
A study of two evolutionary/tabu search approaches for
the generalized max-mean dispersion problem

Xiangjing Laia, Jin-Kao Haob,c,∗, Fred Gloverd

aInstitute of Advanced Technology, Nanjing University of Posts and Telecommunications,
Nanjing 210023, China

bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, Cedex 01, France
cInstitut Universitaire de France, 1 Rue Descartes, 75231 Paris, France

dCollege of Engineering & Applied Science, University of Colorado, Boulder, Colorado
80309 USA

Expert Systems with Applications, https://doi.org/10.1016/j.eswa.2019.112856

Abstract

Evolutionary computing is a general and powerful framework for solving dif-
ficult optimization problems, including those arising in expert and intelligent
systems. In this work, we investigate for the first time two hybrid evolutionary
algorithms incorporating tabu search for solving the generalized max-mean dis-
persion problem (GMaxMeanDP) which has a variety of practical applications
such as web page ranking, community mining, and trust networks. The pro-
posed algorithms integrate innovative search strategies that help the search to
explore the search space effectively. We report extensive computational results
of the proposed algorithms on six types of 160 benchmark instances, demon-
strating their effectiveness and usefulness. In addition to the GMaxMeanDP,
the proposed algorithms can help to better solve other problems that can be
formulated as the GMaxMeanDP.
Keywords: Combinatorial optimization; Dispersion problems; Tabu search; Evo-
lutionary search; Heuristics.

1. Introduction

Many decision-making problems including those arising in expert and in-
telligent systems require finding a best subset of elements in a way that the
selected objects optimize a dispersion or diversity criterion. Formally, given a
set V = {1, 2, . . . , n} of n elements and the distances dij (i < j) between el-
ements, a dispersion or diversity problem involves selecting a subset M of V
such that an objective function defined over the distances between the elements
in M is optimized. According to whether a cardinality constraint is imposed

∗Corresponding author.
Email addresses: laixiangjing@gmail.com (Xiangjing Lai),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), glover@opttek.com (Fred Glover)

Preprint submitted to Elsevier August 4, 2019

on the subset M , the dispersion problems can be divided into two categories.
The first category where the cardinality of M is fixed to a given positive num-
ber m includes the maximum diversity problem (Aringhieri et al., 2011; Glover
et al., 1998; Palubeckis, 2007; Saboonchi et al., 2014; Wu and Hao, 2013), the
max–min diversity problem (Della Croce et al., 2009; Porumbel et al., 2011;
Resende et al., 2010), the minimum differential dispersion problem (Lai et al.,
2019; Mladenović et al., 2016; Wang et al., 2017; Zhou and Hao, 2017), and the
maximum min-sum dispersion problem (Amirgaliyeva et al., 2017; Aringhieri
et al., 2015; Lai et al., 2018; Prokopyev et al., 2009). The second category
where the cardinality of M is not fixed includes the Max-Mean dispersion prob-
lem (MaxMeanDP) (Brimberg et al., 2017; Della Croce et al., 2016; Lai and
Hao, 2016; Mart́ı and Sandoya, 2013) and the generalized Max-Mean dispersion
problem (GMaxMeanDP) (Prokopyev et al., 2009).

This work addresses the GMaxMeanDP that is one of four dispersion prob-
lems introduced in (Prokopyev et al., 2009) and can be described by means of
a weighted graph. Given a weighted complete graph G = (V,E,D,W), where

V is the set of n vertices, E is the set of n×(n−1)
2 edges, D represents the set

of positive, negative or zero edge weights dij (i 6= j), and W represents the set
of positive vertex weights wi (i = 1, 2, . . . , n), the GMaxMeanDP is to select
a subset M from V such that the weighted mean dispersion of the (complete)
subgraph induced by M is maximized. In related literature, the vertices are
also called the elements and the edge weights between vertices are called the
distances between the elements.

Formally, the GMaxMeanDP can be formulated as an unconstrained frac-
tional 0–1 combinatorial optimization problem with binary variables xi that
equal 1 if the element i is selected, and 0 otherwise (Prokopyev et al., 2009).

Maximize f(s) =

∑n−1
i=1

∑n
j=i+1 dijxixj∑n
i=1 wixi

(1)

xi ∈ {0, 1}, i = 1, 2, . . . , n (2)

The Max-Mean dispersion problem that has recently received substantial
attention in the literature (Brimberg et al., 2017; Carrasco et al., 2015; Della
Croce et al., 2016; Lai and Hao, 2016; Mart́ı and Sandoya, 2013) is a special
case of the GMaxMeanDP with wi = 1 for ∀i ∈ {1, 2, . . . , n}. As a result,
any algorithm for the GMaxMeanDP can be directly applied to the Max-Mean
dispersion problem, while the reverse is not true.

In addition to its theoretical significance as an NP-hard problem (Prokopyev
et al., 2009), the GMaxMeanDP has a variety of potential potential applications,
such as web page ranking (Kerchove and Dooren, 2008), community mining in
a signed social network (Yang et al., 2007), and trust networks (Carrasco et
al., 2015), among others. For example, the community mining problem in a
signed and weighted social network can be addressed by solving a series of
GMaxMeanDP problems with smaller and smaller sizes (Yang et al., 2007).
Given a signed social network G = (V,E,D,W), where D represents the set
of positive or negative edge weights dij (i 6= j), and a positive (or negative)

2

dij means that there exists an attractive (or repulsive) relationship between the
vertices i and j, and W represents the set of vertex weights wi (1 ≤ i ≤ n),
then a community corresponds to a high-quality solution of the corresponding
GMaxMeanDP (i.e., a subset of V) in G.

In spite of its importance and close relationship to other dispersion problems,
the GMaxMeanDP has surprisingly received little attention in the literature.
To the best of our knowledge, no heuristic or exact algorithm has ever been
proposed for solving the GMaxMeanDP, even though existing heuristic or exact
algorithms for the MaxMeanDP like those in (Brimberg et al., 2017; Della Croce
et al., 2016; Garraffa et al., 2017) could be adapted to the GMaxMeanDP. On the
other hand, previous studies (Benlic and Hao, 2015; Ghosh et al., 2019; Morra
et al., 2018; Ismkhan, 2017; Silva et al., 2017; Zhao et al., 2015) showed that
evolutionary computing is a particularly relevant approach for solving a number
of difficult combinatorial optimization problems. Given the NP-hard nature
of the GMaxMeanDP, evolutionary computing can be considered as a natural
approach to be investigated for solving the GMaxMeanDP. We enhance this
approach by forming two hybrid algorithms with tabu search, drawing on the
adaptive memory features of the latter to uncover superior solutions. Our work
is thus motivated by these observations with the purpose of proposing effective
solution methods for the considered problem. We summarize the contributions
of this work as follows.

• First, in terms of solution methods, we investigate the first perturbation-
based evolutionary algorithm dedicated to the GMaxMeanDP, which in-
tegrates a multi-neighborhood tabu search procedure and a perturbation
operator into the population-based framework. Additionally, we adapt
the state-of-the-art MaxMeanDP algorithm introduced in (Lai and Hao,
2016) to the GMaxMeanDP, where a crossover operator is used to gener-
ate offspring solutions and a tabu search procedure is employed for local
optimization. Given that solution method for solving the GMaxMeanDP
does not currently exist, this work fills an important gap in the literature.

• Second, we assess the computational performance of the proposed algo-
rithms on a set of 80 MaxMeanDP benchmark instances as well as on a set
of additional 80 GMaxMeanDP instances that we introduce in this work
and make publicly available. Our results provide a reference for perfor-
mance assessment of other solution methods for the GMaxMeanDP in the
future.

• Third, we analyze the effectiveness and time complexity of several key
components such as the neighborhood structures used by the tabu search
procedure and provide insights concerning their the impact on the behav-
ior of the algorithm.

• Fourth, given that the GMaxMeanDP is a general model able to formu-
late a variety of real-world applications, the proposed algorithms can be
advantageously applied to solve such practical problems.

3

The remainder of the paper is organized as follows. In the next section,
we describe the proposed algorithms. In Section 3, we assess and compare the
performance of the proposed algorithms based on the 160 benchmark instances.
We analyse in Section 4 the influence of a key parameter on the performance
of the perturbation-based evolutionary algorithm, and discuss the influence of
the neighborhood size on the performance of the tabu search methods. Finally,
Section 5 gives conclusions and provides some perspectives.

2. Two Hybrid Evolutionary Approaches for the GMaxMeanDP

In this section, we describe two hybrid evolutionary algorithms for solv-
ing the GMaxMeanDP. We first introduce the perturbation-based evolutionary
algorithm (PBEA) that employs a perturbation operator to generate new solu-
tions, and then describe briefly the memetic algorithm (denoted by MAMMDP∗)
which is adapted from one of the state-of-the-art MaxMeanDP algorithms (called
the MAMMDP algorithm (Lai and Hao, 2016)).

2.1. Perturbation Based Evolutionary Algorithm for the GMaxMeanDP

To reach a suitable tradeoff between the intensification and diversification of
the search process, the perturbation-based evolutionary algorithm (PBEA) uses
an effective tabu search procedure to intensify the search, a random perturbation
operator to diversify the search, and a population updating strategy to manage
the pool of elite solutions.

2.1.1. General Procedure

Algorithm 1 Perturbation based evolutionary algorithm (PBEA) for the
GMaxMeanDP
1: Input: The set V = {v1, v2, . . . , vn} of n elements, the associated distance matrix
D = [dij]n×n, the set W = {w1, w2, . . . , wn} of vertex weights, the population size
p, the timeout limit tmax.

2: Output: the best solution s∗ found
3: POP = {s1, . . . , sp} ← PopInitialization(G,p) /∗ Section 2.1.3 ∗/
4: s∗ ← arg max{f(si) : i = 1, . . . , p} /∗ s∗ denotes the best solution found ∗/
5: while time() < tmax do
6: Randomly select a solution s from POP
7: so ← Perturbation(s) /∗ Section 2.1.4 ∗/
8: so ← TabuSearch(so) /∗ Section 2.1.5 ∗/
9: if f(so) > f(s∗) then

10: s∗ ← so

11: end if
12: sw ← arg min{f(si) : i = 1, . . . , p}
13: if so does not exist in POP and f(so) > f(sw) then
14: POP ← POP ∪ {so} \ {sw}
15: end if
16: end while

4

As indicated in Algorithm 1, the proposed PBEA algorithm starts with an
initial population of p individuals (solutions) that are generated according to
the procedure described in Section 2.1.3 (line 3), and then performs a number of
iterations (lines 5–16) to improve the initial population. At each iteration, the
algorithm first selects randomly a solution s from the population, then slightly
changes the solution with the perturbation operator (Section 2.1.4), and finally
improves the perturbed solution by the tabu search procedure (Section 2.1.5).
After that, the improved solution so is used to update the population by using
a simple updating rule – the worst individual sw in the population is replaced
by so if so is distinct from any solution of the population and is better than sw;
otherwise so is discarded. The algorithm stops and the solution s∗ is returned
when the timeout limit (tmax) is reached.

2.1.2. Search Space and Evaluation Function

Since the GMaxMeanDP is an unconstrained binary optimization problem,
any n-dimensional binary vector is a feasible solution. Thus, the search space
to be explored by the proposed algorithm is given by

Ω = {(x1, x2, . . . , xn) : xi ∈ {0, 1}, 1 ≤ i ≤ n} (3)

Thus, the size of search space is equal to 2n, where n is the number of
elements in the problem. Additionally, the quality of a candidate solution s =
(x1, x2, ..., xn) ∈ Ω is given by its objective value f(s) in Eq. (1).

2.1.3. Population Initialization

Algorithm 2 Initial solution procedure

1: Input: An input instance G
2: Output: A random initial solution s = (x1, x2, . . . , xn)
3: for i← 1 to n do
4: s.xi ← Rand() mod 2 /* Assign to xi of s a random value in {0, 1} */
5: end for
6: s← TabuSearch(s) /∗ Section 2.1.5 ∗/
7: return s

An initial solution s is generated by randomly assigning each of its compo-
nents the value 0 or 1. Then, this random solution is improved by the tabu
search procedure (Section 2.1.5). We repeat this generation procedure p times
to obtain the initial population. The pseudo-code of this initialization procedure
is given in Algorithm 2.

2.1.4. Perturbation Operator

In order to diversify the search, the proposed algorithm uses a perturbation
operator to modify a parent solution that is randomly selected from the pop-
ulation. Specifically, we perform η × n random changes to the parent solution
and then return the resulting solution as the perturbed solution, where η is a

5

Algorithm 3 Perturbation operator

1: Input: Input solution s = (x1, x2, . . . , xn), the perturbation strength η × n
2: Output: a perturbed solution s
3: for l← 1 to η × n do
4: i← Rand() mod n /* Randomly pick a variable xi */
5: s.xi ← Rand() mod 2 /* Assign to xi of s a random value from {0, 1} */
6: end for
7: return s

parameter and η × n is called the perturbation strength. Each random change
involves first selecting a variable xi randomly and then assigning a random value
0 or 1 to the variable. As such, a large (small) value of η leads to more (fewer)
changes in the parent solution, thus inducing a strong (weak) diversification
effect. In practice, our experiments show that η = 0.4 is a suitable perturbation
strength for solving the instances studied in this work (see Section 4.1 for the
details). Equivalently, this perturbation operator changes the values of about
0.2× n randomly selected variables.

2.1.5. Tabu Search

Algorithm 4 TabuSearch(s0, N(s), f, Itermax)

1: Input: Input solution s0, neighborhood structure N(s), evaluation function f(s),
maximum number of iterations Itermax

2: Output: The best solution sb found in the current TS run
3: s← s0 /* s denotes the current solution */
4: sb ← s /* sb denotes the best solution found so far in the current TS run */
5: iter ← 0 /* iter denotes the current number of iterations */
6: repeat
7: Choose randomly a best eligible neighbor solution s′ ∈ N(s) /* Section 2.1.6 */

/* s′ is identified to be eligible if it is not forbidden by the tabu list or better than
sb */

8: s← s′

9: Update tabu list TabuTenure[n] with s
/* TabuTenure[n] is a n-dimensional vector, Section 2.1.8 */

10: if f(s) > f(sb) then
11: sb ← s,
12: end if
13: iter ← iter + 1
14: until iter = Itermax

15: return sb

The tabu search (TS) method is a popular metaheuristic for combinatorial
optimization (Glover and Laguna, 1997). Given a neighborhood structure (N)
(see Section 2.1.6) and the evaluation function f , our tabu search procedure per-
forms a number of iterations to improve the current solution. At each iteration,
the algorithm replaces the current solution s by a best eligible neighbor solution

6

(s
′ ∈ N(s)), and meanwhile records the underlying move (see Section 2.1.6) in

the tabu list to prevent the reverse move from being performed for the next tt
iterations, where tt is called the tabu tenure and is adjusted according to the
tabu list management strategy described in Section 2.1.8. In our TS method,
a neighbor solution is eligible if it is not forbidden by the tabu list or if it is
better than the best solution (sb) found so far in the current TS run. Finally,
the tabu search method stops when a maximum number (Itermax) of iterations
is reached. The general template of the TS method is provided in Algorithm 4,
and its components are explained in the next sections.

2.1.6. Neighborhood Structures

In this work, we investigate the following four neighborhood structures.
1) 1-flip neighborhood. With this basic 1-flip neighborhood (denoted

by N1), a neighbor solution can be obtained by changing the value of a single
variable xi to its complementary value 1 − xi. Clearly, this neighborhood N1

has a size of n, where n is the number of variables.
2) 2-flip neighborhood. The 2-flip neighborhood (denoted by N2) simul-

taneously changes the values of two variables xi and xj to their complementary
values to generate a neighbor solution. The neighborhood size of N2 is thus
equal to n(n− 1)/2.

3) Union neighborhood. The third neighborhood N3 is a combined neigh-
borhood that is the union of neighborhoods N1 and N2, i.e., N3 = N1 ∪ N2.
Thus, the size of N3 is equal to n+ n(n− 1)/2.

4) Reduced union neighborhood. The fourth neighborhood (denoted by
N4) is the union of the neighborhood N1 and a high-quality subset N∗2 of N2,
i.e., N4 = N1 ∪N∗2 . Specifically, given a solution s, the neighborhood N∗2 (s) is
defined by:

N∗2 (s) = {s ⊕ Flip < i, j > : i 6= j, {∆i,∆j} > ∆max − 0.05(∆max −∆min)}

where ∆max = maxl≤n∆l, ∆min = minl≤n∆l, ∆l represents the move value
(i.e., the change of the objective value) of flipping a single variable xl to its
complementary value, and Flip < i, j > represents a 2-flip move that simulta-
neously changes the values of variables xi and xj to their complementary values.

Clearly, a neighbor solution s
′ ∈ N∗2 can be obtained by consecutively perform-

ing two high-quality 1-flip moves from s. As a result, the size of N4 is given by
n+ |N∗2 | and varies dynamically during the search process.

In the proposed PBEA algorithm, we select N4 as the neighborhood struc-
ture of the tabu search procedure, since N4 is able to reach a desirable tradeoff
between computing efficiency and solution quality according to our computa-
tional experiments (see Section 4.2 for the details).

2.1.7. Fast Neighborhood Evaluation Method

To rapidly examine the neighborhood, we employ a fast incremental evalu-
ation method that ensures a high computational efficiency of the tabu search
procedure.

7

Following (Lai and Hao, 2016), our neighborhood evaluation method main-
tains an n-dimensional vector P = (p1, p2, . . . , pn) to rapidly calculate the move
value of the possible moves applicable to the solution s by means of 1-flip or 2-flip
operators, where the entry pi is defined as the sum of distances between the ele-
ment i and the selected elements in the current solution, i.e., pi =

∑
j∈M ;j 6=i dij ,

where M is the set of selected elements.
If a 1-flip move is performed, then the corresponding move value ∆i can be

easily calculated as follows:

∆i =

−f(s)wi
SM + wi

+
pi

SM + wi
, for xi = 0; (4)

f(s)wi
SM − wi

− pi
SM − wi

, for xi = 1; (5)

where f(s) is the objective value of the solution s and SM is the sum of
vertex weights of selected elements in s, i.e., SM =

∑
i∈M wi. Subsequently,

the vector P can be updated as follows:

pj =

pj + dij , for xi = 0, j 6= i; (6)

pj − dij , for xi = 1, j 6= i; (7)

pj , for j = i; (8)

If a 2-flip move is performed by simultaneously flipping variables xi and xj ,
then the corresponding move value ∆ij can be conveniently obtained by:

∆ij =

−f(s)(wi + wj) + pi + pj + dij
SM + wi + wj

, for xi = 0, xj = 0; (9)

f(s)(wi + wj)− pi − pj + dij
SM − wi − wj

, for xi = 1, xj = 1; (10)

f(s)(wi − wj) + pj − pi + 2dij
SM − wi + wj

, for xi = 1, xj = 0; (11)

f(s)(wj − wi) + pi − pj + 2dij
SM − wj + wi

, for xi = 0, xj = 1; (12)

where f(s) is the objective value of the solution s, SM =
∑
i∈M wi, and dij is the

distance between elements i and j. Subsequently, the vector P is consecutively
updated two times by formula (6-8), since one 2-flip move is composed of two
consecutively performed 1-flip moves.

As in (Lai and Hao, 2016), the vector P can be initialized in O(n2) time
at the beginning of the tabu search procedure, and updated in O(n) time after
each neighborhood transition.

2.1.8. Tabu List Management Strategy

The tabu list management strategy plays a key role in the performance of a
tabu search algorithm. In our case, we adopt a popular strategy in the literature
to periodically tune the tabu tenure tt.

8

In this strategy, the tabu tenure is given by a periodic step function defined
on the number of iterations. We denote the current iteration by iter, and denote
the tabu tenure of the current move by tt(iter). For each period, the tabu tenure
function is defined by a sequence of values (a1, a2, · · · , aq) and a sequence of
interval margins (b1, b2, · · · , bq+1), such that for any iter in [bi, bi+1−1] we define
tt(iter) = ai + rand(C), where rand(C) denotes a random integer between 0 to
C − 1, and C is a constant that is set to 3 in this work. The value of q is set
to 15, and (a)i=1,··· ,15 = Tmax

8 × (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1), where Tmax
is a parameter that is used to control the maximum tabu tenure. The interval
margins are then defined by b1 = 1, bi+1 = bi + 5ai (i ≤ 15).

For the 1-flip operator and the current number iter of iterations, if a variable
xi is flipped by setting xi ← (1−xi), then the variable xi is forbidden to change
in the following tt(iter) iterations. For a 2-flip move, if two variables xi and
xj are simultaneously flipped to their complementary values 1− xi and 1− xj ,
then both of these variables are forbidden to change in the following tt(iter)
iterations. On the other hand, a 2-flip move Flip < i, j > is considered to be
forbidden if and only if at least one variable is forbidden among the variables
xi and xj .

This tabu list management strategy is adapted from a method proposed in
(Galinier et al., 2011), whose effectiveness has been demonstrated for several
hard optimization problems, such as the graph partitioning problem (Galinier
et al., 2011), the maximum diversity problem (Wu and Hao, 2013), and the
Max-Mean dispersion problem (Lai and Hao, 2016). In principle, a small tabu
tenure leads usually to a strong search intensification while a large tabu tenure
favors search diversification. As such, the periodical change of the tabu tenure
among several small and large values provides a strategy to reach a desirable
balance between the intensification and diversification of the search.

2.2. Memetic Approach for the GMaxMeanDP

The memetic algorithm MAMMDP presented in (Lai and Hao, 2016) is a
state-of-the-art algorithm for solving the MaxMeanDP, which is a special case
of the GMaxMeanDP studied in this work. In order to verify the potential
merit of the MAMMDP approach for the GMaxMeanDP, we adapt MAMMDP
to the GMaxMeanDP by basically replacing its local search component with
the tabu search method in Section 2.1.5 in which the fast neighborhood N1

is adopted while keeping its other ingredients (e.g., crossover and pool updat-
ing) unchanged. We use MAMMDP∗ to denote this adapted algorithm for the
GMaxMeanDP. Thus, the main difference between the MAMMDP∗ and MAM-
MDP algorithms lies at their local search methods. In the local search method
of MAMMDP∗, in order to consider the weights of vertices, we employ an ex-
tended incremental neighborhood evaluation technique that uses Eqs. (4) and
(5) to calculate quickly the move values of neighborhood moves.

MAMMDP∗ is composed of four components: a population initialization pro-
cedure, a tabu search based optimization procedure, a crossover operator, and a
population updating rule. For the sake of completeness, the pseudo-code of the
MAMMDP∗ algorithm, which closely follows the MAMMDP algorithm in (Lai

9

Algorithm 5 Memetic Algorithm for the GMaxMeanDP (MAMMDP∗)

1: Input: The set V = {v1, v2, . . . , vn} of n elements and the associated distance matrix
D = [dij]n×n, the set W = {w1, w2, . . . , wn} of vertex weights, the population size
p, the timeout limit tmax.

2: Output: the best solution s∗ found
3: repeat
4: POP = {s1, . . . , sp} ← PopInitialization(V ,p) /∗ Section 2.1.3 ∗/
5: if the repeat loop is not performing its first execution then
6: sw ← arg min{f(si) : i = 1, . . . , p}
7: POP ← POP ∪ {s∗} \ {sw}
8: end if
9: s∗ ← arg max{f(si) : i = 1, . . . , p} /∗ s∗ keeps the best solution found ∗/

10: PairSet← {(si, sj) : 1 ≤ i < j ≤ p}
11: while PairSet 6= ∅ and time() < tmax do
12: Randomly pick a solution pair (si, sj) ∈ PairSet
13: so ← CrossoverOperator(si, sj) /∗ uniformly random crossover operator ∗/
14: so ← TabuSearch(so) /∗ Section 2.1.5 ∗/
15: if f(so) > f(s∗) then
16: s∗ ← so

17: end if
18: PairSet← PairSet \ {(si, sj)}
19: sw ← arg min{f(si) : i = 1, . . . , p}
20: if so dose not exist in POP and f(so) > f(sw) then
21: POP ← POP ∪ {so} \ {sw}
22: PairSet← PairSet \ {(sw, sk) : sk ∈ POP}
23: PairSet← PairSet ∪ {(so, sk) : sk ∈ POP}
24: end if
25: end while
26: until time() ≥ tmax

10

and Hao, 2016), is shown in Algorithm 5, where POP = {s1, . . . , sp} denotes
the current population, so denotes the new solution generated by the crossover
operator or by the tabu search procedure, s∗ and sw denote respectively the best
solution found so far and the worst solution in POP , and PairSet represents
the set of solution pairs that have not been used by the crossover operator in
POP .

MAMMDP∗ starts with the initial population generated by the initialization
procedure in Section 2.1.3 and then performs a number of generations until the
timeout limit tmax is reached, i.e., time() ≥ tmax. At each generation, a solution
pair (si, sj) is randomly chosen from PairSet (line 12), and then used to gen-
erate a new solution so by the standard uniform crossover operator (Syswerda,
1989) (line 13). The quality of so is improved by the tabu search procedure
(line 14). Subsequently, s∗, POP and PairSet are accordingly updated (lines
15–24). Finally, to diversify the search, the population POP and the associated
PairSet are re-initialized each time PairSet becomes empty, while keeping s∗

in the new population (lines 4–10).

3. Computational Experiments

We perform computational experiments on six types of 160 benchmark in-
stances to assess the proposed algorithms. The benchmark instances, the exper-
imental protocol, and the computational results are presented in the following
subsections.

3.1. Benchmark Instances

For the GMaxMeanDP, no vertex-weighted benchmark instance is available
in the literature. To evaluate the performance of our algorithms, we generated
four types of instances, each containing 20 vertex-weighted instances 1. For each
type, we generated 10 instances with n = 3000 and 10 instances with n = 5000,
where the distances between elements and the vertex weights were randomly
selected from a given set with the uniform probability distribution. Given that
any MaxMeanDP instance can be viewed as a special GMaxMeanDP instance
in which all vertex weights take the value of 1, we additionally used two types
of 80 MaxMeanDP instances 2, which were used in (Brimberg et al., 2017) or
(Lai and Hao, 2016) to assess the MaxMeanDP algorithms. The characteristics
of these 160 instances are as follows:

• Type I (20 instances): The distances dij between elements were ran-
domly generated in the interval [−10, 10], and the vertex weights wi (i =
1, 2, . . . , n) were randomly generated in the interval [1, 5].

1Available at http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html
2Available at http://www.info.univ-angers.fr/pub/hao/maxmeandp.html and http://

www.mi.sanu.ac.rs/~nenad/edp/

11

• Type II (20 instances): The distances dij between elements were randomly
taken in the interval [−10,−5] ∪ [5, 10], and the vertex weights wi (i =
1, 2, . . . , n) were randomly generated in the interval [1, 6].

• Type III (20 instances): The distances dij between elements were ran-
domly selected from the set {−1, 0, 1}, and the vertex weights wi (i =
1, 2, . . . , n) were randomly generated in the interval [0.9, 1.1].

• Type IV (20 instances): The distances dij between elements were ran-
domly taken from the set {−10, 0, 10}, and the vertex weights wi (i =
1, 2, . . . , n) were uniformly set to 1.

• Type MDPI (40 instances): This set of MaxMeanDP instances includes
10 instances for each n ∈ {1500, 2000, 3000, 5000}. The distances between
elements were uniformly randomly generated in the interval [−10, 10], and
the vertex weights wi (i = 1, 2, . . . , n) were uniformly set to 1.

• Type MDPII (40 instances): This set of MaxMeanDP instances includes
10 instances for each n ∈ {1500, 2000, 3000, 5000}. The distances between
elements were randomly generated in the interval [−10,−5] ∪ [5, 10], and
the vertex weights wi (i = 1, 2, . . . , n) were uniformly set to 1.

3.2. Experimental Protocol

Table 1: Settings of parameters
Parameters Section Description Values

p 2.1.1 size of population 20

Itermax 2.1.5 maximum number of iterations for the tabu search 5× 104

Tmax 2.1.8 the maximum tabu tenure 80 + Rand(100)

η 2.1.4 strength of the perturbation operator 0.4

The PBEA algorithm adopts four parameters, including the population size
p, the maximum number Itermax of iterations and the maximum tabu tenure
Tmax for the tabu search procedure, and the coefficient η used to control the
perturbation strength, whose values are empirically set as in Table 1. The
MAMMDP∗ algorithm has three parameters: the population size p which was
set to 10 following the setting of original MAMMDP algorithm in (Lai and
Hao, 2016), Itermax and Tmax whose values were set as in Table 1. In addi-
tion, both MAMMDP∗ and PBEA were implemented in C and compiled by
the g++ compiler with the -O3 option, and the corresponding experiments
were carried out on a computing platform with an Intel E5-2670 processor
(2.5 GHz and 2G RAM), running the Linux operating system. The source
codes of the proposed MAMMDP∗ and PBEA algorithms will be available at
http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html.

In addition, due to the stochastic feature of both algorithms, PBEA and
MAMMDP∗ were independently run 20 times to solve each instance based on
the same time limit tmax for each run, where tmax was set to 100, 500 and

12

1000 seconds for the instances with n ≤ 2000, n = 3000 and n = 5000,
respectively. Finally, we employed a commercial software called LocalSolver
(https://www.localsolver.com/) as our reference algorithm, since no direct
reference algorithm is available in the literature for the GMaxMeanDP. In our
experiment, we ran LocalSolver once for each instance with the same time limit
tmax as our proposed algorithms on a computer with a Intel i7-6700 processor
(3.4 GHz CPU and 4G RAM), running Windows 10 operating system, since we
only obtained an academic license of LocalSolver on this computer.

3.3. Computational Results and Comparisons on the MaxMeanDP Instances

Table 2: Computational results and comparisons on the 40 MaxMeanDP instances with n =
1500 or 2000 from the literature. The best fbest values among all the results are indicated in
boldface.

VNS LocalSolver MAMMDP∗ (this work) PBEA (this work)
Instance fbest f fbest favg SR t(s) fbest favg SR t(s)

MDPI1 1500 136.26 66.6568 136.535222 136.535222 20/20 14.21 136.535222 136.535222 20/20 18.75
MDPI2 1500 138.00 70.7226 138.341482 138.341482 20/20 5.38 138.341482 138.341482 20/20 8.04
MDPI3 1500 138.91 66.8269 139.200599 139.200599 20/20 3.17 139.200599 139.200599 20/20 3.28
MDPI4 1500 139.81 68.0931 140.166920 140.166920 20/20 5.65 140.166920 140.166920 20/20 4.67
MDPI5 1500 136.47 66.8041 137.129630 137.129630 20/20 7.73 137.129630 137.129630 20/20 12.65
MDPI6 1500 136.22 65.6676 136.508768 136.508768 20/20 7.05 136.508768 136.508768 20/20 10.13
MDPI7 1500 137.65 63.4105 137.971032 137.971032 20/20 2.49 137.971032 137.971032 20/20 3.20
MDPI8 1500 138.02 67.9306 138.728444 138.728444 20/20 13.56 138.728444 138.728444 20/20 13.95
MDPI9 1500 136.30 66.9695 136.495674 136.495674 20/20 21.39 136.495674 136.495674 20/20 28.95
MDPI10 1500 140.33 66.0519 140.333159 140.333159 20/20 3.47 140.333159 140.333159 20/20 3.90
MDPI1 2000 158.03 55.3813 158.588217 158.588217 20/20 10.40 158.588217 158.588217 20/20 11.79
MDPI2 2000 162.91 54.2658 163.939616 163.939616 20/20 19.11 163.939616 163.939616 20/20 31.71
MDPI3 2000 158.98 51.9819 159.570786 159.545090 13/20 39.86 159.570786 159.528479 6/20 38.94
MDPI4 2000 159.14 52.6407 160.185217 160.185217 20/20 28.46 160.185217 160.184761 17/20 54.41
MDPI5 2000 156.11 53.8956 156.805331 156.758147 10/20 41.25 156.805331 156.776147 13/20 55.30
MDPI6 2000 161.61 52.1516 161.839100 161.839100 20/20 11.30 161.839100 161.839100 20/20 13.72
MDPI7 2000 157.58 53.8223 158.336131 158.336131 20/20 9.79 158.336131 158.336131 20/20 7.93
MDPI8 2000 161.43 53.6872 161.446931 161.446931 20/20 20.03 161.446931 161.446931 20/20 22.30
MDPI9 2000 159.15 54.9125 160.190374 160.190374 20/20 29.21 160.190374 160.187769 17/20 44.28
MDPI10 2000 160.90 53.6239 161.638099 161.638099 20/20 7.60 161.638099 161.638099 20/20 4.99
MDPII1 1500 181.67 94.7889 182.089413 182.089413 20/20 6.33 182.089413 182.089413 20/20 8.23
MDPII2 1500 185.48 98.7439 186.243869 186.243869 20/20 6.78 186.243869 186.243869 20/20 4.66
MDPII3 1500 181.55 93.3692 182.142902 182.142902 20/20 3.13 182.142902 182.142902 20/20 4.76
MDPII4 1500 184.91 92.6379 185.557302 185.500190 8/20 42.93 185.557302 185.514675 9/20 35.93
MDPII5 1500 190.15 101.379 190.860529 190.860529 20/20 2.25 190.860529 190.860529 20/20 1.65
MDPII6 1500 183.14 99.3436 183.575336 183.575336 20/20 3.05 183.575336 183.575336 20/20 1.90
MDPII7 1500 179.34 93.6409 179.820242 179.820242 20/20 13.93 179.820242 179.820242 20/20 18.43
MDPII8 1500 186.60 96.7090 186.602804 186.602804 20/20 2.74 186.602804 186.602804 20/20 3.30
MDPII9 1500 181.43 97.7207 181.918814 181.918814 20/20 17.85 181.918814 181.918814 20/20 14.75
MDPII10 1500 182.70 99.0640 183.384692 183.384692 20/20 32.37 183.384692 183.384692 20/20 26.01
MDPII1 2000 208.85 75.3906 209.845273 209.845273 20/20 8.13 209.845273 209.845273 20/20 11.24
MDPII2 2000 218.19 81.7475 218.404860 218.404860 20/20 16.03 218.404860 218.404860 20/20 22.40
MDPII3 2000 209.57 69.9621 210.819147 210.807415 19/20 15.52 210.819147 210.819147 20/20 18.05
MDPII4 2000 211.99 74.7847 212.424859 212.424859 20/20 16.15 212.424859 212.424859 20/20 25.81
MDPII5 2000 215.33 75.5558 216.088722 216.088722 20/20 9.90 216.088722 216.088722 20/20 8.96
MDPII6 2000 210.61 73.9974 211.769151 211.769151 20/20 10.88 211.769151 211.769151 20/20 6.88
MDPII7 2000 209.65 77.1172 209.780651 209.780651 20/20 19.95 209.780651 209.780651 20/20 25.74
MDPII8 2000 212.43 80.1608 212.575432 212.575432 20/20 17.03 212.575432 212.575432 20/20 27.75
MDPII9 2000 214.61 72.2590 215.007759 215.007759 20/20 15.87 215.007759 215.007759 20/20 12.92
MDPII10 2000 210.06 74.5694 210.735749 210.735436 15/20 28.22 210.735749 210.735561 17/20 28.19

Avg. 173.30 73.2110 173.839956 173.836405 16.44 173.839956 173.837022 19.25
#Best 2 0 40 40
p-value 3.569e-

8
3.569e-
8

1.0 0.6121

The first experiment aims to assess and compare the proposed PBEA algo-
rithm and the adapted MAMMDP∗ algorithm on the MaxMeanDP instances
(i.e., the unweighted GMaxMeanDP instances), since the MaxMeanDP is a spe-
cial case of the GMaxMeanDP in which all vertex weights take the value of 1
and any algorithm for the GMaxMeanDP problem can be directly applied to the
MaxMeanDP problem as well. The experimental results on the 40 medium-sized
instances with n = 1500, 2000 and the 40 large instances with n = 3000, 5000

13

Table 3: Computational results and comparisons on the 40 large MaxMeanDP instances with
n = 3000 or 5000 from the literature. The dominating fbest and favg values among the
compared results are indicated in boldface.

LocalSolver MAMMDP∗ (this work) PBEA (this work)
Instance f fbest favg SR t(s) fbest favg SR t(s)

MDPI1 3000 72.8274 189.048965 189.048965 20/20 54.08 189.048965 189.048965 20/20 75.99
MDPI2 3000 72.8196 187.387292 187.387292 20/20 50.59 187.387292 187.387292 20/20 81.62
MDPI3 3000 71.1284 185.666806 185.642604 5/20 310.42 185.666806 185.640815 4/20 173.32
MDPI4 3000 67.3049 186.163727 186.159939 19/20 165.94 186.163727 186.156150 18/20 121.87
MDPI5 3000 68.5859 187.545515 187.545515 20/20 56.64 187.545515 187.545515 20/20 124.46
MDPI6 3000 71.5833 189.431257 189.431257 20/20 36.28 189.431257 189.431257 20/20 71.08
MDPI7 3000 65.0592 188.242583 188.242583 20/20 90.13 188.242583 188.242583 20/20 76.43
MDPI8 3000 68.5892 186.796814 186.796814 20/20 36.91 186.796814 186.796814 20/20 75.72
MDPI9 3000 70.9764 188.231264 188.228646 19/20 65.43 188.231264 188.231264 20/20 84.02
MDPI10 3000 69.1644 185.682511 185.572559 4/20 105.14 185.682511 185.632187 11/20 197.56
MDPII1 3000 97.6705 252.320433 252.320433 20/20 46.18 252.320433 252.320433 20/20 90.08
MDPII2 3000 101.229 250.062137 250.062137 20/20 127.57 250.062137 250.060127 16/20 248.03
MDPII3 3000 104.731 251.906270 251.906270 20/20 99.94 251.906270 251.906270 20/20 142.28
MDPII4 3000 99.7977 253.941007 253.936173 14/20 187.38 253.941007 253.939366 16/20 208.28
MDPII5 3000 103.008 253.260423 253.260302 15/20 190.57 253.260423 253.260278 14/20 256.84
MDPII6 3000 104.409 250.677750 250.677750 20/20 49.99 250.677750 250.677750 20/20 58.46
MDPII7 3000 100.621 251.134413 251.134413 20/20 55.07 251.134413 251.134413 20/20 99.94
MDPII8 3000 105.536 252.999648 252.999648 20/20 74.56 252.999648 252.999648 20/20 83.54
MDPII9 3000 100.811 252.425770 252.425770 20/20 45.77 252.425770 252.425770 20/20 114.67
MDPII10 3000 99.4736 252.396590 252.396590 20/20 16.30 252.396590 252.396590 20/20 15.39
MDPI1 5000 NA 240.141212 240.070982 9/20 464.66 240.162535 240.015046 1/20 644.69
MDPI2 5000 NA 241.827401 241.744421 5/20 360.20 241.827401 241.735443 2/20 495.52
MDPI3 5000 NA 240.890819 240.865427 15/20 410.53 240.890819 240.812439 11/20 466.86
MDPI4 5000 NA 240.997186 240.951055 4/20 592.65 240.997186 240.955450 4/20 656.19
MDPI5 5000 NA 242.480129 242.471643 18/20 269.86 242.480129 242.454732 14/20 612.06
MDPI6 5000 NA 240.322850 240.304443 14/20 33.30 240.376038 240.281210 1/20 585.48
MDPI7 5000 NA 242.820139 242.771514 4/20 490.60 242.820139 242.771003 1/20 604.73
MDPI8 5000 NA 241.194990 241.154430 13/20 111.35 241.194990 241.138956 5/20 568.30
MDPI9 5000 NA 239.760560 239.566397 7/20 139.82 239.681094 239.498462 3/20 536.47
MDPI10 5000 NA 243.385487 243.345183 8/20 548.48 243.473734 243.334446 1/20 521.23
MDPII1 5000 NA 322.235897 322.177715 4/20 298.40 322.235897 322.148548 2/20 581.82
MDPII2 5000 NA 327.301910 326.996573 5/20 729.93 327.301910 326.970214 4/20 551.71
MDPII3 5000 NA 324.813456 324.792109 9/20 290.15 324.813456 324.785177 3/20 482.32
MDPII4 5000 NA 322.227657 322.182679 6/20 422.89 322.237586 322.126451 2/20 705.12
MDPII5 5000 NA 322.491211 322.355484 3/20 506.35 322.491211 322.365463 4/20 556.09
MDPII6 5000 NA 322.728902 322.638339 3/20 101.37 322.950488 322.629351 2/20 678.45
MDPII7 5000 NA 322.850438 322.773052 8/20 606.48 322.850438 322.787011 9/20 415.61
MDPII8 5000 NA 323.112120 323.009085 6/20 285.51 323.112120 322.948455 2/20 555.26
MDPII9 5000 NA 323.543775 323.299190 5/20 774.36 323.543775 323.182444 1/20 574.49
MDPII10 5000 NA 324.519908 324.456763 17/20 440.56 324.519908 324.335221 12/20 500.37

Avg. NA 251.124181 251.077554 243.56 251.132051 251.062725 342.31
#Best 0 36 39
p-value NA 0.173 3.649e-3

14

from the MDPI and MDPII sets are summarized in Tables 2 and 3respectively.
For this experiment, in addition to LocalSolver, we also adopted as another ref-
erence method the VNS algorithm, which is one of the state of the art MaxMe-
anDP algorithms (Brimberg et al., 2017). Please note that when it is applied
to the MaxMeanDP, the MAMMDP∗ algorithm becomes MAMMDP presented
in (Lai and Hao, 2016).

In Table 2 (for the 40 medium-sized instances with n = 1500 or 2000), the
first column gives the names of instances, columns 2-3 report respectively the
best results from the VNS algorithm and the results of LocalSolver. Columns
4–7 report the results of the MAMMDP∗ algorithm over 20 runs, including the
best objective value (fbest), the average objective value (favg), the success rate
(SR) to reach the associated fbest value, and the average run time (t(s)) in
seconds to obtain its final result. Columns 8–11 report the results of the PBEA
algorithm with the same information as in the columns 4–7. The row Avg.
shows the average result for each associated column. The row #Best shows the
number of instances for which an algorithm finds the best results in terms of
fbest among the compared algorithms. Finally, to verify the statistical difference
between the dedicated PBEA algorithm and other algorithms in terms of fbest
and favg, the p-values from the Wilcoxon signed-rank tests are given in the
last row of the tables, where a p-value less than 0.05 means that there exists
a significant difference between the compared results. Moreover, the results of
LocalSolver are compared with the average results of PBEA algorithm, since
LocalSolver was run once for each instance.

Table 3 reports the results on the 40 large instances with n = 3000 and 5000
in the same way as in Table 2, where ’NA’ indicates that LocalSolver failed to
provide a result due to the memory limitation of the computer used. We ignore
the VNS algorithm in Table 3 since the results on these large instances are not
reported in (Brimberg et al., 2017) for this method.

From Table 2, we observe that both the proposed PBEA algorithm and the
adapted MAMMDP∗ algorithm dominate the VNS algorithm and the general-
purpose LocalSolver software on the medium-sized MaxMeanDP instances. Com-
pared with the dedicated VNS algorithm designed for MaxMeanDP in (Brim-
berg et al., 2017), MAMMDP∗ and PBEA obtain better results in terms of fbest
for 38 out of 40 instances and the same results for the two remaining instances.
It is worth noting that for these instances the results of VNS algorithms were
obtained in (Brimberg et al., 2017) by using a time limit of tmax = n that is
much longer than the time used in this work (tmax = 100). Compared with
LocalSolver, the dominance of MAMMDP∗ and PBEA is even more evident for
all tested instances. The small p-value confirms that there is a significant differ-
ence between the proposed PBEA algorithm and these two reference algorithms
in terms of fbest. On the other hand, MAMMDP∗ and PBEA perform similarly
on these instances. First, both algorithms obtain the same fbest values for all
40 instances. Second, both algorithms have a high success rate (SR = 100%) for
most instances, while the computation time to obtain their final results is less
than 1.0 minute for any instance. Moreover, the large p-values indicate that
there does not exist a significant difference between the results of MAMMDP∗

15

and PBEA in terms of fbest and favg. These outcomes imply that MAMMDP∗

and PBEA are both highly efficient for solving the medium-sized MaxMeanDP
instances, and the crossover operator of the MAMMDP∗ algorithm and the per-
turbation operator of the PBEA algorithm have a similar diversification ability.

Table 3 shows that the PBEA algorithm and the adapted MAMMDP∗ al-
gorithm significantly outperform the LocalSolver software on these large-scale
instances with n = 3000, 5000. Between MAMMDP∗ and PBEA, one observes
that they obtain the same result in fbest for 35 out of the 40 instances. Even
if PBEA performs marginally better in terms of fbest with four better fbest re-
sults for PBEA against one better fbest result for MAMMDP∗ (p-value > 0.05),
MAMMDP∗ is better in terms of favg with 21 better favg results against six
better favg results for PBEA with a p-value < 0.05. Finally, the success rates
decrease significantly for both MAMMDP∗ and PBEA as the size of instance
increases, indicating the high difficulty of these largest instances.

In summary, this experiment indicates that when they are applied to the
MaxMeanDP which is a special case of GMaxMeanDP, both the PBEA al-
gorithm and the adapted MAMMDP∗ algorithm perform very competitively
compared to the general-purpose software LocalSolver and the dedicated VNS
algorithm. In the next section, we assess the MAMMDP∗ and PBEA algorithm
for solving the GMaxMeanDP for which they were designed.

3.4. Computational Results and Comparisons on the Weighted Instances

We now turn our attention to the assessment of MAMMDP∗ and PBEA on
the set of 40 large GMaxMeanDP for which these algorithms are designed. We
report in Tables 4 and 5 the computational results of MAMMDP∗ and PBEA on
the instances with n = 3000, 5000 respectively. Table 4 also includes the results
of LocalSolver while the instances with n = 5000 are too large for LocalSolver
on our computer. In these tables, the same information as in the last section is
reported.

We observe from Table 4 that both the MAMMDP∗ and PBEA algorithms
largely dominate the general-purpose LocalSolver software in terms of solution
quality. For each instance, MAMMDP∗ and PBEA obtain a much better so-
lution than LocalSolver. On the other hand, the MAMMDP∗ and PBEA al-
gorithms have a similar performance for these instances with n = 3000. First,
the two algorithms obtain the same result in term of fbest for 39 out of 40 in-
stances (p-value> 0.05). In terms of favg, PBEA has a slightly better result
than MAMMDP∗ (121.959884 vs. 121.958056) (p-value > 0.05). Furthermore,
both algorithms report the same fbest value with a success rate of 100% for the
28 instances, indicating that they are highly robust for these instances. These
outcomes indicate that the PBEA and MAMMDP∗ algorithms perform similarly
on the GMaxMeanDP instances with n = 3000.

Table 5 shows that the overall performances of both algorithms are globally
quite similar: 157.856608 for MAMMDP∗ vs 157.853553 for PBEA in terms of
the average of the fbest values and 157.825271 for MAMMDP∗ vs 157.831891 for
PBEA in terms of the average of the favg values (p-values > 0.05). Meanwhile,
we observe that the success rates of both algorithms are below 50% for more

16

Table 4: Computational results and comparisons on the 40 large GMaxMeanDP instances
(weighted instances) with n = 3000. The dominating fbest and favg values among the com-
pared results are indicated in boldface.

LocalSolver MAMMDP∗ (this work) PBEA (this work)
Instance f fbest favg SR t(s) fbest favg SR t(s)

I 3000 1 22.7528 80.743467 80.743467 20/20 44.45 80.743467 80.743467 20/20 92.53
I 3000 2 25.1306 84.201027 84.201027 20/20 17.82 84.201027 84.201027 20/20 46.71
I 3000 3 24.4089 81.630082 81.630082 20/20 6.62 81.630082 81.630082 20/20 9.34
I 3000 4 25.8106 80.234334 80.234334 20/20 29.61 80.234334 80.234334 20/20 28.07
I 3000 5 24.5990 81.218062 81.218043 19/20 108.59 81.218062 81.218062 20/20 138.28
I 3000 6 23.5651 83.197618 83.197618 20/20 37.99 83.197618 83.197618 20/20 64.05
I 3000 7 24.0235 81.732080 81.732080 20/20 2.73 81.732080 81.732080 20/20 4.50
I 3000 8 22.5924 80.624273 80.624273 20/20 79.61 80.624273 80.624273 20/20 83.53
I 3000 9 25.3955 80.574438 80.574438 20/20 7.59 80.574438 80.574438 20/20 10.76
I 3000 10 25.0323 83.397670 83.397670 20/20 48.63 83.397670 83.397670 20/20 138.84
II 3000 1 31.2938 99.055143 99.055143 20/20 15.04 99.055143 99.055143 20/20 12.66
II 3000 2 32.1219 105.574146 105.574146 20/20 29.08 105.574146 105.574146 20/20 63.27
II 3000 3 29.8576 101.299271 101.299271 20/20 3.31 101.299271 101.299271 20/20 6.71
II 3000 4 28.9800 101.079824 101.079824 20/20 8.41 101.079824 101.079824 20/20 8.03
II 3000 5 32.9165 100.029225 100.029225 20/20 84.01 100.029225 100.028322 18/20 241.64
II 3000 6 29.1903 101.978783 101.978783 20/20 5.80 101.978783 101.978783 20/20 4.56
II 3000 7 31.5154 100.189718 100.189718 20/20 6.43 100.189718 100.189718 20/20 17.36
II 3000 8 32.0808 101.160428 101.160428 20/20 3.36 101.160428 101.160428 20/20 4.52
II 3000 9 30.5477 98.665034 98.665034 20/20 39.15 98.665034 98.665034 20/20 59.96
II 3000 10 31.4593 104.896612 104.896612 20/20 4.40 104.896612 104.896612 20/20 11.86
III 3000 1 10.8747 27.847334 27.847334 20/20 102.65 27.847334 27.847334 20/20 108.70
III 3000 2 10.9677 27.776796 27.774430 7/20 214.29 27.776796 27.774272 4/20 120.08
III 3000 3 11.8823 27.946519 27.944592 17/20 147.23 27.946519 27.946519 20/20 157.85
III 3000 4 10.6279 27.816272 27.816272 20/20 81.41 27.816272 27.816272 20/20 70.66
III 3000 5 11.3929 27.727167 27.727167 20/20 115.40 27.727167 27.727167 20/20 160.51
III 3000 6 10.9057 27.686986 27.677719 8/20 136.73 27.691682 27.686631 4/20 131.25
III 3000 7 11.3789 27.642060 27.642060 20/20 74.29 27.642060 27.642060 20/20 158.84
III 3000 8 11.0592 27.736643 27.733842 5/20 287.29 27.736643 27.734079 6/20 184.58
III 3000 9 11.4658 27.745820 27.744637 19/20 139.88 27.745820 27.745820 20/20 77.88
III 3000 10 10.7100 27.561083 27.560295 19/20 157.43 27.561083 27.561083 20/20 92.74
IV 3000 1 136.7020 278.039443 278.037117 19/20 137.79 278.039443 278.027811 15/20 151.80
IV 3000 2 131.0830 276.539877 276.530847 18/20 216.82 276.539877 276.539691 18/20 238.37
IV 3000 3 127.1120 277.334878 277.334878 20/20 31.02 277.334878 277.334878 20/20 40.40
IV 3000 4 131.6190 278.956422 278.956422 20/20 42.08 278.956422 278.956422 20/20 61.36
IV 3000 5 130.2750 276.595238 276.595238 20/20 152.28 276.595238 276.595238 20/20 108.00
IV 3000 6 127.5350 280.721533 280.721533 20/20 55.32 280.721533 280.721533 20/20 60.47
IV 3000 7 132.0830 273.653396 273.653396 20/20 84.47 273.653396 273.653396 20/20 169.85
IV 3000 8 128.6810 276.358447 276.358447 20/20 70.96 276.358447 276.358447 20/20 81.56
IV 3000 9 133.6610 274.864865 274.821773 17/20 159.03 274.864865 274.838571 18/20 241.92
IV 3000 10 132.8980 276.428571 276.411918 17/20 220.16 276.428571 276.407810 16/20 151.95

Avg. 49.4047 121.961632 121.958056 92.85 121.961632 121.959884 90.40
#Best 0 39 40
p-value 3.569e-8 0.3173 0.3078

17

Table 5: Computational results and comparisons on the 40 large GMaxMeanDP instances
(weighted instances) with n = 5000. The dominating fbest and favg values among the com-
pared results are indicated in boldface.

MAMMDP∗ (this work) PBEA (this work)
Instance fbest favg SR t(s) fbest favg SR t(s)

I 5000 1 104.827798 104.803953 7/20 480.14 104.818572 104.779182 1/20 603.16
I 5000 2 104.053704 104.053704 20/20 154.85 104.053704 104.045180 10/20 433.77
I 5000 3 104.803139 104.794625 12/20 469.36 104.796184 104.794027 14/20 577.26
I 5000 4 107.326793 107.300838 10/20 500.22 107.326793 107.302907 1/20 550.42
I 5000 5 105.195058 105.191547 16/20 494.22 105.195058 105.188447 3/20 617.42
I 5000 6 103.651929 103.635670 11/20 397.00 103.651929 103.637288 2/20 572.61
I 5000 7 105.452981 105.427086 12/20 258.28 105.452981 105.452647 17/20 614.86
I 5000 8 104.686123 104.686123 20/20 212.67 104.686123 104.682843 4/20 610.63
I 5000 9 102.894130 102.891559 19/20 336.93 102.894130 102.869843 8/20 517.80
I 5000 10 108.205395 108.205395 20/20 123.79 108.205395 108.205205 19/20 269.50
II 5000 1 130.041711 129.903022 15/20 30.82 129.988730 129.890200 1/20 574.84
II 5000 2 127.790529 127.790529 20/20 195.76 127.790529 127.785800 6/20 418.03
II 5000 3 129.223564 129.223564 20/20 88.77 129.223564 129.220797 18/20 412.31
II 5000 4 132.381785 132.381785 20/20 46.93 132.381785 132.381785 20/20 121.94
II 5000 5 131.291478 131.273801 11/20 445.48 131.262016 131.262016 20/20 201.13
II 5000 6 128.199403 128.199403 20/20 56.60 128.199403 128.198547 16/20 421.87
II 5000 7 128.901011 128.901011 20/20 241.46 128.901011 128.869417 3/20 450.94
II 5000 8 129.742428 129.742428 20/20 245.07 129.742428 129.741596 18/20 511.32
II 5000 9 127.593892 127.585685 18/20 388.89 127.593892 127.543106 4/20 505.00
II 5000 10 134.691155 134.691155 20/20 22.95 134.691155 134.691155 20/20 234.79
III 5000 1 35.820098 35.809506 6/20 279.75 35.820098 35.813498 4/20 554.74
III 5000 2 36.231529 36.214299 6/20 271.56 36.231529 36.216595 3/20 718.32
III 5000 3 36.036199 36.030249 2/20 165.20 36.034200 36.032858 5/20 605.56
III 5000 4 36.480238 36.462380 12/20 391.82 36.480238 36.477088 16/20 685.53
III 5000 5 36.150412 36.141578 3/20 436.69 36.150412 36.145352 4/20 549.78
III 5000 6 36.031067 36.025122 12/20 367.06 36.031067 36.029319 18/20 531.48
III 5000 7 35.945148 35.932945 6/20 323.86 35.945224 35.941077 2/20 651.21
III 5000 8 35.977378 35.958775 1/20 1397.13 35.977378 35.964061 3/20 646.35
III 5000 9 36.174472 36.147119 5/20 407.26 36.174472 36.146802 1/20 616.11
III 5000 10 36.450138 36.449973 18/20 174.13 36.450138 36.449407 13/20 457.63
IV 5000 1 357.412342 357.299214 8/20 495.33 357.412342 357.355749 11/20 667.19
IV 5000 2 363.733876 363.653599 7/20 241.50 363.733876 363.703214 5/20 641.44
IV 5000 3 361.401490 361.233101 10/20 141.84 361.401490 361.316492 7/20 657.13
IV 5000 4 365.320648 365.221758 7/20 379.34 365.320648 365.271635 12/20 607.23
IV 5000 5 361.628709 361.619700 15/20 251.79 361.628709 361.627548 11/20 699.02
IV 5000 6 358.013986 357.931943 5/20 370.20 357.976519 357.924349 6/20 740.73
IV 5000 7 353.071271 352.935036 2/20 956.15 353.071271 352.952883 2/20 690.22
IV 5000 8 359.201624 359.159182 17/20 377.93 359.201624 359.177581 14/20 521.58
IV 5000 9 361.105769 361.016744 5/20 475.21 361.121622 361.088689 6/20 621.83
IV 5000 10 361.123900 361.085726 6/20 179.52 361.123900 361.099469 5/20 718.69

Avg. 157.856608 157.825271 331.84 157.853553 157.831891 545.03
#Best 38 34
p-value 9.289e-2 2.204e-1

18

than 15 instances, which shows that these instances are much harder than the
instances with n = 3000. Interestingly, we observe that MAMMDP∗ performs
better than PBEA for the instances of Types I and II, while the reverse is true
for the Type III and IV instances. This indicates that these two algorithms are
complementary for solving these hard instances.

4. Analysis and Discussion

In this section, we perform additional experiments to analyze the influ-
ence of two key ingredients of the PBEA algorithm (i.e., the perturbation
strength and the neighborhood structure of the tabu search procedure), while for
MAMMDP∗, an analysis of its underlying MAMMDP algorithm can be found
in (Lai and Hao, 2016).

4.1. Sensitivity Analysis of an Important Parameter of the PBEA algorithm

Table 6: Influence of the parameter η on the performance of the PBEA algorithm.
favg

Instance/η 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

I 5000 1 104.80 104.81 104.80 104.80 104.80 104.79 104.81 104.78 104.80 104.80
I 5000 2 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05
I 5000 3 104.80 104.80 104.80 104.79 104.80 104.80 104.80 104.79 104.80 104.80
I 5000 4 107.31 107.30 107.32 107.31 107.31 107.30 107.31 107.30 107.32 107.31
I 5000 5 105.19 105.19 105.19 105.19 105.19 105.20 105.20 105.19 105.20 105.19
I 5000 6 103.64 103.64 103.64 103.64 103.64 103.64 103.65 103.64 103.64 103.64
I 5000 7 105.45 105.45 105.44 105.45 105.44 105.45 105.44 105.45 105.45 105.45
I 5000 8 104.69 104.69 104.69 104.69 104.69 104.69 104.69 104.68 104.69 104.69
I 5000 9 102.89 102.89 102.89 102.89 102.89 102.89 102.89 102.87 102.89 102.89
I 5000 10 108.21 108.21 108.21 108.21 108.21 108.21 108.21 108.21 108.21 108.21
II 5000 1 129.94 129.96 129.95 129.92 129.93 129.96 129.91 129.89 129.93 129.92
II 5000 2 127.79 127.79 127.79 127.79 127.79 127.79 127.79 127.79 127.79 127.79
II 5000 3 129.22 129.22 129.22 129.22 129.22 129.22 129.22 129.22 129.22 129.22
II 5000 4 132.38 132.38 132.38 132.38 132.38 132.38 132.38 132.38 132.38 132.38
II 5000 5 131.28 131.28 131.27 131.27 131.27 131.28 131.27 131.26 131.27 131.26
II 5000 6 128.20 128.20 128.20 128.20 128.20 128.20 128.20 128.20 128.20 128.20
II 5000 7 128.90 128.90 128.90 128.90 128.90 128.90 128.90 128.87 128.90 128.90
II 5000 8 129.74 129.74 129.74 129.74 129.74 129.74 129.74 129.74 129.74 129.74
II 5000 9 127.59 127.57 127.57 127.57 127.58 127.58 127.58 127.54 127.57 127.59
II 5000 10 134.69 134.69 134.69 134.69 134.69 134.69 134.69 134.69 134.69 134.69
III 5000 1 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81
III 5000 2 36.21 36.21 36.21 36.21 36.20 36.21 36.21 36.22 36.21 36.21
III 5000 3 36.03 36.03 36.03 36.03 36.03 36.03 36.03 36.03 36.03 36.03
III 5000 4 36.46 36.46 36.45 36.45 36.45 36.46 36.46 36.48 36.46 36.47
III 5000 5 36.14 36.14 36.14 36.14 36.14 36.14 36.14 36.15 36.14 36.14
III 5000 6 36.02 36.02 36.02 36.02 36.02 36.03 36.02 36.03 36.02 36.02
III 5000 7 35.94 35.94 35.94 35.94 35.94 35.94 35.94 35.94 35.94 35.94
III 5000 8 35.96 35.96 35.96 35.96 35.96 35.96 35.96 35.96 35.96 35.96
III 5000 9 36.14 36.15 36.14 36.14 36.13 36.13 36.15 36.15 36.14 36.14
III 5000 10 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45
IV 5000 1 357.27 357.33 357.29 357.28 357.28 357.26 357.29 357.36 357.28 357.23
IV 5000 2 363.67 363.65 363.66 363.66 363.62 363.66 363.65 363.70 363.63 363.65
IV 5000 3 361.21 361.21 361.20 361.21 361.23 361.20 361.21 361.32 361.19 361.27
IV 5000 4 365.20 365.26 365.18 365.18 365.17 365.25 365.24 365.27 365.19 365.18
IV 5000 5 361.61 361.62 361.62 361.62 361.62 361.62 361.62 361.63 361.62 361.61
IV 5000 6 357.88 357.88 357.87 357.87 357.87 357.91 357.93 357.92 357.87 357.91
IV 5000 7 352.86 352.91 352.91 352.86 352.77 352.92 352.95 352.95 352.91 352.92
IV 5000 8 359.15 359.14 359.15 359.14 359.15 359.20 359.16 359.18 359.14 359.15
IV 5000 9 360.99 360.99 361.01 361.00 361.02 361.02 361.00 361.09 361.04 361.03
IV 5000 10 361.05 361.08 361.05 361.06 361.04 361.06 361.05 361.10 361.04 361.04

Avg 157.82 157.83 157.82 157.82 157.82 157.83 157.82 157.83 157.82 157.82

The perturbation operator is an essential ingredient of the PBEA algorithm.
To understand the influence of its perturbation strength (i.e., η × n) on the
performance of the algorithm, we carried out an experiment based on the 40
large GMaxMeanDP instances with n = 5000, where the algorithm was run
20 times with each value of η ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

19

on each instance. Recall that given a solution composed of n components the
perturbation operator assigns randomly a value from {0, 1} to η × n variables,
thus there are about 0.5 × η × n variables whose values are changed by the
perturbation operator. The results are reported in Table 6, where column 1 and
row 2 give respectively the name of instances and the setting of parameter η,
columns 2–11 report the average objective values (favg) over 20 runs for each η
value, and the row ’Avg’ indicates the average results for each column.

Table 6 shows that the different settings of η yielded very similar results
in terms of favg for each instance tested, which means that the performance
of PBEA algorithm is not sensitive to the setting of η due to the strong local
search ability of its underlying tabu search procedure as well as the features of
the GMaxMeanDP problem. Moreover, we observe that the settings η = 0.1,
0.3, and 0.4 lead to slightly better results in terms of Avg than other settings.
Hence, the default value of η is set to 0.4 for the PBEA algorithm.

4.2. Influence of the Neighborhoods on the Performance of Tabu Search

Table 7: Comparative results of tabu search procedures with different neighborhoods under
the same maximum number of iterations. Each instance was solved 20 times by each tabu
search variant, and the average objective values and the run times are recorded.

Average objective value Average computing time (s)

Instance N1 N4 N2 N3 N1 N4 N2 N3
I 3000 1 80.370223 80.331709 80.419228 80.397729 1.70 2.48 1196.98 1211.05
I 3000 2 84.160923 84.175919 84.132061 84.156005 1.70 2.62 1234.33 1181.27
I 3000 3 81.543666 81.563254 81.493745 81.567133 1.71 2.36 1178.35 1281.49
I 3000 4 80.009048 80.044790 80.074550 80.099239 1.70 2.40 1219.60 1294.26
I 3000 5 81.105796 81.086351 81.028486 81.129050 1.70 2.26 1289.05 1177.42
I 3000 6 83.122833 83.139438 83.053114 83.136528 1.77 2.25 1178.04 1190.21
I 3000 7 81.68306 81.727730 81.683873 81.724791 1.69 2.25 1167.27 1173.33
I 3000 8 80.525859 80.526347 80.477204 80.528973 1.70 2.37 1253.14 1192.05
I 3000 9 80.556881 80.560794 80.502281 80.556804 1.78 2.51 1179.42 1193.18
I 3000 10 83.326823 83.320350 83.315442 83.320493 1.70 2.37 1200.32 1194.71
II 3000 1 98.980639 99.000333 98.969911 98.980702 1.74 2.30 1177.97 1193.19
II 3000 2 105.448977 105.488372 105.387800 105.468175 1.74 2.36 1280.10 1159.60
II 3000 3 101.099149 101.134966 101.043572 101.198633 1.70 2.59 1172.63 1163.89
II 3000 4 101.074346 101.078024 101.064486 101.075638 1.77 2.41 1202.44 1156.11
II 3000 5 99.876333 99.893006 99.789128 99.869741 1.71 2.42 1256.77 1243.89
II 3000 6 101.970764 101.968581 101.869966 101.961902 1.71 2.30 1163.45 1155.65
II 3000 7 100.132899 100.123789 100.103272 100.158365 1.70 2.33 1171.30 1194.30
II 3000 8 101.105064 101.027986 100.970914 101.154872 1.69 2.26 1167.71 1241.09
II 3000 9 98.601737 98.596904 98.508047 98.598148 1.70 2.27 1273.98 1172.29
II 3000 10 104.862917 104.887103 104.795615 104.874885 1.68 2.30 1183.17 1164.99
III 3000 1 27.754071 27.774755 27.818733 27.781418 1.69 2.53 1298.58 1355.77
III 3000 2 27.702657 27.719219 27.757757 27.716593 1.73 2.48 1397.21 1349.85
III 3000 3 27.881157 27.885209 27.920852 27.897084 1.69 2.36 1317.78 1367.02
III 3000 4 27.723692 27.732678 27.766265 27.744262 1.72 2.27 1293.15 1320.68
III 3000 5 27.66126 27.643878 27.699754 27.671768 1.69 2.37 1416.65 1370.78
III 3000 6 27.612341 27.627724 27.638232 27.631653 1.68 2.34 1431.19 1302.33
III 3000 7 27.580934 27.582994 27.605799 27.574759 1.74 2.34 1303.56 1354.12
III 3000 8 27.671951 27.680622 27.712513 27.693571 1.69 2.55 1297.23 1365.41
III 3000 9 27.650248 27.651881 27.685241 27.665465 1.70 2.52 1419.31 1372.90
III 3000 10 27.462855 27.471166 27.503728 27.480884 1.78 2.61 1306.16 1311.41
IV 3000 1 277.297445 277.456078 277.707822 277.411484 1.70 2.32 1309.75 1369.06
IV 3000 2 275.569955 275.505513 275.964659 275.865817 1.70 2.33 1303.08 1368.02
IV 3000 3 276.736029 277.062846 277.089373 276.904170 1.70 2.24 1319.46 1379.99
IV 3000 4 278.244348 278.299395 278.576349 278.460311 1.75 2.37 1391.38 1382.73
IV 3000 5 275.912872 275.856499 276.179065 276.011616 1.69 2.36 1319.15 1386.32
IV 3000 6 279.908391 280.232102 280.348491 280.295156 1.68 2.31 1437.05 1357.70
IV 3000 7 272.736927 272.878628 273.156411 272.960018 1.73 2.48 1312.67 1373.88
IV 3000 8 275.456754 275.566789 275.983281 275.651022 1.70 2.56 1427.62 1403.40
IV 3000 9 273.611056 273.878003 274.185110 273.944759 1.75 2.43 1306.62 1492.63
IV 3000 10 275.58143 275.532812 275.907729 275.621588 1.69 2.31 1315.50 1356.68

#Better 28 23 33 0 0 0
#Equal 0 0 0 0 0 0
#Worse 12 17 7 40 40 40

As described in Algorithm 4, at each iteration of the tabu search algorithms,
a best eligible neighbor solution is selected to replace the current solution by

20

Table 8: Comparative results of tabu search procedures with different neighborhoods under
the same time limit. Each instance was solved 20 times by each tabu search variant, and the
average objective values are recorded. The best fbest values among the compared results are
indicated in boldface.

favg
Instance tmax(s) N1 N4 N2 N3
I 3000 1 2.5 80.249099 80.311231 11.721149 11.721149
I 3000 2 2.5 84.162707 84.162944 12.370702 12.370702
I 3000 3 2.5 81.543361 81.536433 14.916785 14.916785
I 3000 4 2.5 80.106844 80.014370 12.227146 12.227146
I 3000 5 2.5 81.116207 81.090353 15.303211 15.303211
I 3000 6 2.5 83.081651 83.098734 11.820082 11.820082
I 3000 7 2.5 81.698899 81.715287 13.997985 13.997985
I 3000 8 2.5 80.509067 80.523652 14.891707 14.891707
I 3000 9 2.5 80.557968 80.564241 14.067301 14.067301
I 3000 10 2.5 83.325346 83.339849 10.676445 10.676445
II 3000 1 2.5 98.977606 98.997774 12.915757 12.915757
II 3000 2 2.5 105.442076 105.446369 12.575737 12.575737
II 3000 3 2.5 101.196340 101.099364 12.540325 12.540325
II 3000 4 2.5 101.078750 101.073721 17.414740 17.414740
II 3000 5 2.5 99.898393 99.865010 14.157223 14.157223
II 3000 6 2.5 101.974963 101.955398 13.611427 13.611427
II 3000 7 2.5 100.132530 100.131676 12.576563 12.576563
II 3000 8 2.5 101.081766 100.999474 12.955339 12.955339
II 3000 9 2.5 98.566209 98.565474 12.533706 12.533706
II 3000 10 2.5 104.882068 104.883430 11.974704 11.974704
III 3000 1 2.5 27.760076 27.747686 6.015289 6.015289
III 3000 2 2.5 27.690291 27.713241 4.333629 4.333629
III 3000 3 2.5 27.882708 27.892154 4.663547 4.663547
III 3000 4 2.5 27.717461 27.721817 4.703571 4.703571
III 3000 5 2.5 27.650975 27.660587 4.752437 4.752437
III 3000 6 2.5 27.626892 27.619878 4.267233 4.267233
III 3000 7 2.5 27.572748 27.558271 4.498055 4.498055
III 3000 8 2.5 27.682396 27.662442 4.441804 4.441804
III 3000 9 2.5 27.641488 27.658272 4.584740 4.584740
III 3000 10 2.5 27.439402 27.464877 4.591576 4.591576
IV 3000 1 2.5 277.438126 277.103842 47.790044 47.790044
IV 3000 2 2.5 275.520943 275.601493 44.924906 44.924906
IV 3000 3 2.5 276.956653 276.880232 48.493625 48.493625
IV 3000 4 2.5 278.319177 278.030400 46.031313 46.031313
IV 3000 5 2.5 275.669572 275.722372 44.559275 44.559275
IV 3000 6 2.5 280.009358 280.102139 50.117318 50.117318
IV 3000 7 2.5 272.933195 272.763686 44.694693 44.694693
IV 3000 8 2.5 275.364275 275.436477 58.228575 58.228575
IV 3000 9 2.5 273.757565 273.852615 45.895074 45.895074
IV 3000 10 2.5 275.490623 275.465413 61.333437 61.333437

#Best 19 21 0 0

21

Table 9: Comparison between the PBEA algorithms with the neighborhoods N1 and N4 on
the set of 40 GMaxMeanDP instances with n = 3000. The dominating results between two
algorithms are indicated in bold both in terms of fbest and favg

PBEA∗(N1) PBEA(N4)
Instance fbest favg SR t(s) fbest favg SR t(s)

I 3000 1 80.743467 80.743467 20/20 107.21 80.743467 80.743467 20/20 92.53
I 3000 2 84.201027 84.201027 20/20 35.87 84.201027 84.201027 20/20 46.71
I 3000 3 81.630082 81.630082 20/20 15.60 81.630082 81.630082 20/20 9.34
I 3000 4 80.234334 80.234334 20/20 43.26 80.234334 80.234334 20/20 28.07
I 3000 5 81.218062 81.218004 17/20 182.29 81.218062 81.218062 20/20 138.28
I 3000 6 83.197618 83.197618 20/20 78.91 83.197618 83.197618 20/20 64.05
I 3000 7 81.732080 81.732080 20/20 5.31 81.732080 81.732080 20/20 4.50
I 3000 8 80.624273 80.623660 19/20 130.81 80.624273 80.624273 20/20 83.53
I 3000 9 80.574438 80.574438 20/20 10.83 80.574438 80.574438 20/20 10.76
I 3000 10 83.397670 83.397670 20/20 132.95 83.397670 83.397670 20/20 138.84
II 3000 1 99.055143 99.055143 20/20 19.81 99.055143 99.055143 20/20 12.66
II 3000 2 105.574146 105.574146 20/20 73.35 105.574146 105.574146 20/20 63.27
II 3000 3 101.299271 101.299271 20/20 5.97 101.299271 101.299271 20/20 6.71
II 3000 4 101.079824 101.079824 20/20 9.76 101.079824 101.079824 20/20 8.03
II 3000 5 100.029225 100.028216 15/20 257.77 100.029225 100.028322 18/20 241.64
II 3000 6 101.978783 101.978783 20/20 6.25 101.978783 101.978783 20/20 4.56
II 3000 7 100.189718 100.189718 20/20 20.30 100.189718 100.189718 20/20 17.36
II 3000 8 101.160428 101.160428 20/20 5.97 101.160428 101.160428 20/20 4.52
II 3000 9 98.665034 98.665034 20/20 45.85 98.665034 98.665034 20/20 59.96
II 3000 10 104.896612 104.896612 20/20 9.17 104.896612 104.896612 20/20 11.86
III 3000 1 27.847334 27.846822 19/20 92.23 27.847334 27.847334 20/20 108.70
III 3000 2 27.776796 27.774430 5/20 99.81 27.776796 27.774272 4/20 120.08
III 3000 3 27.946519 27.946519 20/20 146.48 27.946519 27.946519 20/20 157.85
III 3000 4 27.816272 27.816272 20/20 82.58 27.816272 27.816272 20/20 70.66
III 3000 5 27.727167 27.726868 18/20 150.04 27.727167 27.727167 20/20 160.51
III 3000 6 27.691682 27.683984 4/20 144.90 27.691682 27.686631 4/20 131.25
III 3000 7 27.642060 27.642060 20/20 137.72 27.642060 27.642060 20/20 158.84
III 3000 8 27.736643 27.733845 5/20 151.96 27.736643 27.734079 6/20 184.58
III 3000 9 27.745820 27.742271 17/20 88.43 27.745820 27.745820 20/20 77.88
III 3000 10 27.561083 27.561083 20/20 101.94 27.561083 27.561083 20/20 92.74
IV 3000 1 278.039443 278.023159 13/20 159.32 278.039443 278.027811 15/20 151.80
IV 3000 2 276.539877 276.539784 19/20 228.20 276.539877 276.539691 18/20 238.37
IV 3000 3 277.334878 277.334878 20/20 61.11 277.334878 277.334878 20/20 40.40
IV 3000 4 278.956422 278.956422 20/20 70.76 278.956422 278.956422 20/20 61.36
IV 3000 5 276.595238 276.592466 19/20 123.03 276.595238 276.595238 20/20 108.00
IV 3000 6 280.721533 280.721533 20/20 66.67 280.721533 280.721533 20/20 60.47
IV 3000 7 273.653396 273.653396 20/20 143.06 273.653396 273.653396 20/20 169.85
IV 3000 8 276.358447 276.358447 20/20 102.80 276.358447 276.358447 20/20 81.56
IV 3000 9 274.864865 274.807248 15/20 201.57 274.864865 274.838571 18/20 241.92
IV 3000 10 276.428571 276.381189 11/20 164.19 276.428571 276.407810 16/20 151.95

Avg 121.961632 121.958056 92.85 121.961632 121.959884 90.40
#Better 0 2 0 12
#Equal 40 26 40 26
#Worse 0 12 0 2
p-value 1.0 3.51e-3

22

examining the whole neighborhood. As such, for each iteration, a larger neigh-
borhood usually offers a greater chance to encounter a neighbor solution of high
quality, but requires a larger computational effort. Hence, we face the challenge
of identifying an appropriate neighborhood structure to enable the resulting al-
gorithm to reach a good tradeoff between solution quality and computing speed.

To check the influence of the neighborhoods on the tabu search algorithm and
select a proper neighborhood for our tabu search algorithm, we carried out an
experiment based on the 40 instances with n = 3000. Using the neighborhoods
N1, N2, N3 (= N1 ∪ N2), N4(= N1 ∪ N∗2) described in Section 2.1.6 as the
neighborhood structure and setting the parameter Tmax to 100, we obtain four
tabu search algorithms. Given the stochastic nature of these algorithms, we
solved each instance 20 times by each of these algorithms, and recorded the
average computing times and average objective values. The stopping condition
was given by the maximum number Itermax of iterations, which was set to
5 × 104 in this experiment. The results of this experiment are summarized in
Table 7. The first column of the table gives the names of instances. Columns
2–5 report the average objective values over 20 runs for the four tabu search
algorithms, and columns 6–9 report the average computing times consumed for
each algorithm. The rows ’#Better’, ’#Equal’ and ’#Worse’ show the number
of instances for which the associated neighborhood obtains a better, equal, or
worse result compared to the neighborhood N1.

Table 7 shows that the four tabu search algorithms obtained similar results in
terms of the average objective value, implying that the four neighborhoods have
a similar search ability when the same number of iterations is used. Nevertheless,
compared to the neighborhood N1, the three other neighborhoods N2, N3 and
N4 yielded a slightly better result for 28, 23, and 33 instances, respectively. In
addition, the multi-neighborhood tabu search methods (with N3 or N4) yielded
a better result than those using a single basic neighborhood (i.e., N1 or N2)
in terms of #Better, and hence the combined use of multiple complementary
neighborhoods enhanced the search ability of our methods in the case that the
tabu search procedures employ the same Itermax as the stopping condition.
On the other hand, Table 7 indicates a significant difference among the four
neighborhoods in terms of the computing time. First, the times required to
examine the neighborhoods N1 and N4 are much smaller than those required to
examine other two neighborhoods, since N1 and N4 are much smaller than N2

and N3 and the move values (i.e., the change of objective value) of a flip or swap
move can be calculated in O(1) (see Section 2.1.7). In addition, we observe that
the examination of the neighborhoods N2 and N3 is very time-consuming due to
their large sizes. Finally, the speed of examining the neighborhood N4 is slightly
slower to that of examining N1 but is much faster than that of examining N2

and N3.
To assess and compare the effectiveness of the above four neighborhoods

based on the same time limit, we carried out another experiment on the 40
instances mentioned above, where each instance was solved 20 times by each
tabu search algorithm, and the stopping criterion was a time limit tmax = 2.5
seconds. The experimental results are reported in Table 8, where the first two

23

columns give the names of instances and the time limit used (tmax), columns 3–6
report the average objective value (favg) over 20 runs for the four algorithms,
respectively, and the row ’#Best’ shows the number of instances for which the
associated algorithm yields the best result in favg.

Table 8 shows that the algorithms with the neighborhood N1 or N4 performs
much better than those with the neighborhood N2 or N3. When comparing N1

and N4, we observe that the two corresponding tabu search algorithms ob-
tain similar results in ’#Best’, i.e., with the best results in favg for 19 and 21
instances, respectively. This finding further shows the merit of small neighbor-
hoods for the tabu search algorithms.

To further compare the effectiveness of the neighborhoods N1 and N4 within
the proposed PBEA algorithm, we first created a variant of PBEA (called
PBEA∗) by replacing the neighborhood N4 with the neighborhood N1 and
keeping other ingredients unchanged. Then, we carried out an experiment with
PBEA and PBEA∗ on the 40 GMaxMeanDP instances with n = 3000, where
both algorithms were performed 20 times on each instance according to the
experimental protocol in Section 3.2. The results are summarized in Table 9,
where the rows ’#Better’, ’#Equal’ and ’#Worse’ show the number of instances
for which the associated algorithm obtains a better, equal, or worse result com-
pared to the other algorithm.

Table 9 shows that the PBEA and PBEA∗ algorithms have a similar perfor-
mance both in fbest and the success rate. Specifically, both algorithms reached
the best known result for all instances tested. However, regarding the average
objective value (favg) over 20 runs, PBEA slightly outperformed PBEA∗ . For
12 and 2 out of 40 instances, PBEA obtained a better and worse result in terms
of favg compared to PBEA∗, respectively, while matching the results of PBEA∗

for the remaining instances. This outcome indicates that the neighborhood N4

is superior to the neighborhood N1 on the tested instances. On this basis we
have selected the neighborhood N4 as the neighborhood structure of the tabu
search procedure for the proposed PBEA algorithm.

5. Conclusions

The generalized max-mean dispersion problem (GMaxMeanDP) is a gener-
alization of the popular NP-hard max-mean dispersion problem (MaxMeanDP).
Contrary to the MaxMeanDP which has been studied intensively in the past,
the GMaxMeanDP has received little research effort until now and no practical
solution method has been ever proposed for it. To fill the gap in the literature
produced by the absence of a solution method for this important problem, we in-
vestigate for the first time two population-based heuristic algorithms for solving
the GMaxMeanDP. The dedicated perturbation based evolutionary algorithm
(PBEA) combines a tabu search procedure for solution improvement, a simple
perturbation operator to diversify the search process and a population to record
the elite solutions found during the search. The other algorithm (MAMMDP∗)
is a simple adaptation of the state-of-the-art memetic algorithm called MAM-

24

MDP for the MaxMeanDP, which uses a crossover operator to generate new
starting solutions for its tabu search improvement procedure.

We performed extensive experiments of our two algorithms on six types of
160 instances with n ∈ {1500, 2000, 3000, 5000}, leading to the following obser-
vations. First, an effective algorithm such as MAMMDP for the MaxMeanDP
can be easily converted to an effective algorithm for the GMaxMeanDP. Second,
for the GMaxMeanDP, the simple perturbation operator used in PBEA plays a
similar role with respect to the crossover operator used in MAMMDP∗. Third,
the two proposed algorithms are complementary since there are instances that
are better solved either by MAMMDP∗ or by PBEA. Fourth, these algorithms
designed for the GMaxMeanDP also perform very well on the special MaxMe-
anDP. Fifth, for the tabu search method designed for the GMaxMeanDP, a
small and cost-effective neighborhood proves to be highly efficient.

Since the GMaxMeanDP can formulate various real-world applications (e.g.,
web page ranking (Kerchove and Dooren, 2008), community mining in a signed
social network (Yang et al., 2007) and trust networks (Carrasco et al., 2015)),
the proposed algorithms can be used to handle such practical problems as well.
The availability of the source codes of our algorithms will certainly facilitate
such applications. More generally, the approach of using an effective tabu
search procedure combined with the evolutionary computing framework can
be applied to solve other dispersion problems such as the max-mean disper-
sion problem that has recently received widespread attention. Our design for
PBEA and MAMMDP∗ can be adapted to other binary optimization prob-
lems like max-cut/max-bisection (Benlic and Hao, 2013; Ma et al., 2017; Wu
et al., 2015). Finally, combining the present algorithms with other approaches
like path relinking (Glover, 1998) and learning strategies like opposition-based
learning (Mahdavi et al., 2018), and diversification-based learning (Glover and
Hao, 2018) provides other interesting possibilities for future research.

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions
which helped us to improve the paper. This work was partially supported
by the Natural Science Foundation of Jiangsu Province of China (Grant No.
BK20170904), the National Natural Science Foundation of China (Grant No.
61703213), six talent peaks project in Jiangsu Province (Grant No. RJFW-
011), and NUPTSF (Grant Nos. NY217154 and RK043YZZ18004).

References

Amirgaliyeva, Z., Mladenović, N., Todosijević, R. & Urošević, D. (2017). Solving
the maximum min-sum dispersion by alternating formulations of two different
problems. European Journal of Operational Research 260, 444-459.

Aringhieri, R. & Cordone, R. (2011). Comparing local search metaheuristics for
the maximum diversity problem. Journal of the Operational Research Society
62, 266–280.

25

Aringhieri, R., Cordone, R. & Grosso A. (2015). Construction and improvement
algorithms for dispersion problems. European Journal of Operational Research
242(1), 21–33.

Benlic, U. & Hao, J.K. (2013). Breakout local search for the max-cut problem.
Engineering Applications of Artificial Intelligence 26(3),1162–1173.

Benlic, U. & Hao, J.K. (2015). Memetic search for the quadratic assignment
problem. Expert Systems with Applications 42, 584–595.

Brimberg, J., Mladenović, N., Todosijević, R. & Urošević D. (2017). Less is
more: Solving the max-mean diversity problem with variable neighborhood
search. Information Sciences 382,179–200.

Carrasco, R., Anthanh, P.T., Gallego, M., Gortázar, F., Duarte, A. & Mart́ı, R.
(2015). Tabu search for the max-mean dispersion problem. Knowledge Based
System 85, 256–264.

Della Croce, F., Grosso, A. & Locatelli, M. (2009). A heuristic approach for the
max-min diversity problem based on max-clique. Computers & Operations
Research 36(8), 2429–2433.

Della Croce, F., Garraffa, M. & Salassa, F. (2016). A hybrid three-phase ap-
proach for the max-mean dispersion problem. Computers & Operations Re-
search 71, 16–22.

Galinier, P., Boujbel, Z., Fernandes & M.C., 2011, An efficient memetic al-
gorithm for the graph partitioning problem. Annals of Operations Research
191(1), 1–22.

Garraffa, M., Della Croce, F. & Salassa, F. (2017). An exact semidefinite pro-
gramming approach for the max-mean dispersion problem. Journal of Com-
binatorial Optimization 34, 1–23.

Ghosh, M., Begum, S., Sarkar, R., Chakraborty, D. & Maulik, U. (2019). Recur-
sive Memetic Algorithm for gene selection in microarray data. Expert Systems
with Applications 116, 172–185.

Glover, F. (1998). A template for scatter search and path relinking. Lecture
Notes in Computer Science 1363, 13–54.

Glover, F. & Hao, J.K. (2018). Diversification-based learning in computing and
optimization. Journal of Heuristics DOI: https://doi.org/10.1007/s10732-
018-9384-y.

Glover, F. & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers
Boston.

Glover, F., Kuo, C.C. & Dhir, K.S. (1998). Heuristic algorithms for the max-
imum diversity problem. Journal of Information and Optimization Sciences
19(1), 109–132.

26

Ismkhan, H. (2017). Effective three-phase evolutionary algorithm to handle the
large-scale colorful traveling salesman problem. Expert Systems with Applica-
tions 67, 148–162.

Kerchove, C. & Dooren, P.V. (2008). The page trust algorithm: how to rank
web pages when negative links are allowed? Proceedings SIAM International
Conference on Data Mining, pp. 346–352.

Lai, X.J. & Hao, J.K. (2016) A tabu search based memetic search algorithm
for the max-mean dispersion problem. Computers & Operations Research 72,
118–127.

Lai, X.J., Yue, D., Hao, J.K. & Glover, F. (2018). Solution-based tabu search for
the maximum min-sum dispersion problem. Information Sciences 441, 79–94.

Lai, X.J., Hao, J.K. Glover, F. & Yue, D. (2019). Intensification-driven tabu
search for the minimum differential dispersion problem. Knowledge-Based Sys-
tems 167, 68–86.

Ma, F., Hao, J.K. & Wang, Y. (2017). An effective iterated tabu search for the
maximum bisection problem. Computers & Operations Research 81, 78–89.

Mahdavi, S., Rahnamayan, S. & Deb, K. (2018). Opposition based learning: A
literature review. Swarm and Evolutionary Computation 39, 1–23.

Mart́ı, R., & Sandoya, F. (2013). GRASP and path relinking for the equitable
dispersion problem. Computers & Operations Research 40(12), 3091–3099.

Mladenović, N., Todosijević, R. & Urošević, D. (2016). Less is more: Basic
variable neighborhood search for minimum differential dispersion problem.
Information Sciences 326, 160–171.

Morra, L., Coccia, N. & Cerquitelli T. (2018). Optimization of computer aided
detection systems: An evolutionary approach. Expert Systems with Applica-
tions 100, 145–156.

Palubeckis, G. (2007). Iterated tabu search for the maximum diversity problem.
Applied Mathematics and Computation 189(1), 371–383.

Porumbel, D.C., Hao, J.K. & Glover, F. (2011). A simple and effective algorithm
for the MaxMin diversity problem. Annals of Operations Research 186(1),
275–293.

Prokopyev, O.A., Kong, N. & Martinez-Torres, D.L. (2009). The equitable dis-
persion problem. European Journal of Operational Research 197(1), 59–67.

Resende, M.G.C., Mart́ı, R., Gallego, M. & Duarte, A. (2010). GRASP and
path relinking for the max–min diversity problem. Computers & Operations
Research 37(3), 498–508.

27

Saboonchi, B., Hansen, P. & Perron, S. (2014). MaxMinMin p-dispersion prob-
lem: A variable neighborhood search approach. Computers & Operations Re-
search 52, 251–259.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. Proceedings of
the 3rd International Conference on Genetic Algorithms, pp. 2–9, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Silva, J.D.A., Hruschka, E.R. & Gama, J. (2017). An evolutionary algorithm for
clustering data streams with a variable number of clusters. Expert Systems
with Applications 67, 228–238.

Wang, Y., Wu, Q. & Glover, F. (2017). Effective metaheuristic algorithms for the
minimum differential dispersion problem. European Journal of Operational
Research 258, 829–843.

Wu, Q. & Hao, J.K. (2013). A hybrid metaheuristic method for the maximum
diversity problem. European Journal of Operational Research 231(2), 452–464.

Wu, Q., Wang, Y. & Lü, Z. (2015). A tabu search based hybrid evolutionary
algorithm for the max-cut problem. Applied Soft Computing 34, 827–837.

Yang, B., Cheung, W. & Liu J. (2007). Community mining from signed so-
cial networks. IEEE Transactions on Knowledge & Data Engineering 19(10),
1333–1348.

Zhao, H., Xu, W. & Jiang, R. (2015). The Memetic algorithm for the optimiza-
tion of urban transit network. Expert Systems with Applications 42, 3760–
3773.

Zhou, Y. & Hao, J.K. (2017). An iterated local search algorithm for the mini-
mum differential dispersion problem. Knowledge-Based Systems 125, 26–38.

28

