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Abstract

Quantum particle swarm optimization is a population-based metaheuristic that
becomes popular in recent years in the field of binary optimization. In this
paper, we investigate a novel quantum particle swarm optimization algorithm,
which integrates a distanced-based diversity-preserving strategy for population
management and a local optimization method based on variable neighborhood
descent for solution improvement. We evaluate the proposed method on the
classic NP-hard 0-1 multidimensional knapsack problem. We present extensive
computational results on the 270 benchmark instances commonly used in the
literature to show the competitiveness of the proposed algorithm compared to
several population based algorithms. The ideas of using the diversity-preserving
strategy and the probabilistic application of a local optimization procedure are
of general interest and can be used to reinforce other quantum particle swarm
algorithms.

Keywords: Binary optimization; Multidimensional knapsack problem; population-
based metaheuristics; Quantum particle swarm optimization; Diversity-preserving
population updating strategy.

1. Introduction

Given a knapsack with a m-dimensional capacity vector ¢ and a set V' of n
items, let p; > 0 (5 =1,2,...,n) be the profit of item j, and let a be a m x n
matrix composed of positive values where the jth column a.; represents the
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m-dimensional weights of item j. The classic 0—1 multidimensional knapsack
problem (MKP) involves packing a subset of items of V' to the knapsack so that
the sum of the profits of the items in the knapsack is maximized while the sum
of weights in each dimension i (¢ = 1,2,...,m) does not exceed the capacity c;.
Formally, the MKP can be stated as follows:

Maximize f(s) = ijxj (1)
j=1
s.t. Zaijxj <e¢,Vie{l,2,...,m} (2)
j=1
z; € {0,1},Vj € {1,2,...,n} (3)
where z; (j = 1,2,...,n) are binary decision variables such that z; = 1 if

item j is packed in the knapsack, x; = 0 otherwise. The objective in Eq. (1)
aims to maximize the total profit of the selected items, while the constraints in
Eq. (2) ensure that the selected items satisfy the m capacity constraints of the
knapsack.

The MKP has numerous applications, including cutting stock (Gilmore and
Gomory, 1966), loading (Shih, 1979), resource allocation (Gavish and Pirkul,
1982) and so on. However, the problem is known to be NP-hard (Garey, 1979)
and thus computationally challenging. As one of the most studied combinato-
rial optimization problems, a large number of solution approaches have been
proposed for the MKP. A comprehensive review of representative studies up
to 2004 can be found in (Fréville, 2004) and more recent studies are discussed
in (Lai et al., 2018). Notice that the MKP has some interesting variants such
as the multiple multidimensional knapsack problem (Mancini et al., 2019), the
multiple-choice multidimensional knapsack problem (Chen and Hao, 2014), the
robust multiple-choice multidimensional knapsack problem (Caserta and Vog,
2019), and the multidemand multidimensional knapsack problem (Lai et al.,
2019). Below, we discuss some recent and most representative studies on the
MKP.

Existing algorithms for the MKP can be classified into exact and heuristic
algorithms. Representative exact algorithms are mainly based on the branch &
bound method (Shih, 1979; Vimont et al., 2008) and hybrid approaches com-
bining branch & bound and other strategies (Boussier et al., 2010; Mansini and
Speranza, 2012). The best performing exact algorithms like those presented in
(Boussier et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008) are
quite successful to yield optimal solutions in an acceptable computation time
for benchmark instances of limited sizes (e.g., n = 250 or 500 and m € {5,10}).
However, for larger instances with n > 250 and m > 30, heuristic algorithms
become more suitable methods to find sub-optimal (or non provable optimal)
solutions.

Heuristic algorithms for the MKP belong to two large categories, namely
trajectory-based local search algorithms and population-based evolutionary al-
gorithms. Representative trajectory-based algorithms include tabu search (Glover



and Kochenberger, 1966; Hanafi and Fréville, 1998; Khemakhem et al., 2012;
Vasquez and Hao, 2001; Vasquez and Vimont, 2005), simulated annealing (Drexl,
1988), and kernel search (Angelelli et al., 2010), while representative population-
based algorithms include binary particle swarm optimization (Chih, 2015; Had-
dar et al., 2016; Ktari and Chabchoub, 2013; Lin et al., 2016), genetic and
memetic algorithms (Chu and Beasley, 1998; Drake et al., 2016; Lai et al., 2018;
Puchinger et al., 2009), steady-state evolutionary algorithm (Raidl and Got-
tlieb, 2005), ant colony optimization (Al-Shihabi and Olafsson, 2010; Ke et al.,
2010; Kong et al., 2008), and hybrid estimation of distribution algorithm (Wang
et al., 2012), among other.

Our goal of this work is twofold. First, according to our literature review,
most existing MKP algorithms in the literature fail to achieve simultaneously a
high performance in terms of both solution quality and computation speed. For
example, tabu search based algorithms like those in (Khemakhem et al., 2012;
Lai et al., 2018; Vasquez and Hao, 2001) are among the best MKP methods
to obtain high quality solutions especially for instances with a large number of
constraints. However, these methods are generally quite time consuming. On
the other hand, bio-inspired evolutionary algorithms like (Chih, 2018; Chu and
Beasley, 1998) are often more time effective, but yield less competitive solu-
tions than tabu search based algorithms. Second, in several interesting studies
(Haddar et al., 2016; Yang et al., 2004), quantum particle swarm optimiza-
tion (QPSO) has shown promising performances on the MKP. In this work, in
addition to developing an effective algorithm for the MKP, we aim also to fur-
ther enhance the general QPSO approach by introducing a diversity-preserving
strategy.

We summarize our work as follows. First, we propose a diversity-preserving
quantum particle swarm optimization (DQPSO*) approach, which enhances the
conventional QPSO method. The diversity-preserving strategy is used to control
the population diversity of a QPSO algorithm and helps to avoid premature con-
vergence of the algorithm. The proposed algorithm integrates an effective local
optimization procedure which is applied in a probabilistic way to reinforce its ex-
ploitation capacity. We show extensive computational results and comparisons
with representative (mainly population-based) algorithms based on well-known
benchmark instances. It is worth noting that the ideas of diversity-preserving
strategy and local optimization are of general interest. As a result, they could
be advantageously adopted in other QPSO algorithms to control the balance of
exploitation and exploration of the search process, such that they can help to
effectively solve other binary optimization problems such as the MKP variants
mentioned above.

The remainder of the paper is organized as follows. In Section 2, we provide
a brief introduction on the quantum particle swarm optimization. In Section
3, we present the proposed DQPSO* algorithm. In Section 4, we evaluate the
proposed algorithm by providing experimental results and making a comparison
with several state-of-the-art MKP algorithms. In Section 5, we analyze two es-
sential components of the algorithm to show their influences on the performance
of the algorithm, followed by concluding comments and discussions on future



research.

2. A Review of Quantum Particle Swarm Optimization

In this section, we provide a brief introduction of particle swarm optimization
(PSO) for continuous problems and quantum particle swarm optimization which
is an adaptation of PSO to binary optimization problems.

2.1. Basic Particle Swarm Optimization

Particle swarm optimization was originally developed for optimization of
continuous nonlinear functions (Kennedy and Eberhart, 1995). For a given
problem in a m-dimensional continuous space where n represents the number
of variables, PSO searches for the global optimum through mimicking the be-
havior of a swarm or population of particles (e.g., birds), where each particle i

represents a candidate solution characterized by a n-dimensional position vector

X:f = (aly, 2ty ..., 2t,) and a velocity vector \};t = (vl vl .0k,
the t-th iteration of the algorithm.

To reach the global optimal solution, the particles in the swarm move iter-

) where ¢ is

atively in the search space, and the position vector )Zf and velocity vector V_';t
of particle ¢ at t-th iteration are updated by the following formulas (Liu et al.,
2010; Kennedy and Eberhart, 1995; Shi and Eberhart, 1998; Zhan et al., 2011).

Vi = wol, + eyr (pBest!, — o) + cara(nBest. — at)) (4)
t+1 _ ¢ t+1
Ty =Ty v (5)
where j € {1,2,...,n}, w € [0, 1] is the inertia factor, ¢; and ¢y are two positive

constants, r; and ro are two random numbers in [0, 1], pBest! is the personal
historical best position vector for particle i, and nBest! is the neighborhood’s
historical best position for particle 7. It is worth noting that the neighborhood
relation between particles is defined by some topological structure, such as a ring
topology where only the particles i — 1 and 7 + 1 are the neighbors of particle ¢
and a clique topology where the particles are pair-wisely connected.

According to the topological structure between particles, a PSO algorithm
can be roughly divided into two categories (Zhan et al., 2011), i.e., global ver-
sion PSO (GPSO) and local version PSO (LPSO). In GPSO, the clique topol-
ogy is adopted, i.e., any two particles in the swarm are neighbors, and thus the
neighborhood’s historical best position nBest! is also the historical best posi-
tion gBest! of the entire swarm. For LPSO, the neighborhood’s historical best
position nBest! of particles depends on the used topological structure.

2.2. Quantum Particle Swarm Optimization

Due to the fact that the basic PSO method is not applicable to binary
optimization problems, a number of PSO variants have been proposed in the
past 20 years to deal with binary optimization (Beheshti et al., 2015; Chen et
al., 2010; Lin and Guan, 2018; Kennedy and Eberhart, 1997; Yang et al., 2004)



among which quantum particle swarm optimization (QPSO) is a representative
example (Yang et al., 2004).

In a QPSO algorithm, a swarm Q = {Q(1),Q(2),...,Q(np)} of np quan-
tum particles is maintained and evolves, where each quantum particle Q (%) is
a n-dimensional real-valued vector (qi,qs,...,q%) with q;- € [0,1]. For each
component qj» (1 < j < n) of quantum particle Q(), its value represents the
probability that the associated binary decision variable z; takes the value of 0.

As described in Algorithm 1, a QPSO algorithm typically performs a num-
ber of evolution iterations until a maximum number of iterations is reached.
Starting with a randomly initialized @); in which the notation ¢ denotes the cur-
rent number of iterations, the algorithm first transforms each quantum particle
Q@) = (¢, 4, ...,q,) of Q; into a n-dimensional binary vector (called discrete
particle) D(i) = (di,d,...,d") by applying a random observation:

g { 1, if ¢ < rand(0,1); (6)
J 0,  otherwise; (7)

where rand(0, 1) denotes a random real number in [0, 1]. Then, at each iteration
t, the evolution of the quantum particle swarm is described by the following
evolution formulas:

Qiy1(1) = ax Dy (i) + (1 — ) x (€= Dy (i) (8)
1)) = a x D (i) + (1 = a) x (€~ D(3)) (9)

Qer1(i) = 1 % Qu(i) + c2 x Q%1 (1) + (1 —e1 — €2) x Q31 (1) (10)

where «, ¢; and ¢y are three parameters satisfying a € [0,1], ¢; € [0,1], 2 €
[0,1], and 0 < ¢1 + ¢2 < 1. In addition, € = (1,1,...,1) is a n-dimensional
vector in which each entry takes 1, D!®(i) and D;(i) (1 < i < np) denote
respectively the personal and neighborhood’s historical best positions for the
discrete particle D(i) at iteration ¢, and Q¥ (i) and Qj,,(i) (1 < i < np)
represent respectively the personal and neighborhood’s historical best positions
for the quantum particle Q(7) at iteration ¢ + 1. After a new quantum particle
Q++1(7) is generated by Eqgs. (8)—(10), Q:+1(¢) is used to replace Q:(i) and is
at the same time transformed into a discrete particle d, which is then used to
update D}, (i) and D% (i) accordingly.

3. Diversity-Preserving Quantum Particle Swarm Optimization for
the MKP

The DQPSO* algorithm for the MKP proposed in this work shares ideas
from the studies (Haddar et al., 2016; Yang et al., 2004) and distinguishes it-
self with two new features. First, DQPSO* introduces a diversity-preserving
mechanism to guarantee a healthy diversity of the particle swarm, thus avoid-
ing a premature convergence of the algorithm. Second, DQPSO* applies in a



Algorithm 1: General procedure of the QPSO algorithm for a binary
optimization problem with a form of maximization

1 Function QPSO
Input: Instance I, size of particle swarm (np), maximum number of
iterations (IterMax), a, ¢1, and cs.
Output: The best discrete solution d* found
/* Qr ={Q:(1):1<i<np} denotes the quantum particle swarm
at the iteration t, DI® = {D!(i):1<i < np} denotes the set
of personal historical best positions for discrete

particles */
2t 0 /* t denotes the current number of iterations */
/* Initialization of quantum particle swarm */
3 Qi + InitialQuantumSwarm(np)
4 for i < 1 to np do
5 | DI(i) < Transform(Q(i)) /* Egs.(6)-(7) */
6 end
7 d* < argmax{f(d) : d € D’} /* d* denotes the best discrete
particle found so far */
/* Evolution of particle swarm */
8 while ¢t < IterMax do
9 for i <~ 0 to np do
10 Di (i) « argmaz{f(d) :d € DI} /x Di(i) denotes the best
discrete particle in D! */
1 Qi1 (i) = ax Dy(i) + (1 — o) x (€= Dy (1))
12 131(i) = ax DP(i) + (1 — o) x (€= D(i)))
13 Qe1(i) = 1 X Q1(i) + ca x Q1 (1) + (1 — e1 — ¢2) x Q14 (7)
14 d < Transform(Qs4+1(i)) /* d is a discrete solution  */
15 if f(d) > f(D(i)) then
16 D (i) «—d /% D*(i) < LocalSearch(d) is used for some
variants of QPSO like QPS0* in (Haddar et al.,
2016)  */
17 end
18 if f(d) > f(d*) then
19 d* «d /* d* < LocalSearch(d) is used for some
variants of QPSO like QPS0* in (Haddar et al.,
2016)  */
20 end
21 end
22 t—t+1
23 end




probabilistic way a powerful local optimization procedure to enhance the in-
tensification search ability of the algorithm. The proposed algorithm and its
components are described in the following subsections.

3.1. Solution Representation and Search Space

Given a MKP instance with n items, a candidate solution can be represented
by a n-dimensional 0-1 vector s = (x1,x2,...,x,) where x; = 1 if item ¢ is
selected, x; = 0 otherwise. As a result, the search space ) explored by the
DQPSO* algorithm is composed of all possible n-dimensional 0-1 vectors (also
called discrete solutions or discrete particles in this paper), including the feasible
and infeasible solutions, i.e.,

Q={(zr1,22,...,2,) 12, € {0,1},1 <3 <n} (11)

In addition, DQPSO* uses a n-dimensional real-valued vector ¢ = (q1,¢2, ..., qn)
(called quantum solution or quantum particle), where ¢; (1 < i < n) is a real
number in [0, 1] and represents the probability that the binary variable z; takes
0. This vector indicates approximately a discrete solution in the search space.

3.2. Main Framework of the Algorithm

Algorithm 2: Pseudo-code of generating the initial quantum particle
swarm
1 Function InitialQuantumSwarm
Input: Size of particle swarm np, number of items n
Output: A quantum particle swarm Q = {Q(i) : 1 < i < np}
2 for i + 1 to np do

3 for j < 1 ton do

4 | Q(i); < rand(0,1)

5 end

6 | Qi)+ (Q)1, Q)2 .., Q()n)
7 end

The proposed DQPSO* algorithm consists of six components, including the
initialization of the quantum particle swarm, the repair operator to ensure the
feasibility of generated solutions, the updating strategy of the personal historical
best positions (DI?) of the discrete particles, the rule of transforming a quan-
tum particle to a discrete particle, the local optimization method to improve the
solutions generated by the repair operator, and the evolution formulas of the
quantum particle swarm. The DQPSO* method is described in Algorithm 4,
where Q¢ = {Q:(7) : 1 < i < np} denotes the swarm of np quantum particles at
iteration ¢, DI = {D!(i) : 1 < i < np} is the set of personal historical best posi-
tions for discrete particles at iteration ¢, and d* records the best discrete particle
found so far. As mentioned in Section 3.1, each quantum particle Q:(i) € @



Algorithm 3: Pseudo-code of transforming a quantum solution into a
discrete solution
1 Function Transform
Input: A quantum particle ¢ = (g1, ¢z, - .., qn), where ¢; € [0,1]
(1<j<n)
Output: A discrete particle d = (d1,ds, ..., d,), where d; € {0,1}
(1<j<n)
for j < 1 ton do
if rand(0,1) > g; then
‘ dj +—1
end
else
‘ dj +~0
end
end

© 0 NN N w N

is a n-dimensional real-valued vector (¢¢,q,...,q’), and each discrete parti-
cle D!*(i) € D! is a n-dimensional 0-1 vector (di,ds,...,d!) representing a
candidate solution in the search space.

The DQPSO* algorithm starts with an initial Q; (¢ = 0) which is randomly
generated by the initialization method presented in Algorithm 2. Then, each
quantum particle in @Q; is transformed into a discrete particle by the transform-
ing procedure given in Algorithm 3 and the infeasibility of the resulting discrete
particle is subsequently repaired by the repair operator of Section 3.3 (lines 4-7).
At the same time, D! is accordingly initialized and the best discrete particle
found in this process is recorded as d* (lines 6 and 8).

After the initialization of Q; and D, DQPSO* performs Iter Mazx itera-
tions (lines 9-27) to search for a best discrete solution of the MKP instance.
Specifically, at each iteration ¢, the particles Q:(i) (1 < i < np) are processed
by applying the following steps: (1) K (which is a parameter) discrete solutions
S ={d',d?,...,d5} are randomly selected from D!’, the corresponding quan-
tum particles are tentatively recorded as the neighbors of the particle Q(7),
and the best individual in S is tentatively recorded as the neighborhood’s best
position D} (i) for the corresponding discrete particle of Q:(i) (lines 12-13).
One observes that the evolution of the particle swarm in DQPSO* is based on
a random and dynamic neighborhood topology. (2) A new quantum particle
Qi41(i) is generated by the evolution formulas in Eqgs. (8)-(10), where QI , ()
and Q7 (%) represent in some sense the personal and neighborhood’s historical
best positions for the quantum particle Q:41(¢) (lines 13-15). (3) The newly
generated quantum solution Q:11(7) is transformed into a discrete solution d
and its infeasibility is subsequently repaired by the repair operator (lines 16—
17). (4) The local optimization method (denoted by VND) is applied with a
probability of p to further improve the solution (line 18-20). (5) The resulting
solution is then used to update D!* by means of a diversity-preserving updating
strategy (line 21).

DQPSO* stops once a maximum allowed number of iterations is reached and



the best discrete solution found (d*) is returned as the result of the algorithm.



Algorithm 4: Main frame of the DQPSO* algorithm for the MKP

1 Function DQPSO*
Input: Instance I, size of particle swarm (np), maximum number of
iterations (Iter Max), parameters K, p, «, ¢1, and co.
Output: The best discrete solution d* found
/* Q¢ ={Q:(7): 1 <i<np} denotes the quantum particle swarm
at the iteration t, D!® = {D!®(i):1<i<np} denotes the set
of personal historical best positions for discrete

particles */
2t 0 /* t denotes the current number of iterations */
/* Initialization of quantum particle swarm */
3 Q; + InitialQuantumSwarm (np) /* Algorithm 2 */
4 for i < 1 to np do
5 d + Transform(Q4(i)) /* Algorithm 3 */
6 DI*(i) - RepairOperator(d) /* Section 3.3 */

7 end

8 d* < argmaz{f(d): d € DI}

/* Evolution of particle swarm */

9 while ¢t < IterMax do

10 for ¢ <~ 0 to np do

11 Randomly select a subset S = {d',d?,...,d%} of size K from
D! and the corresponding quantum particles are regarded as
the neighbors of particle Q¢(7)

12 Di (i) < argmaz{f(d):d € S} /* D;(i) is recorded as
the neighborhood’s historical best position for
particle Dy(4) */

13 Qi1 (i) = ax Dy(i) + (1 — o) x (€= Dy (1))

14 18 1(i) < a x DP(i) + (1 — ) x (€ — Dib(i)))

15 Qe1(i) = 1 X Q1(i) + o x Q1 (1) + (1 — e1 — ¢2) x Q14 (7)

16 d + Transform(Q:4+1(i)) /* d is a discrete solution  */

17 d < RepairOperator(d)

18 if rand(0,1) < p then

19 | d«+ VND(d) /* Algorithm 7 */

20 end

21 SwarmUpdating(d, DI?) /* Section 3.5 */

22 if féd) > f(d*) then

23 | d*«+d

24 end

25 end

26 t—t+1

27 end

10



3.8. Repair Operator

Like previous studies (Chih, 2018; Chu and Beasley, 1998; Haddar et al.,
2016; Lai et al., 2018), the DQPSO* algorithm uses a popular repair operator
(denoted by RepairOperator()) to restore the feasibility of an infeasible solu-
tion. In addition to converting an infeasible solution into a feasible one, the
repair operator serves also as a local optimization method.

To implement efficiently the repair operator, we apply a preprocessing pro-
cedure to first process the given MKP instance, so that the items are renum-
bered in an ascending order according to their scaled pseudo-utility ratios o;
(Puchinger et al., 2009) defined as:

%7Vj6{172,...7n} (12)
=1 ¢;

After that, the vectors (p1,p2,...,pn) and a;; (i =1,2,...,m,j=1,2,...,n)
are adjusted accordingly.

Based on the resulting order of items, the repair operator is performed in
two phases. Given an input infeasible solution, the first phase drops the least
profitable items one by one according to the scaled pseudo-utility ratios until
the solution becomes feasible. Then the second phase adds one by one the most
profitable missing items according to their scaled pseudo-utility ratios, while
keeping each intermediate solution feasible. Given its greedy nature, the repair
operator is very fast with a time complexity bounded by O(n x m).

g5 =

3.4. Local Optimization by Variable Neighborhood Descent

Algorithm 5: Neighborhood search with Ny

1 Function LSN1
Input: A discrete solution d = (dy,ds,...,d,)
Output: The improved solution d

2 Flag < true

3 while Flag do

4 Flag <+ false
5 for j < n to1 do
6 if (d; =0) A (dP Add(j) € N1(d)) then
7 d + d Add(j)
8 Flag < true
9 end
10 end
11 end

To reinforce further its intensification ability, the DQPSO* algorithm em-
ploys, in a probabilistic way, a dedicated variable neighborhood descent (VND)
procedure for local optimization. This VND procedure follows the standard
VND framework (Mladenovi¢ and Hansen, 1997) and relies on two basic neigh-
borhoods, i.e., the restricted ’Add’ neighborhood N; and the restricted "Swap’

11



Algorithm 6: Neighborhood search with No

1 Function LSN2
Input: A discrete solution d = (dy,ds, ..., d,)
Output: The improved solution d

2 Flag < false

3 for i+ 1 tondo

4 for j < i+1 tondo
5 if (d; #d;) N (d@ Swap(i, j) € Na(d)) then
6 d < d & Swap(i, j)
7 Flag < true
8 return {d, Flag}
9 end
10 end
11 end

12 return {d, Flag}

Algorithm 7: The variable neighborhood descent (VND) method

1 Function VND
Input: A discrete solution d = (dy,ds,...,d,)
Output: The improved solution d

2 Flag < true
3 while Flag do
4 d < LSN1(d) /* Algorithm 5 x/
5 (Flag,d) < LSN2(d) /* Algorithm 6 */
6 end
neighborhood Ns. Given a discrete solution s = (x1,xa,...,2,), the N7 neigh-

borhood is composed of all possible feasible solutions that can be obtained by
changing the value of one variable z; (1 <14 < n) from 0 to 1, and the Ny neigh-
borhood is composed of all possible feasible solutions that can be obtained by
swapping the values of two variables z,, and z, taking distinct values. Formally,
the N7 and Ny neighborhoods can be described as follows:

Ni(s) ={s® Add(l) : Zaijmj +ay<c,x;=0,1<1<n,1<i<m} (13)

Jj=1

Na(s) = {s ® Swap(v,u) : z, # xy = 0; Zaijxj + Giu — @i < ¢, 0 <m} (14)
j=1
where s®Op (Op € {Add, Swap}) designates the neighbor solution obtained by
applying the ’Add’ or 'Swap’ operator to transform the incumbent solution s.
The size of Ny(s) is bounded by [I°]| (< n), where I° denotes the set of
variables taking the value of 0 in s, ie., I° = {z; : 2; = 0 in s}. Thus,

12



the computational complexity of examining the whole Nj(s) is bounded by
O(|I°] x m), where m is the number of capacity constraints. The size of N(s)
is bounded by |I'| x |I°|, where I' is the set of variables taking the value of 1
in s, i.e., I' = {z; : #; = 1 in s}. The computational complexity of examining
the whole Ny(s) is bounded by O(|I1| x |I°] x m).

Based on these two neighborhoods, the VND procedure improves the input
solution as follows. First, it starts with N7 and makes a complete exploitation
of the neighborhood by means of the first improvement descent strategy. Then,
it switches to N> to search for an improving solution when a local optimal
solution with respect to IV; is reached. Moreover, VND switches immediately
to N1 once an improving solution is found with Ns. Finally, the search process
stops when Ny does not contain any improving solution and the best solution
found is returned as the result of the VND procedure.

Algorithms 5 and 6 show how the neighborhoods N; and N, are examined,
while Algorithm 7 summarizes the main framework of the VND procedure.

3.5. Population Updating Strategy for the Historical Discrete Best Positions of
Particle Swarm

Algorithm 8: Pseudo-code of population updating method for D'

1 Function SwarmUpdating

Input: A set of personal historical best positions (D) for the discrete

particles, a discrete solution (d), and parameter

Output: Updated D'
2 dy < argmin{f(d) :d e D")}

/* d,, denotes the worst solution in D */
3 d, « argmin{||d—d ||z : d € D"}

/* ||d—d'||gz denotes the Hamming distance between d and d

*
dis/t — ||d —d¢||g
if (f(d) > f(d.)) N (dist <€) then

| D'« D" u{d}\ {d.} /* replace d. by d */
end
else if f(d) > f(dw)) A (dist > 6) then

‘ D% <« D® U {d}\ {dy} /* replace d, by d */
10 end

© ® e s

Like any population algorithm, it is crucial for the DQPSO* algorithm to
maintain a healthy swarm in terms of diversity. For this purpose, DQPSO*
uses a diversity-preserving strategy to update the set of personal historical best
positions of the discrete particles D'.

Given a discrete solution d generated by the repair operator or the VND
procedure and D', the diversity-preserving updating strategy is performed as
follows. First, the Hamming distance (dist) between d and its closest solution
d. in D" is calculated. Then, D' is updated according to one of the following

13



two situations, which is inspired by the work in (Lai and Hao, 2015) where
a diversity-preserving pool updating strategy is employed as a key component
of an evolutionary path relinking algorithm designed for the fixed spectrum
frequency assignment problem. 1) If f(d) > f(d.) and dist < 6, then d. in D'
is replaced by d, where 6 is a parameter used to control the diversity of D' and
f(d) denotes the objective value of solution d. 2) If f(d) > f(dy) and dist > 6,
then the worst solution in D! (denoted by d,,) is replaced by d. In other
cases, the offspring solution d is discarded, while keeping D' unchanged. The
pseudo-code of the this population updating strategy is provided in Algorithm
8.

3.6. Discussions

As we show above, the proposed DQPSO* algorithm integrates especially
two original strategies that distinguish itself from the existing binary PSO algo-
rithms for the MKP in the literature such as (Chih, 2018; Haddar et al., 2016).
First, DQPSO* employs the diversity-preserving updating strategy (see Section
3.5) to enhance the diversity of discrete particle swarm D'®, where the distances
among discrete particles are directly controlled by a parameter 6. To the best
of our knowledge, such a strategy was never used in previous binary PSO algo-
rithms. The analysis in Section 5.1 shows that this updating strategy helps to
preserve population diversity and improves significantly the search ability of the
algorithm. Second, the proposed algorithm integrates for the first time a VND
method as the local optimization procedure, which is applied in a probabilistic
way each time an offspring solution is generated during the search process. Once
again, this technique was not available in existing binary PSO algorithms. As
the computational experiments in Section 5.2 show, the probability-controlled
VND method ensures the key intensification role and contributes to the perfor-
mance of the algorithm. Finally, it is worth mentioning that these two strategies
are of general interest and can be applied within binary PSO algorithms designed
for other binary optimization problems.

4. Computational Experiments

To assess the performance of the DQPSO* algorithm, we carried out exten-
sive experiments by testing the algorithm on benchmark instances commonly
used in the literature and making a comparison with a number of state-of-the-art
MKP algorithms.

4.1. Benchmark Instances

To carry out our computational experiments, we use 270 popular benchmark
instances, which are described in (Chu and Beasley, 1998) and available at OR-
Library!. These instances can be divided into three sets and their characteristics
can be summarized as follows.

'http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html
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e Set I: This set consists of 90 small instances with n = 100 which can be
divided into three subsets, where each subset contains 30 instances with
m =5, 10 or 30, respectively. The coefficients a;; (1 <i<m,1<j<n)
are integers randomly generated in [0,1000] and ¢; is set to 8 x Z;‘L:1 aij
(1 < i < m) where (3 is a parameter called the tightness ratio and is set
to 0.25, 0.5, and 0.75. Optimal solutions for these instances are provided
in (Mansini and Speranza, 2012).

e Set II: This set contains 90 medium-sized instances with n = 250 and
m € {5,10,30}, and the coefficients a;; (1 < i < m, 1 < j < n) and
c; were generated in the same way as for the instances of Set I. Optimal
solutions for the instances with m = 5 and 10 are provided in (Boussier
et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008).

e Set III: This set contains 90 large instances with n = 500 and m €
{5, 10,30}, and the coefficients a;; (1 < i <m, 1 < j < n) and ¢; were
generated in the same way as for the instances of Sets I and II. Optimal
solutions for the instances with m = 5 and 10 are provided in (Boussier
et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008).

One notices that the optimal solutions for 217 out of 270 instances reported
in (Boussier et al., 2010; Mansini and Speranza, 2012; Vimont et al., 2008) have
been obtained with large computation times up to 150 hours for some instances

with n = 500 and m = 10.

4.2. Parameter Settings and Experimental Protocol

Table 1: Settings of parameters

Parameters Section Description Values

np 3.2 Number of particles {2n,4n,5n}
IterMax 3.2 Maximum number of iterations {200m,500m,10*}
K 3.2 Number of neighbors of particles 10

e 3.2 parameter used in Eq.(8) 0.0

c1 3.2 parameter used in Eq.(10) 0.2

co 3.2 parameter used in Eq.(10) 0.4

P 3.2 probability of applying the VND 0.01

[ 3.5 parameter for the population updating 2

The DQPSO* algorithm employs eight parameters whose descriptions and
settings are given in Table 1, where the values of np and IterMax were set
according to the values of n and m of instances to guarantee that the com-
putational effort of our algorithm is the same as that of a recent binary PSO
algorithm (3R-BPSO) (Chih, 2018): np = 5n and Iter Maz = 200m for the in-
stances with n = 100 and m € {5, 10,30}, np = 4n and Iter M ax = 500m for the
instances with n = 250 and m € {5,10, 30}, and np = 2n and Iter Maz = 500m
for the instances with n = 500 and m € {5,10}. For the instances with n = 500
and m = 30 which are shown to be very hard to solve for most existing heuristic
algorithms, np and IterMax were respectively set to 2n and 10%. For the pa-
rameters p and «, their values were set according to the experiments shown in
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Section 5.2 and Section 5.3, respectively. For the other parameters, the default
values were empirically set according to a preliminary experiment.

The DQPSO* algorithm was implemented in C+-+ language and compiled
by the g++ compiler with the -O3 flag 2. All the experiments were carried
out on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM),
running the Linux operating system. Due to its stochastic nature, DQPSO*
was independently run 100 times to solve each instance. To run the algorithm,
we use consistently the parameter setting of Table 1. We mention that using an
extended number of iterations (i.e., larger Iter M ax values) does not significantly
change the final results.

To assess the performance of DQPSO*, we use six representative MKP algo-
rithms in the literature as our reference algorithms, including a genetic algorithm
(GA) (Chu and Beasley, 1998) (as a baseline reference), a hybrid quantum par-
ticle swarm optimization algorithm (QPSO*) (Haddar et al., 2016), a binary
PSO algorithm (3R-BPSO) that employs three repair operators to repair infea-
sible solutions (Chih, 2018), a filter-and-fan heuristic (F&F) (Khemakhem et
al., 2012), a two-phase tabu search (TP+TS) (Vasquez and Hao, 2001), and a
very recent two-phase tabu-evolutionary algorithm (TPTEA) published in 2018
(Lai et al., 2018). The results of the reference algorithms are compiled from
the corresponding papers. If the results of an algorithm for a set of benchmark
instances are not available, the algorithm will be ignored in the comparative
study (e.g., this is the case of 3R-BPSO for some instances of set I and the
instances of set IT). Moreover, given that the compared algorithms are written
in different programming languages and run on various computing platforms
under different stopping conditions, it is impossible to perform a fair compar-
ison of computation times. As a result, we mainly focus on solution quality
for our computational study (this is also a common practice in the literature).
Only for indicative purposes, we provide the timing information for DQPSO*
and TPTEA (whose codes are available and were run on the same computing
platform).

4.8. Computational Results and Comparison

Our first experiment aims to assess the proposed DQPSO* algorithm on the
small instances of Set I with n = 100, and the experimental results are summa-
rized in Tables 2—4, along with the results of five references algorithms whose
results are available. In Table 2, columns 1 and 2 give the names and the known
optimum results (Opt.) of the instances with m = 5, columns 3-8 provide the
best objective values (fpest) obtained for the reference algorithms as well as our
DQPSO* algorithm, columns 9-12 indicate the average objective values (fqug)
obtained for three reference algorithms as well as our DQPSO* algorithm, and
the last two columns report the average computational time (t4,4) in seconds

2The source code of the DQPSO* algorithm will be made available at http://www.info.
univ-angers.fr/pub/hao/DQPS0.html
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needed to reach the final objective value for TPTEA and DQPSO*. In addi-
tion, the row "Avg." shows the average result for each column, and the rows
"#better", "#equal", and "#worse" show the number of instances for which the
associated reference algorithm obtained a better, equal, or worse result in terms
of fiest, favg, and tqyg in comparison with the proposed DQPSO* algorithm.
To verify the statistical difference between the proposed DQPSO* algorithm
and the reference algorithms in terms of fies; and fqug, the p-values from the
Wilcoxon signed-rank tests are provided in the last row of the tables, where a
p-value less than 0.05 means that there exists a significant difference between
the compared results. Tables 3 and 4 present the results on the instances with
m = 10 and m = 30 with the same information as in Table 2.

Table 2 shows that for all the 30 small instances with n = 100 and a small
number (m = 5) of constraints, our DQPSO* algorithm performs very well and is
able to obtain the known optimum solution with a success rate of 100% within
a short computing time (t4,q = 0.5). Moreover, compared to the reference
algorithms, DQPSO* achieves a similar or better performance in terms of fyess,
favg, and teug. In terms of fyeqr, DQPSO™ obtains the same result compared
to GA, F&F, QPSO* and TPTEA, and reports a better results for 2 instances
compared to 3R-BPSO. In terms of f,,,, DQPSO* obtains the same result
compared to QPSO* and TPTEA, and reports a better result for 25 out of 30
instances compared to 3R-BPSO.

Table 3 shows that for the instances with n = 100 and a medium-sized
number (m = 10) of constraints our algorithm also performs well. For all the
30 instances, our algorithm obtains the known optimum result reported in the
literature, and the corresponding success rate of our algorithm is 100% for 26
out of 30 instances. Compared to the first 4 reference algorithms, i.e., GA, F&F,
3R-BPSO, QPSO*, the DQPSO* algorithm is very competitive and obtains a
better result in terms of fys; for one instance and an equal result for the 29
remaining instances. Compared to the TPTEA algorithm, in terms of fy.s:, the
DQPSO™* algorithm obtains the same result for all the 30 instances. In terms of
favg, the DQPSO* algorithm outperforms significantly 3R-BPSO by obtaining
better results on all the 30 instances, reaches comparable results relative to
QPSO*, and obtains slightly worse results than the latest TPTEA algorithm.

Table 4 shows that for the instances with n = 100 and a large number
(m = 30) of constraints, the DQPSO* algorithm has a similar performance
compared to GA, F&F, and QPSO*, but performs slightly worse than the tabu-
based TPTEA algorithm. Specifically, in terms of fpess, DQPSO* obtains a
better result on 3 instances than the GA algorithm, and a better and worse
result on 2 instances compared to the F&F, and QPSO* algorithms, respectively.
In terms of fq,4, the DQPSO* algorithm obtains comparable results compared
to QPSO*. Compared to TPTEA, DQPSO* performs worse in terms of both
frest and fqug. TPTEA attains the known optimum solution with a success
rate of 100% for all the instances while this is the case of DQPSO* only for 16
instances.

On the other hand, Tables 2—4 show that for these small instances the dif-
ferences between DQPSO* and the reference algorithms in terms of f s are
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Table 4: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the small instances with n = 100 and m = 30.

foest favg tavg(s)
Instance  Opt. GA T&E QPSO*  TPTEA DQPSO~ QPSO*  TPTEA DQPSO~ TPTEA DQPSO*
30.100.0 21946 21946 21946 21946 21946 21946 21946.00 21946.00 21946.00 7.5 1.1
30.100.1 21716 21716 21716 21716 21716 21716 21716.00 21716.00 21716.00 17.7 0.9
30.100.2 20754 20754 20754 20754 20754 20754 20754.00 20754.00 20754.00 10.4 1.1
30.100.3 21464 21464 21464 21464 21464 21464 21448.00 21464.00 21464.00 12.9 5.7
30.100.4 21844 21814 21844 21844 21844 21844 21828.50 21844.00 21833.09 15.6 26.6
30.100.5 22176 22176 22176 22176 22176 22176 22176.00 22176.00 22176.00 0.7 0.9
30.100.6 21799 21799 21799 21772 21799 21799 21772.00 21799.00 21793.60 19.5 12.8
30.100.7 21397 21397 21397 21397 21397 21397 21361.50 21397.00 21396.04 15.8 14.5
30.100.8 22525 22493 22493 22525 22525 22493 22503.50 22525.00 22493.00 15.0 10.6
30.100.9 20983 20983 20983 20983 20983 20983 20983.00 20983.00 20983.00 0.8 2.5
30.100.10 40767 40767 40767 40767 40767 40767 40728.50 40767.00 40764.18 22.5 27.3
30.100.11 41308 41304 41304 41308 41308 41308 41306.00 41308.00 41305.88 19.2 14.9
30.100.12 41630 41560 41630 41630 41630 41612 41606.00 41630.00 41585.22 28.5 29.8
30.100.13 41041 41041 41041 41041 41041 41041 41041.00 41041.00 41041.00 22.1 8.1
30.100.14 40889 40872 40889 40872 40889 40872 40872.00 40889.00 40872.00 21.6 0.9
30.100.15 41058 41058 41058 41058 41058 41058 41058.00 41058.00 41058.00 0.9 2.7
30.100.16 41062 41062 41062 41062 41062 41062 41062.00 41062.00 41062.00 11.3 14.9
30.100.17 42719 42719 42719 42719 42719 42719 42719.00 42719.00 42718.73 19.4 0.6
30.100.18 42230 42230 42230 42230 42230 42230 42230.00 42230.00 42230.00 1.2 2.1
30.100.19 41700 41700 41700 41700 41700 41700 41700.00 41700.00 41700.00 14.3 3.9
30.100.20 57494 57494 57494 57494 57494 57494 57494.00 57494.00 57494.00 0.6 0.2
30.100.21 60027 60027 60027 60027 60027 60027 60027.00 60027.00 60021.94 1.4 29.8
30.100.22 58052 58025 58052 58052 58052 58052 58052.00 58052.00 58027.85 18.2 28.4
30.100.23 60776 60776 60776 60776 60776 60776 60776.00 60776.00 60775.78 4.5 6.3
30.100.24 58884 58884 58884 58884 58884 58884 58884.00 58884.00 58865.52 4.9 2.4
30.100.25 60011 60011 60011 60011 60011 60011 60011.00 60011.00 60005.30 2.3 2.0
30.100.26 58132 58132 58104 58132 58132 58132 58118.00 58132.00 58132.00 0.7 1.7
30.100.27 59064 59064 59064 59064 59064 59064 59064.00 59064.00 59064.00 0.7 1.2
30.100.28 58975 58975 58975 58975 58975 58975 58975.00 58975.00 58975.00 19.6 11.3
30.100.29 60603 60603 60603 60593 60603 60603 60593.00 60603.00 60603.00 2.3 3.2
Avg. 40767.53 40761.53 40765.40 40765.73 40767.53 40765.30 40760.17 40767.53 40761.87 11.1 8.9
#better 0 2 2 3 9 14 14
#equal 27 26 26 27 14 16 0
#worse 3 2 2 0 7 0 16
p-value 6.79E-2 1.0 5.15E-1 1.09E-1 7.56E-1 9.81E-4

marginal, which is confirmed by the large p-values (> 0.05). However, in terms
of favg, the DQPSO™ algorithm outperforms significantly the 3R-BPSO algo-
rithm.

The second experiment aims to assess and compare the DQPSO* algorithm
on the medium-sized instances with n = 250, and the experimental results are
summarized in Tables 5 to 7, where the BKR denotes the best known results
reported in the literature and other symbols are same as in the previous tables.

The results on the instances with a small number (m = 5) of constraints
are provided in Table 5. One observes that for these instances, the proposed
DQPSO* algorithm outperforms GA, F&F, QPSO* in terms of fyes:, and ob-
tains comparable results with the TPTEA algorithm. Specifically, DQPSO*
yields respectively a better result for 11, 7, and 5 instances compared to GA,
F&F, QPSO*, and matches the result of the TPTEA algorithm for 29 out of
30 instances, while yielding a worse result for one instance. As for the fu.q,
DQPSO* performs better than QPSO* by reporting a better result on 15 in-
stances and the same result on 12 instances, but performs marginally worse
than TPTEA (the average value of f,,4 over all the 30 instances is 107087.05
for DQPSO* against 107088.59 for TPTEA). Moreover, TPTEA and DQPSO*
obtain the optimum solution with a success rate of 100% for 27 and 18 out of
30 instances, respectively, while DQPSO™* is more computationally efficient.

Tables 6 and 7 report respectively the results for the instances with m = 10
and m = 30. These two tables show that for the medium-sized instances with a
large number of constraints, DQPSO* outperforms significantly GA, F&F, and
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Table 5: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the medium-sized instances with n = 250 and m = 5.

best favg tavg(s)
Instance Opt. GA F&F QPSO™ TPTEA DQPSO™ QPSO™ TPTEA DQPSO™ TPTEA DQPSO*
5.250.0 59312 59312 59312 59312 59312 59312 59312.00 59312.00 59312.00 67.0 7.1
5.250.1 61472 61472 61468 61472 61472 61472 61470.00 61472.00 61471.72 251.5 24.9
5.250.2 62130 62130 62130 62130 62130 62130 62130.00 62130.00 62130.00 82.9 3.5
5.250.3 59463 59446 59436 59427 59463 59463 59427.00 59462.33 59441.93 1017.0 28.3
5.250.4 58951 58951 58951 58951 58951 58951 58951.00 58951.00 58951.00 99.3 3.4
5.250.5 60077 60056 60062 60077 60077 60077 60056.00 60069.50 60070.34 741.8 27.4
5.250.6 60414 60414 60414 60414 60414 60414 60414.00 60414.00 60414.00 96.7 5.8
5.250.7 61472 61472 61454 61472 61472 61472 61460.50 61472.00 61472.00 153.2 18.3
5.250.8 61885 61885 61885 61885 61885 61885 61885.00 61885.00 61885.00 85.1 11.7
5.250.9 58959 58959 58959 58959 58959 58959 58925.50 58959.00 58959.00 79.2 3.1
5.250.10 109109 109109 109109 109066 109109 109109 109058.50 109109.00 109107.46 288.7 18.4
5.250.11 109841 109841 109841 109841 109841 109841 109841.00 109841.00 109841.00 118.1 5.9
5.250.12 108508 108489 108508 108508 108508 108508 108508.00 108508.00 108508.00 107.2 18.0
5.250.13 109383 109383 109383 109356 109383 109383 109347.50 109383.00 109383.00 144.8 9.7
5.250.14 110720 110720 110720 110720 110720 110720 110710.00 110720.00 110718.10 611.2 12.0
5.250.15 110256 110256 110256 110256 110256 110256 110256.00 110256.00 110250.71 257.9 46.0
5.250.16 109040 109016 109040 109040 109040 109040 109022.50 109040.00 109040.00 114.7 24.9
5.250.17 109042 109037 109016 109042 109042 109042 109018.50 109042.00 109041.32 102.8 22.8
5.250.18 109971 109957 109957 109971 109971 109971 109955.00 109971.00 109971.00 212.0 8.4
5.250.19 107058 107038 107058 107058 107058 107058 107048.00 107058.00 107057.09 210.9 14.3
5.250.20 149665 149659 149659 149665 149665 149665 149650.50 149665.00 149661.10 250.4 23.3
5.250.21 155944 155940 155944 155944 155944 155940 155942.00 155943.87 155940.00 60.5 6.0
5.250.22 149334 149316 149334 149334 149334 149334 149334.00 149334.00 149332.46 119.1 20.9
5.250.23 152130 152130 152130 152130 152130 152130 152130.00 152130.00 152130.00 55.9 3.6
5.250.24 150353 150353 150353 150353 150353 150353 150353.00 150353.00 150353.00 58.0 16.3
5.250.25 150045 150045 150045 150045 150045 150045 150045.00 150045.00 150045.00 41.9 3.3
5.250.26 148607 148607 148607 148607 148607 148607 148607.00 148607.00 148607.00 36.4 7.9
5.250.27 149782 149772 149782 149772 149782 149782 149762.50 149782.00 149775.40 51.8 18.1
5.250.28 155075 155075 155075 155057 155075 155075 155045.00 155075.00 155075.00 41.8 26.1
5.250.29 154668 154662 154668 154668 154668 154668 154668.00 154668.00 154668.00 118.0 16.9
Avg. 107088.87 107083.40 107085.20 107084.40 107088.87 107088.73 107077.77 107088.59 107087.05 189.20 15.21
#better 0 1 1 1 3 11 0
#equal 19 22 24 29 12 18 0
#worse 11 7 5 0 15 1 30
p-value 3.33E-3 2.07E-2 4.64E-2 3.17TE-1 7.38E-4 4.7T4E-3

Table 6: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the medium-sized instances with n = 250 and m = 10.

frest favg tavg(s)
Instance Opt. GA F&F QPSO™ TPTEA DQPSO™ QPSO™ TPTEA DQPSO™ TPTEA DQPSO*
10.250.0 59187 59187 59164 59182 59187 59187 59173.00 59187.00 59187.00 194.8 20.0
10.250.1 58781 58662 58693 58781 58781 58705 58733.00 58743.13 58686.12 715.2 51.7
10.250.2 58097 58094 58094 58097 58097 58097 58095.50 58097.00 58086.86 189.9 39.4
10.250.3 61000 61000 60972 61000 61000 61000 60986.00 60998.57 60989.07 839.2 61.4
10.250.4 58092 58092 58092 58092 58092 58092 58092.00 58090.57 58088.38 821.7 67.4
10.250.5 58824 58803 58824 58824 58824 58824 58824.00 58822.60 58803.42 462.1 24.4
10.250.6 58704 58607 58632 58606 58704 58704 58596.50 58704.00 58692.39 385.2 59.1
10.250.7 58936 58917 58917 58902 58936 58930 58889.50 58932.10 58921.47 732.7 54.7
10.250.8 59387 59384 59381 59372 59387 59387 59357.50 59387.00 59383.41 102.3 74.0
10.250.9 59208 59193 59208 59208 59208 59208 59208.00 59208.00 59208.00 327.1 23.3
10.250.10 110913 110863 110889 110857 110913 110913 110843.00 110913.00 110913.00 370.7 22.3
10.250.11 108717 108659 108702 108687 108717 108717 108687.00 108717.00 108702.55 529.3 9.6
10.250.12 108932 108932 108922 108891 108932 108932 108889.00 108932.00 108930.63 T7.4 40.3
10.250.13 110086 110037 110059 110086 110086 110086 110060.50 110086.00 110061.33 1070.9 81.6
10.250.14 108485 108423 108485 108485 108485 108485 108459.50 108485.00 108485.00 129.1 32.4
10.250.15 110845 110841 110841 110845 110845 110845 110843.00 110843.67 110840.22 1064.0 46.3
10.250.16 106077 106075 106075 106047 106077 106077 106036.00 106075.73 106076.41 239.2 56.3
10.250.17 106686 106686 106685 106686 106686 106686 106681.50 106686.00 106686.00 563.2 24.8
10.250.18 109829 109825 109822 109788 109829 109825 109755.00 109827.40 109823.00 845.3 46.8
10.250.19 106723 106723 106723 106723 106723 106723 106723.00 106723.00 106723.00 80.5 34.1
10.250.20 151809 151790 151790 151779 151809 151809 151769.00 151809.00 151806.92 177.4 49.4
10.250.21 148772 148772 148772 148772 148772 148772 148772.00 148772.00 148772.00 24.6 3.1
10.250.22 151909 151900 151909 151909 151909 151909 151909.00 151909.00 151909.00 85.6 41.6
10.250.23 151324 151275 151281 151281 151324 151324 151281.00 151324.00 151276.39 629.1 48.4
10.250.24 151966 151948 151966 151966 151966 151966 151938.00 151961.80 151953.94 413.8 33.3
10.250.25 152109 152109 152109 152109 152109 152109 152109.00 152109.00 152109.00 51.2 6.9
10.250.26 153131 153131 153131 153131 153131 153131 153131.00 153131.00 153131.00 36.3 9.0
10.250.27 153578 153520 153533 153529 153578 153578 153529.00 153578.00 153560.40 95.8 70.2
10.250.28 149160 149155 149160 149160 149160 149160 149145.00 149160.00 149156.53 59.1 92.4
10.250.29 149704 149704 149688 149646 149704 149704 149637.00 149704.00 149704.00 56.2 10.3
Avg. 106365.70 106343.57 106350.63 106348.03 106365.70 106362.83 106338.42 106363.89 106355.55 379.0 41.1
#better 0 0 1 3 6 18 0
#equal 11 11 16 27 6 11 0
#worse 19 19 13 0 18 1 30
p-value 1.31E-4 1.32E-4 1.31E-2 1.09E-1 4.68E-3 1.55E-4
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Table 7: Comparative results of DQPSO* with 4 reference algorithms from the literature on
the medium-sized instances with n = 250 and m = 30.

foest favg tavg(s)
Instance  BKR GA F&E QPSO*  TPTEA DQPSO* QPSO*  TPTEA DQPSO~ TPTEA DQPSO*
30.250.0 56842 56693 56796 56796 56824 56796 56745.50 56824.00 56745.30 130.5 191.2
30.250.1 58520 58318 58333 58302 58520 58351 58302.00 58520.00 58319.88 216.3 81.4
30.250.2 56614 56553 56553 56614 56614 56614 56570.50 56614.00 56556.16 216.4 274.2
30.250.3 56930 56863 56930 56930 56930 56930 56892.00 56930.00 56929.35 90.7 81.0
30.250.4 56629 56629 56629 56629 56629 56629 56629.00 56629.00 56629.00 74.2 28.4
30.250.5 57205 57119 57149 57146 57205 57189 57115.50 57205.00 57147.28 374.4 178.8
30.250.6 56348 56292 56263 56303 56357 56303 56246.50 56333.40 56223.06 1155.3 432.6
30.250.7 56457 56403 56457 56392 56457 56457 56374.50 56457.00 56456.91 103.3 171.2
30.250.8 57474 57442 57373 57447 57474 57474 57407.50 57458.90 57419.36 971.1 279.7
30.250.9 56447 56447 56447 56447 56447 56447 56447.00 56447.00 56447.00 99.5 12.6
30.250.10 107770 107689 107735 107703 107770 107732 107696.00 107763.10 107719.89 1034.2 299.5
30.250.11 108392 108338 108338 108338 108392 108379 108336.50 108387.23 108377.71 437.6 81.6
30.250.12 106442 106385 106415 106442 106442 106442 106413.50 106439.60 106427.69 587.2 136.1
30.250.13 106876 106796 106832 106851 106876 106876 106828.00 106876.00 106821.63 204.5 213.5
30.250.14 107414 107396 107414 107382 107414 107396 107382.00 107414.00 107396.00 230.4 196.0
30.250.15 107271 107246 107271 107271 107271 107271 107236.50 107271.00 107244.81 293.9 210.4
30.250.16 106372 106308 106277 106248 106372 106365 106242.00 106371.77 106319.30 682.5 259.9
30.250.17 104032 103993 104003 103988 104032 104014 103988.00 104019.00 104000.59 497.2 285.7
30.250.18 106856 106835 106835 106856 106856 106835 106845.50 106852.50 106807.00 322.2 164.2
30.250.19 105780 105751 105742 105751 105780 105751 105740.00 105779.17 105751.00 440.6 138.7
30.250.20 150163 150083 150138 150096 150163 150138 150052.00 150163.00 150111.33 456.9 335.6
30.250.21 149958 149907 149958 149958 149958 149907 149932.50 149958.00 149907.00 100.7 52.3
30.250.22 153007 152993 153007 153007 153007 153007 153007.00 153007.00 152993.42 130.9 86.3
30.250.23 153234 153169 153182 153234 153234 153234 153200.00 153234.00 153188.81 83.8 279.3
30.250.24 150287 150287 150287 150287 150287 150287 150287.00 150287.00 150287.00 51.2 7.8
30.250.25 148574 148544 148549 148544 148574 148574 148528.50 148574.00 148560.74 77.0 139.9
30.250.26 147477 147471 147455 147471 147477 147477 147463.00 147477.00 147477.00 78.5 25.3
30.250.27 152912 152841 152841 152835 152912 152912 152835.00 152912.00 152894.37 70.6 213.2
30.250.28 149570 149568 149570 149570 149570 149570 149541.00 149570.00 149569.86 61.3 377.3
30.250.29 149668 149572 149587 149668 149668 149601 149620.00 149668.00 149601.00 741.8 34.0
Avg. 104717.37 104664.37 104678.87 104683.53 104717.07 104698.60 104663.47 104714.72 104677.65 333.8 175.6
#better 0 3 4 14 9 26 8
#equal 7 11 13 16 3 4 0
#worse 23 16 13 0 18 0 22
p-value 2.70E-5 2.71E-3 3.13E-2 9.79E-4 2.55E-2 8.30E-6

QPSO* in terms of fpest, which is confirmed by the small p-values (< 0.05),
but performs worse than the tabu-based TPTEA algorithm. In terms of fu.4,
DQPSO* performs better than QPSO*, but worse than TPTEA.

The third experiment aims to assess the DQPSO™* algorithm on the largest
instances with n = 500, and the experimental results are respectively summa-
rized in Tables 8-10 according to the value of m (m = 5,10, 30), along with the
results of the reference algorithms.

We observe from Table 8 that for the large instances with a small number
(m = 5) of constraints, DQPSO* performs very well compared to six refer-
ence algorithms. In terms of f.s;, DQPSO* obtains a better result respectively
for 23, 10, 15, 13 and 15 out of 30 instances compared to five reference algo-
rithms (GA, F&F, 3R-BPSO, TP+TS and QPSO*), while matching their best
results for 7, 19, 15, 16, 12 instances, respectively. Such an outcome indicates
that DQPSO* outperforms significantly these five reference algorithms, which
is confirmed by the small p-values (< 0.05). In addition, compared to the latest
TPTEA algorithm, DQPSO* obtains a better, equal, and worse result for 1, 25,
and 4 instances in terms of fpes¢, which means that DQPSO* performs slightly
worse than TPTEA. Nevertheless, the large p-value (> 0.05) means that there
does not exist a significant difference between DQPSO* and TPTEA in terms
of frest- On the other hand, DQPSO* obtains a better result for 30, 30, and
18 instances in terms of f,,, compared to 3 reference algorithms (3R-BPSO,
QPSO* and TPTEA). Moreover, DQPSO* and TPTEA have a very similar
performance in terms of both fyes and fu,y With an advantage for DQPSO™ in
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terms of computational efficiency.

Similarly, Table 9 also shows that DQPSO* performs very well on the in-
stances with a medium-sized number (m = 10) of constraints in comparison
with six reference algorithms. For fies;, DQPSO* yields respectively a better
result for 29, 27, 25, 22, 19 instances compared to GA, F&F, 3R-BPSO, TP+TS
and QPSO*. Moreover, compared to the TPTEA algorithm, DQPSO* obtains a
better, equal, and worse result for 10, 6, and 14 instances, respectively. For the
average value Avg. of fyest, the result of the DQPSO* algorithm is 212841.60
that is slightly superior to 212840.7 of the TPTEA algorithm. In terms of
favg, DQPSO* is superior to three reference algorithms (3R-BPSO, QPSO*,
and TPTEA) with a Avg. value of 212810.58 which is better than those of the
reference algorithms. On the other hand, from the Wilcoxon tests, we observe
that the differences between the DQPSO* algorithm and the first five reference
algorithms are statistically significant both in terms of fyes: and fpest, while
there does not exist a significant difference between DQPSO* and TPTEA.

Table 10 reports the computational results for the instances with a large
number (m = 30) of constraints, which are known to be the hardest instances
among the tested instances. We observe from the table that for these instances,
the DQPSO* algorithm has a comparable performance compared with the pop-
ular MKP algorithms. In terms of fyesr, DQPSO* outperforms GA and QPSO*
by obtaining a better result for 25 and 19 out of 30 instances, respectively.
DQPSO* yields comparable results with respect to two tabu-based algorithms
(F&F and TP+TS), which is confirmed by the large p-values. However, when
comparing with the latest TPTEA algorithm, DQPSO* performs significantly
worse in terms of fpes:- Moreover, the average results of DQPSO* are much
worse for most instances than QPSO* and TPTEA, even if it attains its solu-
tions within a short computation time compared to TPTEA.

In summary, the above computational results and comparisons indicate that
the proposed DQPSO* algorithm performs very well for the instances with
m < 10 knapsack constraints in terms of both solution quality and computa-
tion efficiency in comparison with the compared algorithms from the literature.
However, for the instances with a large number (m = 30) of constraints, the
performance of DQPSO* decreases and fails to compete with the best perform-
ing algorithms. Moreover, DQPSO™* has a fast convergence, but its results on a
number of instances (especially the largest and the most constrained instances)
are unstable across multiple runs, indicating that its robustness could be further
improved.

5. Analysis and Discussions

We now turn our attention to several essential components of the proposed
algorithm to analyze their impacts on the performance of the algorithm, i.e., the
diversity-preserving population updating mechanism, the variable neighborhood
descent method, and the setting of parameter «.
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Table 11: Comparison of the quantum particle swarm optimization algorithms with and with-
out the diversity-preserving strategy. For each performance indicator, the better results be-
tween the compared algorithms are indicated in bold.

DQPSO— DQPSO*

Instance Thest Favg std Tavg (5) Thest Favg std Taug (5)
10.500.0 117740 117684.52 30.04  9.50 117779 117754.82 15.35 105.33
10.500.1 119150 119099.22 21.54  7.60 119206 119179.74 7.43  152.69
10.500.2 119163 119080.89 38.38  11.94 119215 119162.61 12.88 127.80
10.500.3 118775 118727.86 38.22  6.27 118813 118777.36 6.26  39.85
10.500.4 116453 116366.48 31.19  15.32 116509 116460.83 28.82 146.17
10.500.5 119414 119361.04 25.56  12.64 119470 110435.57 18.18 157.44
10.500.6 119777 119727.00 19.22  2.28 119827 119782.76 12.78 134.07
10.500.7 118248 118177.46 44.65  11.67 118320 118265.30 14.24 146.69
10.500.8 117751 117678.45 38.86  10.08 117781 117763.24 18.14 122.31
10.500.9 119203 119129.00 17.69 8.52 119212 119166.54 18.03  124.73
10.500.10 217318 217260.40 30.77  11.56 217365 217326.03 12.69 76.68
10.500.11 219009 218945.35 26.79  8.89 219063 219027.54 7.66  136.02
10.500.12 217737 217678.75 27.76  20.05 217847 217760.63 20.03 173.14
10.500.13 216827 216753.71 32.00  10.38 216843 216824.05 9.90  125.30
10.500.14 213828 213761.85 34.59  27.07 213843 213817.08 18.51 134.41
10.500.15 215040 214068.59 32.35  9.06 215062 215034.68 9.44  166.43
10.500.16 217876 217799.39 32.60  13.21 217931 217884.36 10.94 181.26
10.500.17 219949 210885.72 32.90  9.87 219984 219965.07 16.97 101.98
10.500.18 214352 214275.96 37.26  24.41 214382 214337.14 13.77 165.88
10.500.19 220865 220782.14 16.30  3.75 220865 220847.10 14.44 152.54
10.500.20 304344 304205.74 27.32  6.62 304387 304354.01 10.58 67.44
10.500.21 302371 302307.26 28.17  5.41 302358 302346.04 11.60 98.60
10.500.22 302396 302320.70 21.11  6.26 302408 302399.10 5.17  77.43
10.500.23 300743 300687.80 18.39  3.45 300784 300745.46 8.12  58.63
10.500.24 304344 304335.83 6.31  2.15 304374 304353.75 7.66 112,58
10.500.25 301766 301687.16 22.15  14.47 301766 301752.48 6.42  106.35
10.500.26 304949 304887.98 25.37  7.13 304949 304949.00 0.00  16.24
10.500.27 296440 206404.64 23.12  14.06 296459 206444.16 5.88  153.58
10.500.28 301322 301280.43 12.35  3.99 301357 301332.24 14.30 163.07
10.500.29 307072 306988.09 32.10  13.67 307089 307068.83 10.74 83.13
Ave. 212807.40 212744.95 27.53  10.38 212841.60 212810.58 12.23  120.26
#best 4 0 2 30 29 30 28 0

5.1. Importance of the diversity-preserving Population Updating Strategy

The diversity-preserving population updating strategy of DQPSO* aims to
maintain a healthy diversity for the population composed of the personal histor-
ical best positions of particles (D). To investigate its influence on the perfor-
mance of DQPSO*, we created a variant DQPSO™ by replacing the population
updating strategy of the algorithm (Algorithm 8) by a popular replacement
strategy that is described in the lines 15-17 of Algorithm 1 and uses the current
offspring solution d to replace D' (i) which represents the historical discrete best
position of current particle 4, while keeping other ingredients of algorithm un-
changed. We carried out an experiment on the set of 30 instances with n = 500
and m = 10 by running the DQPSO~ and DQPSO* 100 times, according to
the experimental protocol in Section 4.2. The experimental results are summa-
rized in Table 11 with the same information as in the previous tables, where
the row "#best" shows the number of instances for which the associated algo-
rithm obtained the best result between the two compared algorithms for the
considered performance indicator, and the best results of the compared results
are indicated in bold. In addition, in order to investigate the influence of the
diversity-preserving updating strategy on the diversity of the population D™,
we ran the DQPSO~ and DQPSO* algorithms 10 times on two representative
instances (i.e., 10.500.10 and 10.500.20) and recorded the evolution of the av-
erage distance (denoted by dist,,,) between the solutions in D' respectively.
The average results over 10 runs with a maximum number 500 of iterations are
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Figure 1: Evolution of the average distance between solutions in the discrete particle swarm
D' as a function of the number of iterations for the diversity-preserving population up-
dating strategy (DQPSO*) and the popular population updating strategy in the literature

summarized in Fig. 1, where Y-axis indicates the value of dist,,, and X-axis
indicates the number of iterations.

Table 11 shows that DQPSO* dominates DQPSO™ in terms of fiest, favg,
and std. First, in terms of fyesr, both algorithms obtained the best result



respectively for 4 and 29 instances. Second, in terms of fu,q, DQPSO™ obtained
a better result for all the 30 instances. Third, the standard deviation std of
the objective values from the DQPSO* algorithm is smaller than that of the
DQPSO~ algorithm, which implies DQPSO* is more robust than DQPSO~.
On the other hand, the computation time to reach the final objective value
is much shorter for DQPSO~ than for DQPSO*, which implies a premature
convergence of DQPSO™ compared to DQPSO*.

In addition, one observes from Fig. 1 that the average distance distq,g
between the solutions in the population D', which measures the diversity of
population D', decreases quickly at the beginning of search for both of the
DQPSO™ and DQPSO* algorithms, and then the distq.q value of the DQPSO*
algorithm outperforms gradually that of the DQPSO™ algorithm as the search
progresses, which means the diversity-preserving updating strategy of DQPSO*
is able to provide a better diversity for the population than the popular popu-
lation updating strategy that is used in most existing binary PSO algorithms.

The above two experiments show thus that the diversity-preserving strategy
helps DQPSO* to avoid a premature convergence and plays a crucial role for
enhancing the performance of the algorithm.

5.2. Effect of the Variable Neighborhood Descent Method
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Figure 2: Evolution of the average computation time (i.e., tqug) of the DQPSO* algorithm
needed to reach the final objective value as a function of the value of p.

The VND procedure in Section 3.4 is another essential ingredient of the
proposed algorithm and it is applied with a probability of p after each repair
operator to reinforce search intensification. To investigate the effect of this
local search method on the performance of the algorithm, we carried out another
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experiment based on the set of 30 instances with n = 500 and m = 10, where for
each p value in the set {0.0,0.01,0.02,...,0.09,0.10}, the DQPSO* algorithm
was independently performed 100 times according to the experimental protocol
in Section 4.2. It is worth noting that a larger value of p implies a higher
computation effort and a stronger local optimization ability for the proposed
algorithm, and vice versa. Specially, the setting of p = 0.0 means that the VND
method is disabled in the algorithm.

The experimental results of this experiment are summarized in Table 12 and
Fig. 2, where we show the results with p values in {0.0,0.01,0.02,0.03,0.04,0.10}.
The first column and the first row of the table give the name of instances and
the settings of p, and the best objective value (fyes:) over 100 runs and the
average objective value (fq.q) for the tested p values are reported in columns
2-13. The last row "Avg." of the table gives the average value for each column,
and the best result among the compared p values are indicated in bold in terms
of frest and foyg. The average computation time (¢4,4) needed to reach the final
objective value is plotted in Fig. 2 as a function of p.

Table 12 shows that p = 0 that is equivalent to disabling the VND procedure
leads to much worse results than the other values (p > 0) in terms of both
fvest and fqqg, which means that the VND method plays a crucial role for the
performance of the algorithm. Moreover, one observes that in terms of Avg. the
results with p = 0.01 are the best ones among the compared results, indicating
that running the local search method more often with a probability p > 0.01
does not improve the final results in terms of fyes and fq.y. Meanwhile, Fig.
2 shows the computation time ¢,,, increases almost linearly with the increase
of p, which confirms that the VND procedure is very time-consuming relative
to other components of the algorithm. This experiment thus shows that 1)
the VND procedure reinforces the performance of the algorithm; 2) applying
VND too often (with a probability p > 0.01) only increases the computation
time, without improving the search performance of the algorithm, and 3) a
small p value (p = 0.01) is appropriate for the proposed algorithm to reach
simultaneously a high performance in terms of computation time and solution
quality.

5.8. Sensitivity Analysis of Parameter o

According to Egs. (8)—(10) in Section 2.2, the DQPSO* algorithm uses the
parameter « to control the appearance probability of items of D} and DX in
the discrete particle D(4) generated by the evolution process and the transform
function. A smaller @ value means a larger appearance probability, and vice
versa. To investigate the sensitivity of this parameter on the performance of the
algorithm, we carried out an experiment based on two representative instances
(10.500.11 and 10.500.21). We ran the DQPSO* algorithm 100 times for each
instance and each « value from 0.0 to 0.01 with an increment of 0.001, and
the experimental results are summarized in Fig. 3 with the popular box and
whisker plots, where the X-axis represents the values of parameter o and the
Y-axis represents the objective values obtained over 100 runs.
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Figure 3: Sensitivity analysis of parameter « on two representative instances, where the X-axis
represents the values of parameter o and the Y-axis represents the objective values.
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One observes from Fig. 3 that a small a value leads generally to a better
result than a large a value. For the instance 10.500.11, the result of the algo-
rithm deteriorates as the value of « increases, and the setting of a = 0.0 leads
to the best result among all the tested o values. For the instance 10.500.21, the
algorithm exhibits a similar behavior in general, and the setting of o = 0.001
leads to the best result among all the tested « values. Thus, based on the out-
comes of this experiment, the default value of o was set to 0.0 for the DQPSO*
algorithm.

6. Conclusions and Future Work

We have presented a diversity-preserving quantum particle swarm optimiza-
tion algorithm for solving the classic 0-1 multidimensional knapsack problem. In
comparison with the popular QPSO algorithm, the proposed algorithm contains
two new original features, namely a diversity-preserving population updating
strategy to maintain a healthy diversity of particle swarm and a variable neigh-
borhood descent procedure applied in a probabilistic way to reinforce search
intensification.

The experimental results on 270 instances commonly used in the literature
showed that the proposed algorithm is particularly efficient in terms of both the
solution quality and the computational efficiency on the instances with a small
or medium-sized number (m < 10) of constraints in comparison with several
state-of-the-art MKP algorithms in the literature. As such, the algorithm can
be advantageously applied to effectively find high-quality solutions for MKP
instances with a limited number of constraints. However, the performance of
the proposed algorithm decreases considerably on the tested instances with a
large number (m = 30) of constraints, even if the algorithm remains very fast
in terms of computation time. We also presented additional experiments to get
insights on the interest of the diversity-preserving updating strategy, the local
search procedure, as well as key parameters.

There are several potential directions for future research. First, the perfor-
mance of the algorithm may vary across multiple runs on instances with many
constraints. It is thus useful to investigate additional strategies to improve the
robustness of the algorithm. Second, to enhance the effectiveness of the repair
operator, different pseudo-utility ratios can be used in a combined way. Third,
the ideas of the diversity-preserving updating strategy and the probabilistic
application of local optimization are general and independent of the problem
studied in this work. Consequently, it would be interesting to check their effec-
tiveness and efficiency within other QPSO algorithms for MKP variants such
as those mentioned in the introduction as well as other binary optimization
problems (e.g., the set covering problem (Gao et al., 2015) and the maximum
diversity problem (Wu and Hao , 2013)).
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