Diversity-preserving quantum particle swarm
optimization for the multidimensional knapsack problem

Xiangjing Lai?, Jin-Kao Hao?*, Zhang-Hua Fu¢, Dong Yue®

@ Institute of Advanced Technology, Nanjing University of Posts and Telecommunications,
Nanging 210023, China
bLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
¢ Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
d Robotics Laboratory for Logistics Service, Institute of Robotics and Intelligent
Manufacturing, The Chinese University of Hong Kong, Shenzhen, 518172, China.

Expert Systems with Applications, https://doi.org/10.1016/j.eswa.2020.113310

Abstract

Quantum particle swarm optimization is a population-based metaheuristic that
becomes popular in recent years in the field of binary optimization. In this
paper, we investigate a novel quantum particle swarm optimization algorithm,
which integrates a distanced-based diversity-preserving strategy for population
management and a local optimization method based on variable neighborhood
descent for solution improvement. We evaluate the proposed method on the
classic NP-hard 0-1 multidimensional knapsack problem. We present extensive
computational results on the 270 benchmark instances commonly used in the
literature to show the competitiveness of the proposed algorithm compared to
several population based algorithms. The ideas of using the diversity-preserving
strategy and the probabilistic application of a local optimization procedure are
of general interest and can be used to reinforce other quantum particle swarm
algorithms.

Keywords: Binary optimization; Multidimensional knapsack problem; population-
based metaheuristics; Quantum particle swarm optimization; Diversity-preserving
population updating strategy.

1. Introduction

Given a knapsack with a m-dimensional capacity vector ¢ and a set V' of n
items, let p; > 0 (5 =1,2,...,n) be the profit of item j, and let a be a m x n
matrix composed of positive values where the jth column a.; represents the

*Corresponding author.
Email addresses: laixiangjing@gmail.com (Xiangjing Lai),
jin-kao.hao@univ-angers.fr (Jin-Kao Hao), fuzhanghua@cuhk.edu.cn (Zhang-Hua Fu),
medongy@vip.163.com (Dong Yue)

Preprint submitted to FElsevier February 25, 2020

m-dimensional weights of item j. The classic 0—1 multidimensional knapsack
problem (MKP) involves packing a subset of items of V' to the knapsack so that
the sum of the profits of the items in the knapsack is maximized while the sum
of weights in each dimension i (¢ = 1,2,...,m) does not exceed the capacity c;.
Formally, the MKP can be stated as follows:

Maximize f(s) = ijxj (1)
j=1
s.t. Zaijxj <e¢,Vie{l,2,...,m} (2)
j=1
z; € {0,1},Vj € {1,2,...,n} (3)
where z; (j = 1,2,...,n) are binary decision variables such that z; = 1 if

item j is packed in the knapsack, x; = 0 otherwise. The objective in Eq. (1)
aims to maximize the total profit of the selected items, while the constraints in
Eq. (2) ensure that the selected items satisfy the m capacity constraints of the
knapsack.

The MKP has numerous applications, including cutting stock (Gilmore and
Gomory, 1966), loading (Shih, 1979), resource allocation (Gavish and Pirkul,
1982) and so on. However, the problem is known to be NP-hard (Garey, 1979)
and thus computationally challenging. As one of the most studied combinato-
rial optimization problems, a large number of solution approaches have been
proposed for the MKP. A comprehensive review of representative studies up
to 2004 can be found in (Fréville, 2004) and more recent studies are discussed
in (Lai et al., 2018). Notice that the MKP has some interesting variants such
as the multiple multidimensional knapsack problem (Mancini et al., 2019), the
multiple-choice multidimensional knapsack problem (Chen and Hao, 2014), the
robust multiple-choice multidimensional knapsack problem (Caserta and Vog,
2019), and the multidemand multidimensional knapsack problem (Lai et al.,
2019). Below, we discuss some recent and most representative studies on the
MKP.

Existing algorithms for the MKP can be classified into exact and heuristic
algorithms. Representative exact algorithms are mainly based on the branch &
bound method (Shih, 1979; Vimont et al., 2008) and hybrid approaches com-
bining branch & bound and other strategies (Boussier et al., 2010; Mansini and
Speranza, 2012). The best performing exact algorithms like those presented in
(Boussier et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008) are
quite successful to yield optimal solutions in an acceptable computation time
for benchmark instances of limited sizes (e.g., n = 250 or 500 and m € {5,10}).
However, for larger instances with n > 250 and m > 30, heuristic algorithms
become more suitable methods to find sub-optimal (or non provable optimal)
solutions.

Heuristic algorithms for the MKP belong to two large categories, namely
trajectory-based local search algorithms and population-based evolutionary al-
gorithms. Representative trajectory-based algorithms include tabu search (Glover

and Kochenberger, 1966; Hanafi and Fréville, 1998; Khemakhem et al., 2012;
Vasquez and Hao, 2001; Vasquez and Vimont, 2005), simulated annealing (Drexl,
1988), and kernel search (Angelelli et al., 2010), while representative population-
based algorithms include binary particle swarm optimization (Chih, 2015; Had-
dar et al., 2016; Ktari and Chabchoub, 2013; Lin et al., 2016), genetic and
memetic algorithms (Chu and Beasley, 1998; Drake et al., 2016; Lai et al., 2018;
Puchinger et al., 2009), steady-state evolutionary algorithm (Raidl and Got-
tlieb, 2005), ant colony optimization (Al-Shihabi and Olafsson, 2010; Ke et al.,
2010; Kong et al., 2008), and hybrid estimation of distribution algorithm (Wang
et al., 2012), among other.

Our goal of this work is twofold. First, according to our literature review,
most existing MKP algorithms in the literature fail to achieve simultaneously a
high performance in terms of both solution quality and computation speed. For
example, tabu search based algorithms like those in (Khemakhem et al., 2012;
Lai et al., 2018; Vasquez and Hao, 2001) are among the best MKP methods
to obtain high quality solutions especially for instances with a large number of
constraints. However, these methods are generally quite time consuming. On
the other hand, bio-inspired evolutionary algorithms like (Chih, 2018; Chu and
Beasley, 1998) are often more time effective, but yield less competitive solu-
tions than tabu search based algorithms. Second, in several interesting studies
(Haddar et al., 2016; Yang et al., 2004), quantum particle swarm optimiza-
tion (QPSO) has shown promising performances on the MKP. In this work, in
addition to developing an effective algorithm for the MKP, we aim also to fur-
ther enhance the general QPSO approach by introducing a diversity-preserving
strategy.

We summarize our work as follows. First, we propose a diversity-preserving
quantum particle swarm optimization (DQPSO*) approach, which enhances the
conventional QPSO method. The diversity-preserving strategy is used to control
the population diversity of a QPSO algorithm and helps to avoid premature con-
vergence of the algorithm. The proposed algorithm integrates an effective local
optimization procedure which is applied in a probabilistic way to reinforce its ex-
ploitation capacity. We show extensive computational results and comparisons
with representative (mainly population-based) algorithms based on well-known
benchmark instances. It is worth noting that the ideas of diversity-preserving
strategy and local optimization are of general interest. As a result, they could
be advantageously adopted in other QPSO algorithms to control the balance of
exploitation and exploration of the search process, such that they can help to
effectively solve other binary optimization problems such as the MKP variants
mentioned above.

The remainder of the paper is organized as follows. In Section 2, we provide
a brief introduction on the quantum particle swarm optimization. In Section
3, we present the proposed DQPSO* algorithm. In Section 4, we evaluate the
proposed algorithm by providing experimental results and making a comparison
with several state-of-the-art MKP algorithms. In Section 5, we analyze two es-
sential components of the algorithm to show their influences on the performance
of the algorithm, followed by concluding comments and discussions on future

research.

2. A Review of Quantum Particle Swarm Optimization

In this section, we provide a brief introduction of particle swarm optimization
(PSO) for continuous problems and quantum particle swarm optimization which
is an adaptation of PSO to binary optimization problems.

2.1. Basic Particle Swarm Optimization

Particle swarm optimization was originally developed for optimization of
continuous nonlinear functions (Kennedy and Eberhart, 1995). For a given
problem in a m-dimensional continuous space where n represents the number
of variables, PSO searches for the global optimum through mimicking the be-
havior of a swarm or population of particles (e.g., birds), where each particle i

represents a candidate solution characterized by a n-dimensional position vector

X:f = (aly, 2ty ..., 2t,) and a velocity vector \};t = (vl vl .0k,
the t-th iteration of the algorithm.

To reach the global optimal solution, the particles in the swarm move iter-

) where ¢ is

atively in the search space, and the position vector)Zf and velocity vector V_';t
of particle ¢ at t-th iteration are updated by the following formulas (Liu et al.,
2010; Kennedy and Eberhart, 1995; Shi and Eberhart, 1998; Zhan et al., 2011).

Vi = wol, + eyr (pBest!, — o) + cara(nBest. — at)) (4)
t+1 _ ¢ t+1
Ty =Ty v (5)
where j € {1,2,...,n}, w € [0, 1] is the inertia factor, ¢; and ¢y are two positive

constants, r; and ro are two random numbers in [0, 1], pBest! is the personal
historical best position vector for particle i, and nBest! is the neighborhood’s
historical best position for particle 7. It is worth noting that the neighborhood
relation between particles is defined by some topological structure, such as a ring
topology where only the particles i — 1 and 7 + 1 are the neighbors of particle ¢
and a clique topology where the particles are pair-wisely connected.

According to the topological structure between particles, a PSO algorithm
can be roughly divided into two categories (Zhan et al., 2011), i.e., global ver-
sion PSO (GPSO) and local version PSO (LPSO). In GPSO, the clique topol-
ogy is adopted, i.e., any two particles in the swarm are neighbors, and thus the
neighborhood’s historical best position nBest! is also the historical best posi-
tion gBest! of the entire swarm. For LPSO, the neighborhood’s historical best
position nBest! of particles depends on the used topological structure.

2.2. Quantum Particle Swarm Optimization

Due to the fact that the basic PSO method is not applicable to binary
optimization problems, a number of PSO variants have been proposed in the
past 20 years to deal with binary optimization (Beheshti et al., 2015; Chen et
al., 2010; Lin and Guan, 2018; Kennedy and Eberhart, 1997; Yang et al., 2004)

among which quantum particle swarm optimization (QPSO) is a representative
example (Yang et al., 2004).

In a QPSO algorithm, a swarm Q = {Q(1),Q(2),...,Q(np)} of np quan-
tum particles is maintained and evolves, where each quantum particle Q (%) is
a n-dimensional real-valued vector (qi,qs,...,q%) with q;- € [0,1]. For each
component qj» (1 < j < n) of quantum particle Q(), its value represents the
probability that the associated binary decision variable z; takes the value of 0.

As described in Algorithm 1, a QPSO algorithm typically performs a num-
ber of evolution iterations until a maximum number of iterations is reached.
Starting with a randomly initialized @); in which the notation ¢ denotes the cur-
rent number of iterations, the algorithm first transforms each quantum particle
Q@) = (¢, 4, ...,q,) of Q; into a n-dimensional binary vector (called discrete
particle) D(i) = (di,d,...,d") by applying a random observation:

g { 1, if ¢ < rand(0,1); (6)
J 0, otherwise; (7)

where rand(0, 1) denotes a random real number in [0, 1]. Then, at each iteration
t, the evolution of the quantum particle swarm is described by the following
evolution formulas:

Qiy1(1) = ax Dy (i) + (1 —) x (€= Dy (i) (8)
1)) = a x D (i) + (1 = a) x (€~ D(3)) (9)

Qer1(i) = 1 % Qu(i) + c2 x Q%1 (1) + (1 —e1 — €2) x Q31 (1) (10)

where «, ¢; and ¢y are three parameters satisfying a € [0,1], ¢; € [0,1], 2 €
[0,1], and 0 < ¢1 + ¢2 < 1. In addition, € = (1,1,...,1) is a n-dimensional
vector in which each entry takes 1, D!®(i) and D;(i) (1 < i < np) denote
respectively the personal and neighborhood’s historical best positions for the
discrete particle D(i) at iteration ¢, and Q¥ (i) and Qj,,(i) (1 < i < np)
represent respectively the personal and neighborhood’s historical best positions
for the quantum particle Q(7) at iteration ¢ + 1. After a new quantum particle
Q++1(7) is generated by Eqgs. (8)—(10), Q:+1(¢) is used to replace Q:(i) and is
at the same time transformed into a discrete particle d, which is then used to
update D}, (i) and D% (i) accordingly.

3. Diversity-Preserving Quantum Particle Swarm Optimization for
the MKP

The DQPSO* algorithm for the MKP proposed in this work shares ideas
from the studies (Haddar et al., 2016; Yang et al., 2004) and distinguishes it-
self with two new features. First, DQPSO* introduces a diversity-preserving
mechanism to guarantee a healthy diversity of the particle swarm, thus avoid-
ing a premature convergence of the algorithm. Second, DQPSO* applies in a

Algorithm 1: General procedure of the QPSO algorithm for a binary
optimization problem with a form of maximization

1 Function QPSO
Input: Instance I, size of particle swarm (np), maximum number of
iterations (IterMax), a, ¢1, and cs.
Output: The best discrete solution d* found
/* Qr ={Q:(1):1<i<np} denotes the quantum particle swarm
at the iteration t, DI® = {D!(i):1<i < np} denotes the set
of personal historical best positions for discrete

particles */
2t 0 /* t denotes the current number of iterations */
/* Initialization of quantum particle swarm */
3 Qi + InitialQuantumSwarm(np)
4 for i < 1 to np do
5 | DI(i) < Transform(Q(i)) /* Egs.(6)-(7) */
6 end
7 d* < argmax{f(d) : d € D’} /* d* denotes the best discrete
particle found so far */
/* Evolution of particle swarm */
8 while ¢t < IterMax do
9 for i <~ 0 to np do
10 Di (i) « argmaz{f(d) :d € DI} /x Di(i) denotes the best
discrete particle in D! */
1 Qi1 (i) = ax Dy(i) + (1 — o) x (€= Dy (1))
12 131(i) = ax DP(i) + (1 — o) x (€= D(i)))
13 Qe1(i) = 1 X Q1(i) + ca x Q1 (1) + (1 — e1 — ¢2) x Q14 (7)
14 d < Transform(Qs4+1(i)) /* d is a discrete solution */
15 if f(d) > f(D(i)) then
16 D (i) «—d /% D*(i) < LocalSearch(d) is used for some
variants of QPSO like QPS0* in (Haddar et al.,
2016) */
17 end
18 if f(d) > f(d*) then
19 d* «d /* d* < LocalSearch(d) is used for some
variants of QPSO like QPS0* in (Haddar et al.,
2016) */
20 end
21 end
22 t—t+1
23 end

probabilistic way a powerful local optimization procedure to enhance the in-
tensification search ability of the algorithm. The proposed algorithm and its
components are described in the following subsections.

3.1. Solution Representation and Search Space

Given a MKP instance with n items, a candidate solution can be represented
by a n-dimensional 0-1 vector s = (x1,x2,...,x,) where x; = 1 if item ¢ is
selected, x; = 0 otherwise. As a result, the search space) explored by the
DQPSO* algorithm is composed of all possible n-dimensional 0-1 vectors (also
called discrete solutions or discrete particles in this paper), including the feasible
and infeasible solutions, i.e.,

Q={(zr1,22,...,2,) 12, € {0,1},1 <3 <n} (11)

In addition, DQPSO* uses a n-dimensional real-valued vector ¢ = (q1,¢2, ..., qn)
(called quantum solution or quantum particle), where ¢; (1 < i < n) is a real
number in [0, 1] and represents the probability that the binary variable z; takes
0. This vector indicates approximately a discrete solution in the search space.

3.2. Main Framework of the Algorithm

Algorithm 2: Pseudo-code of generating the initial quantum particle
swarm
1 Function InitialQuantumSwarm
Input: Size of particle swarm np, number of items n
Output: A quantum particle swarm Q = {Q(i) : 1 < i < np}
2 for i + 1 to np do

3 for j < 1 ton do

4 | Q(i); < rand(0,1)

5 end

6 | Qi)+ (Q)1, Q)2 .., Q()n)
7 end

The proposed DQPSO* algorithm consists of six components, including the
initialization of the quantum particle swarm, the repair operator to ensure the
feasibility of generated solutions, the updating strategy of the personal historical
best positions (DI?) of the discrete particles, the rule of transforming a quan-
tum particle to a discrete particle, the local optimization method to improve the
solutions generated by the repair operator, and the evolution formulas of the
quantum particle swarm. The DQPSO* method is described in Algorithm 4,
where Q¢ = {Q:(7) : 1 < i < np} denotes the swarm of np quantum particles at
iteration ¢, DI = {D!(i) : 1 < i < np} is the set of personal historical best posi-
tions for discrete particles at iteration ¢, and d* records the best discrete particle
found so far. As mentioned in Section 3.1, each quantum particle Q:(i) € @

Algorithm 3: Pseudo-code of transforming a quantum solution into a
discrete solution
1 Function Transform
Input: A quantum particle ¢ = (g1, ¢z, - .., qn), where ¢; € [0,1]
(1<j<n)
Output: A discrete particle d = (d1,ds, ..., d,), where d; € {0,1}
(1<j<n)
for j < 1 ton do
if rand(0,1) > g; then
‘ dj +—1
end
else
‘ dj +~0
end
end

© 0 NN N w N

is a n-dimensional real-valued vector (¢¢,q,...,q’), and each discrete parti-
cle D!*(i) € D! is a n-dimensional 0-1 vector (di,ds,...,d!) representing a
candidate solution in the search space.

The DQPSO* algorithm starts with an initial Q; (¢ = 0) which is randomly
generated by the initialization method presented in Algorithm 2. Then, each
quantum particle in @Q; is transformed into a discrete particle by the transform-
ing procedure given in Algorithm 3 and the infeasibility of the resulting discrete
particle is subsequently repaired by the repair operator of Section 3.3 (lines 4-7).
At the same time, D! is accordingly initialized and the best discrete particle
found in this process is recorded as d* (lines 6 and 8).

After the initialization of Q; and D, DQPSO* performs Iter Mazx itera-
tions (lines 9-27) to search for a best discrete solution of the MKP instance.
Specifically, at each iteration ¢, the particles Q:(i) (1 < i < np) are processed
by applying the following steps: (1) K (which is a parameter) discrete solutions
S ={d',d?,...,d5} are randomly selected from D!’, the corresponding quan-
tum particles are tentatively recorded as the neighbors of the particle Q(7),
and the best individual in S is tentatively recorded as the neighborhood’s best
position D} (i) for the corresponding discrete particle of Q:(i) (lines 12-13).
One observes that the evolution of the particle swarm in DQPSO* is based on
a random and dynamic neighborhood topology. (2) A new quantum particle
Qi41(i) is generated by the evolution formulas in Eqgs. (8)-(10), where QI , ()
and Q7 (%) represent in some sense the personal and neighborhood’s historical
best positions for the quantum particle Q:41(¢) (lines 13-15). (3) The newly
generated quantum solution Q:11(7) is transformed into a discrete solution d
and its infeasibility is subsequently repaired by the repair operator (lines 16—
17). (4) The local optimization method (denoted by VND) is applied with a
probability of p to further improve the solution (line 18-20). (5) The resulting
solution is then used to update D!* by means of a diversity-preserving updating
strategy (line 21).

DQPSO* stops once a maximum allowed number of iterations is reached and

the best discrete solution found (d*) is returned as the result of the algorithm.

Algorithm 4: Main frame of the DQPSO* algorithm for the MKP

1 Function DQPSO*
Input: Instance I, size of particle swarm (np), maximum number of
iterations (Iter Max), parameters K, p, «, ¢1, and co.
Output: The best discrete solution d* found
/* Q¢ ={Q:(7): 1 <i<np} denotes the quantum particle swarm
at the iteration t, D!® = {D!®(i):1<i<np} denotes the set
of personal historical best positions for discrete

particles */
2t 0 /* t denotes the current number of iterations */
/* Initialization of quantum particle swarm */
3 Q; + InitialQuantumSwarm (np) /* Algorithm 2 */
4 for i < 1 to np do
5 d + Transform(Q4(i)) /* Algorithm 3 */
6 DI*(i) - RepairOperator(d) /* Section 3.3 */

7 end

8 d* < argmaz{f(d): d € DI}

/* Evolution of particle swarm */

9 while ¢t < IterMax do

10 for ¢ <~ 0 to np do

11 Randomly select a subset S = {d',d?,...,d%} of size K from
D! and the corresponding quantum particles are regarded as
the neighbors of particle Q¢(7)

12 Di (i) < argmaz{f(d):d € S} /* D;(i) is recorded as
the neighborhood’s historical best position for
particle Dy(4) */

13 Qi1 (i) = ax Dy(i) + (1 — o) x (€= Dy (1))

14 18 1(i) < a x DP(i) + (1 —) x (€ — Dib(i)))

15 Qe1(i) = 1 X Q1(i) + o x Q1 (1) + (1 — e1 — ¢2) x Q14 (7)

16 d + Transform(Q:4+1(i)) /* d is a discrete solution */

17 d < RepairOperator(d)

18 if rand(0,1) < p then

19 | d«+ VND(d) /* Algorithm 7 */

20 end

21 SwarmUpdating(d, DI?) /* Section 3.5 */

22 if féd) > f(d*) then

23 | d*«+d

24 end

25 end

26 t—t+1

27 end

10

3.8. Repair Operator

Like previous studies (Chih, 2018; Chu and Beasley, 1998; Haddar et al.,
2016; Lai et al., 2018), the DQPSO* algorithm uses a popular repair operator
(denoted by RepairOperator()) to restore the feasibility of an infeasible solu-
tion. In addition to converting an infeasible solution into a feasible one, the
repair operator serves also as a local optimization method.

To implement efficiently the repair operator, we apply a preprocessing pro-
cedure to first process the given MKP instance, so that the items are renum-
bered in an ascending order according to their scaled pseudo-utility ratios o;
(Puchinger et al., 2009) defined as:

%7Vj6{172,...7n} (12)
=1 ¢;

After that, the vectors (p1,p2,...,pn) and a;; (i =1,2,...,m,j=1,2,...,n)
are adjusted accordingly.

Based on the resulting order of items, the repair operator is performed in
two phases. Given an input infeasible solution, the first phase drops the least
profitable items one by one according to the scaled pseudo-utility ratios until
the solution becomes feasible. Then the second phase adds one by one the most
profitable missing items according to their scaled pseudo-utility ratios, while
keeping each intermediate solution feasible. Given its greedy nature, the repair
operator is very fast with a time complexity bounded by O(n x m).

g5 =

3.4. Local Optimization by Variable Neighborhood Descent

Algorithm 5: Neighborhood search with Ny

1 Function LSN1
Input: A discrete solution d = (dy,ds,...,d,)
Output: The improved solution d

2 Flag < true

3 while Flag do

4 Flag <+ false
5 for j < n to1 do
6 if (d; =0) A (dP Add(j) € N1(d)) then
7 d + d Add(j)
8 Flag < true
9 end
10 end
11 end

To reinforce further its intensification ability, the DQPSO* algorithm em-
ploys, in a probabilistic way, a dedicated variable neighborhood descent (VND)
procedure for local optimization. This VND procedure follows the standard
VND framework (Mladenovi¢ and Hansen, 1997) and relies on two basic neigh-
borhoods, i.e., the restricted ’Add’ neighborhood N; and the restricted "Swap’

11

Algorithm 6: Neighborhood search with No

1 Function LSN2
Input: A discrete solution d = (dy,ds, ..., d,)
Output: The improved solution d

2 Flag < false

3 for i+ 1 tondo

4 for j < i+1 tondo
5 if (d; #d;) N (d@ Swap(i, j) € Na(d)) then
6 d < d & Swap(i, j)
7 Flag < true
8 return {d, Flag}
9 end
10 end
11 end

12 return {d, Flag}

Algorithm 7: The variable neighborhood descent (VND) method

1 Function VND
Input: A discrete solution d = (dy,ds,...,d,)
Output: The improved solution d

2 Flag < true
3 while Flag do
4 d < LSN1(d) /* Algorithm 5 x/
5 (Flag,d) < LSN2(d) /* Algorithm 6 */
6 end
neighborhood Ns. Given a discrete solution s = (x1,xa,...,2,), the N7 neigh-

borhood is composed of all possible feasible solutions that can be obtained by
changing the value of one variable z; (1 <14 < n) from 0 to 1, and the Ny neigh-
borhood is composed of all possible feasible solutions that can be obtained by
swapping the values of two variables z,, and z, taking distinct values. Formally,
the N7 and Ny neighborhoods can be described as follows:

Ni(s) ={s® Add(l) : Zaijmj +ay<c,x;=0,1<1<n,1<i<m} (13)

Jj=1

Na(s) = {s ® Swap(v,u) : z, # xy = 0; Zaijxj + Giu — @i < ¢, 0 <m} (14)
j=1
where s®Op (Op € {Add, Swap}) designates the neighbor solution obtained by
applying the ’Add’ or 'Swap’ operator to transform the incumbent solution s.
The size of Ny(s) is bounded by [I°]| (< n), where I° denotes the set of
variables taking the value of 0 in s, ie., I° = {z; : 2; = 0 in s}. Thus,

12

the computational complexity of examining the whole Nj(s) is bounded by
O(|I°] x m), where m is the number of capacity constraints. The size of N(s)
is bounded by |I'| x |I°|, where I' is the set of variables taking the value of 1
in s, i.e., I' = {z; : #; = 1 in s}. The computational complexity of examining
the whole Ny(s) is bounded by O(|I1| x |I°] x m).

Based on these two neighborhoods, the VND procedure improves the input
solution as follows. First, it starts with N7 and makes a complete exploitation
of the neighborhood by means of the first improvement descent strategy. Then,
it switches to N> to search for an improving solution when a local optimal
solution with respect to IV; is reached. Moreover, VND switches immediately
to N1 once an improving solution is found with Ns. Finally, the search process
stops when Ny does not contain any improving solution and the best solution
found is returned as the result of the VND procedure.

Algorithms 5 and 6 show how the neighborhoods N; and N, are examined,
while Algorithm 7 summarizes the main framework of the VND procedure.

3.5. Population Updating Strategy for the Historical Discrete Best Positions of
Particle Swarm

Algorithm 8: Pseudo-code of population updating method for D'

1 Function SwarmUpdating

Input: A set of personal historical best positions (D) for the discrete

particles, a discrete solution (d), and parameter

Output: Updated D'
2 dy < argmin{f(d) :d e D")}

/* d,, denotes the worst solution in D */
3 d, « argmin{||d—d ||z : d € D"}

/* ||d—d'||gz denotes the Hamming distance between d and d

*
dis/t — ||d —d¢||g
if (f(d) > f(d.)) N (dist <€) then

| D'« D" u{d}\ {d.} /* replace d. by d */
end
else if f(d) > f(dw)) A (dist > 6) then

‘ D% <« D® U {d}\ {dy} /* replace d, by d */
10 end

© ® e s

Like any population algorithm, it is crucial for the DQPSO* algorithm to
maintain a healthy swarm in terms of diversity. For this purpose, DQPSO*
uses a diversity-preserving strategy to update the set of personal historical best
positions of the discrete particles D'.

Given a discrete solution d generated by the repair operator or the VND
procedure and D', the diversity-preserving updating strategy is performed as
follows. First, the Hamming distance (dist) between d and its closest solution
d. in D" is calculated. Then, D' is updated according to one of the following

13

two situations, which is inspired by the work in (Lai and Hao, 2015) where
a diversity-preserving pool updating strategy is employed as a key component
of an evolutionary path relinking algorithm designed for the fixed spectrum
frequency assignment problem. 1) If f(d) > f(d.) and dist < 6, then d. in D'
is replaced by d, where 6 is a parameter used to control the diversity of D' and
f(d) denotes the objective value of solution d. 2) If f(d) > f(dy) and dist > 6,
then the worst solution in D! (denoted by d,,) is replaced by d. In other
cases, the offspring solution d is discarded, while keeping D' unchanged. The
pseudo-code of the this population updating strategy is provided in Algorithm
8.

3.6. Discussions

As we show above, the proposed DQPSO* algorithm integrates especially
two original strategies that distinguish itself from the existing binary PSO algo-
rithms for the MKP in the literature such as (Chih, 2018; Haddar et al., 2016).
First, DQPSO* employs the diversity-preserving updating strategy (see Section
3.5) to enhance the diversity of discrete particle swarm D'®, where the distances
among discrete particles are directly controlled by a parameter 6. To the best
of our knowledge, such a strategy was never used in previous binary PSO algo-
rithms. The analysis in Section 5.1 shows that this updating strategy helps to
preserve population diversity and improves significantly the search ability of the
algorithm. Second, the proposed algorithm integrates for the first time a VND
method as the local optimization procedure, which is applied in a probabilistic
way each time an offspring solution is generated during the search process. Once
again, this technique was not available in existing binary PSO algorithms. As
the computational experiments in Section 5.2 show, the probability-controlled
VND method ensures the key intensification role and contributes to the perfor-
mance of the algorithm. Finally, it is worth mentioning that these two strategies
are of general interest and can be applied within binary PSO algorithms designed
for other binary optimization problems.

4. Computational Experiments

To assess the performance of the DQPSO* algorithm, we carried out exten-
sive experiments by testing the algorithm on benchmark instances commonly
used in the literature and making a comparison with a number of state-of-the-art
MKP algorithms.

4.1. Benchmark Instances

To carry out our computational experiments, we use 270 popular benchmark
instances, which are described in (Chu and Beasley, 1998) and available at OR-
Library!. These instances can be divided into three sets and their characteristics
can be summarized as follows.

'http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html

14

e Set I: This set consists of 90 small instances with n = 100 which can be
divided into three subsets, where each subset contains 30 instances with
m =5, 10 or 30, respectively. The coefficients a;; (1 <i<m,1<j<n)
are integers randomly generated in [0,1000] and ¢; is set to 8 x Z;‘L:1 aij
(1 < i < m) where (3 is a parameter called the tightness ratio and is set
to 0.25, 0.5, and 0.75. Optimal solutions for these instances are provided
in (Mansini and Speranza, 2012).

e Set II: This set contains 90 medium-sized instances with n = 250 and
m € {5,10,30}, and the coefficients a;; (1 < i < m, 1 < j < n) and
c; were generated in the same way as for the instances of Set I. Optimal
solutions for the instances with m = 5 and 10 are provided in (Boussier
et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008).

e Set III: This set contains 90 large instances with n = 500 and m €
{5, 10,30}, and the coefficients a;; (1 < i <m, 1 < j < n) and ¢; were
generated in the same way as for the instances of Sets I and II. Optimal
solutions for the instances with m = 5 and 10 are provided in (Boussier
et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008).

One notices that the optimal solutions for 217 out of 270 instances reported
in (Boussier et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008) have
been obtained with large computation times up to 150 hours for some instances

with n = 500 and m = 10.

4.2. Parameter Settings and Experimental Protocol

Table 1: Settings of parameters

Parameters Section Description Values

np 3.2 Number of particles {2n,4n,5n}
IterMax 3.2 Maximum number of iterations {200m,500m,10*}
K 3.2 Number of neighbors of particles 10

e 3.2 parameter used in Eq.(8) 0.0

c1 3.2 parameter used in Eq.(10) 0.2

co 3.2 parameter used in Eq.(10) 0.4

P 3.2 probability of applying the VND 0.01

[3.5 parameter for the population updating 2

The DQPSO* algorithm employs eight parameters whose descriptions and
settings are given in Table 1, where the values of np and IterMax were set
according to the values of n and m of instances to guarantee that the com-
putational effort of our algorithm is the same as that of a recent binary PSO
algorithm (3R-BPSO) (Chih, 2018): np = 5n and Iter Maz = 200m for the in-
stances with n = 100 and m € {5, 10,30}, np = 4n and Iter M ax = 500m for the
instances with n = 250 and m € {5,10, 30}, and np = 2n and Iter Maz = 500m
for the instances with n = 500 and m € {5,10}. For the instances with n = 500
and m = 30 which are shown to be very hard to solve for most existing heuristic
algorithms, np and IterMax were respectively set to 2n and 10%. For the pa-
rameters p and «, their values were set according to the experiments shown in

15

Section 5.2 and Section 5.3, respectively. For the other parameters, the default
values were empirically set according to a preliminary experiment.

The DQPSO* algorithm was implemented in C+-+ language and compiled
by the g++ compiler with the -O3 flag 2. All the experiments were carried
out on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM),
running the Linux operating system. Due to its stochastic nature, DQPSO*
was independently run 100 times to solve each instance. To run the algorithm,
we use consistently the parameter setting of Table 1. We mention that using an
extended number of iterations (i.e., larger Iter M ax values) does not significantly
change the final results.

To assess the performance of DQPSO*, we use six representative MKP algo-
rithms in the literature as our reference algorithms, including a genetic algorithm
(GA) (Chu and Beasley, 1998) (as a baseline reference), a hybrid quantum par-
ticle swarm optimization algorithm (QPSO*) (Haddar et al., 2016), a binary
PSO algorithm (3R-BPSO) that employs three repair operators to repair infea-
sible solutions (Chih, 2018), a filter-and-fan heuristic (F&F) (Khemakhem et
al., 2012), a two-phase tabu search (TP+TS) (Vasquez and Hao, 2001), and a
very recent two-phase tabu-evolutionary algorithm (TPTEA) published in 2018
(Lai et al., 2018). The results of the reference algorithms are compiled from
the corresponding papers. If the results of an algorithm for a set of benchmark
instances are not available, the algorithm will be ignored in the comparative
study (e.g., this is the case of 3R-BPSO for some instances of set I and the
instances of set IT). Moreover, given that the compared algorithms are written
in different programming languages and run on various computing platforms
under different stopping conditions, it is impossible to perform a fair compar-
ison of computation times. As a result, we mainly focus on solution quality
for our computational study (this is also a common practice in the literature).
Only for indicative purposes, we provide the timing information for DQPSO*
and TPTEA (whose codes are available and were run on the same computing
platform).

4.8. Computational Results and Comparison

Our first experiment aims to assess the proposed DQPSO* algorithm on the
small instances of Set I with n = 100, and the experimental results are summa-
rized in Tables 2—4, along with the results of five references algorithms whose
results are available. In Table 2, columns 1 and 2 give the names and the known
optimum results (Opt.) of the instances with m = 5, columns 3-8 provide the
best objective values (fpest) obtained for the reference algorithms as well as our
DQPSO* algorithm, columns 9-12 indicate the average objective values (fqug)
obtained for three reference algorithms as well as our DQPSO* algorithm, and
the last two columns report the average computational time (t4,4) in seconds

2The source code of the DQPSO* algorithm will be made available at http://www.info.
univ-angers.fr/pub/hao/DQPS0.html

16

needed to reach the final objective value for TPTEA and DQPSO*. In addi-
tion, the row "Avg." shows the average result for each column, and the rows
"#better", "#equal", and "#worse" show the number of instances for which the
associated reference algorithm obtained a better, equal, or worse result in terms
of fiest, favg, and tqyg in comparison with the proposed DQPSO* algorithm.
To verify the statistical difference between the proposed DQPSO* algorithm
and the reference algorithms in terms of fies; and fqug, the p-values from the
Wilcoxon signed-rank tests are provided in the last row of the tables, where a
p-value less than 0.05 means that there exists a significant difference between
the compared results. Tables 3 and 4 present the results on the instances with
m = 10 and m = 30 with the same information as in Table 2.

Table 2 shows that for all the 30 small instances with n = 100 and a small
number (m = 5) of constraints, our DQPSO* algorithm performs very well and is
able to obtain the known optimum solution with a success rate of 100% within
a short computing time (t4,q = 0.5). Moreover, compared to the reference
algorithms, DQPSO* achieves a similar or better performance in terms of fyess,
favg, and teug. In terms of fyeqr, DQPSO™ obtains the same result compared
to GA, F&F, QPSO* and TPTEA, and reports a better results for 2 instances
compared to 3R-BPSO. In terms of f,,,, DQPSO* obtains the same result
compared to QPSO* and TPTEA, and reports a better result for 25 out of 30
instances compared to 3R-BPSO.

Table 3 shows that for the instances with n = 100 and a medium-sized
number (m = 10) of constraints our algorithm also performs well. For all the
30 instances, our algorithm obtains the known optimum result reported in the
literature, and the corresponding success rate of our algorithm is 100% for 26
out of 30 instances. Compared to the first 4 reference algorithms, i.e., GA, F&F,
3R-BPSO, QPSO*, the DQPSO* algorithm is very competitive and obtains a
better result in terms of fys; for one instance and an equal result for the 29
remaining instances. Compared to the TPTEA algorithm, in terms of fy.s:, the
DQPSO™* algorithm obtains the same result for all the 30 instances. In terms of
favg, the DQPSO* algorithm outperforms significantly 3R-BPSO by obtaining
better results on all the 30 instances, reaches comparable results relative to
QPSO*, and obtains slightly worse results than the latest TPTEA algorithm.

Table 4 shows that for the instances with n = 100 and a large number
(m = 30) of constraints, the DQPSO* algorithm has a similar performance
compared to GA, F&F, and QPSO*, but performs slightly worse than the tabu-
based TPTEA algorithm. Specifically, in terms of fpess, DQPSO* obtains a
better result on 3 instances than the GA algorithm, and a better and worse
result on 2 instances compared to the F&F, and QPSO* algorithms, respectively.
In terms of fq,4, the DQPSO* algorithm obtains comparable results compared
to QPSO*. Compared to TPTEA, DQPSO* performs worse in terms of both
frest and fqug. TPTEA attains the known optimum solution with a success
rate of 100% for all the instances while this is the case of DQPSO* only for 16
instances.

On the other hand, Tables 2—4 show that for these small instances the dif-
ferences between DQPSO* and the reference algorithms in terms of f s are

17

0T 01 G-EET T 01 01 1-308'T 0T 01 anipa-d
44 0 0 9T 0 0 4 0 0 osiom#
0 oe og g og og 8% oe og [enbazt
9 0 0 0 0 0 0 0 0 12332q#
0s'0 181 L£'079Z% LE'0V9ZY LE'0PITH 0'¢Z9C¥ LE°0%9Z% LE'0V9ZP LE0P9ZY 06'6£9TF LE'OV9ZY LE'0P9ZY L€°079CF 8ay
96'T $9'0 0'6966S 00°G9669 0'G9669 709669 G9669 9669 G9669 G9669 G9669 S9669 G9669 62'001°¢
$0°0 ¥€°0 0'€9¥6S 00°£9¥6S 0'€9¥68 0'€5¥68 £9¥69 £9¥68 £9¥69 £9¥69 £9¥6¢ £9¥69 £9¥6¢ 82°001°¢
80°0 ze0 0'0%GT9 00°0TST9 0'0T819 1°90919 05819 0T819 05819 0T819 02819 0T819 02819 2%°001°¢
91'0 ge'0 0'8€ST9 00°8€ST9 0'8€S919 G'€38T19 8€919 8€G19 8€919 8€G19 8€G19 8€G19 8€G19 9z'001°¢
S0°0 0¥°0 0'6968¢ 00769689 0'69689 ¥ PG689 69689 69689 69689 69689 69689 69689 69689 §z'001°¢
£1°0 L€'0 0'160T9 00°160T9 0'16019 6'680T9 16019 16019 16019 16019 16019 16019 16019 $2'001'¢S
ST'0 £€'0 0'6.%09 00°6L¥09 0'6L%09 Z'8L¥09 6L709 6L%09 6L709 6.%09 6,709 6L%09 6,709 £2°00T°'¢
82'0 0g'0 0'Z086S 00°Z086S 0'%0868 6'T9L6S 20869 Z0869 20869 Z086S Z086¢ Z086S 20869 22001
11°0 180 0'180%9 00°T80Z9 0'180%9 809039 18029 18029 18029 18029 18029 18029 18029 12°00T'¢
20'0 ze'0 0'2%86S 00°CT86S 0'2T869 0'23869 25869 TT86S 25869 TT86S (441 TT86S (441 0z2'00T°'¢
18°0 1LC 0'¥SS¥F 00'FGSFF 0'¥9S¥FF G GIGHY F 1147 f2eei 4 PCCEE jgelei 4 POSTE jdelei 4 PSSTE 61°00T°¢
g1'0 LT 0'1¥¥EF 00°TPPEP 0'TPPEY 9'GTFeEY 1¥ver 1¥PEV 1Pver jaa434 1P9er jaa434 1P9er 81°001°¢
0¥’ 1 [4:30] 0'0%0S¥ 00°0T0S¥ 0'030S¥ S'6105F 050S¥ 0T0S¥ 0%0S¥ 0%0S¥ 0208¥ 0%0S¥ 0208¥ L1°001°¢
S0°0 0¥°0 0'600g¥ 00°600G¥ 0'600g¥ 0'600g¥ 600G¥ 600g¥ 600G¥ 6003¥ 600g¥ 6003¥ 600C¥ 91'001°¢
90'0 L¥'0 0'L%6%F 00°LG6GY 0'L%65¥ 8'L16%F LT6TF LT6%F LT6TF L%6%F L%6TF L%6%F L26TF ST'00T'¢
[4:30] 180 0'812%F 00°81Z&¥ 0'81%%¥ 0'812%¥ 813%¥ 8133¥ 813T¥ 8133¥ 812C¥ 8133¥ 812&¥ $1°00T°¢
TL'0 08'0T 0'060SF 00°060S% 0'060S% Z'€805F 060S% 0605¥ 060S% 0605% 0608% 0605% 0608% £1°00T°'¢
[14h+ 16°0 0'896TF 00°896T% 0'896T% £'8G6TF 896T¥ 8961F 896T¥ L96TF 8961% 8961TF 896TF Z1'001T'¢
28'0 ge'6 0'6¢¥geF 00°GHSTH 0'g¥ge¥ T IL¥CTE [eiget44 el 2et 4 4 [eiger44 [ei2et4 4 [idet4d [ei2et4 4 [idet4d 11°00T°¢
20 80°T 0'LGLTF 00°LGLTY 0°LGL2¥ ¥ F0LTE L8LT¥ LGLTF L8.T¥ LGLT¥ LGLTF LGLT¥ LGLTF 01°001T°¢
11°0 £9°0 0'T1¥¥C 00°TT¥¥C 0'TT¥¥C £'¥0¥¥Fe 11¥%T 11¥%C 11¥%T 11¥%C 11%%C 11%%C 11%%C 6'001°¢
S0'g LT 0'912¥c 00°913¥C 0'912¥% 9'€12¥e 913¥T 918¥e 912¥e 91g¥e 912¥e 912¥e 912¥e 8'001°¢
g1'0 ze0 0'01¥€G 00°01V€T 0'01¥€T ¥'GLEET 01¥€T 01¥€T 01¥€T 01¥€3 01¥€C 01¥€T 01¥€C 2°001°¢
60'0 [4200] 0'169S% 00°T69SE 0'16SS% 9'%55ST 1699 162SC 1699T 16992 1699 16992 169ST 9'00T'¢
110 L€'0 0'€19%% 00°£19%C 0'€19%% S'809%% £19%% £19%% £19%% £19%% £19%C £19%% £19%C g'00T'g
281 S8'0 0'166£% 00°T66ET 0'166€% 7' 196£3 166€T 166€C 166€T 166€C 166€T 166€C 166€T $'00T'¢
28'0 67T 0'FEGET 00'PEGET 0'v£9ET 6'809€T $eCeT PEGET $eCeT PEGET PESET PEGET PEGET £001'¢
20T 6£°0 0'1GG€T 00°TGSET 0'19SET 8'LEGET 199€T 188€C 199€T 8€GET 166€T 199€C 166€T 2'00T°¢
g1'0 6£°0 0'¥L2¥% 00'¥LTHT 0'¥LT¥T G'ELTFT $LTHT PLTFT $LT¥T ¥LTFT PLTFT ¥LTFT PLTFT 1°00T°¢
11°0 gg°0 0'188¥% 00°18E¥T 0'18E¥C 0'188¥% 18EVT 188%C 18EVT 18E%C 18€%CT 18E¥C 18€%CT 0°001T°¢
osddg osdga
«0Sdbda VALAL £0sdda VALdL £OSdD -de £O0SddbA VHLAL ,0Sdd -de A3 v 3do soueysuy
(s)Ban; Fany 759q;

‘G = w pue Q0] = U YIM SIOURISUI [[EUWS 9} UO dINYRIDII[OY) WO SWYIIOS[R 90UaIdfal ¢ UM ,OSJD JO s1nsal aaryeredwio)) g a[qe],

18

T-E6L°9 1-391°6 9-H0€'8 0T T-"LT € T-ELTE 1-dLT€ T-dLT€ anioa-d
€T 0 4 o€ 0 T T T T osiom#
0 9T T 0 og 6T 6T 6T 6T renboazt
L 4 € 0 0 0 0 0 0 a9332q#
12°2 4% L0'709TF €0'909T¥ L&'¥09TF ST TLSTF €0°909TF E£0°909TF €£°609TF €£9°909TF LL'H09TF €9°C09TH £0°909T% ‘8Av
230 0g'0 00'€£909 00°€£909 00°E€£909 Z 1909 ££909 ££909 ££909 ££909 ££909 ££909 ££909 6%'00T'0T
3T 0 86°0 00°60%09 00°¢0%09 00°60%09 1716109 $0%09 g0209 S0309 S0%09 €0%09 S0209 $03%09 82°00T 0T
9¢°0 £%'0 00°16£6S 00°16€£6S 00 T6£6S 8°TLE6S 16€6¢ 16€6¢ 16€6¢ 16€6¢ 16£6¢ 16€6¢ 16€6¢ LZ°00T'0T
¥T'1 06°L 00°LL€9S 00°LLE9S 00°LLEQS L°19€9¢ LLEOS LL€98 L2€98 LLEOS LL€98 L2€98 LLEYS 9z°00T'0T
¥L'T g9°'g 09°'gOF19 00°LEFI9 00" LEFTO L°T8ET9 LEPTO LEFTO LEVTO LEVTO LEFTO LEVTO LEPTO Sz 00101
<z'0 %g'0 00°'€0809 00°€0809 00°£0809 6'%0809 £0809 £0809 £0809 £0809 £0809 £0809 £0809 $%'00T'0T
<T'T PLT 0099619 00°99619 00°996T9 099619 99619 99619 99619 99619 99619 99619 99619 £2°00T'0T
¥6'% £9°0 00°'16€8S 00°'T6E8S 00°T6E|S 8'67E8S 16€8¢ 16€8¢ 16€8¢ 16£8¢ 16£8¢ 16€8¢ 16€8¢ 2% 00T 0T
9.'0 96'0 00'8.68S 00'8L68S 00°8L68S 0°8168¢ 81689 8L68S 8L68S 8L68S 8L68% 8L68S 8L68S 12°00T°0T
£3°0 £%'0 00'GLELS 00°GLELS 00°GLELS 0'GLELS GLELS GLELS GLELS GLELS GLELS GLELS GLELS 0%'00T'0T
09°¢ 9L'8T 00°.0%TF 00°L0%TF 00°L0TT¥ 9'8TITF L0T1¥ L0T1¥ L0TT¥ L0TT¥ L031¥ L0TT¥ L0TT¥ 61°00T'0T
6%°0 1¢°0 001k 00°%1geF 00°51gah 9°.03T¥ (48444 (48444 (48444 (48444 (42444 (48444 (48444 8T°00T'0T
¥9°0 0€'ST 00°0.6%F 00°0L6%F 00°0L6GF 9°6¥63¥ 0L63¥ 0L62¥ 0L63¥ 0L63¥ 0L63¥ 0L6T¥ 0L63¥ LT°00T'0T
LY €291 ¥€'0L8e€F 00°FLSGEF 00°€SGEF P ¥6rer VLGEY PLGEY £99eY 699eY PLGEY 699eY VLGEY 91°00T'0T
ze'0 280 00'666%F 00°¢66%F 00°S66TF 6'€£66TF S66TF G66CF S665T S66%F <66TF S66GT S66TF ST'00T' 0T
ve'g £9'9 ©6'9L8TF 00'F88IF 00'F8|IF < ZI8TH P8|TF P8]1F 88TF P8|TF P8|IF P88TF P8|TF F1°00T'0T
¥TL 2g'1e 00'7Z9SF 00'FZ9SF 00°T19SF 0°128S¥ el 4 4ol $ToSh el 4 e $goSF el 4 €1°00T'0T
z9'e 80'E€T 00'T0¥gF 00°'T0¥EF 00°10¥aF £'6££TF 10%2% 10%2% 10%2% 10%2% 10%2% 10%2H 10%2% ZT1'00T'0T
6T'T 98'0 00'FFETF 00'FFETF 00°FFETE 0'FFETE PPETE PPETE PPET PPETE PPETE PPETE PPETE T1°00T°0T
98°'F £€9°01 00°¢6€TF 00°G6ETF 00°G6ETF $9GETH S6ETH G6ETH g6ETY S6ETY S6ETH g6ETY S6ETH 0T°00T 0T
LT°0 £9°0 00°%0L%% 00°%0.%% 00°%0L%T $°6693% z0L3% (%44 20L3T z0L3T T0L3e 20L3T z0L3T 6°00T°0T
¥9°1 S¥'0 00°11¢%% 00°11$3% 00°1143& 1°65¥2C 11928 1192 119%% 11928 1192¢ 119%T 11928 8°00T°0T
S6'C L6'F 00°6€9%% 00°6€9%% 00°G€93T 8°L¥9TT $€933 9€92C §€93C S€933 <€933 §€93C S€933 L700T°0T
[4200] %0 00'GL8T% 00°GLRIZ 00°GLRIG < ze81T SLR1T GLRIG GLRIG GLR1G SLR1G GLRIG SL81T 9'00T'0T
PS'F %6'g 00°2L.%% 00°LLL%% 00°8SLETT 1'2692% LLLTT LLLTT 2207% LLLTT 6£L3T L2077 LLLTT S 00T'0T
i) 9g'0 6T'LELT% 00°T1SL3% 00°1SLET 1'1992% 1SLTT 1623 16238 1SLTT 1GLTT 16L3T 1GLTT $'00T'0T
S9'1T €L'6T 00'%LL%% 00°GLLTZE 00°TLLETE 8'FFLTT TLLTT TLLTT TLLTT TLLTT TLLTT TLLTT TLLTT €00T'0T
99°0 PI'T 00°1€1%% 00°1€1%% 00°I£1&T 8°6113% 1€128 1613 1€12T 1€128 1£128 1€1%T 1€128 Z'00T'0T
€8T [520¢ 00°108%% 00°108%% 00 108%% T°TGLTT 1082¢% 1082 1082% 1082¢% 1082C 108%% 1082¢ 1°00T°0T
06°1T 161 00°'¥90€% 00°'F¥90£% 00°¥90€T ¥ 0503 $90£3 $90£T $90€£3 $90£3 $90£3 $90£3 $90£3 0°00T'0T
osddg osdg
£0sdda VALdL L0Sddba VALAL £0SdD -¥Eg +0Sdda VALAL «0SdD -¥eg EeTy \43) 3dO adueysuy
(s)Ban, Favy 759q;

‘0T = W pue Q0T = U YIIM SOOUR)SUI [[RUIS DY} UO dINJRIDI] 9U) WO SWYILIOS[R 90UIdfal ¢ YiM ,OSdD JO simsal aanperedwo)) ¢ a[qe],

19

Table 4: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the small instances with n = 100 and m = 30.

foest favg tavg(s)
Instance Opt. GA T&E QPSO* TPTEA DQPSO~ QPSO* TPTEA DQPSO~ TPTEA DQPSO*
30.100.0 21946 21946 21946 21946 21946 21946 21946.00 21946.00 21946.00 7.5 1.1
30.100.1 21716 21716 21716 21716 21716 21716 21716.00 21716.00 21716.00 17.7 0.9
30.100.2 20754 20754 20754 20754 20754 20754 20754.00 20754.00 20754.00 10.4 1.1
30.100.3 21464 21464 21464 21464 21464 21464 21448.00 21464.00 21464.00 12.9 5.7
30.100.4 21844 21814 21844 21844 21844 21844 21828.50 21844.00 21833.09 15.6 26.6
30.100.5 22176 22176 22176 22176 22176 22176 22176.00 22176.00 22176.00 0.7 0.9
30.100.6 21799 21799 21799 21772 21799 21799 21772.00 21799.00 21793.60 19.5 12.8
30.100.7 21397 21397 21397 21397 21397 21397 21361.50 21397.00 21396.04 15.8 14.5
30.100.8 22525 22493 22493 22525 22525 22493 22503.50 22525.00 22493.00 15.0 10.6
30.100.9 20983 20983 20983 20983 20983 20983 20983.00 20983.00 20983.00 0.8 2.5
30.100.10 40767 40767 40767 40767 40767 40767 40728.50 40767.00 40764.18 22.5 27.3
30.100.11 41308 41304 41304 41308 41308 41308 41306.00 41308.00 41305.88 19.2 14.9
30.100.12 41630 41560 41630 41630 41630 41612 41606.00 41630.00 41585.22 28.5 29.8
30.100.13 41041 41041 41041 41041 41041 41041 41041.00 41041.00 41041.00 22.1 8.1
30.100.14 40889 40872 40889 40872 40889 40872 40872.00 40889.00 40872.00 21.6 0.9
30.100.15 41058 41058 41058 41058 41058 41058 41058.00 41058.00 41058.00 0.9 2.7
30.100.16 41062 41062 41062 41062 41062 41062 41062.00 41062.00 41062.00 11.3 14.9
30.100.17 42719 42719 42719 42719 42719 42719 42719.00 42719.00 42718.73 19.4 0.6
30.100.18 42230 42230 42230 42230 42230 42230 42230.00 42230.00 42230.00 1.2 2.1
30.100.19 41700 41700 41700 41700 41700 41700 41700.00 41700.00 41700.00 14.3 3.9
30.100.20 57494 57494 57494 57494 57494 57494 57494.00 57494.00 57494.00 0.6 0.2
30.100.21 60027 60027 60027 60027 60027 60027 60027.00 60027.00 60021.94 1.4 29.8
30.100.22 58052 58025 58052 58052 58052 58052 58052.00 58052.00 58027.85 18.2 28.4
30.100.23 60776 60776 60776 60776 60776 60776 60776.00 60776.00 60775.78 4.5 6.3
30.100.24 58884 58884 58884 58884 58884 58884 58884.00 58884.00 58865.52 4.9 2.4
30.100.25 60011 60011 60011 60011 60011 60011 60011.00 60011.00 60005.30 2.3 2.0
30.100.26 58132 58132 58104 58132 58132 58132 58118.00 58132.00 58132.00 0.7 1.7
30.100.27 59064 59064 59064 59064 59064 59064 59064.00 59064.00 59064.00 0.7 1.2
30.100.28 58975 58975 58975 58975 58975 58975 58975.00 58975.00 58975.00 19.6 11.3
30.100.29 60603 60603 60603 60593 60603 60603 60593.00 60603.00 60603.00 2.3 3.2
Avg. 40767.53 40761.53 40765.40 40765.73 40767.53 40765.30 40760.17 40767.53 40761.87 11.1 8.9
#better 0 2 2 3 9 14 14
#equal 27 26 26 27 14 16 0
#worse 3 2 2 0 7 0 16
p-value 6.79E-2 1.0 5.15E-1 1.09E-1 7.56E-1 9.81E-4

marginal, which is confirmed by the large p-values (> 0.05). However, in terms
of favg, the DQPSO™ algorithm outperforms significantly the 3R-BPSO algo-
rithm.

The second experiment aims to assess and compare the DQPSO* algorithm
on the medium-sized instances with n = 250, and the experimental results are
summarized in Tables 5 to 7, where the BKR denotes the best known results
reported in the literature and other symbols are same as in the previous tables.

The results on the instances with a small number (m = 5) of constraints
are provided in Table 5. One observes that for these instances, the proposed
DQPSO* algorithm outperforms GA, F&F, QPSO* in terms of fyes:, and ob-
tains comparable results with the TPTEA algorithm. Specifically, DQPSO*
yields respectively a better result for 11, 7, and 5 instances compared to GA,
F&F, QPSO*, and matches the result of the TPTEA algorithm for 29 out of
30 instances, while yielding a worse result for one instance. As for the fu.q,
DQPSO* performs better than QPSO* by reporting a better result on 15 in-
stances and the same result on 12 instances, but performs marginally worse
than TPTEA (the average value of f,,4 over all the 30 instances is 107087.05
for DQPSO* against 107088.59 for TPTEA). Moreover, TPTEA and DQPSO*
obtain the optimum solution with a success rate of 100% for 27 and 18 out of
30 instances, respectively, while DQPSO™* is more computationally efficient.

Tables 6 and 7 report respectively the results for the instances with m = 10
and m = 30. These two tables show that for the medium-sized instances with a
large number of constraints, DQPSO* outperforms significantly GA, F&F, and

20

Table 5: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the medium-sized instances with n = 250 and m = 5.

best favg tavg(s)
Instance Opt. GA F&F QPSO™ TPTEA DQPSO™ QPSO™ TPTEA DQPSO™ TPTEA DQPSO*
5.250.0 59312 59312 59312 59312 59312 59312 59312.00 59312.00 59312.00 67.0 7.1
5.250.1 61472 61472 61468 61472 61472 61472 61470.00 61472.00 61471.72 251.5 24.9
5.250.2 62130 62130 62130 62130 62130 62130 62130.00 62130.00 62130.00 82.9 3.5
5.250.3 59463 59446 59436 59427 59463 59463 59427.00 59462.33 59441.93 1017.0 28.3
5.250.4 58951 58951 58951 58951 58951 58951 58951.00 58951.00 58951.00 99.3 3.4
5.250.5 60077 60056 60062 60077 60077 60077 60056.00 60069.50 60070.34 741.8 27.4
5.250.6 60414 60414 60414 60414 60414 60414 60414.00 60414.00 60414.00 96.7 5.8
5.250.7 61472 61472 61454 61472 61472 61472 61460.50 61472.00 61472.00 153.2 18.3
5.250.8 61885 61885 61885 61885 61885 61885 61885.00 61885.00 61885.00 85.1 11.7
5.250.9 58959 58959 58959 58959 58959 58959 58925.50 58959.00 58959.00 79.2 3.1
5.250.10 109109 109109 109109 109066 109109 109109 109058.50 109109.00 109107.46 288.7 18.4
5.250.11 109841 109841 109841 109841 109841 109841 109841.00 109841.00 109841.00 118.1 5.9
5.250.12 108508 108489 108508 108508 108508 108508 108508.00 108508.00 108508.00 107.2 18.0
5.250.13 109383 109383 109383 109356 109383 109383 109347.50 109383.00 109383.00 144.8 9.7
5.250.14 110720 110720 110720 110720 110720 110720 110710.00 110720.00 110718.10 611.2 12.0
5.250.15 110256 110256 110256 110256 110256 110256 110256.00 110256.00 110250.71 257.9 46.0
5.250.16 109040 109016 109040 109040 109040 109040 109022.50 109040.00 109040.00 114.7 24.9
5.250.17 109042 109037 109016 109042 109042 109042 109018.50 109042.00 109041.32 102.8 22.8
5.250.18 109971 109957 109957 109971 109971 109971 109955.00 109971.00 109971.00 212.0 8.4
5.250.19 107058 107038 107058 107058 107058 107058 107048.00 107058.00 107057.09 210.9 14.3
5.250.20 149665 149659 149659 149665 149665 149665 149650.50 149665.00 149661.10 250.4 23.3
5.250.21 155944 155940 155944 155944 155944 155940 155942.00 155943.87 155940.00 60.5 6.0
5.250.22 149334 149316 149334 149334 149334 149334 149334.00 149334.00 149332.46 119.1 20.9
5.250.23 152130 152130 152130 152130 152130 152130 152130.00 152130.00 152130.00 55.9 3.6
5.250.24 150353 150353 150353 150353 150353 150353 150353.00 150353.00 150353.00 58.0 16.3
5.250.25 150045 150045 150045 150045 150045 150045 150045.00 150045.00 150045.00 41.9 3.3
5.250.26 148607 148607 148607 148607 148607 148607 148607.00 148607.00 148607.00 36.4 7.9
5.250.27 149782 149772 149782 149772 149782 149782 149762.50 149782.00 149775.40 51.8 18.1
5.250.28 155075 155075 155075 155057 155075 155075 155045.00 155075.00 155075.00 41.8 26.1
5.250.29 154668 154662 154668 154668 154668 154668 154668.00 154668.00 154668.00 118.0 16.9
Avg. 107088.87 107083.40 107085.20 107084.40 107088.87 107088.73 107077.77 107088.59 107087.05 189.20 15.21
#better 0 1 1 1 3 11 0
#equal 19 22 24 29 12 18 0
#worse 11 7 5 0 15 1 30
p-value 3.33E-3 2.07E-2 4.64E-2 3.17TE-1 7.38E-4 4.7T4E-3

Table 6: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the medium-sized instances with n = 250 and m = 10.

frest favg tavg(s)
Instance Opt. GA F&F QPSO™ TPTEA DQPSO™ QPSO™ TPTEA DQPSO™ TPTEA DQPSO*
10.250.0 59187 59187 59164 59182 59187 59187 59173.00 59187.00 59187.00 194.8 20.0
10.250.1 58781 58662 58693 58781 58781 58705 58733.00 58743.13 58686.12 715.2 51.7
10.250.2 58097 58094 58094 58097 58097 58097 58095.50 58097.00 58086.86 189.9 39.4
10.250.3 61000 61000 60972 61000 61000 61000 60986.00 60998.57 60989.07 839.2 61.4
10.250.4 58092 58092 58092 58092 58092 58092 58092.00 58090.57 58088.38 821.7 67.4
10.250.5 58824 58803 58824 58824 58824 58824 58824.00 58822.60 58803.42 462.1 24.4
10.250.6 58704 58607 58632 58606 58704 58704 58596.50 58704.00 58692.39 385.2 59.1
10.250.7 58936 58917 58917 58902 58936 58930 58889.50 58932.10 58921.47 732.7 54.7
10.250.8 59387 59384 59381 59372 59387 59387 59357.50 59387.00 59383.41 102.3 74.0
10.250.9 59208 59193 59208 59208 59208 59208 59208.00 59208.00 59208.00 327.1 23.3
10.250.10 110913 110863 110889 110857 110913 110913 110843.00 110913.00 110913.00 370.7 22.3
10.250.11 108717 108659 108702 108687 108717 108717 108687.00 108717.00 108702.55 529.3 9.6
10.250.12 108932 108932 108922 108891 108932 108932 108889.00 108932.00 108930.63 T7.4 40.3
10.250.13 110086 110037 110059 110086 110086 110086 110060.50 110086.00 110061.33 1070.9 81.6
10.250.14 108485 108423 108485 108485 108485 108485 108459.50 108485.00 108485.00 129.1 32.4
10.250.15 110845 110841 110841 110845 110845 110845 110843.00 110843.67 110840.22 1064.0 46.3
10.250.16 106077 106075 106075 106047 106077 106077 106036.00 106075.73 106076.41 239.2 56.3
10.250.17 106686 106686 106685 106686 106686 106686 106681.50 106686.00 106686.00 563.2 24.8
10.250.18 109829 109825 109822 109788 109829 109825 109755.00 109827.40 109823.00 845.3 46.8
10.250.19 106723 106723 106723 106723 106723 106723 106723.00 106723.00 106723.00 80.5 34.1
10.250.20 151809 151790 151790 151779 151809 151809 151769.00 151809.00 151806.92 177.4 49.4
10.250.21 148772 148772 148772 148772 148772 148772 148772.00 148772.00 148772.00 24.6 3.1
10.250.22 151909 151900 151909 151909 151909 151909 151909.00 151909.00 151909.00 85.6 41.6
10.250.23 151324 151275 151281 151281 151324 151324 151281.00 151324.00 151276.39 629.1 48.4
10.250.24 151966 151948 151966 151966 151966 151966 151938.00 151961.80 151953.94 413.8 33.3
10.250.25 152109 152109 152109 152109 152109 152109 152109.00 152109.00 152109.00 51.2 6.9
10.250.26 153131 153131 153131 153131 153131 153131 153131.00 153131.00 153131.00 36.3 9.0
10.250.27 153578 153520 153533 153529 153578 153578 153529.00 153578.00 153560.40 95.8 70.2
10.250.28 149160 149155 149160 149160 149160 149160 149145.00 149160.00 149156.53 59.1 92.4
10.250.29 149704 149704 149688 149646 149704 149704 149637.00 149704.00 149704.00 56.2 10.3
Avg. 106365.70 106343.57 106350.63 106348.03 106365.70 106362.83 106338.42 106363.89 106355.55 379.0 41.1
#better 0 0 1 3 6 18 0
#equal 11 11 16 27 6 11 0
#worse 19 19 13 0 18 1 30
p-value 1.31E-4 1.32E-4 1.31E-2 1.09E-1 4.68E-3 1.55E-4

21

Table 7: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the medium-sized instances with n = 250 and m = 30.

foest favg tavg(s)
Instance BKR GA F&E QPSO* TPTEA DQPSO* QPSO* TPTEA DQPSO~ TPTEA DQPSO*
30.250.0 56842 56693 56796 56796 56824 56796 56745.50 56824.00 56745.30 130.5 191.2
30.250.1 58520 58318 58333 58302 58520 58351 58302.00 58520.00 58319.88 216.3 81.4
30.250.2 56614 56553 56553 56614 56614 56614 56570.50 56614.00 56556.16 216.4 274.2
30.250.3 56930 56863 56930 56930 56930 56930 56892.00 56930.00 56929.35 90.7 81.0
30.250.4 56629 56629 56629 56629 56629 56629 56629.00 56629.00 56629.00 74.2 28.4
30.250.5 57205 57119 57149 57146 57205 57189 57115.50 57205.00 57147.28 374.4 178.8
30.250.6 56348 56292 56263 56303 56357 56303 56246.50 56333.40 56223.06 1155.3 432.6
30.250.7 56457 56403 56457 56392 56457 56457 56374.50 56457.00 56456.91 103.3 171.2
30.250.8 57474 57442 57373 57447 57474 57474 57407.50 57458.90 57419.36 971.1 279.7
30.250.9 56447 56447 56447 56447 56447 56447 56447.00 56447.00 56447.00 99.5 12.6
30.250.10 107770 107689 107735 107703 107770 107732 107696.00 107763.10 107719.89 1034.2 299.5
30.250.11 108392 108338 108338 108338 108392 108379 108336.50 108387.23 108377.71 437.6 81.6
30.250.12 106442 106385 106415 106442 106442 106442 106413.50 106439.60 106427.69 587.2 136.1
30.250.13 106876 106796 106832 106851 106876 106876 106828.00 106876.00 106821.63 204.5 213.5
30.250.14 107414 107396 107414 107382 107414 107396 107382.00 107414.00 107396.00 230.4 196.0
30.250.15 107271 107246 107271 107271 107271 107271 107236.50 107271.00 107244.81 293.9 210.4
30.250.16 106372 106308 106277 106248 106372 106365 106242.00 106371.77 106319.30 682.5 259.9
30.250.17 104032 103993 104003 103988 104032 104014 103988.00 104019.00 104000.59 497.2 285.7
30.250.18 106856 106835 106835 106856 106856 106835 106845.50 106852.50 106807.00 322.2 164.2
30.250.19 105780 105751 105742 105751 105780 105751 105740.00 105779.17 105751.00 440.6 138.7
30.250.20 150163 150083 150138 150096 150163 150138 150052.00 150163.00 150111.33 456.9 335.6
30.250.21 149958 149907 149958 149958 149958 149907 149932.50 149958.00 149907.00 100.7 52.3
30.250.22 153007 152993 153007 153007 153007 153007 153007.00 153007.00 152993.42 130.9 86.3
30.250.23 153234 153169 153182 153234 153234 153234 153200.00 153234.00 153188.81 83.8 279.3
30.250.24 150287 150287 150287 150287 150287 150287 150287.00 150287.00 150287.00 51.2 7.8
30.250.25 148574 148544 148549 148544 148574 148574 148528.50 148574.00 148560.74 77.0 139.9
30.250.26 147477 147471 147455 147471 147477 147477 147463.00 147477.00 147477.00 78.5 25.3
30.250.27 152912 152841 152841 152835 152912 152912 152835.00 152912.00 152894.37 70.6 213.2
30.250.28 149570 149568 149570 149570 149570 149570 149541.00 149570.00 149569.86 61.3 377.3
30.250.29 149668 149572 149587 149668 149668 149601 149620.00 149668.00 149601.00 741.8 34.0
Avg. 104717.37 104664.37 104678.87 104683.53 104717.07 104698.60 104663.47 104714.72 104677.65 333.8 175.6
#better 0 3 4 14 9 26 8
#equal 7 11 13 16 3 4 0
#worse 23 16 13 0 18 0 22
p-value 2.70E-5 2.71E-3 3.13E-2 9.79E-4 2.55E-2 8.30E-6

QPSO* in terms of fpest, which is confirmed by the small p-values (< 0.05),
but performs worse than the tabu-based TPTEA algorithm. In terms of fu.4,
DQPSO* performs better than QPSO*, but worse than TPTEA.

The third experiment aims to assess the DQPSO™* algorithm on the largest
instances with n = 500, and the experimental results are respectively summa-
rized in Tables 8-10 according to the value of m (m = 5,10, 30), along with the
results of the reference algorithms.

We observe from Table 8 that for the large instances with a small number
(m = 5) of constraints, DQPSO* performs very well compared to six refer-
ence algorithms. In terms of f.s;, DQPSO* obtains a better result respectively
for 23, 10, 15, 13 and 15 out of 30 instances compared to five reference algo-
rithms (GA, F&F, 3R-BPSO, TP+TS and QPSO*), while matching their best
results for 7, 19, 15, 16, 12 instances, respectively. Such an outcome indicates
that DQPSO* outperforms significantly these five reference algorithms, which
is confirmed by the small p-values (< 0.05). In addition, compared to the latest
TPTEA algorithm, DQPSO* obtains a better, equal, and worse result for 1, 25,
and 4 instances in terms of fpes¢, which means that DQPSO* performs slightly
worse than TPTEA. Nevertheless, the large p-value (> 0.05) means that there
does not exist a significant difference between DQPSO* and TPTEA in terms
of frest- On the other hand, DQPSO* obtains a better result for 30, 30, and
18 instances in terms of f,,, compared to 3 reference algorithms (3R-BPSO,
QPSO* and TPTEA). Moreover, DQPSO* and TPTEA have a very similar
performance in terms of both fyes and fu,y With an advantage for DQPSO™ in

22

%-{L6°9 9-AEL'T 9-AEL'T 1-AghE £-HY8'C €-HE9'T P-"1€'9 £-H8S" g G-Hg6'E anpa-d
og 8T og og 1 ST €1 <1 ot 44 astom#
0 € 0 s} 4 s 9T <t 61 A renbazt
0 6 0 0 4 € T 0 T 0 12112q#
0L°L8 08'9.0% TS I9IPIZ ST 6SIPIC L8 PEIFIC 86'LEIFIG LP'LOTHTIG L0'89TPIC LO'LGTPIC LE'EOTPIC 0T COTPIC 0L €9TPIC €8'LETFIC 08'89T¥1C Sav
L'8T1 8'16¥E 61'G0666% 08'T0666Z 0£'GRR66L 09 8RRE6T 706663 016663 016663 06663 706663 06663 06663 016668 65'008'S
8'8¢ (4t 0L'€GREZOE 0L'0GRZ0OE 0L'808Z0E 00'ZI8ZOE 8TR8TOE 8%R8T0E 8%8%0E (4434t 8G8Z0E $I8Z0E $18%08 8TRT0E 8%'008'¢
£'L6 £'L0LT 9£'8%¥90€ 00'FSPO0E 00°60¥90€ 03'3TFI0E $eho0E ¥SHo0g zTF908 $SeHo0E 8£¥90¢€ 0e¥90¢g 0ev90¢g $SHo0E 2%°008°S
T IL G'689 12'62€10€ L9'0€€10€ 08 LIET0E 0% 0IETI0E 6££10€ 6££108 TTET0E 62£10€ Lze108 6T£108 ZTET0E 6££10€ 92'008'¢
6'99 9'991% 9z'299c08e 0%'99920€ 00°LFG30€ 0£'9%430€ 1L820€ 1LET0€E 094308 19620€ 09930¢€ TLGT0E 094308 1L820€ 92’008
(=4 17ave 00'2¥€00€ L9°0¥£00€ 00°0TE00€ 0% 'TTE00E T¥£00g TFE00¢8 TFE00g T¥£00€ 2F£008 TFE00E ZFE00g TFE00€ $2°008°¢G
€29 0'929% 0G'8L¥90€ L¥'8LFO0€ 0£°99¥90€ 0% 99%90€ 08%90¢€ 08%90¢ 08%90¢ 8L¥90€ 8L¥90¢ 9L¥90¢ 9L¥90¢€ 08%90¢€ £€2°008°¢
L°0% G'L€9 00'96L66% 00°96L66% 00°8LL66T 09°T19L66T 96L66C 96L66% 88L66% 96,668 96L66% 96L663 96L66% 96,668 25008
¥°66 [et444 0g'6L080€ L8'18080€ 00°¥9080€ 06°69080¢€ 98080¢€ 98080¢€ 98080¢ £8080¢€ 18080€ 6.080¢€ L.080¢ 98080¢€ 12°008°¢
o'ee £'588 00'8GRS6Z 00'8GRG6ZE 0L'L6LG6T 0L'ORLG6T RTRG6ET RGRSG6T 8TRG6T RTRSG6T S0RSG6T 8TRG6T 8TRG6T RTRSG6T 0%'008°'¢
R 44 6'%£9% Z0'LIL6TZ 09'GTL6TZ 00'86961% 08'16961% 6TL61C 6TL6TT 6TL61T $0L61% 60L61C 6TL6TT £6961% 61L6TC 61'008'¢
g'L9 6'L09 00'9L691Z 00'9L691% 0£'GS691% 0F'TF69I1T 9L691% 9L691% 916912 9L691C 9L691% 9.691% 9L691% 9L691C 81'008'¢
g'o8 70028 ge'86TRIZ LE'00T8IZ 00'G8I8IZ 0$'89I8IT S1Z81T S1T81T S1T81T $6181% 761813 S1T81T $6181% S1Z8IT L1°008°¢
0°GTT L'86.T 07'88661C 06'9G8661% 0£'TE661% 0T 'ELE61T 68661C 686612 £F6613 68661C L8661% 686612 L8661T 68661C 91'008'¢
2’89 0'€81¢ 08'92S0T% L0'83S0%% 0L'86%0%% 0% €6¥03T 0£802T 0£803% 125038 0£802T 0£903% 0£503% $15033 0£802% ST'008°¢
£eL G TLT 80'GO681C 00'99681% 0£'¥9681% 09°EE68IT 99681¢% 996812 S9681% 99681¢C 996812 996812 T9681% 99681¢C $1°008°¢
8'6¢€ £'6€1c 86'699€CC L8'899€TC 0L'LEGETT 0¥ 9EGETT 099€3T 099€33 099€33 89GETT 099€33 8GGETT 8GGETT 099€2e £€1°008°¢
0611 £'9€8¢ 68'€€9L1C 06°9TSLIC 00°€1GL1% 0€'8IGLIT 9€GL1T TPSLIT 8TGLIT ¥ESLIT yeCLIT ¥EGLIT ¥EGLIT [42:VA%S 21'008°¢
166 1'09¢€ PP LLT18G 06'F8TIGG 0€'GSITIGE 0% L0113 [il4¢44 16112C Z0%13% 16112C 16112C Z0%13% 161128 [il4 444 11°00¢'¢
7'€0T 0'00T¥ SH'PIPRIZ L& TTPRIZ O0L'P6E8TZ O1'L6ERIG 9ZFRIT 42344 8TFRIT 8TYRIT STPRIT 8TFRIT (442344 8TVRIT 0T'008°'¢
PreT £'ggee 98'L0L0ZT 00'G690ZT 0£'G990%T 08'FL903T 212031 LTL0TT ©8903T 202031 212031 L0031 669031 212031 6'008°'S
8'9€T T'61LC L19°09STZT LT°69STIgT 0€'2TSTIgT O0T°2ES1T GLGTTT GLGTTT 986131 GLGTTT GLGTTT GLGTTT GLGTTT 98GTTT 8008
G 61T 8'8ELT 88'F9S0CT 0T'8FS0ET 0£'€TS08T 0L'FES0TT 89G0TT 89903 T 9€503T 89G0TT SFG0TT 89503 T 89503 T 89G0TT L'008°'¢
L°60T T 61¥E 0g'gEI6IT 0G'0TT6TIT 00°GLO6TT 0S 0606TT LTI6TT LTI6TT 60611 LTI6TT LTI6TT 601611 €TI6TT LTI6TT 9'008°¢
6°80T 1'18%% 8%'F10TCT €8'800%¢T 0L'T861ET OT'I861aT $203TT ¥2033T $2033T $2033T $20%T 1 $2033T 00331 $2033T g'008°'¢
6'96 £'9€61 00'91€gcl 00°61€3cl 0.°00€3gT 0€0T€TTT 61€33T 61€3TT 61€331 61€33T 61€3TT 61€331 61€331 61€3CT ¥008°¢
9'9G1 6'L16G 69'96L0C1 O0¥'98L0C1 0€0¥L0TT 0€'TLLOGT $0803 1T %0803 1 TgL0TT 08031 0803 1 ¥6L031 86L031 08031 €008°¢
9'66 0'8¥%1¢ L8'6ZT1ET €T'ZITIGT 00°G60TGT 0S'€0TIGT 1€T11ET T€T12T 1€T1ET ZITIGT 6GTIGT TET1ET 601131 1€11ET Z'008°'S
€501 %'9L8E 0%'ZG8LIT €8'0G8LIT 0£'PE8LIT 09'STRLIT PO8LTT 6LRLTT PPRLIT POSLTT PORLTT FORLIT LE|LTT 6LRLIT 1'00¢'¢
9'0TT 3'€9LE 08'LETOZT 06'9%T0ZT 0.°G0TOZT 0S'T0T03T 8%10GT 8FT0TT 0£103T L1031 171021 FEI03TT 0£103T 8%10TT 0'008'g

(8002)

e 90

osddg osddg juowip
LO0sdba VALAL £O0Sddba VALAL +OSdD -de L0Sddba VALAL +OSdD SL+dL -¥e A3 A v 11do aduwysuL

(s)Bany Bavy Fsoqy

'C = w pue 00G = U YIIM S$3OURISUI 9SIR] 9YJ UO dINJRIIII] Y} WOIJ SWYILIOR 90USIDJAT [RIADS g UM , OSSO JO sinsar aaryeredwo)) :g a[qe],

23

1-dCL°¢ [RCTIA 9-HEL'T T-H68'9 £-Hg8g p-d9E'E P-H9C'E 9-H6S°g 9-H9S'C anpa-d
og s 0% og o1 61 (44 T LT 62 astom#
0 0 0 0 9 4 9 € € 1 renbazt
0 ST 0T 0 jas L 4 4 0 0 123329 #
92021 0 LO¥E 89°0I8TIZ 8% $08CIG 0£'G6LTIG 09°0LLTIC 09°I¥8ZIZ L 0¥8TIT L8 0T8CIG 01 $G8TIC LS IT8CIG L6 €I8TIT 0L S86LTIC 0£°698C1T “Say
T'€8 6'19€C €8°'890L0€ £Z'880L0E 09°'€9690€ 06°F00LOE 680L0€ 680L0€ 200L0€ 8L0L0€ 2L0L0€ 810L0€ $10L0€ 680L0€ 62°009°0T
1°€91T PL8IE $Z'CEET0E LT 6PET0E 00 P8ZTOE 0P 06CT10E LgeT0¢g 69€10€ €6210€ TEET0E £9€10€ TEET0E €1E10¢€ 69€T0€ 82'009°0T
9'ggl L'8ETE 9T'PPP96C £9°9SP96C 00°TEPI6T 0L'9TH96T 69796C 8L¥96T LEPI6T T¥$96C 8E¥96T L¥P968C LEVI6T 8L¥96T LZ°008°0T
z'91 9'zeTE 00°'6¥6%0€ 00°'2E6¥0€ 09'FT6V0E 00 FF6HOE 6¥670€ T9670€ TE6¥0¢E 6¥670¢€ 6¥670€ TT6¥0€ 6¥670¢€ T9670€E 92°00¢°0T
7901 8°808¢ 8%'TELT0€ €F OPLI0E 0G'L8LI0E 0L'TILIOE 99L10€ 96L10€ 9€810¢€ $GLI0E 96L10€ THL1I0E 0€L10¢€ 9€810€ 6Z°009°0T
9°gII 9°609¢€ GL'€ge¥0e €T T9EH0€ 09'8TEPOE 00 TFEPOE PLEVOE PLEVOE 0¥EP0¢e PPEVOE PLEVOE LEEP0E PPEVOE PLEVOE $2 009701
9°8¢ 0°L96 oF'¢PL00E 08°'8SL00€ 09°€9L00€ 0T’ GTLOOE $8L00¢€ $8L00¢€ $8.00¢€ L8200¢€ £%L00€ £€%.00¢€ £€%L00¢€ $8L00¢€ €5°009°0T
PLL 6°L6V¢E 01°66€C0€ €1°'86£C0€ 09°98EC0E€ 08'SPETOE 80¥50€ 91¥T0€ L1¥50¢€ 80¥20¢ 96£30€ 80¥20¢€ $9EC0¢€ L1750¢€ %% 009°0T
9'86 9'€88C $0'9b£Z0€ LT P9LT0E€ 00 TPEZ0E 09°9IEZ0E 89ETOE 6L£T0€ 1P€T0€E £E€20¢8 6LET0€ ebezoe ZEET0e 6LET0E 12'009°0T
P29 1°920¢€ 10'PSEP0E LP'POEP0E 09'6CEF0E 08 TIEFOE L8€¥0¢€ L8€¥0€ Prevoe 19EP0€E vrevoe Prevoe PPEVOE L8€¥0¢€ 0Z'00g°0T
g'gel L'112¢€ 0T'.¥80%% £¥'$9808% 0S'FIB0ZE 0E£'9080CT S980ZC L880TT LTR0TT <99802C 0¥802% 6%802C £€80CC 66802C 61°009°0T
6991 9'666¢€ P1'LEEPIT €P LCEFIT 00 P9E¥IT 00°98CFIT T8EVIT £9€71T z8EVIT TPEPIT 19e¥1T opEPIT TEEVIT T8EVIT 81°009°0T
0'goT T'806¢€ L0°99661T L& LP66IT 0961661 09°90661% ¥8661C ¥8661T 6¥661C S9661C 6¥661T 69661% 6¥661C 06661T L1°008°0T
€181 £ 18C% 0£P88LTE 08'F88LIC 00°€SY8LIC 0€'8S8LIT 1€6L1T 9g6L1T 898L1C €06L1G 968L1T 088L1C 968LIC 0¥6L1T 91°00¢°0T
7991 £T89¢ 89°'$€09TE LG'6%09TC 09°€S091C 06°T66¥IC 59091T 98091C 98091¢C $£091C 89091T 15091T €1091C 98091T G1°009°0T
P PEL 0°¢60% 80°LI8ETC LT 08LETG 00°€8LETC 06°LLLEIC £¥8E1T PI8E1T 96LETT 698€1C £¥8E1T TI8E1T 608€1C €L8E1T $1°009°0T
€9T1 L €0¥€ G0°PT891C €€°9€891¢ 00°9T891C 06°0LL91G £¥891¢C 89891¢C 89891¢ 9€891¢C [4:4:1:3%4 £€¥891¢ T0891% 89891¢C €1°009°0T
T°€LT 7 010¥% €0°09LLT% €L°'98LL1% 00°ZLLLIZ 08'€VLLIC LP8LIC LP8LIT L6LLIT L6LLIT 9GLL1T L6LLIC TLLLIT LP8LIT Z1°009°0T
0'9¢1 2'869¢€ S LE06IZ 0L'CEO6IZ 09'6¥061Z 0I'ZO061T €90612 69061C LL061C 9€061C £9061C 9€061C ZTO61T LL061T 11'00¢°0T
L'9L 7' ¥86¢€ €0°'9Z€LTE L9'E€TELIE 09°68CLIC 00°€8TLIT G9€L1T 19ELTT 80€L1T €PELIT ShELIT 8TELIT 8TELIT LLELTT 01°00g°0T
L9TT 8'8E€€ $S'99T6IT 06 T9T6TT 0S'00G6TT 0€ LTI6TT TIT6IT 96T6TT TST6TT 98T6TT 98T6TT €8T6TT STI6TT 19E6TT 6'009°0T
€Tl L'89T¢€ $T€9LLIT L6'GOLLTIT 00°OTLLIT 0€'869LTT T8LLTT TOSLTT TGLLIT TSLLIT TGLLTT T8LLTT GLLLTT STSLIT 8'009°0T
L9%T G°8CC¥ 0£°G9T8IT LE'8STRIT 09'G8TBIT 0€'€¥T8IIT 0TESTT €TE]TT 60€8TT L0E8TT 88TSTT 60E8TT 88C8TT PPESTT 27009701
T9ET G°68LE OL'T8L6TT 0L'6EL6IT 00 ¥SL6IT 0G 0TLGII LT86TT GLL6TT LTS6TT TRLGTT FOLETT FOL6TT 6FL6TT LT8BTT 9°009°0T
P LGT 6 9%9¢ LG'GEP6IT 08 IPP6IT 09 I6E6TT 09 9THETT 0LP6IT €8P61T TOP61T $0G6TT T9¥611T THP61T POP61T $OG6TT G°009°0T
[Ee1 a8 g 'T8ge €8°09¥91T LI°G0P9IT 09 6¥PFP9IT 08°GOPIIIL 609911 99¥9TT g0g911 TOPOIT 0L¥P91T TLPOTT PEVOLT 0€9911 009701
8'6€ 1°091¢€ 0€'LL28TT €6°€6L8TT 0G'LFPL8TT 0 PSLBIT £188TT 6Z88TT GLLRIT €I88TT £188TT P8L8TT ZO88IT 6Z88TT £'009°0T
8°.T1 L 69F%F 19'29T6IT LZ'80T6IT 09'9PT6IT 06 P606TT STZ6TT 6ST6TT STIZ6IT PGI6TT T1Z6TT P6TI6TT 6CTI6TT STZ6TT 2'009°0T
28T 6'paee PL'6LT6TT LY LET6TT 0S9'8PI6TT 00°9CI6TL 90Z6TT 00Z6TT LLTIBTT 0GI6TT GSTI6TT I8T6TT 6ETI6TT 6%Z6TT 1°00S°0T
€601 L'%99¢ T8'PSLLIT LT'9ELLIT 0G'EELLIT 0€'669LIT 6LLLTT TO8LTT PPLLIT GLLLTT 06LLTT FELLTT 9TLLIT 1C8LIT 0°00g°0T
osdg osdd
+0Sdda VALdL +0Sdda VHLdL +0SdD -de «0Sdda VHLdL +OSdD SLtdL -dg A% A VD 3do souejsuy
Amvmpdﬂ m;d& Fs2qr

‘0T = W pue Q0G = U YIM SOOURISUI 9FIR] dY} UO dINYRIDII] SY) WO SWILIOSTR 20UdIdJAI 9 YHM ,OSID JO snsax aaryeredwo)) :¢ d[qe],

24

9-|EL'T £-H353'8 9-H86°L -|0°T 1-302°C 1-HL8°€ 9-H96°T anpoa-d
o€ 0 8 4 6T s LT t4 oszom#
0 0 0 T T € T 4 renbazt
0 og [44 X4 ot [} 14 € 12132q#
v'6EV L'6v9g 6108115 8'698I1Z 9'9%ET1E L'GLETIZ ¥'LZPITZ 8'LSEITC T'98ETIZ 6°99€T11Z 6'8TELIT 6 1SFP11T ‘8ay
c'ese 6°9€6¢ 9L°66¥00€ €%°0£500€ 00 6%%00€ 9£500¢8 96900€ 6%%00€ 2£800¢€ 1L700€ 09%00¢ 96500¢ 62°008°0€
T 98% 0°€82¢ 90°660£0€ €9°89TE0E 00°69T€0€ z91€0¢g 661£0€ 691€0€ 080€0¢€ 601£0¢€ L80€0¢€ 661208 82°005'0€
$'Geg ¥'5T6E $9°0£690€ 09°%L690€ 00°ST690€ 66690€ 66690€ S€1690€ 66690¢€ 80690¢€ ¥$690€ 200L0€ 12700808
< g0¥ £'838C T8'€9Te0e 09°GEEE0e 00°L8TE0E 09€€0¢€ $9£€0€ LBTEOE 8CEE0E 0TeE0e £€380¢€ $9€€0g 92°005'0€
0'6S¥ ZevLE ST'FOR96% L6°F9696T 00°G6896T Z9696% 66696% T6896T 19696 816967 6R96% ZT0L6T SZ'008'08
8'96% 0'%0TE 9z'€6£F0E €9°LTFF0E 00°9FEVOE ¥O¥F0E Zo¥b0E 9FEVOE 1170€ £1¥P0E PO¥F0E [4ei4 01 ¥%'00'08
g01g 1°002€ $9'8%6T0E 09°€86T0E 00°T86T0E $0030€ ST0%0E ER610E $00%0€ 286108 SE6108 2£030¢8 £2'008'0€
8'Z8F 9'¥8LE 9F'€66F0€ LF080S0€ 00°8E0S0€ €g090¢g 18060€ 8E£0S0E 82090€ 290908 S66%0€ 280€0€ 2%'008'0€
Z 10¥ 8'Z98€E T FF666T £L°GE000€ 09 E€9666T £1000€ gg000€ S9666% 950008 28666% S8666% $5000€ 12°00¢'0€
0°08¢ 2 6¥8C 8€°8%9T0E €9°TFOT0E 00°¢E9TO0E £7910¢8 gLOTOE €%910€ £¥910€ £¥910¢ 139108 §L910¢8 0%°008'0€
L'8EF 6°L1¥E 8.°9%9¥TT 0€ TLOFIT 09 989%1% 189%1¢ 6ELYIC 6ELYIT 1L9%1T £99¥%12 2 siatd 6EL¥1T 61°008°0€
9°LG¥ L709%¢€ ST'¥PTLIT 0€F0ELTIT 00 TITLIT 063TL1T 0¥ELIC LITLIT S0ELIT STTLIT 063TL1g 0¥ELIT 81°005'0€
L76S¥ 9'cv9€ 69°8¥€91T €L°69¥91T 00°L8€91T TS¥91T T¥g91C LBEIIT 61¥91C 81¥91% 9€€91g (421044 L1°008°0€
z'o1e 6'9L1E LE'E€LLGTE €TTLG8STT 0S'PRLSIG TLRSIG L06STE 68LGIC RERSTE 28S1T TLLGTT 2106S1T 91'008'08
6'03¢ g'89gE 80'869ST% €T'99.STE 00°€SLST1T PLLGTT 0¥8GTE €SLS1T THRSIT 8LS1T T9LGTT 616S1T S1'008'08
T LER g gr6e TL'PTEEIE L0°G09SIZ 00°FHSSIE 109¢1C 68991% PHSClT 969G1T T69S1T 969912 689912 $1'008'0€
1°€2h 2 692E L6'FLLLTT €€°T1E8LTT 00°9T8LIT L08L1% 0T6L1% 9I8LIT 0T6L1T T98LIT 9€8LTT 0T6L1T £1°008'0€
1°9L€ 9'L00% 9T'TF8STT 08'868STT 00°6£8S1T £88G1T oF691E 6E8STT £0691C 9£84TT $SRGTT 8L6SGTT Z1'008'0€
9'1z¢g £'96L€ PP ELFFIC €6°FFSFIT 09 9FCPIT 188%1C SPOVIT 9COTIT [l a¢4 9%9¥1e FESFIT 8¥9¥1C 11°00¢0€
9°8z¢ 2 €91¢€ 1S°80081% 09°69081% 00°89081% £¥081% $0I8T% 89081C 89081% 890812 S66L1T $0181% 01°008'0€
0'¥%9¢ 9'8LLE G8°0T69TT LEF869TT 00°6069TT €00LTT SITLIT 606911 GGOLIT TT0LTT LP6ITT 9TTLIT 6°008°0€
€8 £ evoy L9'0LISTT €% 18TSTL 00 TLTSIL 61ESTT 88CGIT 6I¥SIL 88CGTL 6IPSTT LPTSTT 6IPSTT 8°008°0€
6'SHF 6'60T¥ LT'€FOFPTT OF' FOTHPTIT 0S'CETHIT 68TFTT 8LZFPIT PRIPIT £IEPIT 99ZFTT 66TFTT |PEPTT 1'008'08
P'TEL L'P8LY TT'6G6ETT OT'LE0FPTT 0S 9E6ETT T96ETT GROPIT LRGETT £00PTT 966E£TT TSBETT TRTPTIT 9'008'08
9'L¥€ 6'L¥8¢E TT'T€9STT 00'FLOSTT 0S'E8GSTT €LOGTT PELGTT $6SSTT $69STT peLeTT $09STT TPLETT $'008'0€
0'¥8¥ [k 44 1€°96C9TT 08'F9E9TT 0G'8LEITT TLEITT GgPOTT CEPOTT GEPOTT PLPOTT £9E9TT GTgoTT $'009'0€
7 09% 0°66%¢ 99°90%STT 09°TSGZSTIT 0¢°90STT 9€T8TT €IEGTT $CECTT 10€GTT 86TGTT LETSTT peeett £008°08
Lyee R824 00°T8G9TT OT'6T99TT 0STHO9TT TPLOTT 80L9TT TILOTI £8990TT £8GOTT 199911 TPLOTT z'008°0€
9°63g 6'8¥9¢€ F8'€EOFTT 00°€ELFTIT 00 TOOFTT FELFIT 69LFTT PROTIT OT8FTT STLPIT LO9FTT OT8¥TT 1°00¢°0€
1°9%¢€ 2 696¢€ O£'GO8STT 0T L68STI 00°906STT TG6STT 896STT 166SIT 0G68TT £06STT 898GTT 980911 0°005'0¢
£0sdda VAL4AL «0Sdbda VALAL £OSdD £0sdda VALAL ,OSdD SL+dL A3a v uMg soueysuy
(s)Ban; Faby 759qy

‘0€ = W pue 00g = U YIM SIOUR)SUI 95IR[9} UO 2INJeID}I] 9} WOIJ SWYILIOS R 90UaI0fal ¢ UM ,OSID(JO snsal aaryeredwio)) 0T 9[qe],

25

terms of computational efficiency.

Similarly, Table 9 also shows that DQPSO* performs very well on the in-
stances with a medium-sized number (m = 10) of constraints in comparison
with six reference algorithms. For fies;, DQPSO* yields respectively a better
result for 29, 27, 25, 22, 19 instances compared to GA, F&F, 3R-BPSO, TP+TS
and QPSO*. Moreover, compared to the TPTEA algorithm, DQPSO* obtains a
better, equal, and worse result for 10, 6, and 14 instances, respectively. For the
average value Avg. of fyest, the result of the DQPSO* algorithm is 212841.60
that is slightly superior to 212840.7 of the TPTEA algorithm. In terms of
favg, DQPSO* is superior to three reference algorithms (3R-BPSO, QPSO*,
and TPTEA) with a Avg. value of 212810.58 which is better than those of the
reference algorithms. On the other hand, from the Wilcoxon tests, we observe
that the differences between the DQPSO* algorithm and the first five reference
algorithms are statistically significant both in terms of fyes: and fpest, while
there does not exist a significant difference between DQPSO* and TPTEA.

Table 10 reports the computational results for the instances with a large
number (m = 30) of constraints, which are known to be the hardest instances
among the tested instances. We observe from the table that for these instances,
the DQPSO* algorithm has a comparable performance compared with the pop-
ular MKP algorithms. In terms of fyesr, DQPSO* outperforms GA and QPSO*
by obtaining a better result for 25 and 19 out of 30 instances, respectively.
DQPSO* yields comparable results with respect to two tabu-based algorithms
(F&F and TP+TS), which is confirmed by the large p-values. However, when
comparing with the latest TPTEA algorithm, DQPSO* performs significantly
worse in terms of fpes:- Moreover, the average results of DQPSO* are much
worse for most instances than QPSO* and TPTEA, even if it attains its solu-
tions within a short computation time compared to TPTEA.

In summary, the above computational results and comparisons indicate that
the proposed DQPSO* algorithm performs very well for the instances with
m < 10 knapsack constraints in terms of both solution quality and computa-
tion efficiency in comparison with the compared algorithms from the literature.
However, for the instances with a large number (m = 30) of constraints, the
performance of DQPSO* decreases and fails to compete with the best perform-
ing algorithms. Moreover, DQPSO™* has a fast convergence, but its results on a
number of instances (especially the largest and the most constrained instances)
are unstable across multiple runs, indicating that its robustness could be further
improved.

5. Analysis and Discussions

We now turn our attention to several essential components of the proposed
algorithm to analyze their impacts on the performance of the algorithm, i.e., the
diversity-preserving population updating mechanism, the variable neighborhood
descent method, and the setting of parameter «.

26

Table 11: Comparison of the quantum particle swarm optimization algorithms with and with-
out the diversity-preserving strategy. For each performance indicator, the better results be-
tween the compared algorithms are indicated in bold.

DQPSO— DQPSO*

Instance Thest Favg std Tavg (5) Thest Favg std Taug (5)
10.500.0 117740 117684.52 30.04 9.50 117779 117754.82 15.35 105.33
10.500.1 119150 119099.22 21.54 7.60 119206 119179.74 7.43 152.69
10.500.2 119163 119080.89 38.38 11.94 119215 119162.61 12.88 127.80
10.500.3 118775 118727.86 38.22 6.27 118813 118777.36 6.26 39.85
10.500.4 116453 116366.48 31.19 15.32 116509 116460.83 28.82 146.17
10.500.5 119414 119361.04 25.56 12.64 119470 110435.57 18.18 157.44
10.500.6 119777 119727.00 19.22 2.28 119827 119782.76 12.78 134.07
10.500.7 118248 118177.46 44.65 11.67 118320 118265.30 14.24 146.69
10.500.8 117751 117678.45 38.86 10.08 117781 117763.24 18.14 122.31
10.500.9 119203 119129.00 17.69 8.52 119212 119166.54 18.03 124.73
10.500.10 217318 217260.40 30.77 11.56 217365 217326.03 12.69 76.68
10.500.11 219009 218945.35 26.79 8.89 219063 219027.54 7.66 136.02
10.500.12 217737 217678.75 27.76 20.05 217847 217760.63 20.03 173.14
10.500.13 216827 216753.71 32.00 10.38 216843 216824.05 9.90 125.30
10.500.14 213828 213761.85 34.59 27.07 213843 213817.08 18.51 134.41
10.500.15 215040 214068.59 32.35 9.06 215062 215034.68 9.44 166.43
10.500.16 217876 217799.39 32.60 13.21 217931 217884.36 10.94 181.26
10.500.17 219949 210885.72 32.90 9.87 219984 219965.07 16.97 101.98
10.500.18 214352 214275.96 37.26 24.41 214382 214337.14 13.77 165.88
10.500.19 220865 220782.14 16.30 3.75 220865 220847.10 14.44 152.54
10.500.20 304344 304205.74 27.32 6.62 304387 304354.01 10.58 67.44
10.500.21 302371 302307.26 28.17 5.41 302358 302346.04 11.60 98.60
10.500.22 302396 302320.70 21.11 6.26 302408 302399.10 5.17 77.43
10.500.23 300743 300687.80 18.39 3.45 300784 300745.46 8.12 58.63
10.500.24 304344 304335.83 6.31 2.15 304374 304353.75 7.66 112,58
10.500.25 301766 301687.16 22.15 14.47 301766 301752.48 6.42 106.35
10.500.26 304949 304887.98 25.37 7.13 304949 304949.00 0.00 16.24
10.500.27 296440 206404.64 23.12 14.06 296459 206444.16 5.88 153.58
10.500.28 301322 301280.43 12.35 3.99 301357 301332.24 14.30 163.07
10.500.29 307072 306988.09 32.10 13.67 307089 307068.83 10.74 83.13
Ave. 212807.40 212744.95 27.53 10.38 212841.60 212810.58 12.23 120.26
#best 4 0 2 30 29 30 28 0

5.1. Importance of the diversity-preserving Population Updating Strategy

The diversity-preserving population updating strategy of DQPSO* aims to
maintain a healthy diversity for the population composed of the personal histor-
ical best positions of particles (D). To investigate its influence on the perfor-
mance of DQPSO*, we created a variant DQPSO™ by replacing the population
updating strategy of the algorithm (Algorithm 8) by a popular replacement
strategy that is described in the lines 15-17 of Algorithm 1 and uses the current
offspring solution d to replace D' (i) which represents the historical discrete best
position of current particle 4, while keeping other ingredients of algorithm un-
changed. We carried out an experiment on the set of 30 instances with n = 500
and m = 10 by running the DQPSO~ and DQPSO* 100 times, according to
the experimental protocol in Section 4.2. The experimental results are summa-
rized in Table 11 with the same information as in the previous tables, where
the row "#best" shows the number of instances for which the associated algo-
rithm obtained the best result between the two compared algorithms for the
considered performance indicator, and the best results of the compared results
are indicated in bold. In addition, in order to investigate the influence of the
diversity-preserving updating strategy on the diversity of the population D™,
we ran the DQPSO~ and DQPSO* algorithms 10 times on two representative
instances (i.e., 10.500.10 and 10.500.20) and recorded the evolution of the av-
erage distance (denoted by dist,,,) between the solutions in D' respectively.
The average results over 10 runs with a maximum number 500 of iterations are

27

b

Average distance between solutions in D

Ib

t

Average distance between solutions in D

200

~ 180

160

140

120

120

100

80

10.500.10

s J
——DQPSO”
T ~ — DQPSO™ |
|
|
0 100 200 300 400 500
Number of iterations
(a)
10.500.20
l ——DQPSO" |
— — DQPSO™
|
0 100 200 300 400 500

Number of iterations

(b)

28

Figure 1: Evolution of the average distance between solutions in the discrete particle swarm
D' as a function of the number of iterations for the diversity-preserving population up-
dating strategy (DQPSO*) and the popular population updating strategy in the literature

summarized in Fig. 1, where Y-axis indicates the value of dist,,, and X-axis
indicates the number of iterations.

Table 11 shows that DQPSO* dominates DQPSO™ in terms of fiest, favg,
and std. First, in terms of fyesr, both algorithms obtained the best result

respectively for 4 and 29 instances. Second, in terms of fu,q, DQPSO™ obtained
a better result for all the 30 instances. Third, the standard deviation std of
the objective values from the DQPSO* algorithm is smaller than that of the
DQPSO~ algorithm, which implies DQPSO* is more robust than DQPSO~.
On the other hand, the computation time to reach the final objective value
is much shorter for DQPSO~ than for DQPSO*, which implies a premature
convergence of DQPSO™ compared to DQPSO*.

In addition, one observes from Fig. 1 that the average distance distq,g
between the solutions in the population D', which measures the diversity of
population D', decreases quickly at the beginning of search for both of the
DQPSO™ and DQPSO* algorithms, and then the distq.q value of the DQPSO*
algorithm outperforms gradually that of the DQPSO™ algorithm as the search
progresses, which means the diversity-preserving updating strategy of DQPSO*
is able to provide a better diversity for the population than the popular popu-
lation updating strategy that is used in most existing binary PSO algorithms.

The above two experiments show thus that the diversity-preserving strategy
helps DQPSO* to avoid a premature convergence and plays a crucial role for
enhancing the performance of the algorithm.

5.2. Effect of the Variable Neighborhood Descent Method

300 T T T T

250 1

avg

200 J

150 1

100;’ 7

Average computation time (in seconds)

1 1 1 1

0 0.02 0.04 0.06 0.08 0.1
Value of parameter p

[
o

Figure 2: Evolution of the average computation time (i.e., tqug) of the DQPSO* algorithm
needed to reach the final objective value as a function of the value of p.

The VND procedure in Section 3.4 is another essential ingredient of the
proposed algorithm and it is applied with a probability of p after each repair
operator to reinforce search intensification. To investigate the effect of this
local search method on the performance of the algorithm, we carried out another

29

61°608C1IC LE GEBTIT G1°60821C €1°0¥8CIT 6S°608G1% 00°0¥8TIT TL°608CIC €6 9€8CIT 8S9°'0I8TIZ 09" I¥8TIT 16°008G1C 0G ¥E€8TIT ‘8ay
ve'zLoLoe 680L0¢€ L1°gL0LOE 680L0€ 00°zL0L0E cLOLOE ve'cLoLoe 680L0€ £8'890L0¢€ 680L0¢€ €6°L£0L0€ cL0Log 62°00S°0T
08'1€€10€E LgeT10¢E Ly oeet10e LgeT10E 6L°6TE£T0E LGEeT0E 6L°6CET0E LGETOE vc'zeeroe LgeT10¢E 91°'9T€10€ Lge10¢E 8G°00S°0T
0T ¥S¥P963C 99%963% YT 6v¥96C 99%963T va 8¥¥963C LGY963C 80°L¥¥96T 697963 9T'¥¥%96C 69%96C ¥C gevo6a 987963 L3°009°0T
Y1 6¥670€ 086%0¢€ c0'6¥6%0€ 0g6%0¢€ T0°6%6¥%0¢ 0g6%0¢€ 10°6%6%0¢ 0g6%0¢€ 00°6¥6%0€ 6%6%0¢ 00°6%6%0€ 6¥670¢€ 9%°00S°0T
L0°ggL10€ LoL10E LT'PGL10E 99L10¢€ vy egL10€ 89L10€ 6% €9L10¢€ 99L10¢€ 8%'cgL10¢€ 99L10¢ v6°€eL10€ vLLTIOE g% 00g9°0T
9L ¥eeEv0e 99€¥0€ L9 vGEVOE vLEVOE S9°¥9eEV0e 99€%0¢€ 10°¢g€ev0¢€ vLEVOE gL €9ev0e vLeEVOE LLSVEVOE LGev0E ¥2009°0T
Ly 19L00€ ¥8L00¢ L9°9vL00¢€ ¥8L00¢ v1°8¥L00¢ ¥8L00¢€ ¢9 9¥.L00¢e ¥8L00¢€ 9% ¢¥L00¢€ ¥8L00¢ 61°¥%L00€E ¥8L00¢ €¢°009°01T
v vovaoe 11%20¢ Lz zovaoe 11%20¢ 8¢ 10¥Z0€E |80%vz0€e ge'00vz0e |80%z0€e 01°'66€£T0€ 80%z0¢ ¥¥ L8€C08 80%Z0€ Tz 00S°0T
80°GGET0E TLe20¢8 ev'19€T0¢ 1L€20¢8 ce 19ec0e 1L€20€ Z0'67E£T0E 1Le20€ v0'9veaoe 8gez0¢e g6°'1€€T0E 8GET0E 12°00¢°0T
89°LGEV0E £9€¥0¢€ €L99ev0e 0Levoe gy ggevoe L8EY0E 69°99EV0E €9e%0¢€ 10'vgev0E LB8EY0E co'LbevoE L8eV0E 0Z°00S°0T
$9°C¥80CaT S98033% 69°'2¥80TT G9803TT S6°€¥803T GL80CT €1°9¥803T G980CT 01°'L¥80TC g980ce ©0°'0980%c G9803T 61°00S°0T
8L'0TEVIC IFVETIT ve'ecevic CSEVIT €1°6TEVIT GSEVIT 8G EEEVIT TSEVIC v LEEVIC cBEVIC LT'0TEVIC 9IVEVIT 81°00¢°0T
19°6S661C ¥8661C 99°89661C ¥8661c L8°09661C ¥8661C ST ¥9661C ¥8661C L0°G9661C ¥8661C 1T vE661C LL661C L1°00S°0T
0L 6L8LIC T€6L1C 8C I88LIC T€6L1C 1€ ¥88LIC T€6LIT 00°988L1T TE€6LIT 9€ ¥88LIT TE€6L1T LL'GLBLIG 968L1T 91°00g8°0T
99°ce0g1C 09091g €9°ce091c 0g0S1g 19°€e091c G9081¢C 6L°0€091C Sv081c 89°%¥€091C c90¢1C 9L°82091¢ I¥091C g1°00g9°0T
1€°0€8¢1cT E¥8€1T 0g'1€8¢€1¢C 9¥8E1T 67°8C8E1T EVv8€1T 81°9C8E1T 0g8€1C 80°L1I8€1C €v8¢eIC 91 16L€1C T¥8€1T 71700901
TR'PTR/IICT E¥891T 01°'SZ891T E¥891T 6G°92891T 89891¢C 0%°S2891T 0ov891C S0'vP2891T €¥R891C 1Z2'01891C 0¥891T €1°00S°0T
L8'TYLLIC LP8LIC 06°'€PLLIT LP8LIC 8G'CGVLLIT L¥8LIC 16°6%LL1C T6LLIC €9°09LL1T L¥8LIC LY 9GLLIC T6LLIT Z1°00S°0T
CI'€T061C €90613C 6L°ST061C £€9061T €L°€T061T 0S061a LG°GT061T €9061¢C ¥9'LT061C €9061C 6€'TIT061C Cr061T T1°00¢°0T
S¥ 6TELIT LLELTT G9°'0€€LIT LLELTT ¥G'8TELIT LLELTT TgrLceLIT LLELTT €0°'92ELIT gogLIC L9'0geLIT G9€L1T 0T1°00g°0T
T9'8STI6IT TST6TT G8'09I6TT 8IG6TT GL'6STI6TT TIC6TT 8T €9T6TT €0C6TT $9'9916TT GIG6TT L6'GOT6TT L0T6TT 6°009°0T
Ly LELLIT T8LLIT €T°0PLLIT T8LLIT POETLLIT T8LLIT 0% " 8TLLIT T8LLIT PCEOLLIT T8LLIT TG EGLLTT T8LLIT 8°00S9°0T
LB 9LTSIT 0gESTT L6°GLGBTT €EEVTT LLTPLTSIT 0TEBTT GG TLGSIT €EEBTT 0€°G9C8IT 0GES8TT 08°69C8TT 96G8TT L°00g°0T
I8 ¥8LGTT €I86TT LL6LLGTT €I86TT T0°08L6TT €I86TT €8°08L6TT €I86TT 9L'GBLGIT LGB6TT 9€°C8LGTT €I86TT 9°009°0T
6V VEVEILL 99%611 16°€E¥611 0LV611 V6 6CV611 I8%611 L1ITIEV6TT 0LV6T1T LG GEVEIT 0LV61T L8 VTV6IL GLV6I1T §°009°01T
96°0FPOTT I8%9TT 6€ PPPIOTT 60G9TT GR'6FTITT 60GOTT 96°8TFITT 60G9TT €8°09%911 60G9TT 09°29%911 60G9TT ¥°00S°0T
9T 6LLSTT €I88TT 96°LLLBTT €I8STT GG 6LLSTT €I88TT TETLLLSTT €TI88TT 9€°LLLRIT €TI88TT G6°T8L8TIT €I8STT €°008°0T
89°€GTI6TT L8TIGTT C9'TII6TT I8I6TT 00'%916TT I8I6TT GV C9T16TT I8I6TT T9'C9T6TT GIG6TT 00°LSTI6TT GIG6TT c'00g'0T
98'I8I6TT 90T6TT P8'6LIGTT 00T6TT ¥8°08161T 90T6TT O%"08TI6TT 90C6TT PL6LIGTT 90G6TT €I'8LIGTT TIC6TT 1°00¢'0T
66 6GLLTT 06LLTT 68 LGLLTT 06LLTT 80°LGLLIT 6LLLTT GG GGLLIT 6LLLTT G8 PGLLIT 6LLLTT 90°0%LLIT 66LLTT 0°00g°0T
66 6GLLTT 06LLTT 68 LGLLTT 06LLTT 80°LGLLIT 6LLLTT GG GGLLTT 6LLLTT G8 PGLLIT 6LLLTT 90°0%LLIT 66LLTT 0°00S°0T
m:\d% Nmmﬂ.\. W:\G.\ um_unc. mad.\ ﬂmma.\. m:.d% wmma.\ m:\d.\ thmw.\ \w?d.\. umwn.\. souwjsuy

T°0 ¥0'0 €0°0 z0°0 10°0 00 d

‘0T = W pue 00g = U YIM Sedue)sul 93.Ie| 9y} uo sanjea d jualegip yum ,OSdO Jo synsad reuoryeindwo)) gl dqr],

30

experiment based on the set of 30 instances with n = 500 and m = 10, where for
each p value in the set {0.0,0.01,0.02,...,0.09,0.10}, the DQPSO* algorithm
was independently performed 100 times according to the experimental protocol
in Section 4.2. It is worth noting that a larger value of p implies a higher
computation effort and a stronger local optimization ability for the proposed
algorithm, and vice versa. Specially, the setting of p = 0.0 means that the VND
method is disabled in the algorithm.

The experimental results of this experiment are summarized in Table 12 and
Fig. 2, where we show the results with p values in {0.0,0.01,0.02,0.03,0.04,0.10}.
The first column and the first row of the table give the name of instances and
the settings of p, and the best objective value (fyes:) over 100 runs and the
average objective value (fq.q) for the tested p values are reported in columns
2-13. The last row "Avg." of the table gives the average value for each column,
and the best result among the compared p values are indicated in bold in terms
of frest and foyg. The average computation time (¢4,4) needed to reach the final
objective value is plotted in Fig. 2 as a function of p.

Table 12 shows that p = 0 that is equivalent to disabling the VND procedure
leads to much worse results than the other values (p > 0) in terms of both
fvest and fqqg, which means that the VND method plays a crucial role for the
performance of the algorithm. Moreover, one observes that in terms of Avg. the
results with p = 0.01 are the best ones among the compared results, indicating
that running the local search method more often with a probability p > 0.01
does not improve the final results in terms of fyes and fq.y. Meanwhile, Fig.
2 shows the computation time ¢,,, increases almost linearly with the increase
of p, which confirms that the VND procedure is very time-consuming relative
to other components of the algorithm. This experiment thus shows that 1)
the VND procedure reinforces the performance of the algorithm; 2) applying
VND too often (with a probability p > 0.01) only increases the computation
time, without improving the search performance of the algorithm, and 3) a
small p value (p = 0.01) is appropriate for the proposed algorithm to reach
simultaneously a high performance in terms of computation time and solution
quality.

5.8. Sensitivity Analysis of Parameter o

According to Egs. (8)—(10) in Section 2.2, the DQPSO* algorithm uses the
parameter « to control the appearance probability of items of D} and DX in
the discrete particle D(4) generated by the evolution process and the transform
function. A smaller @ value means a larger appearance probability, and vice
versa. To investigate the sensitivity of this parameter on the performance of the
algorithm, we carried out an experiment based on two representative instances
(10.500.11 and 10.500.21). We ran the DQPSO* algorithm 100 times for each
instance and each « value from 0.0 to 0.01 with an increment of 0.001, and
the experimental results are summarized in Fig. 3 with the popular box and
whisker plots, where the X-axis represents the values of parameter o and the
Y-axis represents the objective values obtained over 100 runs.

31

°
© o Q
o] [e]
S
— o
b
g °© ° - - T
o "
< i
4 ! i i - | i | ! _ — -
& e
2 N S R
1] —L - [
S S
o ' : ' '
=1 :
o o 8 ' " -
i} o ' ' ' H
& o [[
o o H H H i
= 4 ' '
o ' ' '
@ —t— ' i
g [
S P
°
3
S | &
3
IS T T T T T T T T T T T
00 0001 0.003 0.005 0.007 0.009
(a) Instance 10.500.11
°
5 R °
o 7 "
o "
3
°
3
&7 -
o
s - - - T - s -
: o o
Q]
o e ©
3
® _]
&
S
@ o .
g 3
< "
3 :
& :
S :
® :
: | H
< T
T T T T T T T T T T T
00 0.001 0.003 0.005 0.007 0.009

(b) Instance 10.500.21

Figure 3: Sensitivity analysis of parameter « on two representative instances, where the X-axis
represents the values of parameter o and the Y-axis represents the objective values.

32

One observes from Fig. 3 that a small a value leads generally to a better
result than a large a value. For the instance 10.500.11, the result of the algo-
rithm deteriorates as the value of « increases, and the setting of a = 0.0 leads
to the best result among all the tested o values. For the instance 10.500.21, the
algorithm exhibits a similar behavior in general, and the setting of o = 0.001
leads to the best result among all the tested « values. Thus, based on the out-
comes of this experiment, the default value of o was set to 0.0 for the DQPSO*
algorithm.

6. Conclusions and Future Work

We have presented a diversity-preserving quantum particle swarm optimiza-
tion algorithm for solving the classic 0-1 multidimensional knapsack problem. In
comparison with the popular QPSO algorithm, the proposed algorithm contains
two new original features, namely a diversity-preserving population updating
strategy to maintain a healthy diversity of particle swarm and a variable neigh-
borhood descent procedure applied in a probabilistic way to reinforce search
intensification.

The experimental results on 270 instances commonly used in the literature
showed that the proposed algorithm is particularly efficient in terms of both the
solution quality and the computational efficiency on the instances with a small
or medium-sized number (m < 10) of constraints in comparison with several
state-of-the-art MKP algorithms in the literature. As such, the algorithm can
be advantageously applied to effectively find high-quality solutions for MKP
instances with a limited number of constraints. However, the performance of
the proposed algorithm decreases considerably on the tested instances with a
large number (m = 30) of constraints, even if the algorithm remains very fast
in terms of computation time. We also presented additional experiments to get
insights on the interest of the diversity-preserving updating strategy, the local
search procedure, as well as key parameters.

There are several potential directions for future research. First, the perfor-
mance of the algorithm may vary across multiple runs on instances with many
constraints. It is thus useful to investigate additional strategies to improve the
robustness of the algorithm. Second, to enhance the effectiveness of the repair
operator, different pseudo-utility ratios can be used in a combined way. Third,
the ideas of the diversity-preserving updating strategy and the probabilistic
application of local optimization are general and independent of the problem
studied in this work. Consequently, it would be interesting to check their effec-
tiveness and efficiency within other QPSO algorithms for MKP variants such
as those mentioned in the introduction as well as other binary optimization
problems (e.g., the set covering problem (Gao et al., 2015) and the maximum
diversity problem (Wu and Hao , 2013)).

33

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions
which helped us to improve the paper. This work was partially supported
by the Natural Science Foundation of Jiangsu Province of China (Grant No.
BK20170904), the National Natural Science Foundation of China (Grant No.
61703213), six talent peaks project in Jiangsu Province (Grant No. RJFW-
011), and NUPTSF (Grant Nos. NY217154 and RK043YZZ18004).

References

Al-Shihabi, S. & Olafsson, S. (2010). A hybrid of nested partition, binary ant
system, and linear programming for the multidimensional knapsack problem.
Computers & Operations Research, 37(2), 247-255.

Angelelli, E., Mansini2012, R. & Speranza, M.G. (2010). Kernel search: A gen-
eral heuristic for the multidimensional knapsack problem. Computers & Op-
erations Research 37, 2017-2026.

Beheshti, Z., Shamsuddin, S. & Hasan, S. (2015). Memetic binary particle swarm
optimization for discrete optimization problems. Information Sciences 299,
58-84.

Boussier, S., Vasquez, M., Vimont, Y., Hanafi, S. & Michelon, P. (2010). A
multi-level search strategy for the 0-1 multidimensional knapsack problem.
Discrete Applied Mathematics 158, 97-109.

Caserta M., & Vog, S. (2019). The robust multiple-choice multidimensional
knapsack problem. Omega 86, 16-27.

Chen, Y.N. & Hao, J.K. (2014). A "reduce and solve" approach for the multiple-
choice multidimensional knapsack problem. European Journal of Operational
Research 239(2), 313-322.

Chen, W.N., Zhang, J., Chung, H.S.H., Zhong, W.L., Wu, W.G. & Shi, Y.H.
(2010). A novel set-based particle swarm optimization method for discrete op-
timization problems. IEEE Transactions on Evolutionary Computation 14(2),
278-299.

Chih, M. (2018). Three pseudo-utility ratio-inspired particle swarm optimiza-
tion with local search for multidimensional knapsack problem. Swarm and
Evolutionary Computation 39, 279-296.

Chih, M. (2015). Self-adaptive check and repair operator-based particle swarm
optimization for the multidimensional knapsack problem. Applied Soft Com-
puting 26, 378-389.

Chu, P.C. & Beasley, J.E. (1998) A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics 4, 63-86.

34

Drake, J.H., Ozcan, E. & Burke, E.K. (2016). A case study of controlling
crossover in a selection hyper-heuristic framework with MKP. Evolutionary
Computation 24(1), 113-141.

Drexl, A. (1988). A simulated annealing approach to the multiconstraint zero-
one knapsack problem. Computing 40, 1-8.

Fréville, A. (2004). The multidimensional 0-1 knapsack problem: An overview.
European Journal of Operational Research 155, 1-21.

Gao, C., Yao, X., Weise, T. & Li, J. (2015). An efficient local search heuristic
with row weighting for the unicost set covering problem. European Journal of
Operational Research 246, 750-761.

Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. A Series of Books in the Mathematical
Sciences. San Francisco, Calif.. W. H. Freeman and Co.

Gavish, B. & Pirkul, H. (1982). Allocation of databases and processors in a
distributed data processing, in: J. Akola (Ed.), Management of Distributed
Data Processing, North-Holland, Amsterdam, pp. 215-231.

Gilmore, P.C. & Gomory, R.E. (1966). The theory and computation of knapsack
functions. Operations Research 14(6), 1045-1075.

Glover, F. & Kochenberger, G.A. (1996). Critical event tabu search for multi-
dimensional knapsack problems. In: Meta-hueristics, Springer, pp.407—427.

Haddar, B., Khemakhem, M., Hanafi, S. & Wilbaut, C. (2016). A hybrid quan-
tum particle swarm optimization for the multidimensional knapsack problem.
Engineering Applications of Artificial Intelligence 55, 1-13.

Hanafi, S.A. & Fréville, A. (1998). An efficient tabu search approach for the
0-1 multidimensional knapsack problem. European Journal of Operational
Research 106, 659-675.

Ke, L., Feng, Zuren, Ren, Z. & Wei, X. (2010). An ant colony optimization
approach for the multidimensional knapsack problem. Journal of Heuristics
16, 65-83.

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization. Proceedings
of IEEE International Conference on Neural Networks IV vol. 4, 1942-1948.

Kennedy, J. & Eberhart, R.C. (1997). A discrete binary version of the parti-
cle swarm algorithm. IEEFE International Conference on Systems, Man, and
Cybernetics. Computational Cybernetics and Simulation 4104—4108.

Khemakhem, M., Haddar, B., Chebil, K. & Hanafi S. (2012). A filter-and-fan
metaheuristic for the 0-1 multidimensional knapsack problem. International
Journal of Applied Metaheuristic Computing 3(4), 43-63.

35

Ktari, R. & Chabchoub, H. (2013). Essential particle swarm optimization queen
with tabu search for MKP resolution. Computing 95, 897-921.

Kong, M., Tian, Peng & Kao, Y. (2008). A new ant colony optimization algo-
rithm for the multidimensional knapsack problem. Computers € Operations
Research 35, 2672-2683.

Lai, X.J. & Hao, J.K. (2015). Path relinking for the fixed spectrum frequency
assignment problem. Ezpert Systems with Applications 42, 4755-4767.

Lai, X.J.,, Hao, J.K., Glover, F. & Lii, Z.P. (2018). A two-phase tabu-
evolutionary algorithm for the 0—1 multidimensional knapsack problem. In-
formation Sciences 436, 282—-301.

Lai, X.J., Hao, J.K., & Yue, D. (2019). Two-stage solution-based tabu search
for the multidemand multidimensional knapsack problem. European Journal
of Operational Research 274, 35-48.

Lin, G. & Guan, J. (2018). Solving maximum set k-covering problem by an adap-
tive binary particle swarm optimization method. Knowledge-Based Systems
142, 95-107.

Lin, C.J., Chern, M.S. & Chih, M. (2016). A binary particle swarm optimization
based on the surrogate information with proportional acceleration coefficients
for the 0-1 multidimensional knapsack problem. Journal of Industrial and
Production Engineering 33, 77-102.

Liu, H., Cai, Z. & Wang, Y. (2010). Hybridizing particle swarm optimization
with differential evolution for constrained numerical and engineering opti-
mization. Applied Soft Computing 10, 629-640.

Mansini, R. & Speranza, M.G. (2012). CORAL: an exact algorithm for the
multidimensional knapsack problem. INFORMS Journal on Computing 24(3),
399-415.

Mancini, S., Ciavotta, M., & Meloni, C. (2019). The multiple multidimensional
knapsack with family-split penalties. European Journal of Operational Re-
search, https://doi.org/10.1016/j.ejor.2019.07.052.

Mladenovi¢, N. & Hansen, P. (1997). Variable neighborhood search. Computers
& Operations Research 24(1), 1097-1100.

Puchinger, J., Raidl, G.R. & Pferschy, U. (2009). The multidimensional knap-
sack problem: structure and algorithms. INFORMS Journal on Computing
22(2), 250-265.

Raidl, G.R. & Gottlieb, J. (2005). Empirical analysis of locality, heritability and
heuristic bias in evolutionary algorithms: A case study for the multidimen-
sional knapsack problem. Evolutionary Computation 13(4), 441-475.

36

Shih, W., 1979, A branch & bound method for the multiconstraint zero-one
knapsack problem. Journal of the Operational Research Society 30, 369-378.

Shi, Y.H. & Eberhart, R.C. (1998). A modified particle swarm optimizer. [EEE
International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence 69-73.

Vasquez, M. & Hao, J.K. (2001). A hybrid approach for the 0-1 multidimen-
sional knapsack problem. Proc. of the 17th Intl. Joint Conference on Artificial
Intelligence (IJCAI-01), pages 328-333, Seattle, Washington, USA, August
2001. Morgan Kaufmann Publishers.

Vasquez, M. & Vimont, Y. (2005). Improved results on the 0-1 multidimensional
knapsack problem. European Journal of Operational Research 165, 70-81.

Vimont, Y., Boussier, S. & Vasquez, M. (2008). Reduced costs propagation in an
efficient implicit enumeration for the 0—1 multidimensional knapsack problem.
Journal of Combinatorial Optimization 15, 165-178.

Wang, L., Wang, S.Y. & Xu, Y. (2012). An effective hybrid EDA-based algo-
rithm for solving multidimensional knapsack problem. Ezpert Systems with
Applications 39(5), 5593-5599.

Wu, Q. & Hao, J.K. (2013). A hybrid metaheuristic method for the maximum
diversity problem. European Journal of Operational Research 231(2), 452-464.

Yang, S., Wang, M. & Jiao, L. (2004). A quantum particle swarm optimiza-
tion. In: Proceedings of the 2004 Congress IEEE Conference on Evolutionary
Computation, Vol.1, pp.320-324.

Zhan, Z.H., Zhang, J., Li Y. & Shi, Y.H. (2011). Orthogonal learning particle
swarm optimization. IEEE Transactions on Evolutionary Computation 15(6),
832-847.

37

