19: Iter = Iter + 1
20: end while
21: return S∗

The proposed algorithm follows the general scheme of memetic algorithms,
as shown in Algorithm 1. After preprocessing the input instance (line 4), the
algorithm initializes a population of candidate solutions (line 5) and records
the current best solution S∗ (line 6). The algorithm then explores new
candidate solutions by iteratively generating offspring solutions with the
crossover operator. In each generation (lines 7-20), two parent solutions are
selected at random and recombined to generate an offspring solution (lines 8
and 9). The offspring is first mutated (line 10) to introduce more diversity,
and then improved using a VND-based local search (line 11). Finally, it is
used to update the population according to the specific update strategy (line
12). During the search, if a new best solution is found, it is recorded as the
new best solution S∗ (lines 14 and 15); otherwise, the stagnation generation
counter Iterst is incremented (lines 16 and 17). The algorithm stops and
returns the best solution S∗ found (line 21) when the given termination
condition is met (line 7), which is either a prefixed maximum number of
generations Itermax or a maximum patience ρ value for stagnation
generations Iterst. In the following sections, we describe the design of each
component of the proposed algorithm.
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3.2 Preprocessing

The proposed algorithm preprocesses the input instance before the execution
of the algorithm to reduce the problem size and improve computational
efficiency, like in [11,3].

(1) Remove targets that are dominated by the depot p0. If the disk
neighborhood of a target vi contains the depot p0, then vi will be visited
when visiting the depot and can be removed from the list of targets to
be visited.

(2) Remove targets that are dominated by other targets. If the disk
neighborhood of a target vi is fully contained within the disk
neighborhood of another target vj with a larger radius, then vj can be
removed because it will be visited when visiting vi. Note that this
condition only applies when targets have different radius disk
neighborhoods.

3.3 Genetic search

As mentioned previously, the genetic search in the proposed algorithm
primarily addresses the discrete optimization part concerning the visiting
sequence of fixed points. It includes population initialization based on
K-means, multi-step crossover, mutation, and population management.

3.3.1 K-means based population initialization

Inspired by the work of [22], the proposed algorithm adopts a K-means
clustering-based method to initialize the population, as shown in Algorithm
2. Firstly, all targets are grouped into K clusters based on their positions,
where the value of K is calculated based on the number of targets N . Next,
a random permutation of targets is generated for each cluster as the
sub-visiting sequence. Then, all clusters are connected randomly to form a
feasible visiting sequence. Finally, the exact visiting position pi for every
target vi is determined randomly in the polar coordinate system
pi = (xi, yi) = (Ri · cos Θi, Ri · sin Θi), where the angle Θi is generated in the
range [0, 2π] and the radius Ri is generated in the range [0, ri] with ri being
the disk neighborhood radius of target vi. This initialization method helps to
avoid excessively long edges in the initial solution and preserve the quality of
the solution.
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Algorithm 2 K-means based population initialization

1: Input: Targets V = {v1, v2, ..., vN}, Population size NP .
2: Output: Population P .
3: K ← b

√
N + 0.5c /* calculate K value */

4: C ← Kmeans(V,K) /* generate K clusters */
5: P ← ∅
6: while |P | < NP do
7: S ← ∅
8: for all c ∈ C do
9: T ← Permutation(c) /* generate a random permutation */

10: S ←Merge(S, T )
11: end for
12: S ← GeneratePositions(S) /* generate positions for targets in S */
13: P ← P ∪ S
14: end while
15: return P

3.3.2 Multi-step crossover

Crossover is a crucial operator in genetic algorithms. To be effective, the
crossover needs to be meaningful with respect to the optimization objective
and to allow an offspring solution to inherit good features from the parents
while maintaining some diversity [23]. Such a crossover helps the algorithm
to explore promising new search areas.

Algorithm 3 Multi-step crossover

1: Input: Parent solutions SA and SB.
2: Output: Offspring solution S.
3: Generate multigraph G = (V,E) from SA and SB

4: S ← ∅, Cg ← ∅ /* offspring solution and giant AB-cycle */
5: m← RandomInt(N/2) + 1 /* generate m as step length */
6: while ∃e ∈ E is not visited do
7: C ← ∅ /* an empty AB-cycle */
8: Sp ← RandomParent(SA, SB) /* choose a parent */
9: while C is not completed do

10: C ←MStep(G,Sp,m) /* take m steps along the edges in Sp */
11: Sp ← SwitchParent(SA, SB) /* switch to the other parent */
12: end while
13: T = ExtractSubtour(C) /* extract sub-tour from the AB-cycle */
14: S ←Merge(S, T ) /* merge T into S */
15: Cg ←Merge(Cg, C) /* merge C into Cg */
16: end while
17: S ← InheritPositions(S, SA, SB) /* inherit positions from parents */
18: return S

For the CETSP, we propose the multi-step crossover (MSX) operator to
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(a) Parent solutions
(b) Multigraph G from the parent
solutions

(c) First AB-cycle and sub-tour (d) Second AB-cycle and sub-tour

(e) Final tour for the offspring solution (f) Offspring solution

Fig. 2. An illustrative example for the multi-step crossover MSX

recombine two parent solutions randomly selected from the population. We
use this simple random parent selection technique, because the advanced
population management method (see Section 3.3.4) ensures that the
solutions of the population are always of high-quality and sufficiently
separated from each other.

Given two parent solutions SA and SB, one offspring solution is generated
through the following steps (see the pseudo-code shown in Algorithm 3 and
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the example in Figure 2).

(1) Construct a multigraph G = (V,E) such that V is the set of the N
targets and (i, j) ∈ E if at least one of the parent solutions SA and SB

goes from a point pi of target i to a point pj of target j. In the example of
Figure 2, Figure 2a shows the parent solutions SA and SB represented by
red and blue lines, respectively, while Figure 2b shows the corresponding
multigraph graph G. Note that in the multigraph G, there are two edges
between some pairs of targets (e.g., C-D, G-H...), indicating that the
parent solutions both go from a point of one target to a point of the
other target.

(2) Generate a random value for m (line 5 in Algorithm 3). This value
determines the step length in the AB-cycle generation process. m is set
to 2 in the examples presented in Figures 2c and 2d.

(3) Construct the TSP tour (lines 6-16 in Algorithm 3). Start with an empty
giant AB-cycle Cg and an empty TSP tour S. Then, iteratively repeat the
process of constructing a m-step AB-cycle C and a sub-tour T , merging
them with the giant AB-cycle Cg and TSP tour S, respectively, until all
edges in E are visited. At this point the complete TSP tour is obtained.
Note that additional edges might be introduced during the merging of
the sub-tour T with the TSP tour S.

To build a m-step AB-cycle C and its sub-tour T , start from an
arbitrary parent solution and a randomly selected vertex. If the current
giant AB-cycle Cg is empty, choose an arbitrary vertex; otherwise,
select, from the constructed giant AB-cycle, a vertex that has unvisited
edges. Then alternately take m edges from each parent solution SA and
SB until an AB-cycle is completed, which is characterized by 1)
returning to the starting vertex, and 2) having no unvisited edges
connected to the starting vertex. During the AB-cycle process, if there
is no accessible edge in the current parent and the current step count
mc < m, the following strategies are applied:
(a) If mc = 0, borrow one edge from another parent and continue taking

m steps in the current parent.
(b) If mc > 0, stop the exploration in the current parent and switch to

the other parent.
From the AB-cycle, a sub-tour T is extracted as a partial tour by
eliminating the edges according to the order of visit.

We now illustrate this process using the example of Figure 2. Figure
2c shows the first AB-cycle and its sub-tour. This AB-cycle starts from
a random vertex (I) and a random parent (the blue parent). Then with
the step length m = 2, two blue edges I-J-H are added to the AB-cycle,
followed by the addition of two red edges H-I-J from the red parent. At
this point, we should switch to the blue parent to continue from vertex
J. However, since there is no blue edge connected to J, the strategy 3a
is used to borrow a red edge J-K and then continue with the blue edge
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K-I. The complete AB-cycle I-J-H-I-J-K-I is then obtained as we return
to the initial vertex I and I has no unvisited edges. Finally, we eliminate
the edges (indicated by dotted lines) based on the order of visit, resulting
in the first sub-tour K-I-J-H. This AB-cycle and its sub-tour serve as the
first non-empty giant AB-cycle Cg and (partial) TSP tour S, since Cg

and S are initialized as empty.
Continuing with the example in Figure 2d, another AB-cycle is

generated starting from the vertex K, which is a vertex with unvisited
edges in the giant AB-cylce. The new AB-cycle traverses the red and
blue edges (with m = 2) from SA and SB alternatively: K-L-O (red),
O-A-B (blue), B-C-D (red), D-E-G (blue), G-H (red), H-G (blue),
G-F-E-D (red), D-C-F-B (blue), B-A-O (red), O-L-K (blue). The blue
edge H-G and red edge G-F are taken based on the strategy 3b, while
the red edge E-D and blue edge F-B are taken according to the strategy
3a. Dotted lines indicate the elimination of edges based on the order of
visit. Notably, edges G-H and H-G are excluded as vertex H has been
visited in the first AB-cycle shown in Figure 2c. The resulting sub-tour
is K-L-O-A-B-C-D-E-G-F. After visiting all edges, the construction of
AB-cycles ends, and the final TSP tour (as shown in Figure 2e) is
achieved by merging the obtained sub-tour with the current partial TSP
tour S and possibly introducing new edges (the black edge F-H in
Figure 2e).

(4) Convert the TSP tour to a CETSP tour by inheriting visiting positions
of the parent solutions (line 17 in Algorithm 3). Throughout the above
steps, every vertex in the offspring tour that represents a target belongs to
a corresponding parent solution, so its exact visiting position is inherited
from that parent. The final offspring solution is constructed. Figure 2f
shows the final offspring solution of our illustrative example.

Our multi-step crossover is inspired by the crossover presented in [3]
(referred to as GAX) and the Edge Assembly Crossover (EAX) [24]. GAX is
a type of multi-point crossover, which randomly cuts off parent solutions and
introduces arbitrary new edges that are not derived from the parents and
can be considered generally harmful [25]. In contrast, the MSX adopts the
concept of AB-cycles from EAX and constructs the offspring by focusing on
edges instead of points. Unlike EAX, which alternates between parent
solutions for edge selection, MSX consecutively selects m edges from each
parent. Although MSX cannot completely avoid introducing new edges (e.g.,
the edge F-H in Figure 2e), MSX can better capture the connectivity
between the points in a solution, leading to more meaningful and feasible
offspring solutions for our problem. In addition, MSX generates diversified
solutions by retaining good features from both parents, allowing the
algorithm to explore new search regions, while maintaining a low
computational complexity of O(n).

12



3.3.3 Mutation

Mutation is a useful tool to maintain diversity in the population. The proposed
algorithm uses a random Swap operator to exchange the order of two visited
points in the visiting sequence of the solution. The mutation is applied with
the mutation probability p = Iterst/2ρ, where ρ is the patience parameter for
stagnation generation and Iterst is the number of stagnation generations.

3.3.4 Population management

To maintain the balance between intensification and diversification, the
proposed algorithm uses a population management mechanism that carefully
controls the diversity of the population [26,27]. First, the graph edit distance
d [28] is used to measure the dissimilarity between two solutions. The main
idea is to evaluate the unmatched edge ratio. Specifically, the distance is
defined as 100% × (1 − |Ec|/|E|), where |E| is the number of edges equal to
the number of target points N , and |Ec| represents the number of common
edges between two solutions. The distance dP (S) of a solution S from the
population P is then defined as the minimum distance between S and all
other solutions in the population, as shown in equation (2).

dP (S) = min
Si∈P

d(S, Si), Si 6= S (2)

ψ(S) =
Rankobj(S) + λ ∗Rankdist(S)

|P |
(3)

The fitness function ψ of equation (3) is used to assign a fitness score to each
solution of P . The fitness score ψ(S) considers both the rank in terms of
the objective value (Rankobj(S)) and the distance (Rankdist(S)), while λ is a
coefficient to adjust the influence of the distance on the fitness score.

Note that the lower the fitness score, the better the fitness of the solution. The
fitness score is used to update the population in the proposed algorithm. The
population is allowed to expand in NP/2 generations and then it is reduced
back to the original size NP based on the fitness scores.

Finally, the proposed algorithm uses a distance threshold µ to prevent the
solutions in the population from becoming too similar. When inserting a new
solution into the population, its distance to all existing solutions in the
population is calculated, and the solution is only inserted if its distance to
the population is no smaller than µ. This strategy ensures a guaranteed
diversity of the population and reduces the risk of premature convergence.
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3.4 Variable neighborhood descent for local optimization

Local optimization is a crucial component of the proposed algorithm as it
intensively explores the search space to find high-quality local optimal
solutions. To achieve this, we use Variable Neighborhood Descent (VND),
more precisely the pipe VND [29], which sequentially applies a set of local
search operators in a pipeline fashion. Specifically, we use sequence-only
optimization (LKH solver), position-only optimization (disk-constrained
position optimization, SOCP), and joint optimization of sequence and
position (Joint-Relocate, Joint-Swap). Among these local search operators,
LKH solver and SOCP are from the literature while disk-constrained
position optimization (DCPO) and joint optimization operators are
introduced in this work. These operators are executed in a specific order, as
outlined in Algorithm 4.

Algorithm 4 Variable neighborhood descent based local search

1: Input: The solution which will be improved S.
2: Output: The improved solution S ′.
3: S ′ = DCPO(S) /* Section 3.4.3 */
4: S ′ = LKH(S ′) /* Section 3.4.1 */
5: S ′ = DCPO(S) /* Section 3.4.3 */
6: S ′ = JointRelocate(S) /* Section 3.4.4 */
7: S ′ = JointSwap(S) /* Section 3.4.4 */
8: S ′ = SOCP (S) /* Section 3.4.2 */
9: return S ′

Since the optimization of exact visiting positions in continuous space is
computationally complex, we firstly adopt a strategy where we optimize the
visiting sequence while fixing the visiting positions and vice versa, which
means that we perform position-only optimization and sequence-only
optimization alternatively (DCPO - LKH solver - DCPO). It is worth noting
that DCPO is executed twice. The first one optimizes the visiting positions
of the offspring solution generated by the crossover and serves as a
pre-processing step for the LKH solver. The second one optimizes the
visiting positions in the sequence provided by the LKH solver and serves as a
pre-processing step for the following joint optimization operators. We then
execute the joint optimization of sequence and position with Joint-Relocate
and Joint-Swap to further improve the solution. Finally, we obtain the final
solution using SOCP with the visiting sequence found before. The designed
search operators and search strategy ensure that a thorough and intensive
exploitation, resulting in a more refined and accurate solution.
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3.4.1 LKH solver

The LKH solver [30] is a state-of-the-art TSP solver. We utilize it to optimize
the sequence of fixed visiting positions, as in the TSP. As the LKH solver only
accepts integer type data, we multiply all coordinate data by 1000 to maintain
accuracy.

To further enhance the efficiency of LKH solver, we have designed a strategy to
reduce the problem size. Since the squeeze strategy employed in Section 3.4.3
may result in an input solution with many redundant points whose coordinates
are the same, we removed these redundant points before applying the LKH
solver. These removed points are then added back to the optimized solution.

3.4.2 Second-order cone programming

The second-order cone programming (SOCP) [13] was first utilized for the
CETSP in [5]. Given a visiting sequence, the SOCP model can be built to find
the optimal exact visiting positions in polynomial time. The SOCP model can
be formulated as follows:

min
∑

di (4)

subject to

dxi = xi − xi+1 ∀i ∈ 0, ..., N (5)

dyi = yi − yi+1 ∀i ∈ 0, ..., N (6)

dx2i + dy2i ≤ d2i ∀i ∈ 0, ..., N (7)

(x̄i − xi)2 + (ȳi − yi)2 ≤ r2i ∀i ∈ 0, ..., N (8)

di ≥ 0 ∀i ∈ 0, ..., N (9)

xi, yi, dxi, dyi ∈ R ∀i ∈ 0, ..., N (10)

The objective is to minimize the total distance of all connected visiting
points, as shown in Formula (4), where di represents the Euclidean distance
between the connected visiting points pi and pi+1, where dxi and dyi are the
decompositions of the distance on the x-axis and y-axis, respectively. They
are calculated according to Formulas (5) and (6). It is worth noting that
SOCP formulations require constraints with quadratic terms to be expressed
as inequalities instead of equalities. Hence, the distance di is defined with an
inequality in Formula (7). Additionally, Formula (8) constrains the
coordinates (xi, yi) of visiting point pi to be within the disk neighborhood of
the target vi with coordinates (x̄i, ȳi), where ri is the radius of the disk.
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3.4.3 Disk-constrained position optimization

SOCP is an effective approach to find the optimal positions in polynomial
time for a given visiting sequence of points. However, it is computationally
expensive. Therefore, we propose a disk-constrained position optimization
(DCPO) based on the greedy algorithm in [11] as a replacement for the
SOCP before and after the LKH solver to optimize the visiting positions.
This approach can significantly reduce the computation time while still
providing a good-quality solution.

The core idea of the approach is based on the geometric relationship between
circles and points. Given any three consecutive visiting points A,P,B, let O
be the center of the disk where P is located, we can fix A and B to find
the best position of P satisfying the constraints. There are several cases to
consider (as shown in Figure 3).

If both A and B are inside the disk O, any point in the line segment AB can
be selected as P . We take a squeeze strategy here, which means we prefer that
more points can be integrated together. Thus, we choose A as P (Figure 3a).
If only one of them is inside the disk, we choose the one inside (Figure 3b).

If both A and B are outside the disk O, there are two subcases. The first is
that the line segment AB intersects the disk O, in which case we take the only
intersection point or the midpoint of the two intersection points as P (Figure
3c). The second is when the line segment AB does not intersect the disk O,
and the problem becomes the well-known mathematical problem of Alhazen’s
problem [31]. The objective is to find the point P on the circumference of the
disk O such that the sum AO + BO is minimized (Figure 3d). To solve this
problem, we use a binary search algorithm to obtain an approximate position.
We represent the sum AO + BO as a function ξ = d(A,O) + d(B,O), where
d(∗) returns the Euclidean distance between two points. As the function ξ
changes periodically as the point P moves around the circumference of O,
we approximate the position of P using the binary search algorithm so that
the derivative of the function ξ′ = 0 in the interval where the function ξ first
decreases and then increases.

3.4.4 Joint-Relocate and Joint-Swap

The above operators only consider either the visiting sequence or the visiting
position. To further improve the solution, we design the operators
Joint-Relocate and Joint-Swap that take into account both the sequence and
position. The Joint-Relocate operator removes a point from the sequence and
inserts it into a better position, as illustrated in Figure 4a, while the
Joint-Swap operator exchanges the visiting order of two disconnected points,
as shown in Figure 4b. Both of them will simultaneously update positions of
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(a) Both A and B are inside the
disk.

(b) Either A or B is inside the
disk.

(c) Both A and B are outside
the disk and line segment AB
intersects with the disk boundary.

(d) Both A and B are outside
the disk and line segment AB
does not intersect with the disk
boundary.

Fig. 3. Cases in disk-constrained position optimization

the moved points. They employ a best-position search strategy for every
point within κ-nearest-neighbors that is a kind of granular search [32], which
means the best move in the κ-nearest-neighbors will be taken for every point
and the search repeats until no improvement can be found. Additionally, the
κ-nearest-neighbors are dynamically updated based on the historical visiting
positions for each target.

These two operators take the position into account by recalculating the
exact position of a point according to the principles of the DCPO presented
in Section 3.4.3. However, the binary search algorithm used in the case of
Alhazen’s problem [31] for searching a huge neighborhood is of high
complexity. To address this, we propose an alternative strategy.

It can be proved geometrically that the optimal point P ∗ is the point of
tangency between the disk O and an ellipse with focus at A and B, which is
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(a) Joint-Relocate

(b) Joint-Swap

Fig. 4. Joint optimization operators

Fig. 5. Approximate strategy for joint optimization

tangent to the disk O. Therefore, according to the features of ellipse, as
shown in Figure 5, the straight line OM ′ is the bisector of ∠AP ∗B, which
can be approximated using the midline OM of ∠AOB. We take the
intersection point of the midline OM with the circumference of the disk O as
P . With this strategy, the move evaluation can be done in constant time and
greatly improves computational efficiency.
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4 Computational results

To evaluate the proposed algorithm, we test it on benchmark instances and
compare it with the state-of-the-art algorithms in the literature.

4.1 Benchmark instances

The proposed algorithm was evaluated on the set of 62 popular benchmark
instances from [5] with different sizes from 10 to 1000 targets 1 . These instances
were obtained from three sources: TSBLIB [33], Teams, and Geometric.

• The TSBLIB subset consists of 28 instances generated from 7 graphs
(d493, dsj1000, kroD100, lin318, pcb442, rat195, and rd400 ) with sizes
ranging from 100 to 1000 nodes. These graphs comprise two with
uniformly generated nodes (d493, dsj1000 ), two with clustered nodes
(kroD100, lin318 ), two with drill-press problems (pcb442, rat195 ), and
one with nodes arranged in rough lines (rd400 ).
• The Teams subset consists of 14 instances from 7 graphs whose names

contain team or bonus discussed in [1], including three graphs with
uniformly generated points and four graphs with clustered points.
• The remaining 20 instances belong to the Geometric subset and are from

[5]. This set includes 9 Bubbles instances where the nodes are arranged in
overlapping concentric squares, 5 ConcentricCircles instances where the
nodes are arranged in concentric circles, 5 RotatingDialonds instances
where the nodes are arranged in non-overlapping concentric squares, and
one chaoSingleDep instance based on the problem given in [34].

Overlap ratio (OR) is a metric introduced in [5] to reflect the characteristics
of CETSP instances and to estimate the potential improvement over the TSP
solution. In this study, we employ the OR calculation method proposed in [3].
For a given CETSP instance, let L represent the length of the smallest side
of the rectangle that encloses all the targets, the overlap ratio is calculated
as the ratio between the average value of the targets’ radii and L, i.e. OR =∑N

i=1
ri

N×L . Based on their characteristics of overlap ratios and disk radii, these
62 benchmark instances are categorized into three groups.

• The first group (G1) consists of 27 instances with different overlap ratios
(OR), where the radii of targets are identical in an instance but the
overlap ratios differ among instances.

1 The benchmark instances are available at https://drum.lib.umd.edu/handle/
1903/9822
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• The second group (G2) comprises 21 instances with fixed overlap ratios,
where the radii of targets are identical in an instance as well, while the
overlap ratios are fixed and equal to 2% (G2 0.02), 10% (G2 0.1), and
30% (G2 0.3).
• The third group (G3) comprises 14 instances with arbitrary radii, where

targets have different radius.

We will present our computational results based on this categorization.

4.2 Experimental protocol and parameters tuning

The proposed algorithm was implemented in C++ and the experiments were
conducted on a computer equipped with an AMD-Opteron-4184 2.8 GHz
processor and 4 GB RAM, running Linux. Gurobi 10 [35] was utilized to
solve the second-order cone programming (SOCP) within the proposed
algorithm.

The algorithm incorporates five parameters: population size NP , maximum
number of generations Itermax, coefficient of the fitness function λ, distance
threshold µ, size of nearest neighbors κ. To determine a suitable setting for
these parameters, we employed the automatic parameter tuning tool IRACE
[36]. 9 instances from different groups were randomly selected as training
instances, and the tuning budget was set to 1000.

Table 2
Parameters tuning results

Parameters Data type Candidate values Best configuration

NP categorical {10, 20, 30, 40, 50} 20

Itermax categorical {1000, 2000, 3000, 4000, 5000} 5000

λ real (0, 1) 0.96

µ integer (0, 10) 5

κ categorical {10, 20, 30, 40, 50} 50

Table 2 provides the results of parameters tuning, including the data type,
candidate values, and the best configuration for each parameter identified by
IRACE. For our experiments, we consistently used the values of the
parameters shown in Table 2. Additionally, considering the correlation
between the patience for stagnation generations ρ and the maximum number
of generations Itermax, we experimentally set ρ = Itermax/10. We make sure
that the stopping criterion used in our algorithm is comparable to that of
the main reference algorithm GA [3]. We performed 20 independent runs for
each instance.
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4.3 Reference algorithms

For our comparative study, we use as reference methods the best-known
solutions (BKS) ever reported in the literature and three best-performing
state-of-the-art algorithms: SZVNS (2019) [11], which uses variable
neighborhood search to explore search operators similar to those used in our
algorithm, (lb/ub)Alg (2020) [12], which still holds several BKS, and the
most recent GA (2022) [3], which holds the BKS for most benchmark
instances.

In [11], SZVNS was compared with HA [10] and Mennell’s heuristics
proposed in [5] using the 62 benchmark instances presented in Section 4.1
and the published results in [10,5]. The results showed that SZVNS generally
outperformed HA and Mennell’s heuristics, and demonstrated its ability to
produce excellent results in a remarkably short running time.

In [12], (lb/ub)Alg used the same 62 benchmark instances to present a
comparative study with SZVNS [11], HA [10], and some selected Mennell’s
heuristics from [5]. Comparing the published results of these reference
algorithms, the results showed the superior overall performance of
(lb/ub)Alg over HA and Mennell’s heuristics in both objective values and
running time. Furthermore, (lb/ub)Alg demonstrated competitive
competence with SZVNS, albeit with slightly slower execution.

For the latest GA [3], it was compared with HA [10], SZVNS [11], and
(lb/ub)Alg [12] on the 62 benchmark instances presented in Section 4.1. The
comparative study was also based on the results published in the literature,
while mentioning the CPU models used by the compared algorithms. The
experiments showed that GA completely dominates the reference algorithms,
especially HA, in terms of objective values, although it is generally slower in
terms of running time.

From these previous studies, it is clear that SZVNS [11], (lb/ub)Alg, [12] and
GA [3] dominate other CETSP algorithms in the literature, hold together the
current best-known results for the 62 benchmark instances, and represent the
state of the art for solving the CETSP. As a result, we use them as our reference
methods in comparative study. Moreover, to ensure a meaningful comparative
study, we follow the practice for comparative studies adopted in [11,12,3]. That
is, we test our algorithm on the same set of 62 benchmark instances presented
in Section 4.1 and use the published results as our reference objective values.

The experimental environments used by the reference algorithms are as
follows. SZVNS [11] was programmed in C++ and executed on a laptop with
a 2.6 GHz processor and 4 GB RAM. (lb/ub)Alg [12] was programmed in
Java and run on a machine with an Intel i5 2.3 GHz processor and 8 GB
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RAM. GA [3] was programmed in Java and run on a Windows 10 Home
machine with an AMD Ryzen 73750H 2.3 GHz processor and 16 GB RAM.

To account for processor differences, we introduce a time conversion ratio γ to
harmonize the timing information. Finally, to facilitate future experimental
comparisons, we are taking the groundbreaking step of releasing the source
code of our algorithm to the community 2 , filling the current gap that there
is no publicly available code for the CETSP.

Table 3
Processor information for MA-CETSP, GA [3], (lb/ub)Alg [12], and SZVNS [11]
and time conversion ratio γ.

Algorithm Processor Base frequency Launch date CPU mark γ

MA-CETSP AMD Opteron 4184 2.80 GHz Q3 2011 2872 1.00

GA AMD Ryzen 7 3750H 2.30 GHz Q2 2019 8210 2.86

(lb/ub)Alg

Intel Core i5-8259U 2.30 GHz Q2 2018 7979 2.78

Intel Core i5-8300H 2.30 GHz Q2 2018 7473 2.60

Intel Core i5-8600T 2.30 GHz Q2 2018 9304 3.24

Intel Core i5-7360U 2.30 GHz Q1 2017 3895 1.36

Intel Core i5-6350HQ 2.30 GHz Q1 2016 4255 1.48

Avg 6581 2.29

SZVNS

Intel Core i5-7300U 2.60 GHz Q1 2017 3677 1.28

Intel Core i7-6770HQ 2.60 GHz Q1 2016 7111 2.48

Intel Core i5-6440HQ 2.60 GHz Q3 2015 5094 1.77

Intel Core i7-6600U 2.60 GHz Q3 2015 3457 1.20

Intel Core i7-6700HQ 2.60 GHz Q3 2015 6525 2.27

Intel Core i7-5700EQ 2.60 GHz Q2 2015 5803 2.02

Intel Core i7-4720HQ 2.60 GHz Q1 2015 5752 2.00

Intel Core i7-5600U 2.60 GHz Q1 2015 3022 1.05

Avg 5055 1.76

Table 3 shows the processor information for the computers used to run our
algorithm and the reference algorithms. The time conversion ratio γ (last
column) is computed as the ratio of CPU scores obtained from PassMark 3 ,
a reputable CPU benchmarking platform, comparing the processor used in
our experiments with the processors used by the reference algorithms. Given
the lack of exact processor models for the (lb/ub)Alg and SZVNS, we use
equivalent processors based on processor information and the dates when their
papers were submitted for publication.

2 The source code of our MA-CETSP algorithm and our solutions for the
benchmark instances are available at https://github.com/leizy1008/MA-CETSP
3 https://www.passmark.com/
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4.4 Computational results and comparisons

We present a summary of the computational results for the different groups
of benchmark instances and provide a general overview of the performance of
our MA-CETSP algorithm. We consider the best results among 20 runs. The
summary is presented in Table 4. The line #Instances indicates the number
of instances in the corresponding group, and the line #Optima shows the
number of instances whose optimal solutions are known. The lines #Wins,
#Ties, and #Losses respectively indicate the number of instances where
MA-CETSP achieves better, same, and worse results compared to the
references. Furthermore, to confirm the statistical difference in the results,
we conducted a Wilcoxon signed-rank test [37] with a confidence level of
0.05, and the corresponding p-values are shown in the table.

Table 4 clearly shows that the MA-CETSP algorithm provides comparable
or better results compared to BKS and all reference algorithms. MA-CETSP
obtained all 23 known optimal values and 30 new best upper bounds out of the
remaining 39 instances. The p-values (<< 0.05) indicates that the proposed
algorithm statistically performs better than the reference algorithms.

Table 4
Summary of comparative results of MA-CETSP against BKS, GA [3], (lb/ub)Alg
[12], and SZVNS [11].

Group G1 G2 0.02 G2 0.1 G2 0.3 G3 Total

#Instances 27 7 7 7 14 62

#Optima 9 0 4 7 3 23

MA-CETSP vs BKS

#Wins 13 6 3 0 8 30

#Ties 14 1 4 7 6 32

#Losses 0 0 0 0 0 0

p-value - - - - - 7.98E-08

MA-CETSP vs GA

#Wins 13 6 6 0 8 33

#Ties 14 1 1 7 6 29

#Losses 0 0 0 0 0 0

p-value - - - - - 1.32E-08

MA-CETSP vs (lb/ub)Alg

#Wins 17 7 5 1 12 42

#Ties 10 0 2 6 2 20

#Losses 0 0 0 0 0 0

p-value - - - - - 8.75E-10

MA-CETSP vs SZVNS

#Wins 21 6 7 5 10 49

#Ties 6 1 0 2 4 13

#Losses 0 0 0 0 0 0

p-value - - - - - 2.36E-11

Tables 5-7 show detailed comparative results on the three groups of instances
between MA-CETSP and other heuristic approaches including GA [3],
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(lb/ub)Alg [12], and SZVNS [11]. In each table, column Instance shows the
names of the instances. Note that the instances with ∗ indicate that their
optimal solutions are known and given by [7]. Columns N and OR
respectively represent the target size and overlap ratio of the corresponding
instance. Column BKS indicates the best-known solutions in the literature.
Column f shows the best objective value achieved by each algorithm.
Column Time reports the total running time in seconds for each algorithm.
For the reference algorithms, column γ×Time reports the converted time
with the time conversion ratio γ given in Table 3. Column Gap shows the
percentage gap between the best value obtained by each algorithm and the
BKS for that instance, which is calculated according to the following
formula: 100% × f−BKS

BKS
. Thus a negative gap indicates an improved best

solution.

For the proposed algorithm, we report both the best and average values
obtained over 20 independent runs. We also report the running time in
seconds to reach the best solution in column t and average objective value
with standard deviation in column f ± sd. Finally, it should be noted that
due to the differences in the programming languages and computers used by
the compared algorithms, the timing information is provided only for
indicative purposes.

Table 5 presents the results for the 27 instances of Group 1 with different
overlap ratios, where each instance has the targets with same radius but
there are different overlap ratios among them. Our MA-CETSP algorithm
yields the best results for all instances, by achieving the BKS in the
literature and improving the remaining instances. Notably, significant
improvements are obtained for bubbles7 (2.01% gap), bubbles8 (3.33%
improvement), bubbles9 (4.91% improvement), and team4 400 (2.28%
improvement). The overall average values are also competitive, with 9 out of
27 instances improving the BKS. The algorithm achieves these results in a
short computation time. Furthermore, the standard deviations for almost all
instances are very low, with the exception of bubbles9, which is the only
instance with a standard deviation over 10. The high standard deviation
value of this instance can be attributed to its large number of targets (594)
and low overlap ratio value (OR=4%). Table 6 displays the results for the 21
instances of of Group 2 with different overlap ratios, generated from 7
TSPLIB instances with low (2%), moderate (10%), and high (30%) overlap
ratios respectively. Our MA-CETSP algorithm achieves 9 new best upper
bounds, with 3.11% improvement for dsj1000 (OR=2%) and 2.23%
improvement for pcb442 (OR=10%). Moreover, we observe that a high
overlap ratio makes the problem easier to solve. When the overlap ratio
approaches 0, the problem reduces to the standard TSP. All instances with
an overlap ratio of 30% can be solved to optimality in a short time, while
instances with an overlap ratio of 2% are more challenging and require
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longer running time. Table 7 presents the results for the 14 instances of of
Group 3 with arbitrary radii, where each instance contains targets with
different radii. Our MA-CETSP algorithm finds new best upper bounds for 8
instances, including the challenging bonus1000rmdRad (1.55% improvement)
and team4 400rdmRad (1.61% improvement).
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Finally, we performed additional experiments in terms of running time to
compare MA-CETSP with each reference algorithm, including GA,
(lb/ub)Alg, and SZVNS, to provide a comprehensive evaluation of the
overall performance of the proposed algorithm. In these experiments, we
used, as our termination time, the running time reported in the literature for
each reference algorithm and for each instance, which is a more stringent
termination condition considering their better processor performance as
shown in Table 3. We ran our algorithm 20 times to solve each instance and
report the best results. The results are presented in Table 8. In this table,
column f reports the objective value of MA-CETSP, while fref presents the
objective value of the reference algorithms. Column Gap is calculated using
the formula 100%× f−fref

fref
. Column Time recalls the given termination time,

which is also the reported running time of the reference algorithms. The last
two rows present the average statistical data and the #Wins/Ties/Losses,
indicating the number of instances where MA-CETSP achieved better,
equal, and worse results compared to the references. It can be seen that, in
spite of the stringent termination conditions, the proposed algorithm shows a
consistently competitive performance.

In summary, the extensive experiments conducted confirm that MA-CETSP
performs remarkably well on these three sets of benchmark instances,
demonstrating its ability to find high quality solutions.

5 A real-world case

The CETSP has a number of practical applications. In order to demonstrate
the practical applicability of the proposed algorithm in real-world scenarios,
we present a practical case study, which concerns laser welding robot path
planning, as discussed in [4]. Spot welding robots are widely used in various
industries such as machinery, aerospace, and automobile manufacturing. An
effective path planning algorithm for welding robot can significantly enhance
productivity and reduce production costs.

In the context of the industrialized car door welding problem, the robot’s task
is to weld a set of target points to secure the car door within an allowed range
of deviation. Clearly, this problem can be viewed as a CETSP by treating
the welding targets, along with their allowed range of deviation, as the targets
with disk neighborhoods in the CETSP, we can then apply CETSP techniques
to find an optimized feasible welding path for the robot.

In [4], a two-phase method was proposed to tackle this problem. The first
phase aims to find a visiting sequence of the welding targets, by solving a
proposed integer programming model, while the second phase determines the
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Table 8
Comparative results of experiments with termination time for GA [3] vs MA-
CETSP, (lb/ub)Alg [12] vs MA-CETSP, and SZVNS [11] vs MA-CETSP for all
62 instances.

Instance
GA vs MA-CETSP (lb/ub)Alg vs MA-CETSP SZVNS vs MA-CETSP

fref f Time Gap fref f Time Gap fref f Time Gap

bonus1000 411.85 382.87 8786.91 -7.04% 387.13 451.10 116.63 16.52% 403.06 385.93 1109.67 -4.25%

bubbles1 349.14 349.14 2.21 0.00% 349.14 349.14 11.42 0.00% 349.14 349.14 0.24 0.00%

bubbles2 428.28 428.28 2.22 0.00% 428.28 428.28 22.68 0.00% 428.28 428.28 1.09 0.00%

bubbles3 529.96 532.67 7.29 0.51% 529.96 529.96 130.17 0.00% 532.21 559.47 2.51 5.12%

bubbles4 805.46 806.55 27.84 0.14% 805.56 803.07 130.11 -0.31% 825.33 825.06 9.53 -0.03%

bubbles5 1038.16 1048.30 45.07 0.98% 1061.64 1036.02 116.63 -2.41% 1073.43 1047.41 37.37 -2.42%

bubbles6 1229.66 1222.95 176.16 -0.55% 1313.02 1221.75 217.20 -6.95% 1263.68 1378.72 14.00 9.10%

bubbles7 1607.31 1577.94 809.15 -1.83% 1650.04 1580.87 304.46 -4.19% 1639.33 1690.83 50.29 3.14%

bubbles8 1946.72 1883.89 1230.27 -3.23% 2021.27 1889.28 416.30 -6.53% 1972.99 2016.04 110.30 2.18%

bubbles9 2259.22 2149.17 2655.50 -4.87% 2413.31 2244.81 296.14 -6.98% 2330.31 2357.59 168.18 1.17%

chaoSingleDep 1039.61 1039.61 10.69 0.00% 1039.61 1039.61 89.69 0.00% 1039.63 1039.61 12.67 0.00%

concentricCircles1 53.16 53.16 0.94 0.00% 53.16 53.16 6.43 0.00% 53.16 53.16 0.10 0.00%

concentricCircles2 153.13 155.67 2.77 1.66% 154.81 153.13 51.96 -1.08% 154.88 158.23 0.27 2.16%

concentricCircles3 270.04 272.13 2.79 0.77% 272.69 270.01 362.24 -0.98% 272.49 272.32 1.28 -0.06%

concentricCircles4 452.64 455.99 12.56 0.74% 466.52 452.17 98.86 -3.08% 461.36 459.69 5.82 -0.36%

concentricCircles5 632.99 636.90 26.04 0.62% 659.36 632.98 351.21 -4.00% 647.84 645.19 10.06 -0.41%

rotatingDiamonds1 32.39 32.39 0.80 0.00% 32.39 32.39 7.06 0.00% 32.39 32.39 0.12 0.00%

rotatingDiamonds2 140.48 140.48 1.94 0.00% 140.48 140.48 176.13 0.00% 140.48 140.48 0.54 0.00%

rotatingDiamonds3 380.88 380.88 10.60 0.00% 380.89 380.88 615.47 0.00% 380.89 380.88 8.81 0.00%

rotatingDiamonds4 770.66 770.66 41.85 0.00% 772.00 770.66 271.20 -0.17% 770.68 770.68 18.49 0.00%

rotatingDiamonds5 1510.75 1510.75 376.41 0.00% 1531.74 1510.75 210.99 -1.37% 1510.88 1511.08 53.62 0.01%

team1 100 307.34 307.41 3.86 0.02% 307.34 307.34 78.86 0.00% 307.34 308.72 3.20 0.45%

team2 200 246.68 246.92 23.75 0.10% 246.68 246.72 36.06 0.02% 246.69 247.85 16.21 0.47%

team3 300 464.20 462.67 99.30 -0.33% 476.43 463.33 56.88 -2.75% 465.80 468.24 31.48 0.52%

team4 400 685.52 669.83 428.43 -2.29% 702.69 678.77 120.25 -3.40% 698.05 697.76 43.47 -0.04%

team5 499 700.50 693.81 995.23 -0.96% 708.45 694.30 828.33 -2.00% 703.38 701.02 88.17 -0.33%

team6 500 225.22 225.22 518.12 0.00% 225.22 261.06 8.15 15.91% 226.18 225.22 719.32 -0.43%

d493 or2 202.23 199.24 864.47 -1.48% 205.39 199.61 247.04 -2.81% 205.74 202.18 69.72 -1.73%

dsj1000 or2 938.71 911.07 20325.36 -2.94% 955.57 913.15 998.99 -4.44% 943.83 963.25 151.77 2.06%

kroD100 or2 159.04 159.13 9.05 0.06% 160.09 159.04 167.14 -0.66% 159.04 159.26 9.34 0.14%

lin318 or2 2838.54 2817.50 174.28 -0.74% 2902.53 2816.99 292.90 -2.95% 2842.32 2826.32 31.17 -0.56%

pcb442 or2 322.54 320.08 826.50 -0.76% 377.51 319.89 805.44 -15.26% 325.02 322.92 52.88 -0.64%

rat195 or2 158.32 159.05 55.23 0.46% 166.51 157.97 569.55 -5.13% 160.06 162.02 11.16 1.23%

rd400 or2 1032.04 1019.21 686.27 -1.24% 1085.75 1019.42 662.60 -6.11% 1039.77 1029.15 27.70 -1.02%

d493 or10 101.31 100.72 345.37 -0.58% 100.72 105.05 33.87 4.30% 102.92 100.89 142.94 -1.98%

dsj1000 or10 376.87 373.76 3951.05 -0.82% 374.06 381.63 83.00 2.02% 393.06 373.78 356.79 -4.90%

kroD100 or10 89.67 90.00 3.92 0.37% 89.67 89.67 193.44 0.00% 89.92 90.05 1.99 0.14%

lin318 or10 1404.89 1397.32 74.77 -0.54% 1405.07 1413.75 26.50 0.62% 1414.66 1400.83 65.98 -0.98%

pcb442 or10 145.82 142.70 466.16 -2.14% 146.03 143.27 224.95 -1.89% 152.73 147.16 54.99 -3.64%

rat195 or10 68.14 68.52 21.31 0.56% 68.14 67.99 95.19 -0.22% 68.32 70.27 9.47 2.85%

rd400 or10 458.41 452.81 612.93 -1.22% 460.21 455.43 101.27 -1.04% 474.78 458.29 96.98 -3.47%

d493 or30 69.76 69.76 233.54 0.00% 69.79 69.99 2.72 0.29% 69.90 69.76 58.07 -0.20%

dsj1000 or30 199.95 199.95 1181.44 0.00% 199.95 212.42 6.89 6.24% 203.07 199.95 316.41 -1.54%

kroD100 or30 58.54 58.54 2.20 0.00% 58.54 58.54 0.37 0.00% 58.54 58.54 4.58 0.00%

lin318 or30 765.96 765.96 29.69 0.00% 765.96 771.90 1.21 0.77% 766.16 765.96 49.01 -0.03%

pcb442 or30 83.54 83.54 121.23 0.00% 83.54 90.53 0.58 8.36% 83.80 83.54 196.54 -0.31%

rat195 or30 45.70 45.70 6.49 0.00% 45.70 45.70 0.33 0.00% 45.70 45.70 19.01 0.00%

rd400 or30 224.84 224.84 67.12 0.00% 224.84 247.61 4.19 10.13% 224.98 224.84 74.86 -0.06%

bonus1000rdmRad 932.07 916.38 480.23 -1.68% 955.41 916.38 728.55 -4.09% 938.27 962.03 3.93 2.53%

d493rdmRad 134.28 134.74 5.58 0.34% 134.74 134.23 93.34 -0.38% 135.02 134.74 0.26 -0.21%

dsj1000rdmRad 624.75 625.52 25.86 0.12% 625.92 624.60 286.23 -0.21% 625.25 634.68 2.73 1.51%

kroD100rdmRad 141.83 142.19 6.97 0.25% 142.39 141.83 46.25 -0.39% 141.83 141.83 87.16 0.00%

lin318rdmRad 2047.42 2047.87 8.71 0.02% 2055.77 2047.11 59.52 -0.42% 2082.25 2052.48 3.18 -1.43%

pcb442rdmRad 220.00 220.11 16.16 0.05% 220.44 219.22 153.38 -0.55% 221.16 222.38 1.36 0.55%

rat195rdmRad 68.22 68.22 1.35 0.00% 68.22 68.22 9.97 0.00% 68.22 68.22 10.57 0.00%

rd400rdmRad 1246.69 1238.07 701.06 -0.69% 1305.46 1238.02 1110.35 -5.17% 1257.73 1255.48 0.67 -0.18%

team1 100rdmRad 388.54 388.54 1.84 0.00% 388.54 388.54 20.80 0.00% 388.54 388.54 3.89 0.00%

team2 200rdmRad 613.66 613.78 16.04 0.02% 616.82 613.66 209.44 -0.51% 626.90 627.06 0.93 0.03%

team3 300rdmRad 378.09 378.09 3.75 0.00% 378.51 378.09 16.65 -0.11% 379.84 378.09 34.51 -0.46%

team4 400rdmRad 1000.31 983.38 317.04 -1.69% 1025.76 983.63 658.03 -4.11% 1006.71 1008.28 2.62 0.16%

team5 499rdmRad 446.19 446.19 2.52 0.00% 446.51 446.19 51.43 -0.07% 446.19 446.19 5.05 0.00%

team6 500rdmRad 620.98 620.99 26.15 0.00% 626.18 620.89 347.08 -0.85% 621.99 621.27 19.77 -0.12%

Mean 601.29 595.48 773.72 -0.48% 613.97 599.71 216.79 -0.62% 607.97 610.43 72.50 0.06%

#Wins/Ties/Losses 21/22/19 37/14/11 28/14/20
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exact positions based on this sequence through a formulated nonlinear
programming model. Two strategies were proposed for the first phase. One
involves solving the integer programming model, which can be considered as
a kind of Generalized TSP, by using 4 middle points of 4 quarters on the
perimeter for each target disk (referred to as 2-phase-GTSP), and the other
is to solve directly a TSP integer programming model by only considering
the center points (referred to as 2-phase-TSP).

We conducted experiments on the largest car door welding instance
presented in [4], which contains 75 welding points. To diversify the scenarios,
we generated six additional instances 4 based on the same target points
provided by [4] with different disk radii: 25, 30, 35, 40, 45, and 50. The
configurations for the experiments aligned with those detailed in Section 4,
except for the maximum number of generations Itermax, which was set to
500 due to the modest scale of these instances. We ran our algorithm 10
times to solve each instance. Additionally, we implemented the two-phase
methods 2-phase-GTSP and 2-phase-TSP [4] as our comparison references.
As the two-phase methods are deterministic methods, they were executed
once with a maximum running time set to 3600 seconds, utilizing the Gurobi
solver [35]. All experiments were carried out in the same environment as
described in Section 4.

Table 9
Comparative results between MA-CETSP, 2-phase-TSP and 2-phase-GTSP [4] for
the car door welding instances with different radii.

Instance
MA-CETSP (Best) MA-CETSP (Avg) 2-phase-TSP 2-phase-GTSP

f t Time f ± sd t Time Gap f Time Gap f Time Gap

car door 25 5339.75 8.22 15.77 5339.76±0.00 5.18 11.44 0.00% 5405.55 46.79 1.23% 5448.32 3600.00 2.03%

car door 30 5204.78 10.05 16.15 5204.78±0.00 6.72 12.97 0.00% 5272.49 39.65 1.30% 5436.60 3600.00 4.45%

car door 35 5073.63 10.08 16.06 5087.02±9.25 8.39 14.47 0.26% 5154.14 45.50 1.59% 5225.03 3600.00 2.98%

car door 40 4963.66 15.72 22.03 4972.68±14.55 8.21 14.71 0.18% 5043.87 39.65 1.62% 5031.55 3600.00 1.37%

car door 45 4869.81 10.47 16.23 4881.41±15.34 9.71 15.92 0.24% 4942.81 43.99 1.50% 4992.41 3600.00 2.52%

car door 50 4778.91 11.28 18.30 4785.45±6.07 11.61 17.76 0.14% 4859.60 41.03 1.69% 4814.74 3600.00 0.75%

Mean 5038.42 10.97 17.42 5045.18±7.53 8.30 14.55 0.14% 5113.08 42.77 1.49% 5158.11 3600.00 2.35%

Table 9 shows the comparative results, with the columns retaining the same
meaning as in Tables 5-7, except for the column Gap, which uses the
objective value of MA-CETSP (best) (denoted as fbest) as a reference.
Specifically, it is calculated as 100% × f−fbest

fbest
. According to results of Table

9, the proposed algorithm consistently outperforms the reference methods,
by finding better solutions within significantly shorter running times. This
characteristic underscores its practicality and effectiveness in real-world
scenarios. Figure 6 shows a solution generated by our algorithm for the car
door welding instance with a radius of 30. The planned robot route is

4 All instances and our solutions are available at https://github.com/

leizy1008/MA-CETSP
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Fig. 6. Example of car door welding problem with 75 welding points and a radius
of 30.

depicted by the red lines, while the red points indicate the exact welding
locations within each designated welding area.

This case study shows that the proposed algorithm is able to effectively solve
the welding robot path planning problem in the car industry and sheds light
on its potential for other practical applications.

6 Performance analysis

In this section, we investigate, through a series of experiments and
comparative analyses, the impacts of the algorithmic components on the
performance of the proposed algorithm. All experiments in this section
follow the same experimental protocol given in Section 4.2.

6.1 Impacts of genetic search, crossover and joint optimization

We first study the impact of the genetic framework, crossover operator, and
joint optimization on solution quality and robustness of the algorithm. We
modify certain components of the MA-CETSP algorithm to create the
following algorithm variants:
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(1) MA-CETSP/GA: In this variant, we eliminate the genetic search
framework and retain only the VND local search. Specifically, we start
with an initial solution generated using the method described in Section
3.3.1, and then optimize the solution using the same local search
methods described in Section 3.4. The mutation operator introduced in
Section 3.3.3 is used as a perturbation operator to help the algorithm to
escape local optima.

(2) MA-CETSP-EAX and MA-CETSP-GAX: In these two variants, we
replace our MSX crossover described in Section 3.3.2 with the
well-known EAX crossover [24], which has been proven highly effective
for the TSP and many TSP variants, and the GAX crossover used in
[3], which obtained excellent results for the CETSP respectively. Note
that for EAX, the exact visiting position of any target is randomly
inherited from two parents.

(3) MA-CETSP/JO: In this variant, we eliminate the joint optimization
operators (Joint-Relocate and Joint-Swap) to assess their impacts on
the performance of the algorithm.

(a) Gap of average values (b) Standard deviation values

Fig. 7. Comparison of average solution quality and standard deviation

Figure 7 presents a visualized comparison of the results obtained by
MA-CETSP and these variants. Figure 7a illustrates the gap, expressed as a
percentage, between the average values of the variants and MA-CETSP for

every instance: 100% × fvariant−fbaseline

fbaseline
. Each data point represents the

average gap value of an instance. Figure 7b shows the mean standard
deviation values (represented by color lines) with 0.95 confidence intervals
(represented by corresponding color blocks) for different groups.

The variant without the genetic framework (MA-CETSP/GA) exhibits the
worst performance, with large gaps and standard deviations for most
instances. This confirms the significance of the genetic framework for the
MA-CETSP algorithm, which includes the crossover, mutation, and
population management strategies. On the other hand, the other three
variants (MA-CETSP-EAX, MA-CETSP-GAX, and MA-CETSP/JO) show
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a similar performance. Notably, for some groups (e.g., G2 0.3) that are
relatively easy to solve, these variants perform well with low gaps and low
standard deviations. However, they show a poorer performance in more
challenging groups, particularly in G1, where they exhibit larger gaps
compared to MA-CETSP. The results suggest that the genetic framework,
along with the specific crossover operator and joint optimization operators,
play vital roles for the proposed algorithm in achieving better performance
and robustness in solving the problem instances.

(a) Parent solutions SA (red) and SB
(blue).
f(SA) = 417.70; f(SB) = 393.33

(b) Offspring S1 from MSX. f(S1) =
462.15;
d(S1, SA) = 19.60; d(S1, SB) = 27.45;
let S′1 = V ND(S1), f(S′1) = 391.62

(c) Offspring S2 from EAX. f(S2) =
444.90;
d(S2, SA) = 3.92; d(S2, SB) = 43.14;
let S′2 = V ND(S2), f(S′2) = 395.01

(d) Offspring S3 from GAX. f(S3) =
599.07;
d(S3, SA) = 52.94; d(S3, SB) = 45.10;
let S′3 = V ND(S3), f(S′3) = 395.85

Fig. 8. Comparison of crossovers on the instance Team1 100rmdRad
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6.2 Understanding the multi-step crossover

To gain further insights into the crossovers, in particular the multi-step
crossover MSX designed for the CETSP, we present an in-depth analysis of
the crossover process. Using the instance Team1 100rmdRad as an example,
Figure 8 shows two parents SA and SB where Figures 8b to 8d depict the
offspring solutions generated by MSX, EAX, and GAX, respectively. In each
figure, we indicate the objective value of the offspring Si, i = 1, 2, 3 and its
improved offspring S ′i, i = 1, 2, 3 from the local optimization VND, and the
distance between the offspring and each parent solution.

Upon examination, it becomes apparent that the offspring solution S2

generated by EAX is highly similar to the parent solution SA, with a
distance of only 3.92. This can be attributed to the characteristics of the
CETSP, where the arrangement of points within small local ranges does not
significantly affect the solution quality due to the clustering of points within
the disk neighborhood areas. Consequently, EAX, which tends to construct
AB-cycles [24] within these local ranges, limiting its ability to effectively
explore the search space.

On the other hand, GAX inherits variable-length sub-sequences from the
parent solutions, which may contain high-quality sequences and points
identified by local search. By randomly splitting the parents, as illustrated in
Figure 8d, GAX introduces diversification. This occasionally leads to very
good solutions, as evident in instances with a negative gap in Figure 7a.
However, the introduction of harmful edges, as depicted in Figure 8d, is also
more likely. As a result, MA-CETSP-GAX exhibits greater variability and is
less stable, as shown in Figure 7b.

In contrast, the proposed MSX crossover designed for the CETSP combines
the strengths of both EAX and GAX. It inherits high-quality sub-sequences
from both parents and ensures the consecutive arrangement of edges when
switching parents, resulting in high-quality and robust offspring solutions.
As shown in Figure 8b, the offspring S1 from MSX maintains a good balance
between quality and diversity. After undergoing the local optimization of VND,
a better solution is obtained compared to S2 and S3, confirming its promise.

These findings provide an explanation for the superior performance of the
multi-step crossover, which exhibits low variability across all instance groups
(MA-CETSP in Figure 7b), highlighting its stability and consistency.
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(a) Gap of average value (b) Average computational time

Fig. 9. Comparison of average solution quality and the computational time

(a) bonus1000 (b) team5 499

(c) dsj1000 with OR=2% (d) team4 400rdmRad

Fig. 10. Convergence profiles of four instances

6.3 Impact on computation time

In the proposed algorithm, two important strategies are utilized to enhance
computational effectiveness: the squeeze strategy in DCPO (Section 3.4.3)
and the approximation strategy in joint optimization (Section 3.4.4). In this
section, we compare the MA-CETSP algorithm with the following variants

36



to investigate the impact of these two strategies:

(1) MA-CETSP-Sparse: In this variant, we modify DCPO by adopting the
sparse strategy instead of the squeeze strategy. In the sparse strategy, the
points are expected to be detached. Therefore, when both points A and B
are inside the disk O (the case shown in Figure 3a), we take the midpoint
as P .

(2) MA-CETSP/Approx: In this variant, we discard the approximation
strategy and use binary section search to solve the Alhazen’s problem
[31] instead (the case shown in Figure 3d).

Figure 9 shows the comparative results between MA-CETSP and these two
algorithmic variants. Like Figure 7a, Figure 9a shows the average gaps of
different variants compared to the MA-CETSP algorithm for every instance.
Figure 9b shows the average computation time for the compared algorithms.
The results indicate that MA-CETSP-Sparse and MA-CETSP/Approx can
achieve better results for certain instances, but for most instances, their
performance is comparable to MA-CETSP. However, it is important to note
that these variants come with a significantly higher computational cost. The
computation time of MA-CETSP with the sparse strategy
(MA-CETSP-Sparse) is prohibitively long and not acceptable. Similarly,
MA-CETSP without the approximation strategy (MA-CETSP/Approx) also
requires a long running time, particularly for Group G2 0.02 (low overlap
ratio 2%), where the instances are closer to the standard TSP and more
difficult to solve. In addition, Figure 10 shows the best convergence profiles
of four representative instances in different groups (bonus1000, team5 499,
dsj1000 with OR=2% and team 400rdmRad) among 20 runs. The results
clearly show that MA-CETSP exhibits a faster convergence to high-quality
solutions compared to the two variants.

In summary, while the MA-CETSP-Sparse and MA-CETSP/Approx variants
yield better results for some instances, their computational requirements make
them less practical. The MA-CETSP algorithm with the squeeze strategy in
DCPO and the approximation strategy in joint optimization strikes a good
balance between solution quality and computational efficiency.

7 Conclusion

In this study, we proposed an effective memetic algorithm for the
Close-Enough Traveling Salesman Problem. The algorithm incorporates the
original multi-step crossover operator considering problem features and an
effective local optimization procedure exploring both existing techniques and
two new joint optimization operators. The algorithm additionally uses a
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mutation and distance-and-fitness based population management mechanism
to ensure appropriate population diversity, as well as specific strategies to
speed up the search. Extensive experiments have been conducted to evaluate
the performance of the algorithm in terms of solution quality and
computational efficiency.

The results demonstrated that the proposed algorithm outperforms the
existing algorithms on the 62 benchmark instances. It successfully reached
all 23 known optimal solutions and achieved new best upper bounds for 30
instances out of the remaining 39 instances with for unknown optimal
solution. Comparative analysis of different configurations further highlighted
the effectiveness and robustness of the proposed algorithm, providing
insights into the contributions of individual components. Additionally, the
algorithm was successfully applied to a real-world case, showcasing its
practical applicability in solving real-world problems modeled as CETSP.
The source code of the algorithm, which we make available online, will
facilitate such applications.

For future work, there are several potential directions to consider. One
avenue is the improvement of the proposed algorithm through the
integration of learning techniques, which has shown promise in the field of
combinatorial optimization [38]. Furthermore, the algorithm can be adapted
and extended to tackle variants of the CETSP, such as the Close-Enough
Vehicle Routing Problem (CEVRP) [5] and the Generalized Close-Enough
Traveling Salesman Problem (GCETSP) [39]. These variants introduce
additional complexities and constraints, providing new challenges for
algorithm design and optimization.
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