
1

A Memetic Algorithm for Vehicle Routing with
Simultaneous Pickup and Delivery and Time

Windows
Zhenyu Lei and Jin-Kao Hao*

Abstract—The Vehicle Routing Problem with Simultaneous
Pickup and Delivery and Time Windows (VRPSPDTW) has a
number of real-world applications, especially in reverse logistics.
In this work, we propose an effective memetic algorithm that
integrates a lightweight feasible and infeasible route descent
search and a learning-based adaptive route-inheritance crossover
to solve this complex problem. We evaluate the effectiveness of the
proposed algorithm on the set of 65 popular benchmark instances
as well as 20 real-world large-scale benchmark instances. We
provide a comprehensive analysis to better understand the design
and performance of the proposed algorithm.

Index Terms—Vehicle routing; Simultaneous pickup and deliv-
ery with time windows; Combinatorial optimization; Heuristics;
Memetic algorithm.

I. INTRODUCTION

THE Vehicle Routing Problem with Simultaneous Pickup
and Delivery and Time Windows (VRPSPDTW) [1] is

a member of the large family of Vehicle Routing Problems
(VRPs) [2]. Specifically, VRPSPDTW is a variant of the Ve-
hicle Routing Problem with Simultaneous Pickup and Delivery
(VRPSPD) [3] that incorporates time window constraints. This
is a computationally challenging problem because it can be
trivially reduced to the NP-hard VRPSPD problem [1].

VRPSPDTW has a wide range of applications in real world
scenarios, especially in the field of logistics. Many logistics
companies now offer pickup services in addition to delivery
services to improve transportation efficiency and reduce costs,
a concept commonly referred to as reverse logistics [4].

VRPSPDTW can be described on a directed complete graph
G = (V, E), where the vertices V = {v0, v1, . . . , vN } consist
of the depot node v0 and the N customer nodes (v1, . . . , vN).
The edges E = {eij |vi, vj ∈ V} represent connections
between the nodes. Each customer node vi ∈ V (i 6= 0) is
associated with a delivery demand di and a pickup demand
pi. This implies that the vehicle must deliver di units of goods
from the depot v0 to vi and pick up pi units of goods from vi to
the depot v0. Additionally, each node vi has a time window [ei,
li] (the earliest and latest time to start the service at node vi)

This work benefited from the computing facilities provided by the Centre
de Calcul Intensif des Pays de la Loire (CCIPL). Support for the first author
from the China Scholar Council (Grant No. 202206330014) is acknowledged.
We thank Prof. Shi of [17] and Dr. Wu of [7] for their help in answering our
questions about their works.

Z. Lei and J.K. Hao (Corresponding author) are with the Department
of Computer Science, LERIA, Université d’Angers, 2 Boulevard Lavoisier,
49045 Angers Cedex 01, France (e-mails: zhenyu.lei@etud.univ-angers.fr, jin-
kao.hao@univ-angers.fr).

and a service time si (the time the vehicle spends at node vi).
The depot time window [e0, l0] specifies the earliest time the
vehicle can leave the depot and the latest time it must return
to the depot, with the service time s0 equal to 0. Furthermore,
each edge eij ∈ E is associated with a travel distance cij and
a travel time tij .

A fleet of M homogeneous vehicles with a capacity of Q is
available to serve the given customers. VRPSPDTW aims to
determine the best routes of the vehicles starting and ending at
depot v0 while satisfying the capacity and time window con-
straints. Thus, a solution S of VRPSPDTW is a set of closed
routes S = {R1, . . . , RM}, where each route Ri consists of
a sequence of nodes {ni,0, ni,1, . . . , ni,L, ni,L+1} visited by
the i-th vehicle. Here, ni,j indicates the j-th visiting node in
route Ri, and L indicates the number of customers in route Ri.
Notably, both the first and last nodes in route Ri are the depot
v0 (i.e., ni,0 = v0 and ni,L+1 = v0). The load of each vehicle
cannot exceed the capacity Q, thus qni,j < Q must be satisfied
for all ni,j ∈ Ri, where qni,j is the load of the i-th vehicle
after visiting node ni,j . Additionally, let ani,j be the arrival
time at node ni,j . Arriving before eni,j (ani,j < eni,j) results
in a wait time wni,j = max{eni,j − ani,j , 0}. Conversely,
arriving after lni,j (ani,j > lni,j) is considered infeasible.

Let µ1 and µ2 be the costs or weights assigned to the
vehicles and the travel distance, respectively. A typical ob-
jective function of VRPSPDTW is then to minimize the total
cost, which is the weighted sum of the number of vehicles
and the travel distance, as shown in Equation (1). Another
typical hierarchical objective function aims to minimize first
the number of vehicles used (primary objective) and then the
travel distance of the vehicles (secondary objective). This can
be achieved by assigning a very high cost µ1 to vehicles and
a relatively low cost µ2 to travel distances.

Minimize f(S) = µ1 ·M + µ2 ·D(S) (1)

Subject to D(S) =
M∑
i=1

L∑
j=0

cni,jni,j+1

S = {R1, . . . , RM}
Ri = {ni,0, ni,1, . . . , ni,L, ni,L+1}, i = 1, . . . ,M

Since the introduction of VRPSPDTW [1], many algo-
rithms have been developed to solve this problem. Section
II provides a comprehensive review of related studies. The
inherent complexity of the problem is such that no single
method consistently excels across all benchmark instances.

2

Additionally, research on large instances and real-world appli-
cations remains limited. Meanwhile, a notable trend in recent
algorithm design is the use of large neighborhood search
techniques with destroy and repair operators [5, 6, 7]. While
these strategies enhance search space exploration, they also
increase algorithmic complexity.

To address these challenges, we propose a novel algorithm,
MA-FIRD, which is based on the memetic algorithm frame-
work. This framework has been proven effective for solving
various VRPs, including VRPTW [8], split delivery VRP
[9], and multi-trip VRP [10]. One recent work [6] has also
showed the effectiveness of the memetic algorithm approach
for VRPSPDTW. Following this framework, our proposed
algorithm integrates several novel components and strategies.
These include a lightweight feasible and infeasible route
descent search where a dedicated penalty function is embedded
to manage infeasible solutions, and a multi-parent route-
inheritance crossover supported by reinforcement learning.
Furthermore, we implement a max-min normalization-based
fitness-distance population management strategy to maintain
population diversity. The proposed algorithm is evaluated on
the popular WC benchmark [11] and the large-scale real-
world JD benchmark [6], demonstrating its superiority and
practicality compared to existing algorithms.

The rest of this paper is organized as follows. Section
II provides a literature review on VRPSPDTW. Section III
presents the proposed algorithm. Section IV shows computa-
tional results on benchmark instances compared to state-of-
the-art methods, highlighting its ability to solve real-world
large-scale instances. Section V provides an in-depth analysis
of the key components of the algorithm. Section VI concludes
the paper and suggests possible avenues for future research.

II. LITERATURE REVIEW

TABLE I
SUMMARY OF THE ALGORITHMS FOR VRPSPDTW IN THE LITERATURE.

Literature Year Method Objective
Angelelli and Mansini [1] 2002 Branch-and-Price travel cost
Liang et al. [12] 2009 GA total cost with penalty
Lai and Cao [13] 2010 DE travel cost
Wang and Chen [11] 2012 co-GA hierarchical objective
Kassem and Chen [14] 2013 Insertion heuristic, SA travel cost
Wang et al. [15] 2013 SA hierarchical objective
Wang et al. [16] 2015 parallel SA hierarchical objective
Hof and Schneider [5] 2019 ALNS, Path-relinking hierarchical objective
Shi et al. [17] 2020 VNS, TS hierarchical objective
Tang et al. [18] 2021 Co-evolution of parameterized search weighted total cost
Liu et al. [6] 2021 MA hierarchical objective
Wu and Gao [7] 2023 ACO weighted total cost
Praxedes et al. [19] 2024 Branch-Cut-and-Price travel cost

As a variant of the well-studied VRPSPD problem [3, 20],
the first study of VRPSPDTW can be traced back to the
work of Angelelli and Mansini [1]. Their pioneering study
introduced a Branch-and-Price algorithm based on a set cov-
ering formulation to address the problem, with the objective
of minimizing the total travel cost of the vehicles. Table I
summarizes the most important solution approaches that have
been carried out in the literature on VRPSPDTW since then.

Regarding the objective of minimizing the total travel cost
only, Lai and Cao [13] presented an improved differential
evolution algorithm (IDE), where they devised a novel decimal
encoding method to represent solutions and introduced a

penalty function to deal with illegal solutions. Kassem and
Chen [14] presented the INST-SA heuristic, using an insertion
heuristic for solution initialization, and simulated annealing
and neighborhood search for solution improvement. Tang et
al. [18] studied VRPSPDTW with the objective of minimizing
the weighted total cost of the vehicle dispatching and the
travel distance. They proposed a co-evolution of parameterized
search (CEPS) to achieve generalizable parallel algorithm
porfolio (PAP) based on some training instances. Liang et
al. [12] studied a variant of VRPSPDTW with soft time
window constraints, allowing delayed arrivals beyond the time
windows with associated penalty costs.

Until the work of Wang and Chen [11], there was a lack
of benchmark instances for VRPSPDTW, making it difficult
to compare the solution algorithms for the problem. Wang
and Chen filled the gap by introducing a set of 65 bench-
mark instances (denoted as WC) derived from the Solomon
VRPTW benchmark [21]. They also proposed a co-evolution
genetic algorithm (co-GA), which maintains two populations
for diversification and intensification, to minimize the hierar-
chical objective of the number of vehicles first and the travel
distance second. Following their study on the hierarchical
objective, a succession of research efforts using metaheuristics
[15, 16, 5, 17, 6] have contributed to advancing the state of
the art in solving VRPSPDTW, particularly in the context of
the WC benchmark.

Wang et al. [15] introduced a simulated annealing approach
and later developed a parallel simulated annealing (p-SA)
algorithm [16], utilizing multi-processor or multi-thread ca-
pabilities to enhance and accelerate the search process. Shi
et al. [17] presented a two-stage algorithm VNS-BSTS. In the
first stage, a Variable Neighborhood Search (VNS) was used to
minimize the number of vehicles, featuring a novel learning-
based evaluation function to assess each move. The second
stage employed a Bi-Structure based Tabu Search (BSTS)
to intensify the optimization. Recently, Wu and Gao [7]
proposed an ant-colony optimization algorithm with destroy
and repair strategies (ACO-DR) for VRPSPDTW, focusing on
minimizing the weighted total cost of vehicle dispatching and
travel distance.

Hof and Schneider [5] proposed an Adaptive Large Neigh-
borhood Search with Path Relinking (ALNS-PR) algorithm
for a class of VRPSPD, including VRPSPDTW. The algorithm
involves 7 removal operators and 4 insertion operators, dynam-
ically selected through an adaptive mechanism to iteratively
destroy and repair the solution. Moreover, it incorporates a
path-relinking component to explore promising search spaces
between elite solutions. The algorithm temporarily accepts
infeasible solutions by incorporating penalty terms into the
objective function. Results showed the robustness of the
ALNS-PR algorithm in solving this group of problems with
competitive results on VRPSPDTW.

Liu et al. [6] proposed the Memetic Algorithm with Ex-
tended Neighborhoods (MATE). This innovative approach
employs local search for small-step exploration and removal-
reinsertion of large neighborhoods for large-step exploration,
effectively navigating the search space. To generate promis-
ing solutions, MATE incorporates a RARI crossover com-

3

bined with regret insertion. Experiments on the WC instances
showed the efficacy of the MATE algorithm by discovering 12
new best solutions. The authors also generated a new set of
20 large-scale benchmark instances, denoted as JD benchmark,
derived from the real-world JD logistics network. Testing on
the JD instances confirmed MATE’s effectiveness in solving
VRPSPDTW in real-world scenarios.

Finally, Praxedes et al. [19] introduced the exact Branch
Cut and Price (BCP) algorithm to solve a broad class of
VRPSPD, including VRPSPDTW. With a 12-hour time limit,
BCP achieved 45 optimal solutions out of 65 WC instances
for minimizing travel cost only.

Given their superior performance on popular benchmarks
compared to other approaches, ALNS-PR [5] and MATE
[6] are considered state-of-the-art methods for solving VRP-
SPDTW.

III. MEMETIC ALGORITHM WITH FEASIBLE AND
INFEASIBLE ROUTE DESCENT SEARCH FOR VRPSPDTW

The memetic algorithm framework [22, 23] combines the
advantages of genetic algorithms and local search methods,
providing an interesting way to balance search diversification
and intensification. Leveraging this powerful framework, we
design dedicated search operators and strategies to address the
diverse features and constraints of VRPSPDTW. Specifically,
we propose a lightweight feasible and infeasible route descent
search, a learning-based adaptive route-inheritance crossover,
and a max-min normalization-based fitness-distance popula-
tion management strategy to enable efficient search.

Algorithm 1 Main framework of MA-FIRD

1: Input: Instance I, Population size NP , Maximum number of generations
ϕmax, Patience for stagnation generations ρ, Maximum running time τ .

2: Output: The best solution S∗.
3: ϕ← 0, ϕst ← 0 /* Current generation and stagnation generation

counter */
4: I ← Preprocessing(I) /* Section III-A */
5: P ← Initialization(I,NP) /* Section III-B */
6: S∗ ← BestSolution(P) /* Record current best solution */
7: while ϕ ≤ ϕmax and ϕst ≤ ρ and time() ≤ τ do
8: S′ ← ARIX(P) /* Section III-D */
9: S′ ← FIRDSearch(S′) /* Section III-C */

10: P ← UpdatePopulation(S′,P) /* Section III-F */
11: Sbest ← BestSolution(P) /* The best solution in this generation

*/
12: if f(Sbest) < f(S∗) then
13: S∗ ← Sbest /* Update the best solution */
14: ϕst ← 0
15: else
16: ϕst ← ϕst + 1 /* Stagnation counter is incremented */
17: end if
18: ϕ = ϕ+ 1
19: end while
20: return S∗

Algorithm 1 outlines the framework of MA-FIRD. For
a given problem instance I, the algorithm starts with a
preprocessing step to reduce the instance (line 4). Then, NP
candidate solutions are generated to form the initial population
(line 5), and the best solution S∗ is recorded (line 6). The
population is updated iteratively by generating new candidate
solutions (lines 7-19). In each generation, the adaptive route-
inheritance crossover creates a new solution from multiple

parent solutions (line 8). This new solution S′ is then improved
by the feasible and infeasible route descent search (line 9).
The improved solution S′ is used to update the population
according to the population management strategy (line 10).
If a superior best solution is found, S∗ is updated, and the
stagnation counter is reset to 0 (lines 12-14). Otherwise, the
stagnation generation counter ϕst is incremented (lines 15-
16). The algorithm terminates and returns the best solution
S∗ found (line 20) when the termination condition is met
(line 7), which includes reaching a maximum number of
generations ϕmax, surpassing a maximum patience threshold
ρ for stagnation generations ϕst, or exceeding a predetermined
maximum running time τ . Below, we provide a detailed
description of each component of the algorithm.

A. Preprocessing

To improve computational efficiency, a preprocessing step
is employed before executing the main algorithm to prune the
search space. As outlined in Section I, VRPSPDTW can be
defined on a directed complete graph G = (V, E), where the
vertices V = {v0, v1, . . . , vN } represent the depot and cus-
tomer nodes, and the edges E = {eij |vi, vj ∈ V} represent the
connections between the nodes. The preprocessing procedure
removes edges that violate the time window or vehicle capacity
constraints of VRPSPDTW. For any pair of nodes vi and vj ,
the directed edge eij is eliminated if one of the following rules
is true.

ei + si + tij > lj (2)

di + dj > Q (3)

pi + dj > Q (4)

pi + pj > Q (5)

Rule (2) allows the connection between vi and vj to be
pruned if the arrival time at vj after serving vi is later than
the allowed latest time lj for vj . Rules (3), (4), and (5) prohibit
the connection between vi and vj if the capacity constraint is
violated before, between, and after consecutive visits to vi and
vj .

B. Initialization

The initialization stage generates a group of candidate
solutions to form the initial population. A high-quality initial
solution, characterized by its feasibility and a relatively lower
number of vehicles, helps the algorithm in its subsequent
search. We use the RCRS algorithm [4] to generate such
initial solutions. RCRS is an insertion-based heuristic that
starts with an empty solution and iteratively inserts customer
nodes until all nodes are accommodated. Notably, RCRS only
accepts feasible insertions, and a new route is introduced if
no feasible insertion is possible with the existing routes. In
addition to considering travel cost, RCRS incorporates two
other metrics: Residual Capacity (RC), which represents the
insertion’s freedom in terms of capacity, and Radial Surcharge
(RS), which is to prevent late and unfavorable insertions
of remote customer nodes. Using these three metrics, the

4

RCRS algorithm efficiently constructs a relatively high-quality
solution in a short time.

C. Feasible and infeasible route descent search

This section presents the feasible and infeasible route de-
scent search (FIRD), which is one key component of the
proposed algorithm.

1) General FIRD procedure: As shown in [24], allowing
controlled exploration of infeasible solutions facilitates the
transition between structurally different feasible solutions and
thus improves the performance of local search algorithms.
Indeed, this approach has proven successful in several difficult
combinatorial optimization problems with complex constraints
(see, e.g., [25, 26, 27]).

We adopt this feasible and infeasible search approach in
the context of solving VRPSPDTW. This is basically achieved
by introducing penalty terms for constraint violations in the
evaluation function (Section III-C2). Combined with a set
of local search operators (Section III-C3), the feasible and
infeasible route descent search is able to tunnel through
infeasible regions of the search space to obtain high-quality
solutions that would otherwise be difficult to attain.

Algorithm 2 Feasible and infeasible route descent search

1: Input: The solution S for improvement.
2: Output: Improved solution S′.
3: S′ ← S /* Current best solution */
4: if S is infeasible then
5: S ← FeasibleInfeasibleSearch(S, S′) /* Try to make S

feasible */
6: S′ ← S
7: end if
8: while S is feasible do
9: S ← RouteDescent(S) /* Remove a route of S */

10: if S is better than S′ then
11: S′ ← S
12: else
13: S ← FeasibleInfeasibleSearch(S, S′) /* Optimize S and try

to find a better solution than S′ */
14: if S is better than S′ then
15: S′ ← S
16: end if
17: end if
18: end while
19: if S′ is feasible then
20: S′ ← FeasibleInfeasibleSearch(S′, ∅) /* Intensive search from

the best-found solution S′ */
21: end if
22: return S′

As shown in Algorithm 2, the FIRD procedure starts with
an input solution S, which can be either feasible or infeasible.
If S is infeasible, the feasible and infeasible search is applied
to ensure that the solution entering the route descent procedure
is feasible (lines 4-7). The route descent procedure removes
the shortest route from the solution S, and its nodes are
reinserted into other routes using the infeasible regret insertion
strategy presented in Section III-E (line 9), as illustrated in
Figure 1. If the resulting solution of route descent is not
feasible or not better than the current best solution S′, the
feasible and infeasible search is re-applied to try to find a
better solution (line 13). The route descent procedure continues
until it becomes impossible to find a feasible solution with the
current number of vehicles (lines 8-18). Finally, an intensive

search is performed on the best feasible solution S′ (lines 19-
21), and the final solution S′ is returned (line 22).

I

Route Descent

9 3 1 7

11 2 6

8 5 10

9 3 1 7

11 2 6

8 5 10

4

12

9 3 1 7

11 2 6

8 5 10

4

12
9 3 1 7

11 2 6

8 5 10

9 3 1 7

11 2 6

8 5 10

4 12

9 3 1 7

11 2 6

8 5 10

4 12

Feasibel and Infeasible Search

Fig. 1: Illustration of the route descent procedure. The solution has four routes.
First, the shortest route 4-12 is removed. Then, the nodes 4 and 12 are inserted
into other routes using the infeasible regret insertion strategy.

The feasible and infeasible search takes two inputs: the
solution to be improved and an optional target solution. If a
target solution (e.g., the best-found solution S′ in lines 5 and
13) is provided, the search terminates prematurely if a better
solution is found. If no target solution is provided, the search
intensively improves the input solution (e.g., the best-found
solution S′ in line 20).

2) Evaluation function: The feasible and infeasible search
dynamically accepts feasible and infeasible solutions to ex-
plore diverse areas of the search space. To achieve this, we
define an evaluation function that incorporates penalty terms
of time window and capacity constraint violations, as shown
in Equation (6).

Minimize feval(S) = D(S) + λ1 · V1(S) + λ2 · V2(S) (6)

Subject to D(S) =
M∑
i=1

L∑
j=0

cni,jni,j+1

V1(S) =

∑
ck∑
tk

∑
i∈Rr

L∑
j=0

max(ai,j − li,j , 0)

V2(S) = (2 ·max ck −min ck)∑
i∈Rr max(maxLj=0(qni,j −Q), 0)

Q
S = {R1, . . . , RM}
Ri = {ni,0, ni,1, . . . , ni,L, ni,L+1}, i = 1, . . . ,M

λi =

{
λi · κ if Vi = 0
λi
κ if Vi > 0

i = 1, 2, κ ∈ (0, 1) (7)

Since the number of vehicles (primary objective) is handled
through the route descent strategy, the feasible and infeasible
search only focuses on the travel distance objective D(S).
V1(S) and V2(S) represent the normalized violation values of
time window and capacity constraints, respectively. The time-
warp technique [28, 8] is adopted to address violation of time
window constraints. During the search process, the coefficients
λ1 and λ2 are dynamically adjusted at each move step based on
the feasibility of the constraints. This adjustment is facilitated
by the coefficient adjustment factor κ, as depicted in Equation
(7). If the time window or capacity constraint is violated, the
corresponding coefficient is increased to prioritize satisfying
that constraint. If both constraints are violated, the coefficients

5

(a) Relocate (b) Swap (c) 2-opt*

Fig. 2: Illustration of operators and concatenation operation.

λ1 and λ2 are both increased. Conversely, if there is no
constraint violation, the coefficients λ1 and λ2 are decreased
to encourage exploration of infeasible areas.

3) Move operators and move evaluation: The feasible and
infeasible search employs a set of local search move operators
to explore the search space, including Relocate, Swap, and 2-
opt*. Relocate moves a sequence of nodes to the same or
another route. Swap exchanges two sequences of nodes in the
same route or different routes. 2-opt* takes place between two
routes. It first breaks one edge in two candidate routes, and
then exchanges and reconnects the sequences of nodes. Here,
the sequence length of nodes for Relocate and Swap operators
ranges from 1 to 3. Considering their similar complexity of the
employed operators, a random order is employed to execute
these operators. The feasible and infeasible search stops under
several conditions: when no improvement is detected after
applying all operators in the sequence, or when the maximum
iteration limit is reached, or when a better solution than the
given target solution is found.

The search procedure adopts the best-improvement strat-
egy to apply each local search operator. To speed up move
evaluation and accommodate infeasible solutions, we introduce
an infeasibility-allowed constant-time move evaluation method
inspired by prior work [6, 8]. Since the used operators affect
only one or two routes, the move evaluation process can be
performed in constant time by computing the variation (called
move gain) of the evaluation function between the original
solution and a new solution. We conceptualize moves as rear-
rangements of subsequences of routes, using a concatenation
operation denoted as ⊕ to symbolize the merging of two route
subsequences. Illustrative examples of various operators are
depicted in Figure 2, while detailed concatenation operation
calculations are provided in the online supplement. With this
method, the computation of the D(·), V1(·), and V2(·) values
in the evaluation function can be done in constant time, which
greatly speeds up the evaluation process.

D. Adaptive route-inheritance crossover

We propose an adaptive route-inheritance crossover (ARIX)
for VRPSPDTW, which relies on inheriting routes from parent
solutions and employs feasible and infeasible insertion op-
erators to complete the construction of each new offspring
solution. To decide the number of parent solutions and the
insertion operators to apply, a learning-based adaptive mech-

anism is embedded to make the best possible decisions (see
Section III-E).

Algorithm 3 Adaptive Route-Inheritance Crossover

1: Input: Population P .
2: Output: Offspring solution S′.
3: S′ ← ∅ /* Initialize offspring solution */
4: Determine the number of parents Np, the insertion operator I based on

the adaptive strategy /* Section III-E */
5: Randomly select Np solutions from the population P as parents P
6: Pd ← P [0] /* Dominant parent */
7: Rd ← ∀R ∈ P [0] /* Dominant routes */
8: Rp ← ∀R ∈ P [1 :] /* Routes from other parents form the route pool */
9: Determine the retention ratio γr

10: Nr ← bγr × |Pd|c /* Number of retained routes from the dominant
routes */

11: Ni ← |Pd|−Nr /* Number of introduced routes from the route pool */
12: while route number of S′ is smaller than the route number of Pd do
13: if Nr > 0 then
14: Select the route with the lowest conflict rate from Rd and add it

to S′
15: Nr ← Nr − 1
16: end if
17: if Ni > 0 then
18: Select the route with the lowest conflict rate from Rp and add it

to S′
19: Ni ← Ni − 1
20: end if
21: end while
22: Remove redundant nodes in S′
23: U ← {n ∈ V|n /∈ S′} /* Unrouted nodes */
24: Insert the unrouted nodes U into S′ using the insertion operator I
25: return S′

The ARIX crossover (see Algorithm 3) starts by determining
the number of parents Np (≥ 2) and the insertion operator I
based on the adaptive strategy (line 4). Then, ARIX randomly
selects Np parent solutions from the population P (line 5),
designating the first parent as the dominant parent Pd, and
gathering its routes in Rd (lines 6-7). Routes from the other
parents are pooled in Rp (line 8). The retention ratio γr
is then determined (line 9), which is dynamically adjusted
during the search process and influences the number of routes
retained from Pd and the number of introduced routes Ni
(lines 10-11). ARIX then iteratively constructs the offspring
solution S′ by selecting routes from Rd and Rp based on
Nr and Ni (lines 12-21). Routes with the lowest conflict rate,
representing the ratio of nodes in S′ to the total nodes in
the route, are prioritized for selection. This process continues
until the number of routes in S′ reaches that of Pd (line 12).
Redundant nodes in S′ are subsequently removed based on
selection order (line 22), and unrouted nodes are inserted using
insertion operator I to obtain the final offspring (line 24). If the
insertion leads to infeasibility, FIRD is employed to establish
the feasibility.

Five insertion operators are designed for the insertion of
unrouted nodes. Feasible best insertion (FBI) and infeasible
best insertion (IBI) prioritize the minimal cost increase, with
FBI creating a new route if no feasible insertion is possible,
while IBI accepts infeasible insertions without introducing new
routes. Feasible regret insertion (FRI) and infeasible regret
insertion (IRI) evaluate each insertion based on regret value,
defined as the difference in travel cost between the best
and second-best insertions. Random insertion (RI) inserts an
unrouted customer randomly into a random route.

6

(a) Parent solutions and their routes.

(b) Inheritance from the dominant routes Rd and the route pool Rp.

(c) Redundant nodes removal and unrouted nodes insertion.

Fig. 3: Illustration of the ARIX crossover.

Figure 3 illustrates the ARIX process with three parent
solutions, P1, P2, and P3 (Figure 3a), where P1 is the
dominant parent Pd, whose routes form the dominant routes
Rd. The routes from P2 and P3 form the route pool Rp. Given
that Pd has four routes and the retention ratio γr is set to
0.5 in this example, ARIX retains two routes from Rd and
selects two routes from Rp. Next (Figure 3b), the inheritance
process begins. Each route is marked with its conflict rate. The
offspring solution S′ is constructed by alternately selecting
routes with the lowest conflict rates from Rd and Rp until the
number of routes in S′ matches that of the dominant parent Pd.
Finally (Figure 3c), the redundant node 4 is removed from S′,
and the unrouted node 5 is inserted using the selected insertion
operator, resulting in the final offspring solution S′.

E. Learning-based adaptive strategy for the ARIX crossover

During the ARIX crossover, ARIX faces two main decision-
making problems to decide the number of parents Np used to
generate offspring solutions and the insertion operator I used
to insert the unrouted nodes in the last step of the crossover
process. To help the ARIX crossover to make the best possible
decisions for these choices, we employ an adaptive strategy
based on multi-armed bandit (MAB) [29]. Specifically, we use
the UCB1 algorithm from the Upper Confidence Bound (UCB)
family of algorithms [30]. For a set of actions ai ∈ A, UCB1
calculates the upper confidence bound of the estimated reward
for each action ai at step t using Equation (8). R̄di is the
empirical mean reward of action ai, Ni is the number of times
action ai has been selected so far. The action ai with the
maximum value of UCB1(i, t) is selected at each step.

UCB1(i, t) = R̄d
i +

√
2 · ln(t)

Ni
(8)

In our context, we define the set of actions A as the
set {2, ..., |P|} of all possible Np parents, and the set
{FBI, IBI, FRI, IRI,RI} of all possible insertion oper-
ators I . The reward r of the action a is defined as the
improvement of the objective function value of the offspring
S′ from the action a compared with the dominant parent Pd.

F. Population management

Following [31, 32], we use a fitness-distance based popula-
tion management strategy, which relies on the extended fitness
function ψ defined in Equation (9). This function is derived
from the max-min normalization of the objective value and
the distance within the population. The coefficient ξ adjusts
the balance between the effects of the objective value and the
distance, with higher fitness values indicating superior solution
fitness. Furthermore, Equation (10) quantifies the distance of a
given solution S from the population P , while Equation (11)
measures the dissimilarity between two solutions. ES1

and ES2

represent the sets of edges in solutions S1 and S2, respectively.

ψ(S) =
max f − f(S)

max f −min f
+ ξ ·

DP (S)−minDP
maxDP −minDP

(9)

Subject to max f = max
Si∈P

f(Si), min f = min
Si∈P

f(Si)

maxDP = max
Si∈P

DP (Si), minDP = min
Si∈P

DP (Si)

DP (S) = min
Si∈P

DS(S, Si), Si 6= S (10)

DS(S1, S2) = 100%

(
1−

|ES1
∩ ES2

|
max(|ES1

|, |ES2
|)

)
, ES1

, ES2
∈ E

(11)

During the execution of the algorithm, the population is
expanded for NP/2 generations before being reduced to its
original size NP . This resizing involves eliminating solutions
with the worst ψ values, thereby maintaining an adaptive
balance in the population composition.

G. Discussion

The proposed algorithm has a number of novel features
compared to existing studies on VRPSPDTW, particularly in
terms of local optimization and crossover.

For local optimization, unlike the complex large neighbor-
hood search techniques used in recent studies [5, 6, 7], we em-
ploy a lightweight feasible and infeasible search with simple
local search operators. Key distinctions include the manage-
ment of penalty terms, the infeasibility-allowed constant-time
move evaluation, and the route descent strategy. Unlike penalty
design in ALNS-PR [5], we normalize penalty terms and
dynamically adjust coefficients to balance the exploration of
feasible and infeasible solutions for two constraints. Compared
to the evaluation method in MATE [6], which focuses only on
feasible solutions, our method accommodates both feasible and
infeasible solutions and facilitates the calculation of violation
values. Additionally, unlike VNS-BSTS [17], which handles
optimization objectives in two stages, our algorithm simultane-
ously optimizes the number of vehicles and the travel distance
by integrating the route descent strategy into the feasible and
infeasible search.

7

For crossover, although our ARIX crossover follows the
similar idea of inheriting routes from parent solutions, ARIX
differs from those in [11, 6] by using multiple parents and
insertion operators that are adaptively determined by a learning
mechanism to create more diversified and promising offspring
solutions. In addition, ARIX strategically evaluates and selects
the inherited routes based on the conflict rate instead of the
random selection to improve the offspring quality.

In summary, we present a novel and effective approach to
solve VRPSPDTW. Its strategies and operators can also be
extended to other VRPs. The route descent strategy could be
useful for VRP variants with a flexible number of vehicles.
The management of penalty terms and the constant-time move
evaluation can be applied to VRPs with complex constraints.
The idea of our adaptive route-inheritance crossover, leverag-
ing a learning-based strategy, could be extended to various
VRPs due to its general nature.

IV. COMPUTATIONAL RESULTS

We show computational experiments to evaluate the MA-
FIRD algorithm and comparisons with the state-of-the-art
algorithms based on two VRPSPDTW benchmarks.

A. Benchmark instances

The first benchmark consists of the popular 65 WC in-
stances1 from [11]. Among these instances, 9 are of small
size with 10 to 50 customers, while the remaining 56 are of
medium size with 100 customers. This benchmark is divided
into three types: C instances with clustered customers, R
instances with customer locations generated uniformly and
randomly on a square, and RC instances with a combination
of randomly placed and clustered customers. These instances
are further classified to two categories: instances with narrow
time windows and small vehicle capacity, and instances with
large time windows and large vehicle capacity. Following
[11, 15, 16, 5, 17, 6], we adopt the hierarchical objective for
the WC benchmark with the number of vehicles and travel
distance serving as the primary and secondary objectives,
respectively. The instances of the WC benchmark have been
extensively tested in the literature [11, 15, 16, 5, 17, 6, 7, 19]

The second benchmark consists of the 20 large JD in-
stances2 from [6], which was derived from real distribution
system of JD Logistics company. This benchmark contains
4 groups of 5 instances with 200, 400, 600, 800, and 1000
customers. Unlike the WC benchmark designed for the hier-
archical objective (first the number of vehicles and then the
travel distance), the JD benchmark was initially designed to
minimize the total cost, which is the weighted sum of the
number of vehicles and the travel distance with predefined
weights. This benchmark allows us to verify the usefulness of
the proposed algorithm in real-world applications. Since this
benchmark set is very recent, it has only been tested in [6].

1https://oz.nthu.edu.tw/∼d933810/test.htm
2https://github.com/senshineL/VRPenstein

B. Experimental protocol and parameters tuning

The MA-FIRD algorithm was coded in C++3 and run on a
computer with an AMD EPYC 7282 2.8 GHz processor and
4 GB RAM, running Linux.

To balance solution quality and computational efficiency,
we empirically determined several parameters. The population
size NP was set to 10, the maximum number of generations
ϕmax was set to 5000, and the patience for stagnation gener-
ations ρ was set to 500. Additionally, the algorithm relies on
three critical parameters: the coefficient of the fitness function
ξ, the coefficient adjustment factor κ, and the initial retention
ratio γ0r . To find a suitable setting for these parameters,
we conducted an exhaustive parameter sensitivity analysis,
detailed in the online supplement. The resulting parameter
values are summarized in Table II.

TABLE II
PARAMETERS TUNING RESULTS.

Parameter Value range Final value
ξ : coefficient of the fitness function (0, 1) 0.8
κ : coefficient adjustment factor (0, 1) 0.5
γ0r : initial retention ratio (0, 1) 0.9

To ensure a fair comparison, the maximum running time τ
for the JD benchmark is set to 7200 seconds following [6].
Each instance was solved with 30 independent runs of the
algorithm.

C. Reference algorithms

For the WC instances, we compare our results with the best-
known solutions (BKS) ever reported in the literature and with
the top performing algorithms ALNS-PR [5] and MATE [6].
These two algorithms outperformed the other algorithms, and
together produced the current best-known solutions for the WC
instances. For the JD instances, we focus on a comparative
study with MATE [6], which tested these 20 large-scale
instances. Since the code of MATE is open source, we reran
it on our computer with the same experimental protocol as for
our algorithm and the results are indicated by MATE*.

The experimental environments of the reference algorithms
are as follows. ALNS-PR [5] was programmed in Java and
performed on a Windows 10 Professional desktop computer
with an Inter Core i5-6600 3.30 GHz processor and 16 GB
RAM. MATE [6] was programmed in C++ and executed on
a machine with an Intel Xeon E5-2699A V4 2.40 GHz and
128 GB RAM, running Centos 7.5. To account for different
experimental environments, we apply a time conversion ratio
γ to standardize the computing time in following experiments.
Detailed information can be found in the online supplement.

D. Computational results and comparisons

The comparative results on the two benchmark sets are
summarized in Table III, which provides a global view of
the performance of the proposed algorithm across different

3The source code and our solutions for benchmark instances are available
at https://github.com/leizy1008/MA-FIRD.

8

benchmark groups. These groups are identified as WC-S, WC-
C, WC-R, WC-RC, and JD, corresponding to the small WC,
clustered WC, random WC, clustered-random WC instances,
and JD instances, respectively. The row #Instances gives the
number of instances within each group. The table contains
information about the instances where the proposed algorithm
shows better-same-worse results compared to the BKS and the
reference algorithms. The ’-’ symbol indicates the unavail-
ability of the results. In addition, the Wilcoxon signed-rank test
[33] with a confidence level of 0.05 was conducted to ascertain
the statistical significance of the results, and the corresponding
p-values are given in the table.

TABLE III
SUMMARY OF COMPARATIVE RESULTS ON BENCHMARK INSTANCES

BETWEEN MA-FIRD AND THE REFERENCES.

Group WC-S WC-C WC-R WC-RC JD Total
p-value#Instances 9 17 23 16 20 85

MA-FIRD vs BKS 0-9-0 0-17-0 5-18-0 3-13-0 20-0-0 28-57-0 3.79E-06
MA-FIRD vs ALNS-PR [5] - 3-14-0 11-12-0 10-6-0 - 24-41-0 1.82E-05
MA-FIRD vs MATE [6] 0-9-0 2-15-0 10-13-0 5-11-0 20-0-0 37-48-0 8.39E-08
MA-FIRD vs MATE* 0-9-0 2-15-0 11-12-0 6-10-0 20-0-0 39-46-0 9.56E-09

Table III shows that the MA-FIRD algorithm consistently
provides comparable or superior results compared to the BKS
and the reference algorithms. For the WC benchmark, MA-
FIRD achieved 8 new best upper bounds and reached the BKS
values for all remaining instances. For the JD benchmark,
MA-FIRD established new best upper bounds for all 20
instances. The associated p-values (<< 0.05) indicates that
the proposed algorithm statistically performs better than the
BKS and reference algorithms.

1) Comparison on the small and medium WC instances:
Tables IV and V show a detailed comparison of the proposed
algorithm with the BKS and the reference algorithms on an
instance-by-instance basis for the small and medium WC in-
stances, where the hierarchical objective function aims to first
minimize the number of vehicles and then the travel distance.
The results of ALNS-PR and MATE are taken directly from
[5] and [6] respectively, while MATE* shows the results we
obtained by re-running the MATE code on our computer.

The Instance column indicates the instance names, and
BKS shows the best-known solutions in the literature. The
M and D columns display the number of vehicles and travel
distance obtained by each algorithm. M±std and D±std
respectively show the average values and standard deviations
of the number of vehicles and the travel distance obtained by
the corresponding algorithm. The t column shows the running
time in seconds for each algorithm, while the γ· t column
reports the converted time using the time conversion ratio γ.

For the 9 small WC instances, despite small differences in
computation time, all methods solve these instances consis-
tently and reliably within a short time. These instances do not
represent a challenge for the compared algorithms.

For the 56 medium WC instances, a weight value of 2000
is assigned to the number of vehicles (M), and 1 to the travel
distance (D) following [6]. The Gap column shows the relative
gap between the solutions and the BKS, calculated using
Equation (12). A negative gap indicates that the algorithm has
found a better solution than the BKS, and these improved
values are highlighted in bold.

Gap = 100% ·
(2000 ·M +D)− (2000 ·MBKS +DBKS)

2000 ·MBKS +DBKS
(12)

Table V shows that the MA-FIRD algorithm outperforms
the reference algorithms. It reaches the BKS values for 48
instances and improves the best-known results for the 8
remaining instances (indicated in bold). Notably, within these
8 instances, MA-FIRD obtains a new best upper bound for the
instance Rdp104 with a smaller M value (with 9 vehicles in-
stead of 10 for the BKS). MA-FIRD performs consistently and
stably with small, and even zero, standard deviations for the
number of vehicles and the travel distance for most instances.
For the primary objective M (the number of vehicles), MA-
FIRD has a better mean value of 7.27 against 7.30 for ALNS-
PR, 7.36 for MATE, and 7.45 for MATE*. In terms of the
gap to the BKS, MA-FIRD holds the best gap of -0.19% (a
negative gap, indicating an improved result) against 0.14% for
ALNS-PR, 2.00% for MATE, and 2.79% for MATE*. In terms
of the running time, all algorithms perform similarly, except
for MATE*, which requires a longer running time.

2) Comparison on the large JD instances: Table VI shows
the comparison results for the large JD instances between
MATE, MATE*, and MA-FIRD. Recall that for the JD in-
stances, the objective is to minimize the total cost, which is
the weighted sum of the number of vehicles and the travel
distance. The columns fBest and fAvg ± std show the best
and average total cost of each algorithm, including standard
deviations. Using MATE’s results as a baseline, the columns
GapBest and GapAvg show the relative gap for the best and
average values obtained by MATE* and MA-FIRD over 30
independent runs. So a negative gap indicates an improved
result. The number of vehicles M and the travel distance D
are also reported for reference.

It is evident that the MA-FIRD algorithm consistently
outperforms both MATE and MATE* with significant im-
provements in all instances in terms of the total cost, with
a negative mean gap of -2.28% for average results. Even the
average objective value is better than the best reference value
(144677.53 against 179464.90). If we examine the number
of vehicles and the travel distances separately, we observe
that MA-FIRD dominates MATE and MATE* in both criteria.
These results demonstrate the effectiveness of the proposed
algorithm in solving large instances in real-world scenarios.

3) Time-to-target analysis: To further compare the compu-
tational efficiency between the proposed MA-FIRD algorithm
and the MATE algorithm, we perform a time-to-target (TTT)
analysis [34, 35] on the medium WC instances. This analysis
involves solving each instance 100 times for both algorithms,
measuring the probability distribution of the required time to
achieve a predefined target objective value. In this analysis,
the maximum running time per run is set to 300 seconds.

Figure 4 visually depicts the results for four representative
instances Cdp101, Rdp203, RCdp101, and RCdp204. The re-
sults confirm that the proposed algorithm consistently achieves
the given targets within a short running time, indicating its
remarkable convergence speed and computational efficiency.

9

TABLE IV
COMPARATIVE RESULTS ON THE 9 SMALL WC BENCHMARK INSTANCES BETWEEN MATE, MATE* AND MA-FIRD.

Instance MATE (Avg) MATE* (Avg) MA-FIRD (Avg)

M ± std D ± std t γ · t M ± std D ± std t M ± std D ± std t

RCdp1001 3.00±0.00 348.98±0.00 1.00 1.24 3.00±0.00 348.98±0.00 0.06 3.00±0.00 348.98±0.00 0.16
RCdp1004 2.00±0.00 216.69±0.00 1.00 1.24 2.00±0.00 216.69±0.00 0.16 2.00±0.00 216.69±0.00 0.28
RCdp1007 2.00±0.00 310.81±0.00 1.00 1.24 2.00±0.00 310.81±0.00 0.19 2.00±0.00 310.81±0.00 0.26
RCdp2501 5.00±0.00 551.05±0.00 1.00 1.24 5.00±0.00 551.05±0.00 0.25 5.00±0.00 551.05±0.00 0.55
RCdp2504 4.00±0.00 473.46±0.00 1.00 1.24 4.00±0.00 473.46±0.00 1.28 4.00±0.00 473.46±0.00 1.42
RCdp2507 5.00±0.00 540.87±0.00 1.00 1.24 5.00±0.00 540.87±0.00 1.23 5.00±0.00 540.87±0.00 1.25
RCdp5001 9.00±0.00 994.18±0.00 1.00 1.24 9.00±0.00 994.18±0.00 1.38 9.00±0.00 994.18±0.00 2.56
RCdp5004 6.00±0.00 733.21±0.00 9.00 11.16 6.00±0.00 733.21±0.00 9.59 6.00±0.00 733.21±0.00 19.25
RCdp5007 7.00±0.00 809.72±0.00 9.00 11.16 7.00±0.00 809.72±0.00 9.00 7.00±0.00 809.72±0.00 6.51
Mean 4.78±0.00 553.22±0.00 2.78 3.44 4.78±0.00 553.22±0.00 2.57 4.78±0.00 553.22±0.00 3.58

TABLE V
COMPARATIVE RESULTS ON THE 56 MEDIUM WC BENCHMARK INSTANCES BETWEEN BKS, ALNS-PR, MATE, MATE* AND MA-FIRD.

Instance BKS ALNS-PR MATE MATE* MA-FIRD (Best) MA-FIRD (Avg)

M D M D t γ · t Gap M D t γ · t Gap M D t Gap M D t Gap M± std D± std t Gap
Cdp101 11 976.04 11 976.04 19.30 23.93 0.00% 11 976.04 102.04 108.16 0.00% 11 976.04 10.08 0.00% 11 976.04 14.46 0.00%11.00±0.00 977.36±0.53 18.77 0.01%
Cdp102 10 941.49 10 941.49 28.11 34.86 0.00% 10 941.49 78.18 82.87 0.00% 10 941.49 32.23 0.00% 10 941.49 51.50 0.00%10.00±0.00 941.49±0.00 62.36 0.00%
Cdp103 10 892.98 10 892.98 48.03 59.56 0.00% 10 892.98 78.66 83.38 0.00% 10 892.98 100.54 0.00% 10 892.98 136.24 0.00%10.00±0.00 893.75±1.11 175.70 0.00%
Cdp104 10 871.40 10 871.40 46.51 57.67 0.00% 10 871.40 79.41 84.17 0.00% 10 871.40 111.53 0.00% 10 871.40 226.19 0.00%10.00±0.00 871.51±0.60 247.13 0.00%
Cdp105 10 1053.12 10 1053.12 15.97 19.80 0.00% 10 1074.51 67.36 71.40 0.10% 11 980.55 10.00 9.16% 10 1053.12 11.09 0.00%10.00±0.00 1053.12±0.00 15.67 0.00%
Cdp106 10 963.45 10 967.71 17.36 21.53 0.02% 10 963.45 100.87 106.92 0.00% 10 963.45 18.65 0.00% 10 963.45 19.56 0.00%10.00±0.00 963.45±0.00 25.72 0.00%
Cdp107 10 987.64 10 987.64 18.06 22.39 0.00% 10 988.60 88.37 93.67 0.00% 10 1072.35 18.49 0.40% 10 987.64 23.07 0.00%10.00±0.00 988.09±1.41 33.73 0.00%
Cdp108 10 932.50 10 932.88 18.22 22.59 0.00% 10 932.49 76.52 81.11 0.00% 10 932.50 90.64 0.00% 10 932.50 36.99 0.00%10.00±0.00 932.50±0.00 45.96 0.00%
Cdp109 10 909.27 10 910.95 38.45 47.68 0.01% 10 909.27 78.86 83.59 0.00% 10 909.27 104.62 0.00% 10 909.27 107.32 0.00%10.00±0.00 909.27±0.00 131.31 0.00%
Cdp201 3 591.56 3 591.56 24.37 30.22 0.00% 3 591.56 90.21 95.62 0.00% 3 591.56 24.27 0.00% 3 591.56 3.98 0.00% 3.00±0.00 591.56±0.00 4.43 0.00%
Cdp202 3 591.56 3 591.56 46.09 57.15 0.00% 3 591.56 158.59 168.11 0.00% 3 591.56 36.36 0.00% 3 591.56 10.09 0.00% 3.00±0.00 591.56±0.00 10.90 0.00%
Cdp203 3 591.17 3 591.17 44.19 54.80 0.00% 3 591.17 62.22 65.95 0.00% 3 591.17 54.60 0.00% 3 591.17 26.50 0.00% 3.00±0.00 591.17±0.00 29.62 0.00%
Cdp204 3 590.60 3 590.6 51.76 64.18 0.00% 3 590.60 78.93 83.67 0.00% 3 590.60 100.62 0.00% 3 590.60 44.40 0.00% 3.00±0.00 590.62±0.10 48.30 0.00%
Cdp205 3 588.88 3 588.88 36.35 45.07 0.00% 3 588.88 134.77 142.86 0.00% 3 588.88 30.74 0.00% 3 588.88 4.42 0.00% 3.00±0.00 588.88±0.00 4.87 0.00%
Cdp206 3 588.49 3 588.49 36.39 45.12 0.00% 3 588.49 176.76 187.37 0.00% 3 588.49 37.96 0.00% 3 588.49 7.29 0.00% 3.00±0.00 588.49±0.00 7.64 0.00%
Cdp207 3 588.29 3 588.29 39.83 49.39 0.00% 3 588.29 196.92 208.74 0.00% 3 588.29 39.85 0.00% 3 588.29 11.51 0.00% 3.00±0.00 588.29±0.00 12.49 0.00%
Cdp208 3 588.32 3 588.32 34.47 42.74 0.00% 3 588.32 215.96 228.92 0.00% 3 588.32 46.42 0.00% 3 588.32 10.33 0.00% 3.00±0.00 588.32±0.00 11.66 0.00%
Rdp101 19 1650.80 19 1650.80 22.86 28.35 0.00% 19 1650.80 53.82 57.05 0.00% 19 1650.80 6.56 0.00% 19 1650.80 10.27 0.00%19.00±0.00 1651.24±1.04 12.28 0.00%
Rdp102 17 1486.12 17 1486.12 20.89 25.90 0.00% 17 1486.12 49.49 52.46 0.00% 17 1486.12 20.62 0.00% 17 1486.12 22.18 0.00%17.00±0.00 1488.95±5.14 35.19 0.01%
Rdp103 13 1294.64 13 1297.01 17.83 22.11 0.01% 13 1294.64 78.82 83.55 0.00% 13 1294.64 72.16 0.00% 13 1294.64 131.76 0.00%13.77±0.43 1233.31±34.96 58.16 5.39%
Rdp104 10 984.81 10 984.81 28.40 35.22 0.00% 10 984.81 79.19 83.94 0.00% 10 984.81 116.38 0.00% 9 1026.42 73.55 -9.33% 9.97±0.18 987.83±7.95 75.87 -0.30%
Rdp105 14 1377.11 14 1377.11 17.58 21.80 0.00% 14 1377.11 105.43 111.76 0.00% 14 1377.11 12.08 0.00% 14 1377.11 10.68 0.00%14.00±0.00 1377.11±0.00 13.46 0.00%
Rdp106 12 1252.03 12 1252.03 27.54 34.15 0.00% 12 1252.03 78.81 83.54 0.00% 12 1252.03 44.62 0.00% 12 1252.03 103.97 0.00%12.00±0.00 1257.26±4.05 59.03 0.02%
Rdp107 10 1112.55 10 1121.86 18.79 23.30 0.04% 10 1124.90 78.99 83.73 0.06% 10 1126.94 180.03 0.07% 10 1112.55 107.73 0.00%10.00±0.00 1121.51±6.38 95.27 0.04%
Rdp108 9 965.22 9 965.54 20.60 25.54 0.00% 9 965.22 79.71 84.49 0.00% 9 965.22 603.82 0.00% 9 965.22 112.70 0.00% 9.00±0.00 970.27±4.84 119.47 0.03%
Rdp109 11 1194.73 11 1194.73 16.08 19.94 0.00% 11 1203.97 76.69 81.29 0.04% 12 1156.84 31.43 8.46% 11 1194.73 36.80 0.00%11.47±0.51 1183.27±27.94 41.06 3.97%
Rdp110 10 1121.46 10 1148.20 19.13 23.72 0.13% 10 1166.47 78.42 83.13 0.21% 11 1081.56 112.89 9.28% 10 1121.46 68.97 0.00%10.23±0.43 1131.49±34.63 87.89 2.26%
Rdp111 10 1098.84 10 1098.84 22.15 27.47 0.00% 10 1098.84 79.07 83.81 0.00% 10 1098.84 129.21 0.00% 10 1098.84 101.44 0.00%10.17±0.38 1096.63±19.15 96.34 1.57%
Rdp112 9 1010.42 9 1010.42 28.63 35.50 0.00% 10 953.63 78.32 83.02 10.22% 10 953.63 174.89 10.22% 9 997.27 101.98 -0.07% 9.93±0.25 961.87±11.65 38.03 9.56%
Rdp201 4 1252.37 4 1253.23 33.44 41.47 0.01% 4 1252.37 78.80 83.53 0.00% 4 1252.37 67.51 0.00% 4 1252.37 22.12 0.00% 4.00±0.00 1253.57±2.29 24.55 0.01%
Rdp202 3 1191.70 3 1191.70 46.71 57.92 0.00% 3 1223.69 77.46 82.11 0.44% 3 1244.54 165.95 0.73% 3 1191.70 39.56 0.00% 3.00±0.00 1193.36±2.53 54.76 0.02%
Rdp203 3 939.58 3 946.28 84.91 105.29 0.10% 3 939.58 73.94 78.38 0.00% 3 939.58 585.88 0.00% 3 939.50 88.73 0.00% 3.00±0.00 941.67±1.49 96.49 0.03%
Rdp204 2 833.09 2 833.09 111.52 138.28 0.00% 2 835.28 78.54 83.25 0.05% 2 860.16 520.65 0.56% 2 825.52 240.22 -0.16% 2.00±0.00 834.61±3.56 124.19 0.03%
Rdp205 3 994.43 3 994.43 80.35 99.63 0.00% 3 994.43 80.49 85.32 0.00% 3 994.43 289.25 0.00% 3 994.43 32.95 0.00% 3.00±0.00 997.59±6.63 48.02 0.05%
Rdp206 3 906.14 3 913.68 89.88 111.45 0.11% 3 906.14 78.23 82.92 0.00% 3 906.14 341.72 0.00% 3 906.14 106.05 0.00% 3.00±0.00 908.81±3.91 84.06 0.04%
Rdp207 2 890.61 2 890.61 82.51 102.31 0.00% 3 811.51 71.13 75.40 39.28% 3 811.51 579.05 39.28% 2 890.61 101.82 0.00% 2.03±0.18 896.76±18.39 134.66 1.49%
Rdp208 2 726.82 2 726.82 100.25 124.31 0.00% 2 726.82 81.23 86.10 0.00% 2 728.22 487.98 0.03% 2 726.82 118.93 0.00% 2.00±0.00 732.89±4.71 90.82 0.13%
Rdp209 3 909.16 3 909.16 86.59 107.37 0.00% 3 909.16 76.27 80.85 0.00% 3 909.16 1060.62 0.00% 3 909.16 102.72 0.00% 3.00±0.00 911.51±2.87 86.53 0.03%
Rdp210 3 939.37 3 939.37 82.84 102.72 0.00% 3 939.37 78.07 82.75 0.00% 3 939.37 449.32 0.00% 3 939.37 106.08 0.00% 3.00±0.00 945.45±5.99 86.71 0.09%
Rdp211 2 904.44 2 904.44 85.87 106.48 0.00% 3 767.82 68.64 72.76 37.99% 3 767.82 412.68 37.99% 2 885.71 55.53 -0.38% 2.03±0.18 905.64±29.15 79.89 1.38%
RCdp101 14 1708.21 14 1776.58 10.59 13.13 0.23% 14 1708.21 27.13 28.76 0.00% 14 1708.21 20.63 0.00% 14 1708.21 15.41 0.00%14.83±0.38 1647.08±27.81 23.14 5.40%
RCdp102 12 1570.28 12 1583.62 19.19 23.80 0.05% 12 1570.28 78.92 83.66 0.00% 12 1589.91 71.53 0.08% 12 1570.28 114.33 0.00%12.03±0.18 1575.69±20.05 61.87 0.28%
RCdp103 11 1282.53 11 1283.52 29.08 36.06 0.00% 11 1282.53 78.64 83.36 0.00% 11 1282.53 204.05 0.00% 11 1282.53 111.63 0.00%11.00±0.00 1285.74±5.18 99.93 0.01%
RCdp104 10 1171.37 10 1171.65 22.57 27.99 0.00% 10 1171.37 79.88 84.67 0.00% 10 1171.37 186.61 0.00% 10 1171.37 100.26 0.00%10.00±0.00 1171.56±0.51 146.17 0.00%
RCdp105 13 1632.29 14 1548.96 16.95 21.02 6.94% 13 1646.36 72.62 76.98 0.05% 14 1548.36 32.51 6.93% 13 1632.29 39.36 0.00%13.77±0.43 1570.50±39.01 51.43 5.33%
RCdp106 12 1392.47 12 1392.47 20.47 25.38 0.00% 12 1392.47 78.62 83.34 0.00% 12 1392.47 41.38 0.00% 12 1392.47 37.52 0.00%12.00±0.00 1393.42±3.32 46.37 0.00%
RCdp107 11 1252.79 11 1255.06 21.22 26.31 0.01% 11 1252.79 78.67 83.39 0.00% 11 1252.79 105.82 0.00% 11 1252.79 101.39 0.00%11.00±0.00 1256.00±2.84 101.35 0.01%
RCdp108 10 1194.40 10 1198.36 19.52 24.20 0.02% 10 1208.58 79.18 83.93 0.07% 11 1151.71 101.75 9.24% 10 1177.98 104.70 -0.08%10.00±0.00 1186.63±12.00 99.92 -0.04%
RCdp201 4 1406.94 4 1406.94 26.68 33.08 0.00% 4 1406.94 78.89 83.62 0.00% 4 1406.94 78.58 0.00% 4 1406.94 20.52 0.00% 4.00±0.00 1409.57±9.13 29.81 0.03%
RCdp202 3 1412.52 3 1414.55 39.94 49.53 0.03% 4 1161.29 79.10 83.85 23.59% 4 1161.29 73.45 23.59% 3 1365.65 107.51 -0.63% 3.00±0.00 1372.33±14.13 66.64 -0.54%
RCdp203 3 1050.64 3 1050.64 83.95 104.10 0.00% 3 1056.96 77.17 81.80 0.09% 3 1060.45 1152.32 0.14% 3 1049.62 60.83 -0.01% 3.00±0.00 1058.63±5.98 70.81 0.11%
RCdp204 3 798.46 3 798.46 94.85 117.61 0.00% 3 798.46 71.01 75.27 0.00% 3 798.46 334.63 0.00% 3 798.46 103.14 0.00% 3.00±0.00 799.33±2.76 85.43 0.01%
RCdp205 4 1297.65 4 1297.65 33.58 41.64 0.00% 4 1297.65 77.82 82.49 0.00% 4 1297.65 168.17 0.00% 4 1297.65 100.06 0.00% 4.00±0.00 1298.80±2.14 73.07 0.01%
RCdp206 3 1146.32 3 1146.32 59.36 73.61 0.00% 3 1146.32 78.54 83.25 0.00% 3 1146.32 392.20 0.00% 3 1146.32 37.67 0.00% 3.00±0.00 1152.35±5.86 46.23 0.08%
RCdp207 3 1061.14 3 1061.84 79.06 98.03 0.01% 3 1061.14 84.47 89.54 0.00% 3 1061.14 461.54 0.00% 3 1061.14 104.54 0.00% 3.00±0.00 1061.95±2.28 87.89 0.01%
RCdp208 3 828.14 3 828.14 72.78 90.25 0.00% 3 828.44 72.98 77.36 0.00% 3 829.00 506.23 0.01% 3 828.14 162.63 0.00% 3.00±0.00 830.39±3.36 112.32 0.03%
Mean 7.29 1044.45 7.30 1045.68 42.12 52.23 0.14% 7.36 1037.92 86.03 91.19 2.00% 7.45 1033.92 201.15 2.79% 7.27 1043.34 70.77 -0.19% 7.36±0.06 1041.11±7.13 66.63 0.65%

TABLE VI
COMPARATIVE RESULTS ON THE 20 LARGE-SCALE JD BENCHMARK INSTANCES BETWEEN MATE, MATE* AND MA-FIRD.

Instance MATE MATE* MA-FIRD

fBest fAvg± std M D fBest GapBest M± std D± std fAvg± std GapAvg M D fBest GapBest M± std D± std fAvg± std GapAvg

F201 65106.00 66097.00±292.00 41 52364.90 64664.90 -0.68% 41.63±0.49 52647.61±213.67 65137.61±213.67 -1.45% 40 52083.40 64083.40 -1.57% 40.40±0.50 52420.04±374.59 64540.04±374.59 -2.36%
F202 65012.00 66038.00±422.00 43 51923.00 64823.00 -0.29% 43.00±0.00 52141.76±149.35 65041.76±149.35 -1.51% 42 51778.10 64378.10 -0.98% 42.20±0.48 52309.00±491.89 64969.00±491.89 -1.62%
F203 65980.00 67090.00±332.00 41 53293.30 65593.30 -0.59% 41.37±0.49 53636.95±196.48 66046.95±196.48 -1.55% 41 53247.40 65547.40 -0.66% 40.93±0.25 53762.45±375.53 66042.45±375.53 -1.56%
F204 64747.00 65851.00±326.00 42 51982.70 64582.70 -0.25% 42.13±0.35 52460.08±180.22 65100.08±180.22 -1.14% 41 51737.30 64037.30 -1.10% 41.30±0.47 52678.48±539.36 65068.48±539.36 -1.19%
F401 122319.00 123261.00±446.00 78 98157.70 121557.70 -0.62% 79.30±0.75 98636.59±256.89 122426.59±256.89 -0.68% 75 93376.00 115876.00 -5.27% 76.17±0.95 96172.30±1566.68 119022.30±1566.68 -3.44%
F402 126887.00 128091.00±410.00 83 101617.00 126517.00 -0.29% 82.47±0.90 102619.60±418.57 127359.60±418.57 -0.57% 79 98297.00 121997.00 -3.85% 79.57±0.77 100708.27±1260.18 124578.27±1260.18 -2.74%
F403 120130.00 122306.00±682.00 78 96729.80 120129.80 0.00% 79.30±0.60 97604.31±403.95 121394.31±403.95 -0.75% 74 93340.00 115540.00 -3.82% 75.80±0.85 95049.40±1398.61 117789.40±1398.61 -3.69%
F404 124517.00 125242.00±359.00 81 98897.50 123197.50 -1.06% 81.60±0.77 99879.39±452.51 124359.39±452.51 -0.70% 78 96051.00 119451.00 -4.07% 79.07±0.78 98081.70±1199.85 121801.70±1199.85 -2.75%
F601 182504.00 184119.00±608.00 116 147617.00 182417.00 -0.05% 115.92±0.89 148360.73±441.98 183137.65±441.98 -0.53% 109 141408.00 174108.00 -4.60% 110.97±1.10 144920.43±1783.13 178210.43±1783.13 -3.21%
F602 187236.00 188891.00±645.00 119 151059.00 186759.00 -0.25% 119.41±0.98 151888.00±591.75 187712.14±591.75 -0.62% 113 144417.00 178317.00 -4.76% 113.83±1.46 148246.53±2376.39 182396.53±2376.39 -3.44%
F603 186644.00 188050.00±621.00 118 149843.00 185243.00 -0.75% 118.63±1.01 151448.04±553.83 187036.93±553.83 -0.54% 110 144979.00 177979.00 -4.64% 113.63±1.25 148734.27±1812.42 182824.27±1812.42 -2.78%
F604 186289.00 188110.00±790.00 120 150449.00 186449.00 0.09% 119.67±1.12 151388.07±478.76 187288.07±478.76 -0.44% 114 144001.00 178201.00 -4.34% 115.00±1.55 147555.10±2227.07 182055.10±2227.07 -3.22%
F801 213661.00 214634.00±561.00 154 167407.00 213607.00 -0.03% 152.17±1.23 168743.57±610.66 214393.57±610.66 -0.11% 147 164225.00 208325.00 -2.50% 150.03±2.36 167414.03±2867.45 212424.03±2867.45 -1.03%
F802 212752.00 213276.00±292.00 150 166591.00 211591.00 -0.55% 151.00±1.05 167888.93±541.21 213188.93±541.21 -0.04% 145 162714.00 206214.00 -3.07% 148.57±1.76 165733.33±2238.98 210303.33±2238.98 -1.39%
F803 214126.00 214870.00±318.00 155 167790.00 214290.00 0.08% 153.60±1.40 168701.80±545.41 214781.80±545.41 -0.04% 150 165213.00 210213.00 -1.83% 152.93±2.23 168220.27±2641.75 214100.27±2641.75 -0.36%
F804 209431.00 210845.00±429.00 150 165302.00 210302.00 0.42% 148.93±1.46 165991.13±404.11 210671.13±404.11 -0.08% 145 160471.00 203971.00 -2.61% 147.57±2.31 164444.90±2467.06 208714.90±2467.06 -1.01%
F1001 312606.00 314914.00±1096.00 203 251707.00 312607.00 0.00% 203.41±1.74 253436.22±849.77 314458.44±849.77 -0.14% 195 244613.00 303113.00 -3.04% 197.27±2.32 248709.20±2547.42 307889.20±2547.42 -2.23%
F1002 309158.00 311718.00±1153.00 203 248731.00 309631.00 0.15% 202.41±1.50 250399.26±917.50 311121.48±917.50 -0.19% 193 241933.00 299833.00 -3.02% 195.73±2.83 245324.30±2909.40 304044.30±2909.40 -2.46%
F1003 311377.00 313989.00±981.00 204 249512.00 310712.00 -0.21% 203.87±1.58 251582.26±947.36 312743.13±947.36 -0.40% 195 242551.00 301051.00 -3.32% 196.90±2.72 246727.33±2729.98 305797.33±2729.98 -2.61%
F1004 308816.00 311415.00±943.00 204 248314.00 309514.00 0.23% 203.19±1.41 249761.69±840.35 310719.38±840.35 -0.22% 193 240655.00 298555.00 -3.32% 196.67±2.52 244625.53±2643.12 303625.53±2643.12 -2.50%
Mean 179464.90 180940.35±585.30119.15 143464.40 179209.40 -0.23% 119.15±0.99 144460.80±499.72 180205.95±499.72 -0.59%113.95 139354.51 141764.89 -3.12% 115.73±1.47 142091.84±1822.54 144677.53±1822.54 -2.28%

10

0 50 100 150 200 250 300
Running time

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
pr
ob
ab
ilit
y

MA-FIRD
MATE

(a) TTT value of Cdp101.

0 50 100 150 200 250 300
Running time

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
pr
ob
ab
ilit
y

MA-FIRD
MATE

(b) TTT value of Rdp203.

0 50 100 150 200 250 300
Running time

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
pr
ob
ab
ilit
y

MA-FIRD
MATE

(c) TTT value of RCdp101.

0 50 100 150 200 250 300
Running time

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
pr
ob
ab
ilit
y

MA-FIRD
MATE

(d) TTT value of RCdp204.

Fig. 4: Examples of time-to-target analysis between MA-FIRD and MATE.
The x-axis represents the running time to reach the target value and the y-axis
indicates the cumulative probability of reaching the given target value.

V. PERFORMANCE ANALYSIS

We now present experiments to study the influences of the
algorithmic components based on the medium WC instances
and the large JD instances.

A. Analysis on the feasible and infeasible route descent search

First, we investigate the impact of the penalty term man-
agement in the feasible and infeasible search, focusing on
normalization and dynamic coefficient adjustment. We com-
pare the MA-FIRD algorithm with two variants: MA-FIRD-
wo-norm, which removes the penalty term normalization, and
MA-FIRD-const-coef, which sets the penalty coefficients to a
constant value (λ1 = λ2 = 1.5). Figure 5a shows the relative
gap between the solutions obtained by these variants and
those of MA-FIRD. The results indicate that normalization of
penalty terms and dynamic coefficient adjustment significantly
enhance performance as the variants perform much worse than
the baseline MA-FIRD in most instances.

Next, we assess the role of the feasible and infeasible route
descent search by comparing it with the variant MA-F, which
eliminates the route descent strategy and accepts only feasible
solutions, and the variant MA-FI, which also removes the route
descent strategy but allows infeasible solutions. Figure 5b
compares MA-F and MA-FI with the baseline MA-FIRD. MA-
FI shows slightly better performance than MA-F, suggesting
that accepting infeasible solutions can help escape feasible
local optima and improve search capability. However, both
variants perform significantly worse than MA-FIRD in almost
all instances, highlighting the importance of the route descent
strategy.

To better understand the benefits of the route descent
strategy, Figures 6 and 7 illustrate high-quality solutions for
adjacent numbers of vehicles in two representative instances.
Different colors represent distinct routes. One notices that
high-quality solutions for adjacent numbers of vehicles are

Cd
p1

01

Cd
p1

02

Cd
p1

03

Cd
p1

04

Cd
p1

05

Cd
p1

06

Cd
p1

07

Cd
p1

08

Cd
p1

09

Cd
p2

01

Cd
p2

02

Cd
p2

03

Cd
p2

04

Cd
p2

05

Cd
p2

06

Cd
p2

07

Cd
p2

08

RC
dp

10
1

RC
dp

10
2

RC
dp

10
3

RC
dp

10
4

RC
dp

10
5

RC
dp

10
6

RC
dp

10
7

RC
dp

10
8

RC
dp

20
1

RC
dp

20
2

RC
dp

20
3

RC
dp

20
4

RC
dp

20
5

RC
dp

20
6

RC
dp

20
7

RC
dp

20
8

Rd
p1

01

Rd
p1

02

Rd
p1

03

Rd
p1

04

Rd
p1

05

Rd
p1

06

Rd
p1

07

Rd
p1

08

Rd
p1

09

Rd
p1

10

Rd
p1

11

Rd
p1

12

Rd
p2

01

Rd
p2

02

Rd
p2

03

Rd
p2

04

Rd
p2

05

Rd
p2

06

Rd
p2

07

Rd
p2

08

Rd
p2

09

Rd
p2

10

Rd
p2

11
F2

01
F2

02
F2

03
F2

04
F4

01
F4

02
F4

03
F4

04
F6

01
F6

02
F6

03
F6

04
F8

01
F8

02
F8

03
F8

04
F1

00
1

F1
00

2
F1

00
3

F1
00

4

Instance

0

2

4

6

8

10

Ga
p

to
 M

A-
FI

RD
 (%

)

MA-FIRD-wo-norm
MA-FIRD-const-coef

(a) Comparison of MA-FIRD with MA-FIRD-wo-norm and MA-FIRD-const-coef.

Cdp
10

1

Cdp
10

2

Cdp
10

3

Cdp
10

4

Cdp
10

5

Cdp
10

6

Cdp
10

7

Cdp
10

8

Cdp
10

9

Cdp
20

1

Cdp
20

2

Cdp
20

3

Cdp
20

4

Cdp
20

5

Cdp
20

6

Cdp
20

7

Cdp
20

8

RC
dp

10
1

RC
dp

10
2

RC
dp

10
3

RC
dp

10
4

RC
dp

10
5

RC
dp

10
6

RC
dp

10
7

RC
dp

10
8

RC
dp

20
1

RC
dp

20
2

RC
dp

20
3

RC
dp

20
4

RC
dp

20
5

RC
dp

20
6

RC
dp

20
7

RC
dp

20
8

Rdp
10

1

Rdp
10

2

Rdp
10

3

Rdp
10

4

Rdp
10

5

Rdp
10

6

Rdp
10

7

Rdp
10

8

Rdp
10

9

Rdp
11

0

Rdp
11

1

Rdp
11

2

Rdp
20

1

Rdp
20

2

Rdp
20

3

Rdp
20

4

Rdp
20

5

Rdp
20

6

Rdp
20

7

Rdp
20

8

Rdp
20

9

Rdp
21

0

Rdp
21

1
F2

01
F2

02
F2

03
F2

04
F4

01
F4

02
F4

03
F4

04
F6

01
F6

02
F6

03
F6

04
F8

01
F8

02
F8

03
F8

04
F1

00
1

F1
00

2
F1

00
3

F1
00

4

Instance

0

10

20

30

40

Ga
p

to
 M

A-
FI

RD
 (%

)

MA-F
MA-FI

(b) Comparison of MA-FIRD with MA-F and MA-FI.

Fig. 5: Comparison of MA-FIRD with its variants. The x-axis denotes the
instance names and the y-axis illustrates the relative gap between the solutions
obtained by variants compared to those of MA-FIRD. A positive gap indicates
that the variant performs worse than MA-FIRD, and vice versa.

(a) M = 15 and f(S) = 1634.85. (b) M = 14 and f(S) = 1708.21.

Fig. 6: Two solutions on the instance RCdp101 with the distance of 32.17.

(a) M = 3 and f(S) = 767.82. (b) M = 2 and f(S) = 885.71.

Fig. 7: Two solutions on the instance Rdp211 with the distance of 72.82.

11

not necessarily close and may show significant differences.
For example, the distance between two solutions for RCdp101
is 32.17, and for Rdp211, it is 72.82. This indicates signif-
icant dissimilarity between solutions with adjacent numbers
of vehicles. This observation highlights that the distribution
of solutions in the search space is not uniform, and high-
quality solutions for different numbers of vehicles may not be
proximate. The route descent strategy enables rapid traversal
of the search space, helping to locate high-quality solutions
for varying numbers of vehicles.

B. Analysis on the adaptive route-inheritance crossover

To study the impact of the ARIX crossover, we create the
following variants of the MA-FIRD algorithm:
• MA-FIRD-wo-X: ARIX is removed, and only one solu-

tion is maintained in the population. At each generation,
the correlated destroy and repair operator from [6] is used
to perturb the solution, which is then improved by the
FIRD search to generate a new solution.

• MA-FIRD-RARI: ARIX is replaced by the RARI
crossover from [6].

• MA-FIRD-RDM-P: The number of parents is randomly
chosen from {2, ..., |P|}.

• MA-FIRD-RDM-I: The insertion operator is randomly
selected from the set {FBI, IBI, FRI, IRI,RI} at
each generation.

Figure 8a provides a visual comparison of the variants
against MA-FIRD. The instances are grouped into WC-C,
WC-R, WC-RC, and JD. Note that the WC-C instances are
less sensitive to configuration variations, while instances in
the other groups are more sensitive. In general, the baseline
MA-FIRD algorithm outperforms MA-FIRD-wo-X and MA-
FIRD-RARI in most cases, which confirms the importance
of ARIX in the algorithm. Furthermore, the results of MA-
FIRD-RDM-P and MA-FIRD-RDM-I lag behind MA-FIRD,
suggesting that the learning-based adaptive mechanism helps
ARIX to select the appropriate number of parents and insertion
operators for different instances.

To gain deeper insights into the impact of different ARIX
configurations, we conducted comprehensive experiments ana-
lyzing the influence of the number of parents and the insertion
operations. Figures 8b and 8c present the visualized results.
Figure 8b shows the results for different numbers of parents
(Np = 2, 4, 6, 8, 10), while Figure 8c presents the results for
different insertion operators (FBI, IBI, FRI, IRI, and RI).

Overall, instances in the WC-C group still demonstrate
less sensitivity to variations in setups. However, performance
across the other three groups varies with different configura-
tions. Notably, no single configuration consistently performs
well across all instances. For example, Np = 6, 8, 10 perform
well on JD but poorly on WC-R, while certain insertion
operators (IBI, IRI, and RI) perform well on WC-R but poorly
on JD. This suggests the necessity of an adaptive mechanism
to dynamically determine configurations and values. Addition-
ally, these configurations generally do not perform better than
the baseline MA-FIRD, indicating the efficacy of the learning-
based adaptive mechanism.

WC-C WC-R WC-RC JD

Group

0

1

2

3

4

G
a
p
 t

o
 M

A
-F

IR
D

 (
%

)

(a) Comparison of the MA-FIRD and its variants.

WC-C WC-R WC-RC JD

Group

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

G
a
p
 t

o
 M

A
-F

IR
D

 (
%

)

(b) Results with number of parents Np = 2, 4, 6, 8, 10.

WC-C WC-R WC-RC JD

Group

0.5

0.0

0.5

1.0

1.5

2.0

2.5

G
a
p
 t

o
 M

A
-F

IR
D

 (
%

)

(c) Results with insertion operations FBI, IBI, FRI, IRI, and RI.

Fig. 8: Comparison of the MA-FIRD algorithm and its variants. The x-
axis denotes the instance groups and the y-axis illustrates the relative gap
between the solutions obtained by variants compared to those of MA-FIRD.
The mean relative gap for each group is indicated by a solid line, while the
0.95 confidence interval is represented by the corresponding shadow.

VI. CONCLUSION

We introduce an effective memetic algorithm to solve
the challenging VRPSPDTW. Based on the memetic algo-
rithm framework, our algorithm integrates several innovative
strategies to effectively enhance the exploration of the solu-
tion space. These include a lightweight feasible and infea-
sible search mechanism featuring the route descent strategy,
penalty term management, and infeasibility-allowed constant-
time move evaluation. We also introduce a learning-based
adaptive route-inheritance crossover to enhance generalization
and robustness, and a fitness-distance population management
strategy based on max-min normalization to maintain popula-

12

tion diversity.
Extensive experiments have been conducted to evaluate the

algorithm’s performance. The results show that the proposed
algorithm consistently outperforms the reference algorithms
with high computational efficiency. Remarkably, The algo-
rithm attains the best solutions for all benchmark instances,
reaching 57 best-known solutions (BKS) and achieving 8 new
best upper bounds for the 65 popular benchmark instances.
Furthermore, the algorithm achieves new best upper bounds
for all 20 large real-world instances, demonstrating its effec-
tiveness and practicality in real-world scenarios.

The flexibility and versatility of innovative strategies in
the proposed algorithm lay the basis for future extensions to
tackle other multi-attribute Vehicle Routing Problems. Future
work aims to explore the adaptability and performance of the
algorithm in a broader range of complex routing scenarios,
thus contributing to the advancement of the field.

REFERENCES

[1] E. Angelelli and R. Mansini, “The vehicle routing problem with
time windows and simultaneous pick-up and delivery,” in Quantitative
Approaches to Distribution Logistics and Supply Chain Management.
Springer, 2002, pp. 249–267.

[2] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle
routing problem: State of the art classification and review,” Computers
& Industrial Engineering, vol. 99, pp. 300–313, 2016.

[3] H. Min, “The multiple vehicle routing problem with simultaneous
delivery and pick-up points,” Transportation Research Part A: General,
vol. 23, no. 5, pp. 377–386, 1989.

[4] J. Dethloff, “Vehicle routing and reverse logistics: The vehicle routing
problem with simultaneous delivery and pick-up: Fahrzeugeinsatzpla-
nung und redistribution: Tourenplanung mit simultaner auslieferung und
rückholung,” OR-Spektrum, vol. 23, pp. 79–96, 2001.

[5] J. Hof and M. Schneider, “An adaptive large neighborhood search with
path relinking for a class of vehicle-routing problems with simultaneous
pickup and delivery,” Networks, vol. 74, no. 3, pp. 207–250, 2019.

[6] S. Liu, K. Tang, and X. Yao, “Memetic search for vehicle routing
with simultaneous pickup-delivery and time windows,” Swarm and
Evolutionary Computation, vol. 66, p. 100927, 2021.

[7] H. Wu and Y. Gao, “An ant colony optimization based on local search
for the vehicle routing problem with simultaneous pickup–delivery and
time window,” Applied Soft Computing, vol. 139, p. 110203, 2023.

[8] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A hybrid genetic
algorithm with adaptive diversity management for a large class of
vehicle routing problems with time-windows,” Computers & Operations
Research, vol. 40, no. 1, pp. 475–489, 2013.

[9] P. He and J.-K. Hao, “General edge assembly crossover-driven memetic
search for split delivery vehicle routing,” Transportation Science, vol. 57,
no. 2, pp. 482–511, 2023.

[10] D. Cattaruzza, N. Absi, D. Feillet, and T. Vidal, “A memetic algorithm
for the multi trip vehicle routing problem,” European Journal of Oper-
ational Research, vol. 236, no. 3, pp. 833–848, 2014.

[11] H.-F. Wang and Y.-Y. Chen, “A genetic algorithm for the simultaneous
delivery and pickup problems with time window,” Computers & Indus-
trial Engineering, vol. 62, no. 1, pp. 84–95, 2012.

[12] C.-H. Liang, H. Zhou, and J. Zhao, “Vehicle routing problem with
time windows and simultaneous pickups and deliveries,” in 2009 16th
International Conference on Industrial Engineering and Engineering
Management. IEEE, 2009, pp. 685–689.

[13] M. Lai and E. Cao, “An improved differential evolution algorithm
for vehicle routing problem with simultaneous pickups and deliveries
and time windows,” Engineering Applications of Artificial Intelligence,
vol. 23, no. 2, pp. 188–195, 2010.

[14] S. Kassem and M. Chen, “Solving reverse logistics vehicle routing
problems with time windows,” The International Journal of Advanced
Manufacturing Technology, vol. 68, pp. 57–68, 2013.

[15] C. Wang, F. Zhao, D. Mu, and J. W. Sutherland, “Simulated annealing for
a vehicle routing problem with simultaneous pickup-delivery and time
windows,” in Advances in Production Management Systems. Sustainable
Production and Service Supply Chains: IFIP WG 5.7 International

Conference, APMS 2013, State College, PA, USA, September 9-12, 2013,
Proceedings, Part II. Springer, 2013, pp. 170–177.

[16] C. Wang, D. Mu, F. Zhao, and J. W. Sutherland, “A parallel simulated
annealing method for the vehicle routing problem with simultaneous
pickup–delivery and time windows,” Computers & Industrial Engineer-
ing, vol. 83, pp. 111–122, 2015.

[17] Y. Shi, Y. Zhou, T. Boudouh, and O. Grunder, “A lexicographic-based
two-stage algorithm for vehicle routing problem with simultaneous
pickup–delivery and time window,” Engineering Applications of Arti-
ficial Intelligence, vol. 95, p. 103901, 2020.

[18] K. Tang, S. Liu, P. Yang, and X. Yao, “Few-shots parallel algorithm port-
folio construction via co-evolution,” IEEE Transactions on Evolutionary
Computation, vol. 25, no. 3, pp. 595–607, 2021.

[19] R. Praxedes, T. Bulhões, A. Subramanian, and E. Uchoa, “A unified
exact approach for a broad class of vehicle routing problems with
simultaneous pickup and delivery,” Computers & Operations Research,
vol. 162, p. 106467, 2024.

[20] Ç. Koç, G. Laporte, and İ. Tükenmez, “A review of vehicle routing with
simultaneous pickup and delivery,” Computers & Operations Research,
vol. 122, p. 104987, 2020.

[21] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations Research, vol. 35,
no. 2, pp. 254–265, 1987.

[22] P. Moscato and C. Cotta, “A modern introduction to memetic algo-
rithms,” Handbook of Metaheuristics, pp. 141–183, 2010.

[23] F. Neri and C. Cotta, “Memetic algorithms and memetic computing op-
timization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1–14, 2012.

[24] F. Glover and J.-K. Hao, “The case for strategic oscillation,” Annals of
Operations Research, vol. 183(1), pp. 163–173, 2011.

[25] M. Li, J.-K. Hao, and Q. Wu, “Learning-driven feasible and infeasible
tabu search for airport gate assignment,” European Journal of Opera-
tional Research, vol. 302, no. 1, pp. 172–186, 2022.

[26] W. Sun, J.-K. Hao, X. Lai, and Q. Wu, “Adaptive feasible and infeasible
tabu search for weighted vertex coloring,” Information Sciences, vol.
466, pp. 203–219, 2018.

[27] Y. Zou, J.-K. Hao, and Q. Wu, “A two-individual evolutionary algorithm
for cumulative capacitated vehicle routing with single and multiple
depots,” IEEE Transactions on Evolutionary Computation, 2024.

[28] Y. Nagata, O. Bräysy, and W. Dullaert, “A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows,”
Computers & Operations Research, vol. 37, no. 4, pp. 724–737, 2010.

[29] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and em-
pirical evaluation,” in European Conference on Machine Learning.
Springer, 2005, pp. 437–448.

[30] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[31] K. Sörensen and M. Sevaux, “MA|PM: memetic algorithms with popu-
lation management,” Computers & Operations Research, vol. 33, no. 5,
pp. 1214–1225, 2006.

[32] D. C. Porumbel, J.-K. Hao, and P. Kuntz, “An evolutionary approach
with diversity guarantee and well-informed grouping recombination for
graph coloring,” Computers & Operations Research, vol. 37, no. 10, pp.
1822–1832, 2010.

[33] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics: Methodology and distribution. Springer, 1992,
pp. 196–202.

[34] R. M. Aiex, M. G. Resende, and C. C. Ribeiro, “Ttt plots: a perl program
to create time-to-target plots,” Optimization Letters, vol. 1, pp. 355–366,
2007.

[35] C. C. Ribeiro, I. Rosseti, and R. Vallejos, “Exploiting run time dis-
tributions to compare sequential and parallel stochastic local search
algorithms,” Journal of Global Optimization, vol. 54, pp. 405–429, 2012.

13

Zhenyu Lei received the B.S. and M.S. degrees
in Computer Science from the Ocean University
of China (Qingdao, China), in 2019 and 2022 re-
spectively. He also received the Engineering degree
from the Polytech Nantes (Nantes, France), in 2021.
He is currently pursuing the Ph.D. degree in Com-
puter Science at the LERIA laboratory, University of
Angers, France. His research interests include evo-
lutionary computation, heuristics, routing problems
and other combinatorial optimization problems.

Jin-Kao Hao received the B.S. degree in Computer
Science from the National University of Defense
Technology, China, in 1982; a M.S. degree from the
National Institute of Applied Sciences, Lyon, France,
in 1987; the Ph.D. degree in constraint programming
from the University of Franche-Comté, France, in
1991. Since 1999, he holds a full Professor posi-
tion with the Computer Science Department at the
University of Angers, France. His research focuses
on the design of effective algorithms and intelligent
computational methods for solving large-scale com-

binatorial search problems. He has co-authored more than 320 peer-reviewed
publications and co-edited 9 books in Springer’s LNCS series. He has served
on more than 200 Program Committees of International Conferences and
is on the Editorial Board of 7 International Journals. Dr. Hao became a
Distinguished Professor in 2010 and Senior Fellow of the Institut Universitaire
de France in 2015.

1

Supplementary materials of paper “A Memetic
Algorithm for Vehicle Routing with Simultaneous

Pickup and Delivery and Time Windows”
Zhenyu Lei and Jin-Kao Hao*

I. CALCULATIONS OF CONCATENATION OPERATION

We provide detailed calculations of the concatenation oper-
ation, denoted as ⊕, for constant-time move evaluation of the
local search operators presented in Section III-C3.

Since the move of the local search operators can be
represented as a rearrangement of subsequences of routes,
the evaluation of the move can be computed efficiently by
maintaining a set of metrics for each route, including travel
distance (D), duration time (Td), earliest and latest arrival
times (Te and Tl), wait time (Tw), violated time window value
(Tv), load values before and after the sequence (Lin and Lout),
and the maximum load (Lmax).

For a subsequence containing a single node, denoted as
σ0 = {vi}, these metrics can be defined:

D(σ0) = 0 (1)

Td(σ0) = si (2)

Te(σ0) = ei (3)

Tl(σ
0) = li (4)

Tw(σ0) = 0 (5)

Tv(σ0) = 0 (6)

Lin(σ0) = di (7)

Lout(σ
0) = pi (8)

Lmax(σ0) = max(di, pi) (9)

For two subsequences of routes, σ1 = {vi, . . . , vj} and
σ2 = {vk, . . . , vl}, the corresponding metrics of the combined
sequence of routes σ1 ⊕ σ2 can be calculated by:

The first author is supported by a scholarship from the China Scholar
Council (Grant No. 202206330014). (Corresponding author: Jin-Kao Hao)

Z. Lei and J.K. Hao are with the Department of Computer Science, LERIA,
Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
(e-mails: zhenyu.lei@etud.univ-angers.fr, jin-kao.hao@univ-angers.fr).

D(σ1 ⊕ σ2) = D(σ1) + cj,k +D(σ2) (10)

∆t = Td(σ1) + Tw(σ1) + tj,k − Tv(σ1) (11)
∆w = max(Te(σ2)−∆t − Tl(σ1), 0) (12)
∆v = max(Te(σ1) + ∆t − Tl(σ2), 0) (13)
Td(σ1 ⊕ σ2) = Td(σ1) + tj,k + Td(σ2) (14)
Te(σ1 ⊕ σ2) = max(Te(σ1), Te(σ2)−∆t)−∆w (15)
Tl(σ1 ⊕ σ2) = min(Tl(σ1), Tl(σ2)−∆t) + ∆v (16)
Tw(σ1 ⊕ σ2) = Tw(σ1) + ∆w + Tw(σ2) (17)
Tv(σ1 ⊕ σ2) = Tv(σ1) + ∆v + Tv(σ2) (18)
Lin(σ1 ⊕ σ2) = Lin(σ1) + Lin(σ2) (19)
Lout(σ1 ⊕ σ2) = Lout(σ1) + Lout(σ2) (20)
Lmax(σ1 ⊕ σ2) = max(Lmax(σ1) + Lin(σ2), Lout(σ1) + Lmax(σ2))

(21)

The difference of D(·), V1(·), and V2(·) in evaluation
function values between the original route R and modified
route R′ can be computed using the values of D, Tv , and Lmax

by Equation (22) in constant time. It’s important to note that
multiple matrices must be maintained for each route to store
the values of these metrics. These matrices can be updated
promptly whenever a move alters the corresponding route.

∆feval(R
′, R) = D(R′)−D(R) (22)

+ λ1

∑
ck∑
tk

(Tv(R′)− Tv(R))

+ λ2
2 ·max ck −min ck

Q
(max(Lmax(R′)−Q, 0)−max(Lmax(R)−Q, 0))

II. SENSITIVITY ANALYSIS OF THE PARAMETERS

This section presents a sensitivity analysis of the parameters
of the algorithm to evaluate their impact on performance
and calibrate them for best results. The analysis focuses on
three key parameters: the coefficient of the fitness function
ξ, the coefficient adjustment factor κ, and the initial reten-
tion ratio γ0r . The parameters are varied within the ranges:
ξ ∈ {0.1, 0.2, . . . , 0.9}, κ ∈ {0.1, 0.2, . . . , 0.9}, and γ0r ∈
{0.1, 0.2, . . . , 0.9}.

Using the sensitivity analysis tool SALib [1], we randomly
sampled 8000 parameter combinations from the parameter
space and evaluated them on a training set comprising 10
representative and challenging benchmark instances. The av-
erage gap value against the best-known solutions (BKS) on

2

the training set served as the performance metric, and Sobol’s
method [2] was used to evaluate parameter sensitivity. Detailed
results are presented in Table A.I and Figure 1.

TABLE A.I
SENSITIVITY ANALYSIS RESULTS.

Parameter Sensitivity Index Confidence Interval

Total-order indices (ST)

ξ 0.024685 0.002019
κ 0.974937 0.057852
γ0r 0.000060 0.000007

First-order indices (S1)

ξ 0.025848 0.014347
κ 0.976788 0.071350
γ0r 0.000146 0.000637

Second-order indices (S2)

(ξ, κ) -0.002324 0.028654
(ξ, γ0r) -0.001171 0.020575
(κ, γ0r) -0.002530 0.076821

ξ κ γᵣ
⁰0.0

0.2

0.4

0.6

0.8

1.0
ST

ξ κ γᵣ
⁰

0.0

0.2

0.4

0.6

0.8

1.0
S1

(ξ
,⁰κ

)

(ξ
,⁰γ

ᵣ⁰)

(κ
,⁰γ

ᵣ⁰)

ᵣ0.08

ᵣ0.06

ᵣ0.04

ᵣ0.02

0.00

0.02

0.04

0.06
S2

Fig. 1: Visualization of the sensitivity analysis results.

The analysis reveals that the coefficient adjustment factor
κ significantly influences the algorithm’s performance, with a
high total-order (ST) value of 0.974937 and a first-order (S1)
index of 0.976788, accompanied by low confidence intervals.
Conversely, the coefficient of the fitness function ξ exhibits
relatively low sensitivity, suggesting a minor impact on per-
formance. Similarly, the initial retention ratio γ0r has the lowest
sensitivity index, implying minimal impact. The consistency
between the total-order (ST) and first-order (S1) indices,
along with negligible second-order indices (S2), indicates low
interaction effects among the parameters.

Given the low interaction effects, we conducted a one-at-a-
time sensitivity analysis to determine suitable values for each
parameter. Each parameter was tested independently while
keeping the others fixed at default values: ξ = 0.5, κ = 0.5,
and γ0r = 0.5. Each parameter setting was evaluated on the
training set over 30 independent runs. Figure 2 illustrates the
average gap values with different parameter settings. The best
parameter settings were found to be ξ = 0.8, κ = 0.5, and
γ0r = 0.9. These values are used in the experiments.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Setting of parameter

2.0

2.2

2.4

2.6

2.8

3.0

Av
er

ag
e

ga
p

parameter
ξ
κ
γᵣ⁰

Fig. 2: Visualization of one-at-a-time sensitivity analysis.

III. CPU INFORMATION AND TIME CONVERSION RATIO

This section provides detailed CPU information and the
calculated time conversion ratio γ for the proposed algorithm
and the reference algorithms.

TABLE A.II
CPU INFORMATION AND TIME CONVERSION RATIO γ .

Algorithm Processor Base frequency CPU mark γ

MA-FIRD AMD EPYC 7282 2.80 GHz 1829 1.00
ALNS-PR [3] Intel Core i5-6600 3.30 GHz 2260 1.24
MATE [4] Intel Xeon E5-2699A 2.40 GHz 1945 1.06

To account for different experimental environments in the
proposed algorithm and reference algorithms, we apply a time
conversion ratio γ to standardize the computation time. This
ratio is defined as the ratio of CPU scores obtained from
PassMark1, a recognized CPU benchmarking platform. Table
A.II presents the detailed information about the CPU used in
our experiments and those used by the reference algorithms,
and the calculated time conversion ratio γ.

REFERENCES

[1] J. Herman and W. Usher, “Salib: An open-source python
library for sensitivity analysis,” Journal of Open Source
Software, vol. 2, no. 9, p. 97, 2017.

[2] I. M. Sobol, “Global sensitivity indices for nonlinear
mathematical models and their monte carlo estimates,”
Mathematics and Computers in Simulation, vol. 55, no.
1-3, pp. 271–280, 2001.

[3] J. Hof and M. Schneider, “An adaptive large neighbor-
hood search with path relinking for a class of vehicle-
routing problems with simultaneous pickup and delivery,”
Networks, vol. 74, no. 3, pp. 207–250, 2019.

[4] S. Liu, K. Tang, and X. Yao, “Memetic search for vehicle
routing with simultaneous pickup-delivery and time win-
dows,” Swarm and Evolutionary Computation, vol. 66, p.
100927, 2021.

1https://www.passmark.com/

	TEVC-00173-2024_20Sep2024_Final
	TEVC-00173-2024_Online_Supplement

