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Abstract1

The minimum di�erential dispersion problem is a NP-hard combinatorial optimiza-2

tion problem with numerous relevant applications. In this paper, we propose an3

intensi�cation-driven tabu search algorithm for solving this computationally chal-4

lenging problem by integrating a constrained neighborhood, a solution-based tabu5

strategy, and an intensi�ed search mechanism to create a search that e�ectively ex-6

ploits the elements of intensi�cation and diversi�cation. We demonstrate the com-7

petitiveness of the proposed algorithm by presenting improved new best solutions8

for 127 out of 250 benchmark instances (> 50%). We study the search trajectory of9

the algorithm to shed light on its behavior and investigate the spatial distribution10

of high-quality solutions in the search space to motivate the design choice of the11

intensi�ed search mechanism.12

Keywords: Combinatorial optimization; Dispersion problem; Tabu search; Candi-13

date list strategy; Intensi�cation mechanism; Heuristics.14

1 Introduction15

Dispersion problems are an important class of subset selection problems in16

binary optimization that have recently received substantial attention from the17
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combinatorial optimization community for their extensive practical applica-18

tions. Dispersion problems can be roughly described as follows. Given a set19

N = {1, 2, . . . , n} of n elements and a distance matrix [dij]n×n (dij ≥ 0) de-20

�ned on these elements, a dispersion problem is to select a subset M from N21

to optimize an objective f over the elements of M .22

By varying the optimization objective, a variety of dispersion problems have23

been introduced and investigated in the literature, including notably the max-24

imum diversity problem (MDP) [2,16,29,32], the max�min diversity problem25

(Max-Min DP) [11,24,26], the minimum di�erential dispersion problem (Min-26

Di� DP) [3,13,22,27,33], the maximum min-sum dispersion problem (Max-27

Minsum DP) [1,19,21,25], and the maximummean dispersion problem (MaxMean28

DP) [6,12,17]. While MDP and Max-Min DP focus only on the dispersion cri-29

terion of the selected elements, Min-Di� DP, Max-Minsum DP, and MaxMean30

DP additionally consider the dispersion equity of solutions.31

Practical application of dispersion problems covers a wide range, as repre-32

sented by the problems of maximally diverse or similar group selection [1],33

urban public facility location [4], densest k-subgraph identi�cation [5], equity-34

based measures in network �ows [7], selection of homogeneous groups [8], fa-35

cility location [14], web page ranking [20], and community mining [31]. These36

dispersion problems are NP-hard in the general case [25], and thus it is unlikely37

that a polynomial time algorithm exists to solve them unless P = NP.38

In this study, we focus on Min-Di� DP that is known to be particularly di�cult39

from a computational point of view [25]. Speci�cally, Min-Di� DP can be40

described as follows. Given a set N = {1, 2, . . . , n}, an associated distance41

matrix [dij]n×n (dij ≥ 0 for i ̸= j; dii = 0 for ∀i), and a �xed positive integer42

m, Min-Di� DP involves selecting a subset M of exactly m elements from43

N , such that the di�erence between the maximum sum and minimum sum44

of distances between a selected element and other selected elements in M is45

minimized. Formally, the Min-Di� DP problem can be written as:46

Minimize Maxi∈M{
∑
j∈M

dij} −Mini∈M{
∑
j∈M

dij} (1)

Subject to M ⊂ N, |M | = m (2)

Due to its strongly NP-hard character and its potential applications, Min-Di�47

DP has received particular attention within the general class of dispersion48

problems and has been the subject of a variety of solution approaches. In49

2009, Prokopyev et al. [25] proposed a linear 0�1 mixed integer programming50

(MIP) formulation for Min-Di� DP and solved a number of small instances51

with n ≤ 100 by means of the CPLEX 9.0 solver. Their computational results52

showed that the CPLEX solver used in these tests is very time-consuming even53
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for small instances with n = 50. For example, for the instances with n = 5054

and m = 15, the CPLEX 9.0 solver failed to obtain the optimal solution under55

a time limit of one hour. More modern versions of CPLEX run faster based56

on exploiting multiple cores, but without this boost the run times are very57

similar. Thus, for larger instances, heuristic algorithms are more appropriate58

to obtain near-optimal solutions and noteworthy advances have been made in59

just the past few years.60

In 2015, Aringhieri et al. introduced a construction and improvement heuristic61

(CIH) algorithm for solving Min-Di� DP, which is composed of an initial solu-62

tion construction stage and an improvement stage [3]. In the same year, Duarte63

et al. proposed a sophisticated evolutionary path relinking (EPR) algorithm64

by integrating a GRASP procedure, a variable neighborhood search (VNS)65

procedure, and an exterior path relinking operator [13]. Their computational66

results show that the EPR algorithm outperforms the basic GRASP algorithm67

in [25]. In 2016, based on the popular swap neighborhood, Mladenovi¢ et al.68

presented a basic VNS algorithm [22], and performed the experimental tests69

showing that this algorithm signi�cantly outperformed the previous EPR al-70

gorithm. Recently (2017), Zhou et al. proposed an iterated local search (ILS)71

algorithm [33], which improved the best known results for a number of in-72

stances commonly used in the literature. Very recently (2017), Wang et al.73

devised a solution-based tabu search algorithm and a memetic algorithm [27],74

showing that their tabu search algorithm improved 71% of the previous best75

results and the memetic algorithm (which contained an embedded tabu search76

algorithm) improved 62% of the previous best results. This naturally raises77

the question of whether some combination of metaheuristics strategies may78

make it possible to do still better.79

Recent studies show that solution-based tabu search [9,10,30] is more e�ective80

than the traditional attribute-based tabu search [15] for solving certain classes81

of binary optimization problems [27]. As reported in [27], the solution-based82

tabu search has been especially e�ective for Min-Di� DP. In this work, we83

go a step further by introducing an intensi�cation-driven tabu search (IDTS)84

algorithm that extends the solution-based tabu search framework by inte-85

grating three special features: a new constrained swap neighborhood relying86

on a candidate list strategy, an enhanced tabu list management using three87

hash functions, and an intensi�ed search mechanism to reinforce the search88

around high-quality solutions discovered. Computational results on 250 in-89

stances show that our IDTS algorithm is very competitive compared to the90

state-of-the-art algorithms in the literature, improving more than half of the91

currently best known solutions (127 out of 250 instances) while consuming a92

short computational time.93

The remainder of the paper is organized as follows. Section 2 describes our94

IDTS algorithm in greater detail. In Section 3, we assess its performance in95
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a computational study of 250 benchmark instances commonly used in the96

literature and provide a direct comparison with state-of-the-art algorithms97

for this problem. In Section 4, we discuss essential components of the IDTS98

algorithm and study their in�uence on its behavior. Section 5, which concludes99

the paper, summarizes the present work and provides research perspectives for100

future work.101

2 Intensi�cation-driven tabu search for Min-Di� DP102

2.1 General Procedure103

We elaborate the elements of the IDTS algorithm by means of the pseudo-104

code in Algorithm 1, where H1, H2, H3 represent hash vectors used to de�ne105

three tabu lists of length L, and h1, h2, h3 represent the hash functions used106

to determine the tabu status of neighbor solutions referenced by these vectors.107

Finally, s and s∗ respectively denote the current solution and the best solution108

found so far.109

The IDTS algorithm starts by initializing the hash vectors that serve as tabu110

lists (lines 1�3), and then generates a feasible initial solution (line 4). Next,111

the algorithm enters a loop to execute the intensi�ed search step (line 7),112

incorporating an inner 'while' loop (lines 8�20), to improve the incumbent113

solution, and these loops are repeatedly performed until the timeout limit114

tmax is reached. Speci�cally, the inner 'while' loop iterates until the current115

solution cannot be improved during the last α consecutive iterations, where α116

is a parameter called the tabu search depth. At each execution of the 'while'117

loop, a best eligible neighbor solution s
′
satisfying H1(h1(s

′
)) ∧ H2(h2(s

′
)) ∧118

H3(h3(s
′
)) = 0 (i.e., a best neighbor solution not forbidden by the tabu lists,119

as discussed in Section 2.5) is selected from the current neighborhood N θ
swap(s)120

de�ned in the following Section 2.4 to replace the incumbent solution s, and121

then the hash vectors Hk (k = 1, 2, 3) are accordingly updated by the new122

incumbent solution s (line 19). After each tabu search run (i.e., when the123

'while' loop terminates), the process switches to the intensi�ed search step124

(line 7) and starts the next tabu search run with the best solution recorded in125

s∗ as its initial solution. Finally, the algorithm returns the best solution found126

during the search and stops when the given time limit tmax is reached.127

The intensi�ed search step is one of key operations of the algorithm. As shown128

in previous studies [18,24], for a number of combinatorial optimization prob-129

lems, high-quality solutions are not uniformly distributed in the search space.130

Instead, they are grouped in clusters, in accordance with the proximate opti-131

mality principle [15], where high-quality solutions at one level are hypothesized132
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Algorithm 1: General procedure of the intensi�cation-driven tabu search
(IDTS) algorithm for the Min-Di� DP problem

Input: Instance I, hash vectors H1, H2, H3 with a length of L, hash
functions h1, h2, h3, parameter θ, cuto� time tmax, and tabu
search depth α

Output: The best solution s∗ found so far
/* Initialization of hash vectors (tabu lists), Sect. 2.5 */

1 for i← 0 to L− 1 do
2 H1[i]← 0; H2[i]← 0; H3[i]← 0
3 end

4 s← InitialSolution(I) /* Initial solution, Sect. 2.3 */

5 s∗ ← s
/* Main search process */

6 repeat

7 s← s∗ /* Switch to the best solution found so far */

8 counter ← 0 /* Counter for consecut. non-improv. s∗ iter.

*/

9 while counter ≤ α do

10 Find a best neighbor solution s
′
in terms of f that satis�es

H1(h1(s
′
)) ∧H2(h2(s

′
)) ∧H3(h3(s

′
)) = 0 in the neighborhood

N θ
swap(s)

/* A solution s
′
with H1(h1(s

′
)) ∧H2(h2(s

′
)) ∧H3(h3(s

′
)) = 0

is identified as an eligible solution, Sections 2.4

and 2.5 */

11 s← s
′

/* Update the incumbent solution */

12 if f(s) < f(s∗) then
13 s∗ ← s /* Update the best solution found so far */

14 countor ← 0

15 end

16 else

17 countor ← countor + 1
18 end

/* Update tabu lists, Sect. 2.5 */

19 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1

20 end

21 until Time() ≤ tmax

to lie close to high-quality solutions at an adjacent level (de�ned relative to the133

moves employed or to a distance measure, depending on the case). These stud-134

ies have demonstrated that high-quality solutions are typically found in the135

vicinity of other high-quality solutions by reference to the standard Euclidean136

distance measure. As we show in Section 4.5, this is also true for Min-Di� DP137

studied in this work. In such a circumstance, performing an intensi�ed search138

around each newly discovered high-quality solution is clearly an advantageous139
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strategy to �nd other high-quality solutions. The IDTS algorithm implements140

this strategy by using the intensi�ed search step to enable the next tabu search141

run to systematically start its search from the best solution s∗ found so far.142

Meanwhile, the tabu lists are not re-initialized after each intensi�ed step and143

thus inherited by all tabu search runs. This ensures that each intensi�ed search144

operation will lead to a di�erent search trajectory even when the next tabu145

search run starts from the same starting point s∗. As a result, the nearby146

areas of s∗ will be thoroughly examined and the intensi�cation search of the147

algorithm is thus reinforced (Although di�erent trajectories can also result148

by clearing or reducing the tabu search memory, in the present case we can149

continue to reap the bene�ts of the solution-based tabu strategy by retaining150

all previous memory).151

2.2 Solution Representation, Search Space, and Evaluation Function152

By reference to the set N = {1, 2, . . . , n}, the distance matrix [dij]n×n, and153

the integer m, we can represent a subset M ⊂ N by a n-dimensional binary154

vector s = (x1, x2, . . . , xn), where xi = 1 if the element i is selected to lie inM ,155

and xi = 0 otherwise. Equivalently, s = (x1, x2, . . . , xn) can be indicated by a156

2-tuple of sets (I0, I1) (i.e., s = (I0, I1)), where I0 = {k : xk = 0 in s} and157

I1 = {k : xk = 1 in s}. An illustrative example for the solution representation158

is given in Fig. 1.159

N

M

1

2

3

4
5

6

7

8

9

10

),( 10
IIs =

3 6 7 9 10

1 2 4 5 8

:1I

:0I

Fig. 1. An illustrative example for the solution representation, where the size of set
N is 10 (n = 10) and the size of set M is 5 (m = 5).

The search space Ωm explored by our IDTS algorithm is composed of all160

feasible solutions, i.e., Ωm = {(x1, x2, . . . , xn) :
∑i=n

i=1 xi = m}, or equivalently,161

Ωm = {(I0, I1) : I0, I1 ⊂ N, |I1| = m}. Obviously, the size of Ωm is equal to162

n!
m!(n−m)!

, which increases very quickly as the size of problem increases.163

Given a solution s = (I0, I1) in Ωm, the objective function value f(s) used to164

measure the quality of s is given by:165

6



f(s) = Maxi∈I1{
∑
j∈I1

dij} −Mini∈I1{
∑
j∈I1

dij} (3)

Finally, for two solutions s1 and s2 in the search space, s1 is better than s2 if166

f(s1) < f(s2) since f is to be minimized.167

2.3 Initial Solution168

Algorithm 2: Initial Solution Method

1 Function InitialSolution()
Input: N = {1, 2, . . . , n}, m
Output: A feasible initial solution s0 = (x1, x2, . . . , xn)

2 for i← 1 to n do
3 xi ← 0
4 end
5 c ← 0
6 while c < m do
7 while True do
8 i ← rand() mod n /* Randomly select a variable xi */
9 if xi = 0 then
10 break
11 end
12 end
13 xi ← 1
14 c← c+ 1
15 end
16 return (x1, x2, . . . , xn)

The IDTS algorithm starts with an initial feasible solution s0 generated by a169

randomized initialization procedure whose pseudo-code is given in Algorithm170

2. The initialization procedure randomly selects m distinct variables xi from171

{x1, x2, . . . , xn} to be assigned the value of 1, while assigning the remaining n−172

m variables the value of 0 to create the initial solution of the IDTS algorithm.173

2.4 Neighborhood Structure and Its Evaluation Technique174

The neighborhood explored by our IDTS algorithm is de�ned by the swap175

operator Swap(·, ·) that is commonly used in previous studies for Min-Di�176

DP [3,13,22,27,33]. Given a solution s = (I0, I1) and two elements u ∈ I0 and177

v ∈ I1, the Swap(u, v) operation exchanges the positions of the elements u178

and v to generate a neighbor solution of s that we denote by s⊕ Swap(u, v).179

For a solution s = (I0, I1), the largest possible neighborhood N full
swap(s) (i.e.,180

the full swap neighborhood) induced by the swap operator is composed of all181
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possible solutions that can be obtained by applying the swap operator to s,182

i.e., N full
swap(s) = {s ⊕ Swap(u, v) : u ∈ I0, v ∈ I1}. The size m × (n − m) of183

neighborhood N full
swap(s) becomes relatively large when m approaches to n/2184

even for the medium-sized instances, making an algorithm that examines the185

full neighborhood very time-consuming. Furthermore, unlike other local search186

methods (e.g., the �rst improvement descent method or the simulated anneal-187

ing method), a tabu search algorithm typically seeks a highest evaluation move188

at each iteration. When faced with a large neighborhood, tabu search therefore189

employs a candidate list strategy designed to create a set of high-quality moves190

that is much smaller than the full neighborhood. A variety of candidate list191

strategies are presented in [15] and variations incorporating their underlying192

principles are introduced in [28,29,32].193

To focus on the most promising neighbor solutions and thus reduce the compu-194

tational e�ort of the IDTS algorithm, we adopt a candidate list strategy based195

on a constrained swap neighborhood N θ
swap for Min-Di� DP, using a parameter196

θ to control the neighborhood size. Speci�cally, given a solution s = (I0, I1),197

the elements to be swapped in I0 are limited to a high-quality subset X ⊂ I0198

in N θ
swap, which constitutes an instance of a successive �lter candidate list199

strategy in [15]. Given such a subset X of I0, the neighborhood N θ
swap(s) can200

be formally written as N θ
swap(s) = {s ⊕ Swap(u, v) : u ∈ X ⊂ I0, v ∈ I1}.201

Hence, N θ
swap has a size of m× |X|. Another form of a successive �lter candi-202

date list strategy similarly extracts a subset of I1 to further reduce the size of203

the neighborhood examined, with an increased risk of reducing the quality of204

the best move in the resulting neighborhood.205

To identify the subset X and evaluate the neighborhood N θ
swap e�ciently,206

the IDTS algorithm maintains a n-dimensional vector ∆ = (∆1,∆2, . . . ,∆n),207

where ∆i =
∑

j∈I1 dij. Speci�cally, the subset X is constructed as follows.208

First, the value δ = |∆i − (∆min+∆max)
2

| is calculated for each element i ∈ I0,209

where ∆min = Mini∈I1{∆i} and ∆max = Maxi∈I1{∆i}. Then, the elements in210

I0 are sorted in an ascending order by a quick-sort method according to their211

δ values, since those elements having a small δ(i) value are the most promising212

to minimize the objective function if they are selected in the solution. Finally,213

the �rst Min{n −m, θ × n} elements are selected to form the subset X. An214

illustrative example for the neighborhood generation strategy is given in Fig.215

2.216

Given a solution s = (I0, I1) and its ∆ vector (∆1,∆2, . . . ,∆n), the objec-217

tive value f(s) (= Maxi∈I1{∆i} −Mini∈I1{∆i}) can be calculated in O(m)218

time as described in the previous studies [3,13]. Moreover, when a swap move219

Swap(u, v) is performed from the current solution s, the vector (∆1,∆2, . . . ,∆n)220

can be updated in O(n) time as follows:221
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Fig. 2. An illustrative example for the neighborhood generation strategy, where the
size of set N and the value of m are respectively 7 and 2, and the size of subset X
is 2.

∆i =


∆i − dui, for i = v; (4)

∆i + dvi, for i = u; (5)

∆i − dui + dvi, otherwise; (6)

As such, the computational complexity of one iteration of our IDTS algorithm222

is bounded by O(|X|×m2+mlogm+(n−m)log(n−m)+n), where mlogm+223

(n −m)log(n −m)) is required by the quick-sort algorithm and represents a224

very small proportion of the total complexity.225

Finally, the IDTS algorithm examines the neighborhood N θ
swap in a lexico-226

graphical order and switches immediately to the next iteration as long as an227

improving solution is encountered. In this way, the algorithm can signi�cantly228

be speeded up at the early stage of the algorithm.229

2.5 Tabu List Management Strategy and Determination of Tabu Status230

In the IDTS algorithm, we adopt the solution-based tabu strategy to determine231

the tabu status of neighbor solutions during the neighborhood evaluation. In232

principle, all solutions that have not been visited are considered as eligible233

solutions, while all the visited solutions are considered tabu and thus excluded234

from further consideration.235

In our IDTS implementation, we adopt the technique of [19] and employ three236

hash vectors H1, H2, and H3 (taking the role of the tabu lists) to determine237

the tabu status of neighbor solutions, where each hash vector Hk (k = 1, 2, 3)238

is associated with a hash function hk. Each hash vector Hk (k = 1, 2, 3) is a239

L-dimensional binary vector (L is the length of the hash vectors), where Hk[i]240

(0 ≤ i ≤ L− 1) takes the value of 0 or 1. The hash functions hk (k = 1, 2, 3)241

are used to map the solutions of the search space Ωm to the indices of the242

hash vectors Hk, i.e., hk : Ω→ {0, 1, 2, . . . , L− 1} (k = 1, 2, 3).243
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To be able to rapidly calculate the hash values of the neighbor solutions, we244

employ three simple hash functions inspired by the studies [9,27,30]. We de�ne245

these three hash functions hk (k = 1, 2, 3) relative to a candidate solution246

s = (x1, x2, . . . , xn) as follows:247

hk(s) = (
n∑

i=1

⌊iξk⌋ × xi) mod L (7)

where ξk (k = 1, 2, 3) are parameters of the hash functions (see Section 3.2),248

while L is empirically set to 108.249

In the IDTS algorithm, the hash vectors are maintained as follows. At the250

beginning, all hash vectors are initialized to 0 (lines 1�3 of Algorithm 1).251

Then, they are dynamically updated by the incumbent solution s as the search252

progresses, as shown in line 19 of Algorithm 1. Accompanying this, we calculate253

the hash values of neighbor solutions as follows. First, given the incumbent254

solution s and its hash value hk(s), the hash value of any neighbor solution s
′
(=255

s⊕ Swap(u, v)) can be obtained in O(1) by setting hk(s
′
) to hk(s) + (⌊vξk⌋ −256

⌊uξk⌋). Second, for the initial solution sinital, the hash value hk(sinital) must257

be calculated from scratch, and the associated time complexity is bounded by258

O(n) for each hash function hk (k = 1, 2, 3) according to Eq.(7).259

Using the three hash vectors de�ned above and the associated hash functions,260

the tabu status of neighbor solutions can be easily determined. A candidate261

neighbor solution s
′
is determined to be non-tabu if at least one of the three262

hash values H1[h1(s
′
)], H2[h2(s

′
)], and H3[h3(s

′
)] is 0, since such a solution263

cannot have been visited. If instead all the hash values H1[h1(s
′
)], H2[h2(s

′
)],264

and H3[h3(s
′
)] equal 1, then with high probability the neighbor solution s

′
has265

been visited previously and thus is considered as a tabu solution. In short, a266

neighbor solution s
′
is excluded from consideration if and only if H1(h1(s

′
))∧267

H2(h2(s
′
)) ∧H3(h3(s

′
)) = 1.268

2.6 Relation with an Existing Tabu Search Algorithm269

Our IDTS algorithm shares similarities with the tabu search algorithm of [27]270

in the sense that both algorithms are based on the general solution-based271

tabu approach. On the other hand, our IDTS algorithm has several features272

that distinguish it from the algorithm of [27]. The �rst is the parametric con-273

strained swap neighborhood whose size is controlled by the parameter θ and274

which appreciably reduces the computational burden of our method. By con-275

trast, the algorithm of [27] employs a randomized constrained neighborhood276

composed of solutions sampled according to a probability from the full swap277

neighborhood N full
swap(s), leading to a neighborhood of di�erent size at each278
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iteration of the algorithm. Second, to determine the tabu status of neighbor279

solutions, IDTS uses three hash vectors and the associated hash functions,280

instead of using two hash vectors as in [27], which considerably decreases the281

error rate of identifying the tabu status of a candidate solution. Third, our282

IDTS algorithm employs an intensi�ed search mechanism, which is motivated283

by studying the distribution of high-quality solutions in the search space (see284

Section 4.5). Finally, as the experimental results in Section 4.3 demonstrate,285

our IDTS algorithm equipped with these features outperforms all existing286

methods including the latest tabu search algorithm and the memetic algo-287

rithm of [27].288

3 Experimental Results and Comparisons289

We assess the performance of the proposed IDTS algorithm by carrying out290

extensive computational experiments on a large number of commonly used291

benchmark instances. The computational results of the IDTS algorithm are292

provided and compared with those of the current leading algorithms in the293

literature.294

3.1 Benchmark Instances295

In the experiments, we employed eight sets of 250 benchmark instances 1 as296

our test bed. These instances have been widely used to assess algorithms for297

several dispersion problems, including the maximum diversity problem [32],298

Max-Minsum DP [1], and Min-Di� DP studied in this work [3,13,22,27,33].299

The main characteristics of these benchmark instances are summarized as300

follows:301

• APOM Set : 40 small instances with n ∈ [50, 250] and m ∈ {0.2n, 0.4n}.302

Distances between elements are Euclidean or random integers in [0, 10000].303

• GKD-b set : 50 instances, where n varies from 25 to 150, m varies from 2304

to 45, and distances are Euclidean.305

• GKD-c Set : 20 instances with n = 500 and m = 50, and distances are306

Euclidean.307

• SOM-b Set : 20 instances with n ∈ [100, 500] andm ∈ {0.1n, 0.2n, 0.3n, 0.4n},308

and distances are integers generated randomly in [0, 9].309

• DM1A Set : 20 instances with n = 500 and m = 200, and distances are a310

real number randomly generated in [0, 10]. These instances are renamed in311

1 Available at http://www.di.unito.it/~aringhie/benchmarks.html and http:

//www.optsicom.es/mindiff/
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[27] as MDG-a_41 to MDG-a_60 .312

• MDG-a Set : 20 instances with n = 500 and m = 50 and 20 instances with313

n = 2000 and m = 200. Like for DM1A, the distances are real numbers314

generated randomly in [0, 10].315

• MDG-b Set : 20 instances with n = 500 and m = 50 and 20 larger instances316

with n = 2000 and m = 200. The distances are real numbers generated317

randomly in [0, 1000].318

• MDG-c set : 20 large instances with n = 3000 and m ∈ {300, 400, 500, 600},319

and distances are integers generated randomly in [0, 1000].320

3.2 Parameter Settings and Experimental Protocol321

Table 1
Settings of parameters
Parameters Section Description Values

α 2.4 depth of tabu search {35,100}

θ 2.4 parameter used to construct the constrained neighborhood {0.3,1.0}

ξ1 2.5 parameter for the �rst hash function 1.8

ξ2 2.5 parameter for the second hash function 1.9

ξ3 2.5 parameter for the third hash function 2.0

The IDTS algorithm employs �ve parameters, whose values and descriptions322

are provided in Table 1. According to the parameter analysis in Section 4.1,323

the parameter θ used to control the neighborhood size was set to 0.3 except324

for the APOM and GKD-b instances for which θ was set to 1.0. The tabu325

search depth α was set to 35 except for the GKD-c instances for which it was326

set to 100. The parameters ξ1, ξ2, ξ3 used to de�ne the hash functions were327

respectively set to 1.8, 1.9, and 2.0.328

To assess and compare the performance of the IDTS algorithm, we use the329

�ve most recent state-of-the-art Min-Di� DP algorithms in the literature as330

our main reference algorithms: the construction and improvement heuristic331

(CIH) [3], the evolutionary path relinking (EPR) algorithm [13], the variable332

neighborhood search (VNS) algorithm [22], the iterated local search (ILS)333

algorithm [33], and the solution-based tabu search (TS) algorithm [27]. Our334

IDTS algorithm and all the reference algorithms were implemented in the335

C++ programming language. and compiled using the g++ compiler with the336

-O3 �ag as in [27,33]. For the CIH, EPR, VNS algorithms, the new versions337

implemented by the authors of [27] were used in our comparisons, since the338

new implementations of these algorithms have a much better performance339

than the original ones according to experimental results in [27]. Moreover, all340

the computational experiments and comparisons in this work are based on the341

same computing platform with an Xeon E5440 processor (2.83 GHz and 2G342

RAM), running the Linux operating system, which makes it possible to make343

a direct and fair comparison between the proposed IDTS algorithm and these344

reference algorithms.345
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Following the studies [13,22,33], our IDTS algorithm was run 20 times for each346

tested instance, with a time limit tmax equaling n seconds for each run, where347

n represents the number of elements in the tested instance.348

3.3 Computational Results and Comparison349

Our experimental results 2 are divided into two parts according to the recent350

studies [27,33], where the �rst part is based on 80 benchmark instances of four351

sets (DM1A, MDG-a with n = 2000, MDG-b with n = 2000, and MDG-c),352

and the second part includes the remaining 170 instances. In [27,33], all the353

tested algorithms were run on the same computing platform as our machine354

for the �rst part of experiments, which allows us to make a fair comparison355

between our IDTS algorithm and other algorithms by directly comparing our356

computational results with the results reported in [27,33]. However, for the357

remaining instances, the time limits were set according to special instances358

in reference [27], which makes a direct comparison between the algorithms359

di�cult. For this reason, we focus in this section on the �rst part of experi-360

mental results, and provide our experimental results in the Appendix for the361

remaining instances, where we also report the previous best known results in362

the literature.363

The computational results are summarized in Tables 2�9 respectively for364

benchmark sets DM1A, MDG-a with n = 2000, MDG-b with n = 2000, and365

MDG-c. The best results (fbest) over 20 independent runs are shown in Tables366

2, 4, 6 and 8, and the average results (favg) are given in Tables 3, 5, 7, and 9. In367

Tables 2, 4, 6 and 8, the �rst three columns give the instance name, the time368

limit in seconds, and the previous best known objective value (fbkv) in the369

literature (Best Known), and the last two columns indicate the best objective370

values obtained by our IDTS algorithm and the di�erence ∆fest(= fbest−fbkv)371

between our best objective value and the previous best known objective value372

in the literature (A negative value indicates an improved best known result).373

For a few of instances the current best known results were only obtained by374

the combined memetic/tabu search algorithm of [27], although using a much375

longer time limit than that employed by our algorithm (tmax = 20×n seconds,376

instead of tmax = n seconds). Also, in a few instances no reference algorithm377

(i.e., no algorithm other than ours) was able to reach the previous best known378

result with the present time limit. Other columns give the best result ob-379

tained by the reference algorithms, including the CIH algorithm [3], the EPR380

algorithm [13], the VNS algorithm [22], the ILS algorithm [33], and the tabu381

search (TS) algorithm [27]. Similarly, in Tables 3, 5, 7, and 9, the �rst two382

2 Our solution certi�cates are available at: http://www.info.univ-angers.fr/

pub/hao/mindiffdp_IDTS.html.
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columns show the instance name and the time limit. The last two columns383

report the average objective values of our IDTS algorithm over 20 runs and384

the standard deviation (std.) of objective values, and other columns give the385

average objective values (favg) of the reference algorithms, respectively.386

In addition, the row "Avg" in these tables shows the average value of each387

column, and the row "#Best" gives the number of instances for which an388

algorithm obtained the best results among the compared algorithms, where389

the previous best known results from the literature are also compared with390

fbest of the IDTS algorithm. To verify whether there exists a signi�cant dif-391

ference between the results of our IDTS algorithm and those of the reference392

algorithms, the p-values from the non-parametric Friedman tests are given in393

the last row of the tables, where a p-value less than 0.05 implies a signi�cant394

di�erence between two groups of compared results. Finally, the best results395

among the compared results are indicated in bold in these tables, and the396

improved results (i.e., the new best known results) are marked by "*".397

Table 2
Computational results and comparison in the best objective value obtained (fbest)
on the DM1A instances.

CIH
[3]

EPR
[13]

VNS
[22]

TS [27] IDTS (this work)

Instance Time
(s)

Best
known

fbest fbest fbest fbest fbest ∆fbest

01Type1_52.1_n500m200 500 33.37 41.29 55.26 49.15 36.49 34.77 1.40

02Type1_52.2_n500m200 500 34.35 42.80 56.03 50.69 38.72 34.60 0.25

03Type1_52.3_n500m200 500 33.23 41.88 53.44 47.64 38.34 34.71 1.48

04Type1_52.4_n500m200 500 34.28 41.22 53.23 46.85 38.60 34.94 0.66

05Type1_52.5_n500m200 500 35.02 42.28 54.84 47.19 38.18 34.75* -0.27

06Type1_52.6_n500m200 500 35.55 41.94 54.66 48.38 38.00 33.97* -1.58

07Type1_52.7_n500m200 500 35.41 41.42 54.87 47.15 37.34 34.07* -1.34

08Type1_52.8_n500m200 500 37.91 40.43 55.09 46.93 37.91 34.00* -3.91

09Type1_52.9_n500m200 500 33.23 41.08 53.82 47.59 38.68 34.01 0.78

10Type1_52.10_n500m200 500 34.32 41.66 54.18 46.29 38.03 34.84 0.52

11Type1_52.11_n500m200 500 36.48 42.93 56.78 48.74 38.07 33.91* -2.57

12Type1_52.12_n500m200 500 33.98 42.76 56.35 49.09 38.58 33.73* -0.25

13Type1_52.13_n500m200 500 35.84 42.58 57.07 47.88 38.77 34.18* -1.66

14Type1_52.14_n500m200 500 33.20 41.66 54.19 49.10 38.85 33.79 0.59

15Type1_52.15_n500m200 500 35.89 41.98 57.38 49.28 38.31 35.58* -0.31

16Type1_52.16_n500m200 500 34.40 41.72 54.45 48.10 39.19 35.16 0.76

17Type1_52.17_n500m200 500 38.28 40.67 52.11 48.75 38.50 34.20* -4.08

18Type1_52.18_n500m200 500 35.37 42.58 53.58 44.16 37.15 34.18* -1.19

19Type1_52.19_n500m200 500 36.46 41.18 54.06 45.83 38.91 35.50* -0.96

20Type1_52.20_n500m200 500 36.28 41.21 55.27 48.21 38.37 35.22* -1.06

Avg 500 35.14 41.76 54.83 47.85 38.25 34.51 -0.64

#Best 8 0 0 0 0 12

p-value 3.71e-1 7.74e-6 7.74e-6 7.74e-6 7.74e-6

Tables 2 and 3 for the set DM1A show that the IDTS algorithm performs398

much better in terms of fbest than the reference algorithms CIH, EPR, VNS,399

and TS. In particular, the IDTS algorithm yielded improved solutions for 12400

out of 20 instances and obtained the best result in terms of "Avg" for all the401

cases. By contrast, none of the reference algorithms can attain the current402

best known results for these instances. Table 3 also shows that the IDTS403
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Table 3
Computational results and comparison in the average objective value obtained (favg)
on the DM1A instances.

CIH [3] EPR [13] VNS [22] TS [27] IDTS (this work)

Instance Time (s) favg favg favg favg favg std.

01Type1_52.1_n500m200 500 44.82 58.33 52.40 40.31 37.98 1.57

02Type1_52.2_n500m200 500 44.51 60.19 52.86 40.18 37.99 1.64

03Type1_52.3_n500m200 500 44.56 57.72 50.03 39.94 37.46 1.38

04Type1_52.4_n500m200 500 43.95 58.33 50.96 40.65 38.14 1.61

05Type1_52.5_n500m200 500 44.00 57.58 49.98 39.62 37.29 1.38

06Type1_52.6_n500m200 500 44.10 58.01 50.90 39.64 38.57 1.37

07Type1_52.7_n500m200 500 43.99 57.64 51.31 39.79 38.02 1.31

08Type1_52.8_n500m200 500 43.49 57.95 49.71 39.30 37.21 1.45

09Type1_52.9_n500m200 500 44.47 57.55 51.54 40.06 37.60 1.41

10Type1_52.10_n500m200 500 44.22 57.22 51.44 40.00 37.47 1.34

11Type1_52.11_n500m200 500 44.14 58.66 52.84 40.07 37.83 1.44

12Type1_52.12_n500m200 500 44.22 58.64 52.00 40.26 37.95 1.75

13Type1_52.13_n500m200 500 44.06 59.48 52.58 40.21 37.87 1.78

14Type1_52.14_n500m200 500 43.96 58.04 51.87 40.38 36.96 1.24

15Type1_52.15_n500m200 500 44.47 59.27 52.39 40.22 38.03 1.28

16Type1_52.16_n500m200 500 44.35 58.78 50.82 40.53 37.90 1.68

17Type1_52.17_n500m200 500 43.82 57.29 51.96 40.32 37.90 1.71

18Type1_52.18_n500m200 500 43.65 56.36 50.33 39.70 37.42 1.59

19Type1_52.19_n500m200 500 44.93 58.32 50.59 40.82 38.50 1.67

20Type1_52.20_n500m200 500 44.78 57.85 51.73 39.89 37.98 1.53

Avg. 500 44.22 58.16 51.41 40.09 37.80 1.51

#Best 0 0 0 0 20

p-value 7.74e-06 7.74e-06 7.74e-06 7.74e-06

Table 4
Computational results and comparison in the best objective value obtained (fbest)
on the MDG-a instances with n = 2000.

CIH
[3]

EPR
[13]

VNS
[22]

ILS
[33]

TS
[27]

IDTS (this work)

Instance Time
(s)

Best
known

fbest fbest fbest fbest fbest fbest ∆fbest

MDG-a_21_n2000_m200 2000 38 41 49 48 50 38 34* -4

MDG-a_22_n2000_m200 2000 37 40 51 49 50 37 34* -3

MDG-a_23_n2000_m200 2000 38 41 50 50 49 38 34* -4

MDG-a_24_n2000_m200 2000 38 42 49 50 50 39 36* -2

MDG-a_25_n2000_m200 2000 38 41 50 49 50 38 34* -4

MDG-a_26_n2000_m200 2000 38 40 48 47 50 38 35* -3

MDG-a_27_n2000_m200 2000 38 40 51 45 49 38 34* -4

MDG-a_28_n2000_m200 2000 38 41 47 47 50 38 35* -3

MDG-a_29_n2000_m200 2000 37 41 49 47 47 37 34* -3

MDG-a_30_n2000_m200 2000 38 38 51 45 49 38 34* -4

MDG-a_31_n2000_m200 2000 38 41 51 44 49 38 35* -3

MDG-a_32_n2000_m200 2000 38 40 50 46 48 38 36* -2

MDG-a_33_n2000_m200 2000 38 42 51 45 48 39 35* -3

MDG-a_34_n2000_m200 2000 38 41 49 50 49 38 34* -4

MDG-a_35_n2000_m200 2000 39 41 50 47 48 39 36* -3

MDG-a_36_n2000_m200 2000 37 41 50 51 48 38 34* -3

MDG-a_37_n2000_m200 2000 38 41 50 47 48 38 34* -4

MDG-a_38_n2000_m200 2000 38 41 52 47 49 38 35* -3

MDG-a_39_n2000_m200 2000 38 41 50 48 48 38 34* -4

MDG-a_40_n2000_m200 2000 37 41 50 48 49 37 35* -2

Avg. 37.85 40.75 49.9 47.5 48.9 38 34.6 -3.25

#Best 0 0 0 0 0 0 20

p-value 7.74e-
06

7.74e-
06

7.74e-
06

7.74e-
06

7.74e-
06

7.74e-
06
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Table 5
Computational results and comparison in the average objective value obtained (favg)
on the MDG-a instances with n = 2000.

CIH
[3]

EPR
[13]

VNS
[22]

ILS
[33]

TS [27] IDTS (this work)

Instance Time (s) favg favg favg favg favg favg std.

MDG-a_21_n2000_m200 2000 43.30 53.80 50.40 53.43 39.45 36.60 1.24

MDG-a_22_n2000_m200 2000 42.20 54.15 50.85 53.55 39.25 36.85 1.19

MDG-a_23_n2000_m200 2000 43.45 53.70 52.70 53.60 40.05 36.75 1.58

MDG-a_24_n2000_m200 2000 43.15 54.05 53.10 53.63 39.65 37.30 0.78

MDG-a_25_n2000_m200 2000 42.55 54.80 52.85 53.60 39.45 37.20 1.25

MDG-a_26_n2000_m200 2000 42.15 54.00 50.10 53.58 39.95 37.30 1.35

MDG-a_27_n2000_m200 2000 42.20 55.15 49.40 53.73 40.30 37.15 1.96

MDG-a_28_n2000_m200 2000 42.50 56.05 50.40 52.98 39.50 37.40 1.36

MDG-a_29_n2000_m200 2000 42.40 53.05 50.30 53.48 39.15 37.20 1.21

MDG-a_30_n2000_m200 2000 42.30 54.85 50.85 54.28 39.50 36.65 1.06

MDG-a_31_n2000_m200 2000 42.65 54.25 49.40 53.88 39.50 37.30 1.05

MDG-a_32_n2000_m200 2000 42.45 54.15 49.10 53.25 39.60 38.00 1.22

MDG-a_33_n2000_m200 2000 43.10 53.90 49.35 53.80 40.35 36.80 1.25

MDG-a_34_n2000_m200 2000 42.50 55.20 52.60 53.48 39.50 37.35 1.46

MDG-a_35_n2000_m200 2000 42.10 55.75 50.35 54.08 40.35 37.90 1.09

MDG-a_36_n2000_m200 2000 42.60 53.70 52.60 53.73 39.40 37.30 1.31

MDG-a_37_n2000_m200 2000 42.65 54.90 49.35 53.85 39.45 37.20 1.47

MDG-a_38_n2000_m200 2000 42.50 55.70 50.90 53.83 39.50 36.60 1.11

MDG-a_39_n2000_m200 2000 42.35 53.70 50.55 53.48 39.45 36.85 1.31

MDG-a_40_n2000_m200 2000 42.15 55.25 50.45 54.03 39.45 37.45 1.20

Avg 2000 42.56 54.51 50.78 53.66 39.64 37.16 1.27

#Better 0 0 0 0 0 20

p-value 7.74e-
06

7.74e-
06

7.74e-
06

7.74e-
06

7.74e-
06

Table 6
Computational results and comparison in the best objective value obtained (fbest)
on the MDG-b instances with n = 2000.

CIH [3] EPR [13] VNS [22] ILS [33] TS [27] IDTS (this work)

Instance Time
(s)

Best
known

fbest fbest fbest fbest fbest fbest ∆fbest

MDG-b_21_n2000_m200 2000 3421.21 3592.78 4600.85 4232.27 3978.52 3421.21 2980.75* -440.46

MDG-b_22_n2000_m200 2000 3389.63 3610.15 4333.36 4280.79 3911.34 3420.91 2961.21* -428.42

MDG-b_23_n2000_m200 2000 3445.18 3608.12 4566.91 4196.89 4127.34 3448.59 3074.56* -370.62

MDG-b_24_n2000_m200 2000 3305.12 3599.84 4483.36 4188.47 4088.26 3305.12 3007.62* -297.50

MDG-b_25_n2000_m200 2000 3360.30 3527.50 4429.91 4362.02 3892.67 3360.30 3062.53* -297.77

MDG-b_26_n2000_m200 2000 3342.92 3644.37 4523.01 4145.28 4116.90 3534.09 3068.00* -274.92

MDG-b_27_n2000_m200 2000 3361.44 3693.03 4533.26 4068.17 4126.90 3361.44 3103.56* -257.88

MDG-b_28_n2000_m200 2000 3454.52 3643.33 4389.26 4195.74 4112.43 3454.52 3091.04* -363.48

MDG-b_29_n2000_m200 2000 3351.36 3707.34 4400.64 4039.83 4057.62 3457.26 3046.27* -305.09

MDG-b_30_n2000_m200 2000 3373.50 3678.40 4349.86 4270.79 4110.61 3373.50 3041.00* -332.50

MDG-b_31_n2000_m200 2000 3519.23 3752.73 4313.65 4083.42 4074.80 3519.23 3040.03* -479.20

MDG-b_32_n2000_m200 2000 3442.42 3673.65 4315.46 4240.51 3929.49 3442.42 3060.99* -381.43

MDG-b_33_n2000_m200 2000 3444.89 3706.50 4385.88 4387.52 3985.32 3444.89 3061.50* -383.39

MDG-b_34_n2000_m200 2000 3454.03 3773.05 4632.31 4113.29 4084.46 3454.03 3071.88* -382.15

MDG-b_35_n2000_m200 2000 3372.26 3699.91 4429.15 4119.50 4000.31 3457.00 3055.21* -317.05

MDG-b_36_n2000_m200 2000 3442.17 3715.52 4321.26 4131.32 4095.13 3442.17 3050.39* -391.78

MDG-b_37_n2000_m200 2000 3352.08 3664.97 4549.56 4232.38 4035.74 3458.43 3015.38* -336.70

MDG-b_38_n2000_m200 2000 3390.50 3661.20 4476.97 4295.61 4126.69 3390.50 3104.92* -285.58

MDG-b_39_n2000_m200 2000 3476.10 3672.97 4470.91 4114.55 4131.87 3476.10 2900.08* -576.02

MDG-b_40_n2000_m200 2000 3351.17 3719.84 4426.71 4136.50 4306.02 3375.62 3016.38* -334.79

Avg. 3402.50 3667.26 4446.61 4191.74 4064.62 3429.87 3040.67 -361.84

#Best 0 0 0 0 0 0 20

p-value 7.74e-6 7.74e-6 7.74e-6 7.74e-6 7.74e-6 7.74e-6
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Table 7
Computational results and comparison in the average objective value obtained (favg)
on the MDG-b instances with n = 2000.

CIH [3] EPR [13] VNS [22] ILS [33] TS [27] IDTS (this work)

Instance Time (s) favg favg favg favg favg favg std.

MDG-b_21_n2000_m200 2000 3883.27 4778.31 4435.83 4299.38 3544.32 3280.31 114.60

MDG-b_22_n2000_m200 2000 3879.67 4661.84 4520.33 4377.97 3564.41 3274.61 91.25

MDG-b_23_n2000_m200 2000 3808.08 4722.15 4390.30 4422.12 3550.02 3295.18 102.89

MDG-b_24_n2000_m200 2000 3839.34 4707.11 4472.02 4421.77 3532.08 3282.48 112.17

MDG-b_25_n2000_m200 2000 3825.67 4794.93 4557.13 4340.78 3603.87 3268.85 85.49

MDG-b_26_n2000_m200 2000 3880.27 4730.99 4391.32 4423.07 3630.28 3292.18 104.27

MDG-b_27_n2000_m200 2000 3868.30 4701.02 4385.32 4424.59 3530.74 3305.33 91.60

MDG-b_28_n2000_m200 2000 3810.18 4698.69 4477.90 4446.16 3545.25 3275.35 104.37

MDG-b_29_n2000_m200 2000 3870.87 4681.13 4301.16 4377.08 3553.72 3289.42 108.10

MDG-b_30_n2000_m200 2000 3797.06 4764.17 4420.86 4470.64 3547.15 3288.46 92.69

MDG-b_31_n2000_m200 2000 3861.12 4801.32 4415.22 4323.11 3609.88 3272.11 102.03

MDG-b_32_n2000_m200 2000 3797.78 4778.58 4366.35 4301.35 3566.98 3276.19 101.40

MDG-b_33_n2000_m200 2000 3815.30 4697.26 4574.32 4351.01 3584.87 3271.92 109.81

MDG-b_34_n2000_m200 2000 3894.40 4791.64 4529.20 4402.11 3578.48 3292.90 110.45

MDG-b_35_n2000_m200 2000 3883.25 4728.08 4342.11 4396.43 3580.56 3290.86 115.81

MDG-b_36_n2000_m200 2000 3897.08 4653.35 4356.16 4435.33 3574.16 3247.02 103.31

MDG-b_37_n2000_m200 2000 3857.85 4836.76 4381.58 4409.06 3593.93 3331.37 108.89

MDG-b_38_n2000_m200 2000 3803.77 4685.33 4405.56 4418.53 3572.96 3278.91 112.47

MDG-b_39_n2000_m200 2000 3863.94 4698.42 4291.46 4403.46 3590.59 3274.59 123.41

MDG-b_40_n2000_m200 2000 3816.35 4670.78 4391.52 4306.02 3523.60 3281.05 124.97

Avg. 3847.68 4729.09 4420.28 4387.50 3568.89 3283.46 106.00

#Best 0 0 0 0 0 20

p-value 7.74e-6 7.74e-6 7.74e-6 7.74e-6 7.74e-6

Table 8
Computational results and comparison in the best objective value obtained (fbest)
on the MDG-c instances with n = 3000.

CIH
[3]

EPR
[13]

VNS
[22]

ILS
[33]

TS [27] IDTS (this work)

Instance Time
(s)

Best
known

fbest fbest fbest fbest fbest fbest ∆fbest

MDG-c_1_n3000_m300 3000 4796 5215 6661 6145 5772 4796 4583* -213

MDG-c_2_n3000_m300 3000 4827 5203 6482 5975 5936 4830 4542* -285

MDG-c_3_n3000_m300 3000 4913 5174 6518 6105 5585 4913 4317* -596

MDG-c_4_n3000_m300 3000 4830 5164 6245 6465 5969 4830 4385* -445

MDG-c_5_n3000_m300 3000 4809 5175 6500 6152 5750 4881 4641* -168

MDG-c_6_n3000_m400 3000 6349 6883 8646 8313 7648 6466 6028* -321

MDG-c_7_n3000_m400 3000 6334 6916 8016 7890 7829 6480 5725* -609

MDG-c_8_n3000_m400 3000 6255 7417 8198 8248 7984 6255 5993* -262

MDG-c_9_n3000_m400 3000 6346 6652 8321 8298 7657 6607 5863* -483

MDG-c_10_n3000_m400 3000 6297 6797 9206 8514 7672 6297 5959* -338

MDG-c_11_n3000_m500 3000 7793 8477 10130 10236 11031 7793 7539* -254

MDG-c_12_n3000_m500 3000 7719 8293 10081 10428 10604 7719 7538* -181

MDG-c_13_n3000_m500 3000 7711 8078 10847 10318 10743 7767 7480* -231

MDG-c_14_n3000_m500 3000 7645 8470 10472 10327 9941 7678 7739 94

MDG-c_15_n3000_m500 3000 7659 8536 10489 10320 10870 7659 7511* -148

MDG-c_16_n3000_m600 3000 9337 10066 12104 12007 13910 9337 8680* -657

MDG-c_17_n3000_m600 3000 8618 10091 13924 12083 13676 8618 8997 379

MDG-c_18_n3000_m600 3000 9118 10451 13322 12538 14011 9118 8978* -140

MDG-c_19_n3000_m600 3000 9387 12313 12329 12216 13538 9387 8686* -701

MDG-c_20_n3000_m600 3000 9013 10284 12219 12231 12415 9013 9079 66

Avg 3000 6987.80 7782.75 9535.50 9240.45 9427.05 7022.20 6713.15 -274.65

#Best 3 0 0 0 0 3 17

p-value 1.75e-
03

7.74e-
06

7.74e-
06

7.74e-
06

7.74e-
06

1.75e-
03
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Table 9
Computational results and comparison in the average objective value obtained (favg)
on the MDG-c instances with n = 3000.

CIH [3] EPR [13] VNS [22] ILS [33] TS [27] IDTS (this work)

Instance Time (s) favg favg favg favg favg favg std.

MDG-c_1_n3000_m300 3000 5537.60 7139.85 6393.85 6265.60 5018.60 4772.90 103.49

MDG-c_2_n3000_m300 3000 5393.10 7197.70 6378.40 6539.33 5020.70 4772.60 128.96

MDG-c_3_n3000_m300 3000 5604.60 7294.30 6545.25 6243.03 5107.45 4740.50 215.89

MDG-c_4_n3000_m300 3000 5493.75 7152.85 6723.30 6636.75 4988.05 4689.20 199.65

MDG-c_5_n3000_m300 3000 5431.60 6845.75 6290.95 6663.25 5118.75 4832.70 142.36

MDG-c_6_n3000_m400 3000 7599.85 9513.10 8714.50 8412.98 6680.65 6351.20 171.66

MDG-c_7_n3000_m400 3000 7763.75 9273.25 8690.90 8457.15 6855.30 6382.45 259.46

MDG-c_8_n3000_m400 3000 7894.35 9258.80 8566.05 8497.28 6518.55 6294.00 167.27

MDG-c_9_n3000_m400 3000 7027.35 9116.20 8651.60 8259.35 6913.70 6341.30 226.54

MDG-c_10_n3000_m400 3000 7188.35 10022.30 8912.15 8646.00 6469.70 6266.40 225.11

MDG-c_11_n3000_m500 3000 9086.55 11486.05 10896.90 12223.38 8064.00 7877.45 201.53

MDG-c_12_n3000_m500 3000 8927.50 11965.35 10735.35 12103.03 8101.60 7905.85 242.39

MDG-c_13_n3000_m500 3000 9207.35 12232.10 10692.20 12228.58 8206.10 7993.10 299.98

MDG-c_14_n3000_m500 3000 8859.75 12394.55 10885.55 11643.90 8114.90 7946.15 154.03

MDG-c_15_n3000_m500 3000 9174.90 11945.55 11032.65 12365.85 7991.05 7895.05 212.32

MDG-c_16_n3000_m600 3000 11516.70 13846.90 12406.05 15801.65 9878.05 9505.65 352.73

MDG-c_17_n3000_m600 3000 11226.35 14663.65 12978.90 15284.10 9529.30 9601.40 285.28

MDG-c_18_n3000_m600 3000 11098.75 14411.05 13077.40 15547.08 9540.30 9502.25 305.41

MDG-c_19_n3000_m600 3000 13038.15 14364.90 12870.45 15526.85 9696.40 9360.80 367.25

MDG-c_20_n3000_m600 3000 11390.65 13966.90 12707.40 13545.33 9618.75 9550.30 265.14

Avg. 8423.05 10704.56 9707.49 10544.52 7371.60 7129.06 226.32

#Best 0 0 0 0 1 19

p-value 7.74e-06 7.74e-06 7.74e-06 7.74e-06 5.70e-05

algorithm dominates the reference algorithms in terms of favg, where the IDTS404

algorithm obtained a better result for all 20 instances. The associated standard405

deviations (std) are very small for all instances (≤ 2.0). The superiority of the406

IDTS algorithm over the reference algorithms is also con�rmed by the small407

p− values (≤ 0.05) both in terms of fbest and favg.408

Tables 4 and 5 show that for the MDG-a instances with n = 2000 our IDTS409

algorithm signi�cantly outperforms the �ve state-of-the-art algorithms both410

in terms of fbest and favg. Speci�cally, the IDTS algorithm improved the best411

known results in the literature for all 20 instances and also obtained better favg412

values on all instances. The signi�cance of the di�erences between the results413

of the IDTS algorithm and those of the reference algorithms is again con�rmed414

by the small p− values (< 0.05). Furthermore, the standard deviations (std)415

are less than 2.0, implying a good robustness of the IDTS algorithm.416

Tables 6 and 7 show that for the large-scale MDG-b instances with n = 2000417

our IDTS algorithm improved the previous best known results for all 20 in-418

stances, and obtained better results both in terms of fbest and favg for all 20419

instances compared to any of the �ve reference algorithms.420

Tables 8 and 9 show the computational results of our IDTS algorithm and421

the �ve reference algorithms on the MDG-c instances. Table 8 shows that the422

IDTS algorithm improved the previous best known result in the literature for423

17 out of 20 instances, and missed the previous best known results for only 3424
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instances. Compared to the latest TS algorithm of [27], the IDTS algorithm425

yielded a better and worse result in terms of favg for 17 and 3 instances,426

respectively. Compared to the other 4 reference algorithms, IDTS yielded a427

better result for all 20 instances. Table 9 indicates that IDTS outperforms the428

TS algorithm of [27] for 19 out of 20 instances in terms of favg, and outper-429

forms the other four reference algorithms for all 20 instances. Once again, the430

signi�cance of the di�erences between the results of the IDTS algorithm and431

those of the reference algorithms is con�rmed by p-values less than 0.05.432

In summary, the above comparative studies disclose that our IDTS algorithm433

compares very favorably with the state-of-the-art Min-Di� DP algorithms in434

the literature.435

4 Analysis and Discussions436

We analyse and discuss several essential features of the IDTS algorithm to un-437

derstand their impacts on the performance, including the sensitivity of the key438

parameters, the e�ectiveness of the intensi�ed search mechanism and the con-439

strained neighborhood. In addition, based on some representative instances,440

we analyse the moving trajectory of the IDTS algorithm and the spacial dis-441

tribution of high-quality solutions to shed light on the landscape of Min-Di�442

DP.443

4.1 Analysis of the Key Parameters444

Table 10
In�uence of the parameter α on the performance of the IDTS algorithm. The best
Avg result is indicated in bold.

P1 P2 P3 P4

α favg favg favg favg Avg

5 1253.80 3490.00 3533.54 5085.20 3340.63

10 1150.48 3372.28 3309.15 4686.80 3129.68

15 1127.10 3248.64 3317.53 4669.95 3090.80

20 1127.75 3250.34 3254.51 4680.85 3078.36

25 1109.77 3296.11 3295.88 4653.65 3088.85

30 1112.58 3290.97 3252.77 4821.05 3119.34

35 1131.17 3270.20 3288.31 4620.25 3077.48

40 1110.93 3366.32 3315.90 4769.90 3140.76

45 1106.34 3258.68 3297.83 4740.45 3100.82

50 1094.36 3284.21 3307.38 4808.65 3123.65

60 1110.30 3324.87 3347.71 4819.50 3150.60

100 1093.88 3359.40 3351.72 4695.05 3125.01

As previously indicated, the IDTS algorithm employs two key parameters, the445

value α that �xes the maximum number of non-improving tabu search itera-446

tions with respect to the recorded best solution s∗ and the value θ that controls447
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Table 11
In�uence of the parameter θ on the performance of the IDTS algorithm. The best
Avg result is indicated in bold.

P1 P2 P3 P4

θ favg favg favg favg Avg

0.05 1259.94 3488.03 3490.39 4892.30 3282.67

0.10 1189.86 3417.34 3403.95 4815.10 3206.56

0.15 1162.95 3374.28 3350.06 4725.45 3153.19

0.20 1116.08 3289.13 3357.32 4740.90 3125.86

0.25 1119.22 3323.78 3334.07 4743.35 3130.11

0.30 1110.81 3320.30 3332.74 4703.85 3116.93

0.35 1110.53 3332.74 3331.70 4765.85 3135.21

0.40 1110.93 3366.32 3315.90 4769.90 3140.76

0.45 1116.06 3382.50 3319.98 4781.30 3149.96

0.50 1100.71 3391.71 3342.26 4877.05 3177.93

0.55 1134.28 3341.03 3390.44 4901.95 3191.92

0.60 1104.73 3331.52 3340.25 4870.10 3161.65

the size of neighborhoodN θ
swap. To investigate the in�uence of α, we carried out448

an experiment on 4 representative instances MDG-b_1_n500_m50, MDG-449

b_21_n2000_m200, MDG-b_40_n2000_m200, and MDG-c_1_n3000_m300450

that are renamed as 'P1', 'P2', 'P3', and 'P4' for simplicity. For each α value451

in {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 100}, we solved each instance 20 times,452

using the experimental protocol in Section 3.2. The computational results are453

summarized in Table 10, where the �rst column shows the setting of α, the last454

column shows the average results over all instances (Avg), and other columns455

give the average objective values over 20 runs for each instance. Table 10 shows456

that no α value performs the best on all instances and that a medium α value457

leads generally to a globally acceptable performance, while large and small α458

values lead to a large performance di�erence on di�erent instances. Hence, as459

a comprise, we adopt α = 35 as the default value for our IDTS algorithm.460

To check whether the performance of the algorithm is sensitive to the set-461

ting of θ, we carried out another experiment based on the 4 representative462

instances mentioned above. For each instance and each θ value in {0.05, 0.1,463

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}, the IDTS algorithm was464

run 20 times, and the computational results are summarized in Table 11. We465

observe from Table 11 that similar to the parameter α, a medium θ value466

leads to an acceptable performance of the algorithm on all instances tested.467

The last column of the table shows that the setting θ = 0.3 produced the best468

outcome in terms of Avg among all tested settings. As a result, the default469

value of θ is set to 0.3 for our IDTS algorithm.470

4.2 E�ectiveness of the Constrained Neighborhood471

The constrained swap neighborhood N θ
swap used as a candidate list strategy472

is an essential component of the IDTS algorithm. To study the e�ectiveness473
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Table 12
Comparative results of the constrained swap neighborhood N θ

swap with the full swap

neighborhood Nfull
swap on the 20 large instances of set MDG-b.

fbest favg fworst

Instance Time (s) IDTS∗ IDTS IDTS∗ IDTS IDTS∗ IDTS

MDG-b_21_n2000_m200 2000 3227.73 2980.75 3554.41 3280.31 3774.53 3497.11

MDG-b_22_n2000_m200 2000 3203.54 2961.21 3424.94 3274.61 3632.66 3455.44

MDG-b_23_n2000_m200 2000 3281.86 3074.56 3495.20 3295.18 3779.58 3588.02

MDG-b_24_n2000_m200 2000 3181.18 3007.62 3517.09 3282.48 3707.87 3557.54

MDG-b_25_n2000_m200 2000 3326.85 3062.53 3525.38 3268.85 3764.58 3453.27

MDG-b_26_n2000_m200 2000 3298.21 3068.00 3532.70 3292.18 3746.72 3506.27

MDG-b_27_n2000_m200 2000 3267.52 3103.56 3524.25 3305.33 3843.87 3479.93

MDG-b_28_n2000_m200 2000 3331.40 3091.04 3520.57 3275.35 3827.14 3541.91

MDG-b_29_n2000_m200 2000 3137.31 3046.27 3498.12 3289.42 3766.85 3656.07

MDG-b_30_n2000_m200 2000 3248.86 3041.00 3535.45 3288.46 3793.35 3469.45

MDG-b_31_n2000_m200 2000 3301.59 3040.03 3522.19 3272.11 3822.31 3506.72

MDG-b_32_n2000_m200 2000 3179.60 3060.99 3515.59 3276.19 3756.51 3495.65

MDG-b_33_n2000_m200 2000 3205.76 3061.50 3491.72 3271.92 3734.97 3525.80

MDG-b_34_n2000_m200 2000 3100.92 3071.88 3496.86 3292.90 3788.15 3487.91

MDG-b_35_n2000_m200 2000 3385.95 3055.21 3555.96 3290.86 3763.23 3601.60

MDG-b_36_n2000_m200 2000 3314.21 3050.39 3545.67 3247.02 3807.67 3450.08

MDG-b_37_n2000_m200 2000 3227.34 3015.38 3478.66 3331.37 3691.13 3512.72

MDG-b_38_n2000_m200 2000 3272.18 3104.92 3535.02 3278.91 3781.62 3528.55

MDG-b_39_n2000_m200 2000 3275.65 2900.08 3529.54 3274.59 3820.13 3510.92

MDG-b_40_n2000_m200 2000 3206.93 3016.38 3452.30 3281.05 3652.17 3597.83

#Better 0 20 0 20 0 20

#Equal 0 0 0 0 0 0

#Worse 20 0 20 0 20 0

p-value 7.74e-06 7.74e-06 7.74e-06

of this strategy, we created a variant of the IDTS algorithm called IDTS∗ by474

replacing the constrained swap neighborhood N θ
swap by the full swap neigh-475

borhood N full
swap, while keeping other components of the IDTS algorithm un-476

changed. Then, we carried out an experiment based on the 20 large MDG-b477

instances with n = 2000 and m = 200, executing the IDTS∗ and IDTS algo-478

rithms 20 times on each instance according to the experimental protocol of479

Section 3.2.480

The computational results of this experiment are summarized in Table 12,481

including the time limits used, the best (fbest), average (favg) and worst (fworst)482

objective values. The rows #Better, #Equal and #Worse show the numbers483

of instances for which each algorithm yielded a better result than the other484

algorithm in terms of fbest, favg, and fworst. To verify whether there exists a485

signi�cant di�erence between the results obtained by the compared algorithms,486

the p-values from the non-parametric Friedman tests are provided in the last487

row.488

Table 12 shows that IDTS (with the constrained neighborhood N θ
swap) con-489

sistently outperforms IDTS∗ (with the full neighborhood N full
swap) on all 20490

instances in terms of fbest, favg, and fworst, con�rming that the constrained491

swap neighborhood N θ
swap plays a positive role in enhancing algorithmic per-492

formance on the tested instances given the time limits employed. On the other493

hand, the e�ectiveness of N θ
swap also depends on the setting of the parameter494

θ, as demonstrated in Section 4.1.495
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4.3 E�ectiveness of the Intensi�ed Search Mechanism496

Table 13
Comparative results of the IDTS algorithm with and without the intensi�ed search
mechanism on the 20 large instances of set MDG-b.

fbest favg fworst

Instance Time (s) IDTS− IDTS IDTS− IDTS IDTS− IDTS

MDG-b_21_n2000_m200 2000 3531.82 2980.75 3607.87 3280.31 3689.28 3497.11

MDG-b_22_n2000_m200 2000 3425.31 2961.21 3581.12 3274.61 3702.27 3455.44

MDG-b_23_n2000_m200 2000 3435.43 3074.56 3589.84 3295.18 3692.52 3588.02

MDG-b_24_n2000_m200 2000 3296.40 3007.62 3593.57 3282.48 3709.41 3557.54

MDG-b_25_n2000_m200 2000 3474.71 3062.53 3645.80 3268.85 3725.34 3453.27

MDG-b_26_n2000_m200 2000 3476.76 3068.00 3597.27 3292.18 3718.05 3506.27

MDG-b_27_n2000_m200 2000 3430.97 3103.56 3592.84 3305.33 3706.95 3479.93

MDG-b_28_n2000_m200 2000 3513.96 3091.04 3622.38 3275.35 3727.75 3541.91

MDG-b_29_n2000_m200 2000 3536.59 3046.27 3607.95 3289.42 3701.91 3656.07

MDG-b_30_n2000_m200 2000 3461.98 3041.00 3602.71 3288.46 3740.34 3469.45

MDG-b_31_n2000_m200 2000 3493.03 3040.03 3578.02 3272.11 3665.83 3506.72

MDG-b_32_n2000_m200 2000 3401.52 3060.99 3593.41 3276.19 3715.99 3495.65

MDG-b_33_n2000_m200 2000 3455.67 3061.50 3622.39 3271.92 3758.12 3525.80

MDG-b_34_n2000_m200 2000 3378.85 3071.88 3560.27 3292.90 3732.65 3487.91

MDG-b_35_n2000_m200 2000 3516.59 3055.21 3636.91 3290.86 3735.21 3601.60

MDG-b_36_n2000_m200 2000 3504.46 3050.39 3626.13 3247.02 3762.41 3450.08

MDG-b_37_n2000_m200 2000 3403.84 3015.38 3587.46 3331.37 3708.17 3512.72

MDG-b_38_n2000_m200 2000 3336.39 3104.92 3586.67 3278.91 3745.11 3528.55

MDG-b_39_n2000_m200 2000 3458.21 2900.08 3617.42 3274.59 3747.81 3510.92

MDG-b_40_n2000_m200 2000 3449.57 3016.38 3620.62 3281.05 3714.19 3597.83

#Better 0 20 0 20 0 20

#Equal 0 0 0 0 0 0

#Worse 20 0 20 0 20 0

p-value 7.74e-06 7.74e-06 7.74e-06

The intensi�ed search mechanism is another essential component of the pro-497

posed IDTS algorithm for the purpose of intensifying the search around the498

last best solution found. To study its impacts on the performance of IDTS, we499

created a variant of the IDTS algorithm called IDTS−, where we disabled the500

intensi�ed search mechanism (line 7 of Algorithm 1), while keeping other com-501

ponents unchanged. As in Section 4.2, we compare IDTS and IDTS− based on502

the 20 large instances with n = 2000 and m = 200 of the set MDG-b. We ran503

both IDTS− and IDTS 20 times to solve each instance, using the experimental504

protocol of Section 3.2.505

The experimental results are summarized in Table 13, where we include the506

same statistics as in Table 12. Table 13 clearly shows that the IDTS algorithm507

(with the intensi�ed search mechanism) performs consistently much better508

than IDTS− (without the intensi�ed search mechanism) over all performance509

indicators considered and on all the tested instances, as con�rmed by the small510

p-values. This outcome demonstrates that the intensi�ed search mechanism511

plays a highly positive role in the high performance of the IDTS algorithm.512

4.4 In�uence of Hash Vectors and Hash Functions513

The proposed IDTS algorithm uses three hash vectors of length L = 108 to514

manage the tabu list (see Section 2.5). To investigate the in�uence of these515
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Table 14
Experimental results of the proposed algorithm with di�erent numbers of hash vec-
tors and di�erent lengths (L) of hash vectors, where the average objective value
(favg) over 20 runs is reported for each instance and each setting.

Two Hash Vectors (L = 108) Three Hash Vectors

Instance IDTS1
(H1, H2)

IDTS2
(H1, H3)

IDTS3
(H2, H3)

IDTS4
(L = 106)

IDTS5
(L = 107)

IDTS
(L = 108)

MDG-b_1_n500_m50 1095.38 1090.80 1113.68 1128.85 1092.90 1109.54

MDG-b_2_n500_m50 1111.31 1101.85 1105.09 1094.83 1109.63 1101.90

MDG-b_3_n500_m50 1135.32 1104.65 1124.82 1099.51 1105.00 1113.33

MDG-b_4_n500_m50 1117.34 1115.78 1107.98 1132.73 1101.97 1106.83

MDG-b_5_n500_m50 1112.37 1102.89 1112.15 1114.05 1102.48 1110.93

MDG-b_6_n500_m50 1126.47 1113.69 1122.27 1123.82 1118.33 1108.56

MDG-b_7_n500_m50 1109.36 1120.34 1114.56 1100.51 1106.37 1121.52

MDG-b_8_n500_m50 1115.28 1104.25 1120.91 1120.48 1118.54 1122.64

MDG-b_9_n500_m50 1122.09 1110.42 1122.27 1113.20 1113.18 1116.71

MDG-b_10_n500_m50 1106.08 1109.63 1123.60 1115.00 1116.72 1116.91

MDG-b_11_n500_m50 1129.84 1118.48 1116.27 1100.90 1106.86 1124.39

MDG-b_12_n500_m50 1113.66 1120.70 1108.58 1116.99 1115.64 1095.78

MDG-b_13_n500_m50 1135.50 1118.32 1115.74 1094.78 1120.83 1092.17

MDG-b_14_n500_m50 1118.15 1122.20 1117.64 1113.11 1123.09 1108.42

MDG-b_15_n500_m50 1109.67 1124.51 1104.98 1103.18 1106.04 1104.19

MDG-b_16_n500_m50 1111.01 1107.44 1094.62 1136.58 1123.35 1092.32

MDG-b_17_n500_m50 1102.21 1113.53 1120.63 1124.57 1101.54 1137.81

MDG-b_18_n500_m50 1105.21 1103.19 1126.20 1116.62 1108.77 1105.58

MDG-b_19_n500_m50 1121.57 1116.59 1104.55 1108.09 1110.67 1114.25

MDG-b_20_n500_m50 1123.84 1111.71 1101.14 1104.99 1106.75 1116.59

Avg. 1116.08 1111.55 1113.88 1113.14 1110.43 1111.02

elements, we �rst created three variants IDTS1, IDTS2 and IDTS3 by disabling516

the hash vectors H3, H2, and H1 of IDTS, respectively, while keeping other517

components of algorithm unchanged. We also created two other variants IDTS4518

and IDTS5 of the IDTS algorithm where we replace the default length of hash519

vectors (L = 108) by L = 106 and L = 107 respectively. Then, we carried out520

an experiment on the 20 MDG-b instances with n = 500 by running each of521

these variants 20 times to solve each instance according to the experimental522

protocol in Section 3.2.523

Columns 2�4 of Table 14 show that under the current experimental conditions,524

IDTS performs similarly with two or three hash vectors in terms of the average525

results for the tested instances. Nevertheless, given that 1) using more hash526

vectors theoretically helps to reduce the number of possible collisions in the527

general case, and 2) determining the tabu status of a neighbor solution has a528

very low time complexity (bounded by O(1)) when using either two or three529

hash vectors, we adopt three hash vectors in our IDTS algorithm. A similar530

observation can be made for IDTS4 and IDTS5, which indicates that IDTS is531

not sensitive to the length (L) of hash vectors.532

As shown in Section 2.5, the hash functions involve a parameter (ξk, k =533

1, 2, 3), each parameter ξk leading to a hash function hk. To show the in�u-534

ence of hash functions on the performance of the IDTS algorithm, we carried535
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out an additional experiment to study the ξk parameter. For this purpose, we536

selected 9 representative parameter combinations (ξ1, ξ2, ξ3) and ran the IDTS537

algorithm 20 times with each parameter combination to solve each of the 20538

MDG-b instances. The average objective results (favg) are reported in Table539

15, where the row Avg. shows the average result for each column and "#Best"540

shows the number of instances for which the corresponding parameter combi-541

nation leads to the best result in terms of favg.542

The results of Table 15 show that the performance of the IDTS algorithm is543

sensitive to the setting of parameters ξ1, ξ2 and ξ3. For the parameter com-544

binations containing a small value for all parameters, such as (ξ1, ξ2, ξ3) =545

(1.1, 1.2, 1.3), (1.1, 1.2, 1.5), (1.1, 1.3, 1.5), IDTS performs badly, yielding a worse546

result in terms of both "Avg." and "#Best" in comparison with other com-547

binations. On the contrary, for those parameter combinations containing a548

large value for at least two parameters, such as (1.5, 1.8, 1.9), (1.8, 1.9, 2.0)549

and (2.0, 2.1, 2.2), IDTS performs very well. As a result, for the present IDTS550

algorithm, the default combination of (ξ1, ξ2, ξ3) is set to (1.8, 1.9, 2.0), since551

such a setting led to the best result in terms of Avg. among the tested com-552

binations.553

4.5 Spatial Distribution of High-Quality Solutions554

In an attempt to further understand why the intensi�ed search mechanism is555

helpful, we have conducted a study on the spatial distribution of high-quality556

solutions as in [18,23]. Our experiment was based on 8 representative instances557

with n = 2000 or 3000, performing 10 runs of our IDTS algorithm for each558

instance tested, and then collecting all the high-quality local optimal solu-559

tions visited by the IDTS algorithm to characterize the spatial distribution of560

high-quality solutions. Here, a solution s is considered be of high-quality if its561

objective value f(s) is better than 1.03×fbkv, i.e., f(s) < 1.03×fbkv, where fbkv562

represents the previous best known result in the literature. Following [18,23],563

to obtain a visual image of the spatial distribution of high-quality solutions564

obtained, we adopted the multidimensional scaling (MDS) method to generate565

approximately the distribution of solutions in the Euclidean space R3 as fol-566

lows. First, we generate a distance matrix Dl×l, where l is the number of local567

optimum solutions sampled, and d
′
ij ∈ Dl×l is the distance between solutions568

si and sj. Speci�cally, given two solutions si = (I0i , I
1
i ) and sj = (I0j , I

1
j ) of569

Min-Di� DP, the distance between si and sj is calculated as d
′
ij =

m−|I1i ∩I
1
j |

m
.570

Then, according to the distance matrix obtained, we generate l coordinate571

points in the R3 space by the cmdscale method, where the distance distor-572

tion between the obtained coordinate points is minimized. Finally, the scatter573

graph of the resulting points in R3 is plotted. Interested readers are referred574

to [18,23] for more details of plotting the spatial distribution in the Euclidean575
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Fig. 3. Distribution of the high-quality local optima for four large MDG-a and
MDG-n instances with n = 2000 and m = 200.

space R3 for a set of solutions.576

The spatial distributions of the collected high-quality solutions visited by the577

IDTS algorithm are given in Fig. 3 and Fig. 4 for the selected instances. First,578

these plots show that for all tested instances, the collected high-quality solu-579

tions are typically grouped in clusters, delimited by a sphere of small diameter580

and characterized by small distances between the solutions of the same clus-581

ter [23]. This observation implies that the solutions within a cluster can be582

reached more easily from a nearby solution than from a distant solution. The583

intensi�ed search mechanism of the IDTS algorithm exploits this property584

by systematically launching a search from the best solution found so far in585

order to discover other nearby high-quality solutions. Second, to discover a586

new cluster (that can contain new high-quality solutions), it is useful to apply587

some strong diversi�cation strategies. In the case of the IDTS algorithm, this588

is achieved by the simple mechanism of multiple re-starts, each re-start being589
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Fig. 4. Distribution of the high-quality local optima for four large MDG-c instances
with n = 3000 and m = 300.

performed with a di�erent initial solution in the search space. Other mech-590

anisms are of course possible (see, e.g., [15]) and may be preferable in other591

settings.592

4.6 Analysis of the Search Trajectory593

To shed additional light on the behavior of the IDTS algorithm, we investi-594

gate the nature of its search trajectory. For this purpose, we carried out the595

following experiment on four representative instances. The algorithm was run596

once to solve each instance, starting from a local optimum solution obtained597

by the �rst improvement descent method. To avoid the bias of the constrained598

neighborhood candidate list strategy, we adopted the full swap neighborhood599

N full
swap and set the maximum number of iterations to be 500.600
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Fig. 5. Evolution of the objective values during the tabu search process.

During the run of the algorithm, we recorded the objective value (f) at each601

iteration. The evolution of f as a function of the iterations for the tested602

instances is plotted in Fig. 5, where the X-axis represents the number of iter-603

ations, and the Y-axis indicates the objective value f . Fig. 5 shows that the604

objective values f undergo multiple �uctuations during the search process, in-605

dicating that the algorithm is able to escape various local optimality traps and606

discover diverse local optima by visiting intermediate solutions whose quality607

can vary largely.608

5 Conclusions and Future work609

Our intensi�cation-driven tabu search (IDTS) algorithm for the strongly NP-610

hard Min-Di� DP derives its competitive performance from three major com-611

ponents: a candidate list strategy utilizing a parametric reduced neighborhood612

to focus on promising neighbor solutions, a solution-based tabu strategy that613

enables a highly e�ective search over diverse terrain, and an intensi�ed search614

mechanism that creates a re�ned exploration around high-quality solutions615
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discovered during the search.616

The performance of the IDTS algorithm was evaluated through extensive ex-617

periments on 250 benchmark instances commonly used to assess algorithmic618

performance. The computational results showed that our IDTS algorithm sig-619

ni�cantly outperforms the state-of-the-art Min-Di� DP algorithms in the lit-620

erature, by �nding improved best known solutions (new upper bounds) for621

127 out of the 250 instances tested. Additional experiments were performed622

to shed light on the behavior of the proposed algorithms.623

There are several possibilities to further improve our algorithm. First, self-624

adaptive techniques can be designed to tune the two key parameters α and θ625

automatically. Second, advanced diversi�cation strategies can be investigated626

to better exploit the phenomenon exhibited by di�erential dispersion problems627

whereby high-quality solutions are grouped in clusters (as shown in Section628

4.5). Finally, the strategies of the IDTS algorithm embody rather general629

principles, and it would be interesting to investigate their application more630

thoroughly in other binary optimization settings.631
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A Appendix719

We report here the results of the IDTS algorithm on the six sets of bench-720

marks of 170 instances that are not listed in Section 3.3. The outcomes of the721
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computational tests are given in Tables A.1- A.6, including the previous best722

known results in the literature (Best Known), and for our IDTS algorithm,723

the best objective value (fbest), the average objective value (favg), the stan-724

dard deviation (sdt) of objective values, and the di�erence between fbest and725

the Best Known results. The row 'Avg' of each table shows the average of the726

values in each column. The row '#Best' indicates the number of instances for727

which the associated result matches the current best known one, and the best728

results between the results of IDTS and the Best Known values are indicated729

in bold. In addition, the symbol '*' means that the IDTS algorithm obtained730

an improved solution compared to the Best Known result.731

We used the same timeout limit for the IDTS algorithm as in Section 3.3, i.e.,732

tmax = n, where n is the number of elements in the instance. The two previous733

studies [22,33] used the same time limit as ours. It should be noted, however,734

that the study in [27] set the timeout limit tmax according to speci�c instances,735

making it di�cult to perform a direct comparison between our results and736

theirs on these instances. Thus, the main goal of this section is to show the737

detailed experimental results of our IDTS algorithm, instead of making a direct738

comparison between our IDTS algorithm and the algorithm in [27].739

Tables A.1, A.2, and A.4 show our IDTS algorithm performed very well by740

comparison to the Best Known results on the MDG-a, MDG-b and GKD-741

c instances (which constitute all the larger instances with n = 500). Tables742

A.3 and A.5 show our IDTS algorithm matched or improved the Best Known743

results in most of GKD-b and SOM-b instances, and Table A.6 shows our744

algorithm yielded slightly worse outcomes compared to the Best Known results745

on the APOM instances. In sum, these computational results further show a746

good search ability of the proposed IDTS algorithm.747
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Table A.1
Computational results on MDG-a instances with n = 500.

Instance Time (s) Best
known

fbest favg std ∆fbest

MDG-a_1_n500_m50 500 10.46 9.73* 10.97 0.37 -0.73

MDG-a_2_n500_m50 500 10.58 10.21* 11.00 0.40 -0.37

MDG-a_3_n500_m50 500 10.74 10.04* 11.03 0.32 -0.70

MDG-a_4_n500_m50 500 10.90 10.10* 10.99 0.36 -0.80

MDG-a_5_n500_m50 500 10.58 10.02* 10.97 0.35 -0.56

MDG-a_6_n500_m50 500 10.08 9.91* 10.99 0.41 -0.17

MDG-a_7_n500_m50 500 10.35 9.55* 11.07 0.44 -0.80

MDG-a_8_n500_m50 500 10.16 10.35 10.92 0.35 0.19

MDG-a_9_n500_m50 500 9.97 10.47 11.06 0.28 0.50

MDG-a_10_n500_m50 500 10.58 10.52* 11.10 0.31 -0.06

MDG-a_11_n500_m50 500 10.57 9.37* 10.95 0.43 -1.20

MDG-a_12_n500_m50 500 10.62 10.17* 11.11 0.30 -0.45

MDG-a_13_n500_m50 500 10.31 10.32 11.16 0.30 0.01

MDG-a_14_n500_m50 500 9.95 9.96 10.99 0.34 0.01

MDG-a_15_n500_m50 500 10.40 9.66* 11.01 0.38 -0.74

MDG-a_16_n500_m50 500 10.40 10.28* 10.92 0.29 -0.12

MDG-a_17_n500_m50 500 10.33 10.34 11.02 0.33 0.01

MDG-a_18_n500_m50 500 10.56 10.16* 10.95 0.29 -0.40

MDG-a_19_n500_m50 500 10.46 9.55* 10.88 0.41 -0.91

MDG-a_20_n500_m50 500 10.54 9.96* 11.03 0.39 -0.58

Avg 10.43 10.03 11.01 0.35 -0.39

#Best 5 15

Table A.2
Computational results on MDG-b instances with n = 500.

Instance Time (s) Best
known

fbest favg std ∆fbest

MDG-b_1_n500_m50 500 1055.33 1031.91* 1120.95 33.23 -23.42

MDG-b_2_n500_m50 500 1038.08 993.71* 1112.43 37.34 -44.37

MDG-b_3_n500_m50 500 1086.91 1045.74* 1118.47 32.95 -41.17

MDG-b_4_n500_m50 500 1052.27 944.13* 1097.53 38.75 -108.14

MDG-b_5_n500_m50 500 1005.45 1013.51 1104.18 38.26 8.06

MDG-b_6_n500_m50 500 1061.50 1002.18* 1107.08 39.33 -59.32

MDG-b_7_n500_m50 500 1063.67 937.19* 1099.44 41.89 -126.48

MDG-b_8_n500_m50 500 1088.63 1026.35* 1120.24 30.60 -62.28

MDG-b_9_n500_m50 500 1069.26 1047.74* 1115.17 35.46 -21.52

MDG-b_10_n500_m50 500 1069.54 1006.26* 1114.27 39.39 -63.28

MDG-b_11_n500_m50 500 1031.02 1047.57 1121.52 33.07 16.55

MDG-b_12_n500_m50 500 1063.76 1011.66* 1107.38 38.17 -52.10

MDG-b_13_n500_m50 500 1026.86 990.38* 1106.17 43.44 -36.48

MDG-b_14_n500_m50 500 1018.69 1062.11 1120.50 29.36 43.42

MDG-b_15_n500_m50 500 1022.19 1044.68 1115.20 28.77 22.49

MDG-b_16_n500_m50 500 1057.20 1035.26* 1112.72 28.83 -21.94

MDG-b_17_n500_m50 500 1045.20 1041.10* 1120.33 31.46 -4.10

MDG-b_18_n500_m50 500 1032.54 998.27* 1095.49 39.46 -34.27

MDG-b_19_n500_m50 500 1066.78 982.59* 1089.50 38.66 -84.19

MDG-b_20_n500_m50 500 1022.66 1013.54* 1102.86 37.12 -9.12

Avg 500 1048.88 1013.79 1110.07 35.78 -35.08

#Best 4 16
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Table A.3
Computational results on GKD-b instances.

Instance Time (s) Best
known

fbest favg std ∆fbest

GKD-b_1_n25_m2 25 0.00 0.00 0.00 0.00 0.00

GKD-b_2_n25_m2 25 0.00 0.00 0.00 0.00 0.00

GKD-b_3_n25_m2 25 0.00 0.00 0.00 0.00 0.00

GKD-b_4_n25_m2 25 0.00 0.00 0.00 0.00 0.00

GKD-b_5_n25_m2 25 0.00 0.00 0.00 0.00 0.00

GKD-b_6_n25_m7 25 12.72 12.72 12.72 0.00 0.00

GKD-b_7_n25_m7 25 14.10 14.10 14.10 0.00 0.00

GKD-b_8_n25_m7 25 16.76 16.76 16.76 0.00 0.00

GKD-b_9_n25_m7 25 17.07 17.07 17.07 0.00 0.00

GKD-b_10_n25_m7 25 23.27 23.27 23.86 1.19 0.00

GKD-b_11_n50_m5 50 1.93 1.93 1.93 0.00 0.00

GKD-b_12_n50_m5 50 2.05 2.05 2.05 0.01 0.00

GKD-b_13_n50_m5 50 2.36 2.36 2.43 0.22 0.00

GKD-b_14_n50_m5 50 1.66 1.66 1.66 0.00 0.00

GKD-b_15_n50_m5 50 2.85 2.85 2.85 0.00 0.00

GKD-b_16_n50_m15 50 42.75 42.75 42.93 0.66 0.00

GKD-b_17_n50_m15 50 48.11 48.11 50.54 7.29 0.00

GKD-b_18_n50_m15 50 43.20 43.20 43.20 0.00 0.00

GKD-b_19_n50_m15 50 46.41 46.41 46.41 0.00 0.00

GKD-b_20_n50_m15 50 47.72 47.72 48.25 1.92 0.00

GKD-b_21_n100_m10 100 9.33 9.33 11.47 1.26 0.00

GKD-b_22_n100_m10 100 8.60 8.60 12.16 1.34 0.00

GKD-b_23_n100_m10 100 6.91 7.59 10.52 1.53 0.68

GKD-b_24_n100_m10 100 7.59 7.59 11.85 1.69 0.00

GKD-b_25_n100_m10 100 6.91 9.64 12.04 1.19 2.73

GKD-b_26_n100_m30 100 159.19 159.19 162.64 6.99 0.00

GKD-b_27_n100_m30 100 124.17 124.17 141.46 24.47 0.00

GKD-b_28_n100_m30 100 106.38 106.38 119.41 16.86 0.00

GKD-b_29_n100_m30 100 135.85 135.85 138.53 7.47 0.00

GKD-b_30_n100_m30 100 127.27 127.27 136.05 13.51 0.00

GKD-b_31_n125_m12 125 11.05 11.05 12.80 2.05 0.00

GKD-b_32_n125_m12 125 11.43 10.43* 14.85 1.47 -1.00

GKD-b_33_n125_m12 125 9.18 10.79 13.93 1.40 1.61

GKD-b_34_n125_m12 125 11.83 11.83 16.22 1.63 0.00

GKD-b_35_n125_m12 125 9.20 7.53* 11.88 1.60 -1.67

GKD-b_36_n125_m37 125 125.55 125.55 146.88 17.19 0.00

GKD-b_37_n125_m37 125 194.22 194.22 194.65 1.53 0.00

GKD-b_38_n125_m37 125 184.27 184.27 190.89 17.66 0.00

GKD-b_39_n125_m37 125 155.39 155.39 161.74 6.29 0.00

GKD-b_40_n125_m37 125 161.68 172.80 199.71 11.79 11.12

GKD-b_41_n150_m15 150 16.48 17.85 22.22 1.85 1.37

GKD-b_42_n150_m15 150 12.38 12.38 20.03 2.67 0.00

GKD-b_43_n150_m15 150 11.83 13.99 18.42 1.84 2.16

GKD-b_44_n150_m15 150 16.58 11.74* 18.20 2.33 -4.84

GKD-b_45_n150_m15 150 16.43 12.84* 19.95 2.24 -3.59

GKD-b_46_n150_m45 150 207.81 207.81 219.40 7.26 0.00

GKD-b_47_n150_m45 150 211.77 211.77 214.20 5.74 0.00

GKD-b_48_n150_m45 150 177.29 177.29 203.37 17.70 0.00

GKD-b_49_n150_m45 150 197.88 197.88 204.88 10.73 0.00

GKD-b_50_n150_m45 150 220.76 230.49 246.24 23.38 9.73

Avg 59.56 59.93 64.67 4.52 0.37

#Best 46 43
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Table A.4
Computational results on GKD-c instances.

Instance Time (s) Best
known

fbest favg std ∆fbest

GKD-c_1_n500_m50 500 6.39 6.51 7.93 0.93 0.12

GKD-c_2_n500_m50 500 6.13 6.75 8.34 0.84 0.62

GKD-c_3_n500_m50 500 6.65 6.10* 8.29 0.93 -0.55

GKD-c_4_n500_m50 500 6.64 5.59* 7.97 1.06 -1.05

GKD-c_5_n500_m50 500 7.38 6.88* 8.70 1.11 -0.50

GKD-c_6_n500_m50 500 6.79 6.29* 7.87 0.93 -0.50

GKD-c_7_n500_m50 500 6.84 7.11 8.88 1.02 0.27

GKD-c_8_n500_m50 500 7.01 7.27 9.16 1.31 0.26

GKD-c_9_n500_m50 500 8.09 6.18* 8.31 0.97 -1.91

GKD-c_10_n500_m50 500 7.37 6.85* 9.27 1.04 -0.52

GKD-c_11_n500_m50 500 6.42 5.27* 7.73 1.04 -1.15

GKD-c_12_n500_m50 500 6.50 6.12* 8.14 1.02 -0.38

GKD-c_13_n500_m50 500 6.52 7.27 8.82 1.24 0.75

GKD-c_14_n500_m50 500 6.38 5.98* 8.43 1.11 -0.40

GKD-c_15_n500_m50 500 6.99 6.32* 8.47 1.04 -0.67

GKD-c_16_n500_m50 500 6.51 5.88* 7.91 1.18 -0.63

GKD-c_17_n500_m50 500 6.31 5.62* 7.50 1.06 -0.69

GKD-c_18_n500_m50 500 6.88 6.51* 8.61 0.97 -0.37

GKD-c_19_n500_m50 500 6.84 6.20* 8.26 1.11 -0.64

GKD-c_20_n500_m50 500 6.32 5.53* 8.10 1.17 -0.79

Avg 6.75 6.31 8.33 1.05 -0.44

#Best 5 15

Table A.5
Computational results on SOM-b instances.

Instance Time (s) Best
known

fbest favg std ∆fbest

SOM-b_1_n100_m10 100 0 0 1.4 0.49 0

SOM-b_2_n100_m20 100 4 4 5.15 0.36 0

SOM-b_3_n100_m30 100 6 7 8.25 0.54 1

SOM-b_4_n100_m40 100 10 10 11.2 0.68 0

SOM-b_5_n200_m20 200 3 3 4.55 0.5 0

SOM-b_6_n200_m40 200 9 9 9.85 0.36 0

SOM-b_7_n200_m60 200 13 13 14.55 0.67 0

SOM-b_8_n200_m80 200 18 18 19.65 0.91 0

SOM-b_9_n300_m30 300 6 6 6.85 0.36 0

SOM-b_10_n300_m60 300 12 12 13.4 0.49 0

SOM-b_11_n300_m90 300 18 18 19.5 0.74 0

SOM-b_12_n300_m120 300 24 23* 25.85 1.19 -1

SOM-b_13_n400_m40 400 9 8* 8.95 0.22 -1

SOM-b_14_n400_m80 400 16 16 17.15 0.61 0

SOM-b_15_n400_m120 400 23 23 24.4 0.86 0

SOM-b_16_n400_m160 400 27 30 32.55 1.28 3

SOM-b_17_n500_m50 500 10 10 10.7 0.64 0

SOM-b_18_n500_m100 500 19 19 20.2 0.51 0

SOM-b_19_n500_m150 500 26 26 28.75 1.3 0

SOM-b_20_n500_m200 500 34 36 39.45 2.48 2

Avg 300 14.35 14.55 16.12 0.76 0.2

#Best 18 17
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Table A.6
Computational results on APOM instances.

Instance Time (s) Best
known

fbest favg std ∆fbest

01a050m10 50 1.41 1.41 1.87 0.16 0.00

02a050m20 50 14.72 14.72 14.73 0.06 0.00

03a100m20 100 3.65 4.01 4.38 0.32 0.36

04a100m40 100 25.50 25.50 26.42 2.11 0.00

05a150m30 150 6.56 7.09 7.91 0.72 0.53

06a150m60 150 46.99 46.99 47.31 0.79 0.00

07a200m40 200 11.39 11.49 12.46 0.83 0.10

08a200m80 200 63.48 63.46* 64.47 1.94 -0.02

09a250m50 250 14.56 14.68 16.61 1.18 0.12

10a250m100 250 82.09 82.51 86.04 4.78 0.43

11b050m10 50 1091.00 1355.00 2043.30 326.29 264.00

12b050m20 50 5552.00 5552.00 6044.15 370.60 0.00

13b100m20 100 3996.00 4160.00 4945.20 406.45 164.00

14b100m40 100 9540.00 10552.00 11360.45 357.56 1012.00

15b150m30 150 6769.00 6607.00* 7386.60 437.72 -162.00

16b150m60 150 13449.00 14007.00 15101.85 533.94 558.00

17b200m40 200 8197.00 9042.00 9809.65 361.10 845.00

18b200m80 200 17502.00 18026.00 19085.30 479.00 524.00

19b250m50 250 11427.00 10635.00* 11730.05 447.96 -792.00

20b250m100 250 21832.00 20963.00* 22197.45 754.33 -869.00

21c050m10 50 1149.00 1124.00 1225.70 100.52 -25.00

22c050m20 50 6205.00 6205.00 6210.80 25.28 0.00

23c100m20 100 2239.00 2149.00* 2850.05 299.25 -90.00

24c100m40 100 11098.00 11098.00 13278.50 5263.04 0.00

25c150m30 150 3550.00 3414.00* 4757.40 1705.96 -136.00

26c150m60 150 13087.00 13087.00 21426.80 14445.11 0.00

27c200m40 200 4865.00 5226.00 8445.60 3238.32 361.00

28c200m80 200 19393.00 19537.00 26525.50 20460.89 144.00

29c250m50 250 5650.00 5955.00 10390.00 3572.99 305.00

30c250m100 250 22050.00 22280.00 34583.35 16810.51 230.00

31d050m10 50 1049.00 1049.00 1138.85 102.52 0.00

32d050m20 50 4564.00 4564.00 4587.15 100.91 0.00

33d100m20 100 2374.00 2561.00 2847.45 176.55 187.00

34d100m40 100 8979.00 8979.00 13011.00 7666.21 0.00

35d150m30 150 3234.00 3923.00 6545.45 2148.50 689.00

36d150m60 150 12444.00 12444.00 15813.80 6053.84 0.00

37d200m40 200 4752.00 5113.00 8731.80 2839.81 361.00

38d200m80 200 18683.00 18835.00 23145.80 8027.08 152.00

39d250m50 250 5856.00 6142.00 11381.45 3598.45 286.00

40d250m100 250 21001.00 21492.00 46862.40 41716.38 491.00

Avg. 150 6796.18 6908.70 9343.63 3571.00 112.51

#Best 33 19
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