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Abstract

We study the general problem of orthogonally packing rectangles in a fixed size circular con-
tainer. This is a computationally challenging combinatorial optimization problem with important
real-world applications and has recently received much attention from the operations research
community. We propose an effective evolutionary algorithm for four variants of the problem, which
integrates an improved decoding procedure and several dedicated search operators for population
initialization and new solution generation. Computational results on 108 popular benchmark
instances show that the proposed algorithm advances the state of the art in practically solving these
four variants of the problem by finding 53 new best solutions (26 for the variants of maximizing
the area of the packed items and 27 for the variants of maximizing the number of the packed items).
We perform experiments to verify the design of key algorithmic components.
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1 Introduction

Rectangle packing and cutting problems are a class of popular combinatorial optimization problems
with important real-world applications, whose goal is to orthogonally pack a set of given rectangles into
a container without overlapping, such that some criterion related to the packed items, such as the area
of the packed items, is maximized. These packing and cutting problems have been studied extensively
in the literature, most of which involve the rectangular or square containers and some additional
constraints, such as the two-dimensional rectangular packing problem (Chen et al., 2019; He et al.,
2012; dos Reis Arruda et al., 2024; Imahori et al., 2003; Wu et al., 2002; Fırat and Alpaslan, 2020), the
rectangle packing area minimization problem (He et al., 2015; Wu et al., 2016; Bortfeldt, 2013), the
problem of packing rectangles into the smallest square (Martello and Monaci, 2015), the orthogonal
stock cutting problems (Burke et al., 2009; Delorme et al., 2017), the unconstrained two-dimensional
non-guillotine cutting problem (Wei et al., 2018), and the two-dimensional variable-sized bin packing
problem with guillotine constraints (Gardeyn and Wauters, 2022). To solve efficiently these problems, a
large number of algorithms have been proposed in the literature, mainly including the exact algorithms
(Iori et al., 2021; Wei et al., 2018) and the heuristic algorithms (Burke et al., 2004; Wei et al., 2009,
2011).

In addition to the rectangular container, there are some works dedicated to rectangle packing
problems with a non-rectangular container. For example, Birgin et al. (2006); Birgin and Lobato (2010)
and Cassioli and Locatelli (2011) respectively studied the problem of orthogonally packing identical
rectangles into an arbitrary convex container. Forghani et al. (2024) studied the rectangle packing
problem into a non-convex container. In particular, the rectangle packing problems with a circular
container have recently received a great deal of attention due to their practical applications from various
domains, such as the timber industry (Hinostroza et al., 2013) and the satellite module layout design
(Li et al., 2014, 2016; Liu et al., 2017; Zhong et al., 2019).

This study focuses on the problem of orthogonally packing rectangles in a fixed size circular
container (OPRCC), which has many real-world applications, such as pipeline packing (Zhang et al.,
2024), lumber sawing in the forestry sector (Hinostroza et al., 2013), and sheet metal cutting (Luo
et al., 2024).

Most packing and cutting problems, including the OPRCC problem, are NP-hard and thus compu-
tationally challenging. For example, Leung et al. (1990) proved that deciding whether a set of squares
can be packed into a fixed size square container is strongly NP-hard. Li and Cheng (1994) showed the
same result for the problem with a rectangular container. Demaine et al. (2010) showed that deciding
whether a given set of circles can be packed into a rectangle, an equilateral triangle, or a unit square is
NP-hard. Recently, Zhang et al. (2024) pointed out that the OPRCC problem studied in this work is
also NP-hard because it contains the one-dimensional bin packing problem.

Due to its practical and theoretical significance, the OPRCC problem has been intensively studied
by several research groups. First, considering the geometry of the logs as regular cylinders of known
radius and the boards as rectangular parallelepipeds, Hinostroza et al. (2013) formulate the lumber
sawing problem as an OPRCC problem that maximizes the area of the packed items. Then, they
designed an exact algorithm and two heuristic algorithms (an ordering heuristic and a simulated
annealing heuristic) for solving the OPRCC problem.

López and Beasley (2018) gave a mixed-integer nonlinear programming (MINLP) formulation
for the OPRCC problem and proposed a formulation space search (FSS) method using different
formulations of the problem and minimizing the objective functions by means of a continuous MINLP
solver. Moreover, they studied for the first time four variants of the OPRCC problem, including two
variants of maximizing the number of the packed items and two variants of maximizing the area of the
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packed items.
To further solve the OPRCC problem, Bouzid and Salhi (2020) designed an ingenious data structure

called the border of configuration and a corresponding decoding procedure called the pack procedure
that converts a solution with an order representation into a packing configuration. By integrating
the pack procedure into two meta-heuristic algorithms, they proposed two heuristic algorithms for
the OPRCC problem, i.e., the border-based variable neighborhood search (VNS) algorithm and the
border-based simulated annealing (SA) algorithm. Computational experiments on four variants of
OPRCC show that their VNS and SA algorithms are very efficient and significantly outperform the
FSS algorithm (López and Beasley, 2018). Furthermore, the VNS and SA algorithms improve the
best-known solutions for 32 out of 54 benchmark instances.

Based on mixed-integer linear programming (MILP) models., Silva et al. (2022) proposed two
exact algorithms, i.e., a cutting plane method (CPM) and a variant called the parallel enumeration
algorithm (PEA). Computational results show that these two exact algorithms perform well on the
small-scale instances with N ≤ 30 and can find the optimal solutions for instances with N ≤ 20
within a reasonable computation time. Moreover, for the variants of maximizing the number of the
packed items, the PEA algorithm outperforms the VNS and SA algorithms (Bouzid and Salhi, 2020)
on larger instances. Nevertheless, for the variants of maximizing the area of the packed items, the exact
algorithms perform worse than the two heuristic algorithms on the large instances.

Recently (2024), based on a popular and efficient data structure called the skyline (Allen and Burke,
2012; Burke et al., 2004), Zhang et al. (2024) proposed a variable neighborhood search algorithm
(denoted by SL-VNS) for the OPRCC problem. Taking advantage of the feature that the overlap
constraints between the rectangles are automatically satisfied for the place operations on the skyline,
the skyline-based decoding procedure of SL-VNS performs much faster compared to other decoding
procedures, such as the border-based pack procedure of Bouzid and Salhi (2020). Thus, by integrating
this skyline-based decoding procedure and several mutation operators, the SL-VNS algorithm attains
a high performance compared to previous heuristic algorithms especially for the large instances.
Experimental results show that the SL-VNS algorithm further improves the best-known solution for 51
out of 54 large instances with 100 ≤ N ≤ 200.

Almost at the same time with the work of Zhang et al. (2024), Luo et al. (2024) proposed a
hybrid-biased genetic algorithm (HGA) for the OPRCC problem by integrating a new border-based
decoding procedure, which can be regarded as a variant of the pack procedure of (Bouzid and Salhi,
2020), an order crossover operator, and a mutation operator. Computational results on 108 popular
benchmark instances show that the HGA algorithm outperforms its reference algorithms, especially for
the small instances of maximizing the area of the packed items.

The following observations can be made from the previous studies. First, discrete optimization
methods based on the decoding procedure significantly outperform continuous global optimization
methods such as FSS of López and Beasley (2018). Second, exact algorithms such as CPM and PEA
of Silva et al. (2022) perform well only on small instances with N ≤ 20 especially for the variants of
maximizing the area of the packed items. However, for the large-scale instances, the state-of-the-art
heuristic algorithms significantly outperform the existing exact algorithms. Third, the performance of
the decoding procedure depends largely on the data structures used, and at present it is not yet clear
which data structures are best suited for rectangle packing problems. In fact, the decoding procedures
of the state-of-the-art heuristic algorithms of the OPRCC problem mainly depend on an efficient data
structure, i.e., the skyline (Burke et al., 2004; Zhang et al., 2024) or the border of packing configuration
(Bouzid and Salhi, 2020). However, each of these two data structures has its advantages and limitations,
and so it’s still difficult to distinguish which data structure is the best for the decoding procedure.
For example, the skyline-based decoding procedures (Burke et al., 2004; Zhang et al., 2024; Wei
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et al., 2011) are very fast due to the fact that no overlapping test between rectangles is needed in the
decoding process, while their main disadvantage lies in their weak adaptability to other problems
with a complicated container. For the border-based decoding procedures, it is not difficult to extend
them to other problems with a complicated container, since little knowledge about the container is
required in the process of decoding. However, their disadvantage is that they are generally much more
time-consuming than the skyline-based decoding procedures due to the fact that it is inevitable to
frequently check overlaps between the rectangles.

The recent study by Luo et al. (2024) show that the hybrid genetic algorithm equipped with a
proper decoding procedure can achieve a high performance for solving the OPRCC problem. Thus, it
is natural to ask whether it is possible to design a more efficient evolutionary algorithm for the OPRCC
problem by improving the decoding procedure, the population initialization method, the evolution
operators, and others.

Motivated by these observations, we aim to improve the performance of the border-based decoding
procedure by reducing the number of overlap tests between the rectangles and designing a more efficient
scoring function for the decoding procedure. Second, we aim to propose a highly efficient heuristic
algorithm for the OPRCC problem by taking advantage of this improved decoding procedure and the
powerful hybrid evolutionary framework.

The main contributions of this work to the packing research community can be summarized as
follows. First, based on the concept of the border by Bouzid and Salhi (2020), a new scoring function
and a speedup strategy, we propose a new decoding procedure for the studied OPRCC problem. Due to
its flexibility, the proposed decoding procedure can be adapted to other rectangle packing problems,
which could help to better solve these problems. Second, based on the new decoding procedure and
several crossover and mutation operators, we propose a highly efficient evolutionary algorithm for
the studied OPRCC problem. In particular, compared to the FSS method (López and Beasley, 2018),
which uses discrete and continuous optimization to search, the proposed algorithm is a pure discrete
optimization algorithm without using a time-consuming continuous solver. The high performance of
the proposed algorithm suggests that discrete methods may be a better approach than continuous global
optimization methods for this type of packing problems. Third, the analysis experiment shows that
several algorithmic components (e.g., the population initialization method, the speedup strategy of
the decoding procedure, and the scoring function) of the algorithm play an important role in the high
performance of the algorithm, and these results provide insights for designing effective evolutionary
algorithms for rectangle packing problems.

The rest of the paper is organized as follows. Section 2 gives a mathematical formulation of the
problem. In section 3, we describe the proposed algorithm. In Section 4, the performance of the
algorithm is evaluated based on benchmark instances. In Section 5, crucial algorithmic components are
analyzed and discussed to show their impacts on the performance of the algorithm. In the last section,
we summarize the main results of this study and provide several perspectives for further research.

2 Description and formulation of the problems

Given a set M = {r1, r2, . . . , rN} of N rectangular items and a fixed size circular container C, the
OPRCC problem aims to select a subset of M to be packed orthogonally into the container to maximize
an objective function defined on the selected items, while satisfying the non-overlapping constraint
between the items and the containment constraints of items. The non-overlapping constraint requires
that no two rectangles in the packing configuration overlap, and the containment constraint requires
that each packed rectangle is completely contained in the container. Fig. 1 gives an illustrative example
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Figure 1: An illustrative example for the OPRCC.

for the OPRCC problem. There are two typical objective functions: one is to maximize the area of
the packed items and the other is to maximize the number of the packed items. Thus, depending on
the objective functions and whether the rectangles are allowed to be rotated orthogonally, the OPRCC
problem has four variants. We study all these four variants in this work.

Given a fixed radius R of the circular container centering at the origin of the two-dimensional
Cartesian coordinate system, and the dimensions (wi, li) and value vi of each item ri (1 ≤ i ≤ N )
where wi and li respectively denote the width and height of rectangular item ri, the OPRCC problems
that do not consider the orthogonal rotations of items can be formulated as a mixed-integer nonlinear
programming problem (López and Beasley, 2018; Zhang et al., 2024):

Maximize

N∑
i=1
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s.t. αi[ (xi −
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2

)2 + (yi −
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2
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2
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αi[ (xi +
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2

)2 + (yi −
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2

)2] ≤ R2, 1 ≤ i ≤ N (4)

αi[ (xi +
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2

)2 + (yi +
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2

)2] ≤ R2, 1 ≤ i ≤ N (5)

αiαj(max{|xi − xj | −
wi + wj

2
, |yi − yj | −

li + lj
2
}) ≥ 0, 1 ≤ i 6= j ≤ N (6)

where (xi, yi) represents the center of i-th rectangle ri, αi (1 ≤ i ≤ N ) is a 0–1 variable, and takes 1
if the i-th rectangle is selected from M , and 0 otherwise. The objective function (1) gives the objective
value of the packed rectangles, where vi (1 ≤ i ≤ N ) is the value of the i-th rectangle. When vi = wili
or vi = 1, the optimization objective is to maximize the total area of the packed items or the number of
the packed items, respectively. Constraints (2)–(5) represent the containment constraints that ensure
the four vertices of rectangular ri (1 ≤ i ≤ N ) are contained in the circular container C, and constraint
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(6) represents the non-overlapping constraint that ensures that there is no overlapping rectangles in
the packing configuration. Thus, two variants of the problem without rotation can be consistently
formulated by Eqs. (1)- (6), and the only difference between them lies in the objective function, where
vi = wili corresponds to the variant of maximizing the area of packed items and vi = 1 corresponds to
the variant of maximizing the number of packed items.

In addition, for the two variants without rotation, we can respectively obtain a variant with rotation
by allowing all rectangular items to be rotated orthogonally, while keeping other conditions unchanged.
Furthermore, as mentioned by López and Beasley (2018), the model described by Eqs. (1)-(6) can be
extended to the two variants with rotation by adding an orthogonally rotated copy ri′ for each item
ri ∈M and a compatibility constraint of αi + αi′ ≤ 1 to ensure that at most one item between ri and
ri′ is selected in the packing configuration, and thus leading to the extended models containing 2N
items.

3 New evolutionary algorithm for the OPRCC

Evolutionary algorithms (Back et al., 1997; Martı́ et al., 2018) are a category of population-based search
algorithms that mimic the natural evolution process by means of the evolution techniques, such as the
inheritance, mutation, selection and crossover. The general procedure of an evolutionary algorithm can
be briefly described as follows (see Algorithm 1). Starting from an initial population, the algorithm
performs a number of generations until a stopping criterion is met. At each generation, one or more
individuals are selected from the population for reproduction. Then, the selected individuals are used
to produce offspring solutions by using crossover and mutation operators. Each offspring solution is
then evaluated and used to update the population.

Algorithm 1: General procedure of evolutionary algorithms
Input: Problem instance
Output: The best solution found

1 Generate an initial population
2 Evaluate the fitness of each individual in the population
3 while Stopping criterion is not met do
4 Select parent individuals from the population for reproduction
5 Generate one or more offspring solutions through crossover and mutation operators
6 Evaluate the fitness of each offspring solution
7 Update the population by the offspring solutions
8 end

In this study, we propose an effective evolutionary algorithm named IDEA to solve the four variants
of the OPRCC problem by integrating an improved decoding procedure, several mutation and crossover
operators, and a greedy population update strategy.

3.1 Main framework of the proposed algorithm

The IDEA algorithm consists of seven components, including the population initialization, the con-
strained insertion mutation, the constrained k-swap mutation, two crossovers, the decoding procedure,
and the population update strategy. The pseudo-code is given in Algorithm 2, where POP and S∗

denote the current population and the best solution found so far, respectively. IDEA starts with the
generation of an initial population by using the methods given in Section 3.2 (line 1, Algorithm 2).
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Algorithm 2: Main framework of the evolutionary algorithm (IDEA)
Input: A set of rectangular items ({r1, r2, . . . , rN}), maximum time limit (tmax), maximum number of

pairs of items (kmax) that can be swapped, parameters (α, β and γ)
Output: The best solution found (S∗)

1 POP ← Initial Population()
2 S∗ ← argmax{f(S) : S ∈ POP}
3 while time() ≤ tmax do
4 rd← rand(0, 1) /* assign rd a random number between 0 and 1 */
5 if rd < α then
6 S ← Select(POP )
7 k ← rand[1, kmax]
8 S ← Swap(S, k) /* perturb the solution S by performing k-swap

mutation */
9 else if rd < α+ β then

10 S ← Select(POP )
11 S ← Insert Move(S) /* perturb the solution S by the insertion

mutation */
12 else if rd < α+ β + γ then
13 {Si, Sj} ← Select(POP )
14 S ← Order Crossover(Si, Sj) /* generate an offspring solution with

the order crossover */
15 else
16 {Si, Sj} ← Select(POP )
17 S ← Prefix Crossover(Si, Sj) /* generate an offspring solution with the

prefix crossover */
18 end
19 f(S)← IPACK(S) /* evaluate the quality of offspring S by the

decoding procedure given in Algorithm 5 */
20 if f(S) > f(S∗) then
21 S∗ ← S /* save the best solution found */
22 end
23 POP ← Pool Updating(POP , S) /* update the population */
24 end

Then, it enters a ‘while’ loop and performs a number of generations until the maximum time limit
(tmax) is met (lines 3–24). At each generation, one or two parent solutions are randomly selected from
the population, and two mutation or two crossover operators are used to generate an offspring solution
S in a probabilistic way. Specifically, the constrained insertion mutation is applied with probability
of α (lines 5–8), the constrained k-swap mutation is applied with a probability of β (lines 9–11), the
randomized order crossover is applied with probability of γ (lines 12–14), and the prefix crossover
is applied with probability of 1− α− β − γ (lines 15–17). Then, the decoding procedure is applied
to the offspring solution S to evaluate its quality and obtain the corresponding packing configuration
(line 19). Subsequently, the offspring solution is used to update the population using a greedy strategy,
i.e., the worst individual in the population is replaced by the offspring solution S if it is worse than the
offspring solution in terms of the objective value (line 23). Finally, when the stopping condition (a
maximum allowed time) is met, the algorithm returns the best solution found S∗ and stops.
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Algorithm 3: Initialization of population for the variants maximizing the area of items packed
Input: A set of rectangular items ({r1, r2, . . . , rN}), size of population (P ), maximal number of pairs

of items that can be swapped (kmax)
Output: Initial population POP

1 Function Initial Population()
2 S0 ← Sort({r1, r2, . . . , rN}) /* sort the items in a descending order

according to their areas to obtain a seed solution S0 */
3 POP ← ∅
4 for i← 1 to P do
5 k ← rand[1, kmax] /* get a random number between 1 and kmax */
6 Si← Swap(S0, k) /* perturb the seed sequence S0 by consecutively

performing k random swap operations */
7 f(Si)← IPACK(Si) /* evaluate the quality of Si by the decoding

procedure IPACK (Algorithm 5) */
8 POP ← POP ∪ {Si}
9 end

Algorithm 4: Population initialization for the variants maximizing the number of items
packed

Input: A set {r1, r2, . . . , rN} of rectangular items, size of population (P )
Output: Initial population POP

1 Function Initial Population()
2 S0 ← Sort({r1, r2, . . . , rN}) /* sort the items in a descending order

according to their areas to obtain a seed solution S0 */
3 POP ← ∅
4 for i← 1 to P do
5 k ← 1 + (i mod N )
6 Si← Shuffle(S0, k) /* mutate the seed sequence S0 by performing

two-stage k-shuffle mutation operation */
7 f(Si)← IPACK(Si) /* evaluate the quality of Si by the decoding

procedure IPACK (Algorithm 5) */
8 POP ← POP ∪ {Si}
9 end

3.2 Solution Representation and Initial Population

We use the order representation to code the solutions in the population. Specifically, given a set
{r1, r2, . . . , rN} of N items, a solution is a sequence of these N items (ri1 , ri2 , . . . , riN ), where
(i1, i2, . . . , iN ) is a permutation of (1, 2, . . . , N). Based on this solution representation, the initial
population consists of P sequences of N items, where P is the size of population. Moreover, for the
variants that maximize the area of items packed and the variants that maximize the number of items
packed, we respectively propose a new initialization method to generate the initial population.

For the variants maximizing the area of the packed items, the initialization method, summarized in
Algorithm 3, operates as follows. First, all rectangular items are sorted in a descending order according
to their areas, and the resulting sequence of items is identified as a seed sequence S0 that is used to
generate P individuals of population. Then, the seed sequence S0 is slightly changed by performing a
random constrained k-swap mutation that is described in Section 3.3, and the resulting sequence is
considered as an individual of the population and its quality is evaluated by the decoding procedure of

8



Section 3.4. The seed sequence S0 is randomly perturbed P times by the k-swap mutation to generate
P individuals of the initial population. This initialization method is designed to favor large items, based
on the observation that large items are generally contained in high-quality packing configurations.

For the variants maximizing the number of items packed, the initialization method (see Algorithm
4) is slightly different from that in Algorithm 3. Based on the seed sequence S0 mentioned above, the
method uses a two-stage k-shuffle mutation to generate each individual, where the value of k varies
between 1 and N . To illustrate the two-stage k-shuffle mutation operator, Fig. 2 shows an example. At
the first stage, the k-shuffle mutation performs consecutively k 1-shuffle mutations that move the first
item to the tail of the sequence. At the second stage, the order of the items that have been moved to the
tail of the sequence is reversed to obtain the resulting solution. This initialization method is designed
to favor small items, based on the observation that the largest items are generally absent in high-quality
packing configurations for these variants.

(a) 1-shuffle mutation (b) 4-shuffle mutation

Figure 2: An illustrative example for two-stage k-shuffle mutation operator.

3.3 Mutation and Crossover

Our algorithm uses four operators to generate offspring solutions: the constrained insertion mutation,
the constrained k-swap mutation, the randomized order crossover, and the prefix crossover, where
the first three operators can be regarded as a new variant of the existing operators in the literature
(Bouzid and Salhi, 2020; Zhang et al., 2024; Luo et al., 2024) and the prefix crossover is a new operator
proposed in this work.

(a) Constrained insertion mutation (b) Constrained k-swap mutation (k = 2)

Figure 3: Illustrative examples for two mutation operators.

In the constrained insertion mutation, we first randomly select two items ri and rj from the given
solution (i.e., a sequence of items), and then insert rj in the front of ri, where ri and rj must satisfy the
condition of |rank(ri) − rank(rj)| ≤ ∆, where rank(ri) and rank(rj) respectively represent the
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Figure 4: An illustrative example for the order crossover operator.

Figure 5: An illustrative example for the prefix crossover operator.

rankings of ri and rj with respect to the area of the items among all items, and ∆ is a predetermined
parameter.

In the constrained k-swap operator, we first randomly select k (k ≤ kmax) pairs of similar items
in terms of area, where kmax is a predetermined parameter that represents the maximal number
of pairs of items that can be swapped, and two items ri and rj are considered to be similar if
|rank(ri) − rank(rj)| ≤ ∆. Then, we exchange the positions of each pair of selected items to
obtain a mutated solution. Fig. 3 gives an illustrative example for these two mutation operators.

Note that the above insertion and swap operations are restricted to two similar items ri and rj
whose rank difference (i.e., |rank(ri)− rank(rj)|) is lower than or equal to ∆. The primary purpose
of such a restriction is to avoid changing the packing configuration too much and degrading the quality
of the solution too much.

The randomized order crossover works with two parent solutions parent1 and parent2. We first
randomly select m (a parameter) items from the first parent, and then identify the order of these items
in the second parent. Subsequently, the offspring solution inherits the identified order of these items,
and then inherits the order of the first parent solution for the remaining items. The time complexity
of this operator is O(N), where N is the number of items in the problem instance. Fig. 4 gives an
illustrative example. Note that this order crossover operator is slightly different from the classic order
crossover operator (Luo et al., 2024), which first selects two crossover points in the parents and then
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directly copies the substring between the crossover points into the offspring solution.
The prefix crossover operator works as follows. Starting with an empty sequence as the offspring

solution, the prefix crossover operator alternately chooses the first unused item (i.e., the prefix of
sequence) from the two parents as the current item, and then adds it to the end of the offspring solution.
Moreover, the chosen item is removed from two parents once it has been added to the offspring solution.
The crossover operator terminates and returns the offspring solution when all items are added into the
offspring. The time complexity of this crossover operator is also O(N). Fig. 5 provides an illustrative
example of our prefix crossover operator.

3.4 Decoding procedure

Figure 6: An example for the border of a packing configuration.

(a) Initialization of border

(b) Update of border

Figure 7: Initialization and update of border of a packing configuration.

The decoding procedure is a main component of the IDEA algorithm, whose goal is to convert a
sequence of items to a packing configuration in order to obtain the positions of items packed and to
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Algorithm 5: Decoding procedure (IPACK)
Input: A sequence S of rectangular items
Output: A packing configuration p of items packed

1 Function IPACK
2 Generate a partial packing p with an initialization method
3 S ← S \ {p} /* Remove the items of p from S */
4 Build the border B for the initial packing p
5 Construct a candidate list CL(i) of nearby items packed for each vertex i of B
6 while S 6= ∅ do
7 r ← the first item in S

/* Searching for a high-quality position on B for r */
8 fbest ← 0
9 for each position POS on the border B do

10 Pack tentatively r on the current position POS
11 Containment test between r and the container
12 Overlapping test between r and the packed items in CL(POS) /* CL(POS) is

associated with POS */
13 if POS is a feasible position for r then
14 f ← Score(POS) /* evaluate POS by a scoring function */
15 if f > fbest then
16 fbest ← f
17 POSbest ← POS /* save the best position for r */
18 end
19 end
20 end

/* Performing the packing operation */
21 if there exists a feasible position on B then
22 Pack rectangle r on the position POSbest /* p← p ∪ {r} */
23 Update the border B of p
24 Update the candidate list CL(i) for each vertex i of B
25 end

/* Removing the rectangle r from the sequence S */
26 S ← S \ {r}
27 end

evaluate the packing quality. Our decoding procedure is an improved version of the pack procedure
of Bouzid and Salhi (2020), thanks to the use of an ingenious data structure called the border of
configuration to maintain the states of partial configurations. Specifically, the border of a packing is a
circular list of vertices on the boundary of packing configuration, as shown in Fig. 6.

The decoding procedure is a constructive heuristic whose pseudo-code is given in Algorithm 5.
Starting from an initial configuration generated by an initialization method, the decoding procedure
first constructs the border of the configuration. Then, the procedure packs in order the remaining items
on the positions of the border, and dynamically updates the packing configuration as well as its border.

As shown in Algorithm 5, after generating the initial configuration, the initial border, and the
candidate list CL(i) of items for each vertex i of the border (lines 2–5), the decoding procedure enters
a ’while’ loop to pack in order the remaining items until the current sequence S becomes an empty
set (lines 6–27). At each loop, the first rectangular item in the current sequence S is first taken out as
the current item r (line 7), then r is tentatively placed on each possible position of the border, and the
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feasibility of these positions is tested by checking whether r is completely contained in the container
and overlaps with some items packed if it is placed on the position (lines 10-12). It should be noted
that the number of overlapping tests between r and the items packed is generally large. To reduce the
number of tests, we use a candidate list strategy to speed up the decoding process. Specifically, for each
position POS on the border, only a subset CL(POS) of the packed items is tested. Once a position is
identified as feasible, a scoring function is used to evaluate its quality (line 14). Then, the position with
the highest score is chosen to pack the item r when the feasibility of all positions has been checked and
the set of feasible positions is not empty (lines 15-18, 21). After that, the packing configuration, the
border of configuration, and the candidate lists (CL(i)) are accordingly updated (lines 22–24). Finally,
the item r is removed from the sequence S (line 26). In particular, the initialization and the update of
the border are illustrated in Fig. 7.

In our decoding procedure, the method of generating an initial packing configuration and the
method of identifying the possible positions on the border are the same as in the pack procedure of
Bouzid and Salhi (2020), and the main differences between our decoding procedure and the pack
procedure of (Bouzid and Salhi, 2020) lie in our new scoring function to evaluate the positions on the
border and a speedup strategy based on the candidate list strategy for the overlapping tests between the
current item and the items packed. In the following subsections, we present the speedup strategy and
the new scoring function in detail.

3.4.1 Speedup strategy for the overlapping tests between items

Figure 8: The candidate list strategy for the overlapping test of the decoding procedure.

In the border-based decoding procedure, the overlapping tests between the current item and the
packed items is the most time-consuming part, due to the large number of the overlapping tests needed
to check the feasibility of positions on the border. However, we observe that two sufficiently distant
items are not overlapping and that it is not necessary to perform all the overlapping tests between the
current item and the packed items if all the nearby items of the current position are given.

Thus, our decoding procedure employs a candidate list to record dynamically the nearby items
packed for each vertex on the border. Specifically, for each vertex i, we generate a circle centering
at the vertex i with a radius of D, where D represents the maximal diameter of N rectangular items.
Then, all the packed items that overlaps with the circle are used to construct a candidate list CL(i).
With the help of a candidate list CL(i), we only need to check the overlaps between the current item
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and those items in the list CL(i) to check the feasibility of the current position, thus greatly reducing
the computational complexity of the decoding procedure. Fig. 8 gives an illustrative example of our
candidate list strategy, where the candidate list CL(i) is composed of the red items.

Assuming that the maximum number of items in the candidate lists CL(i) (i ∈ B) is a constant Q,
the time complexity of our decoding procedure isO(N2), which is much lower thanO(N3) of the pack
procedure of (Bouzid and Salhi, 2020). Thus, our decoding procedure is much more computationally
efficient than the pack procedure of (Bouzid and Salhi, 2020) for handling large-scale instances.

3.4.2 Scoring function of the positions on the border

(a) V (POS, r) =1 (b) V (POS, r) =2 (c) V (POS, r) =3

Figure 9: Illustrative examples for the fitness value V with respect to the current position of rectangular
item r to be packed, where the coinciding vertices of r with the vertices of border are indicated in red.

(a) L(POS, r) = l1 + l2 (b) L(POS, r) = l

Figure 10: Two illustrative examples for the fitness value L with respect to the current position of
rectangular item r to be packed.

Given a partial packing configuration, there may exist a number of feasible positions on the border
of the configuration for the current item. A key task of the decoding procedure is then to find a suitable
position for the current item. To do this, we generally need a scoring function to measure the goodness
of each feasible position. And the design of the scoring function is very important because it strongly
influences the performance of the decoding procedure. In order to achieve high performance, our
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decoding procedure uses a new scoring function, which is a variant of one used in (Wang et al., 2023),
to efficiently evaluate the quality of positions on the border.

Given a position POS on the border and the current item r, the new scoring function denoted by
Score(POS, r) is composed of two parts and can be written as:

Score(POS, r) = λ× V (POS, r) + L(POS, r) (7)

where λ is a large coefficient such that the first term V (POS, r) dominates the second term L(POS, r).
The first term V (POS, r) of Eq. (7) indicates the number of vertices of r that coincide with the

vertices of border. Fig. 9 gives an illustrative example for the three possible situations. The second
term L(POS, r) of Eq. (7) measures the total overlapping length of sides of r that coincide with the
border (see Fig. 10 for an example). Thus, for two positions POS1 and POS2 on the border, POS1

is considered to be better than POS2 if Score(POS1, r) > Score(POS2, r). In other words, due to
the large value of λ, POS1 is superior to POS2 if and only if one of the following conditions holds:
1) V (POS1, r) > V (POS2, r), 2)V (POS1, r) = V (POS2, r) and L(POS1, r) > L(POS2, r). If
multiple positions have the same best score, a random position among them is selected as the current
position.

4 Experimental Evaluation and Computational Results

In this section, we evaluate the performance of the proposed IDEA algorithm based on the bench-
mark instances commonly used in the literature and make a comparison with several state-of-the-art
algorithms.

4.1 Benchmark instances, parameter settings and experimental protocol

Table 1: Settings of parameters

Parameters Section Description Values
P 3.1 size of population 200
α 3.1 probability of using the k-swap mutation 0.3
β 3.1 probability of using the insertion mutation 0.3
γ 3.1 probability of using the order crossover 0.2
m 3.1 parameter used in the order crossover N/4
kmax 3.3 maximal number of pairs of items used in k-swap mutation 5

∆ 3.3 bound used in the mutation operators {N, N
5
}

Based on the 36 basic benchmark instances generated by López and Beasley (2018)1 and Bouzid
and Salhi (2020)2, we respectively obtain a set of benchmark instances for each of the four variants
of the problem by considering the specific optimization objective and whether the rectangles can be
rotated or not. More precisely, for the first variant (i.e., maximizing the number of items ‘without’
rotation), we obtain directly 36 instances. For the second variant (i.e., maximizing the number of items
‘with’ rotation), we obtain a set of 18 instances, because the other 18 basic instances are composed of
squares and it makes no sense to rotate them. Thus, for the two variants of maximizing the number of
items packed, we have a total of 54 (= 36+18) instances. Similarly, for the two variants of maximizing
the area of items (with and without rotation), we obtain a set of 54 (= 36 + 18) benchmark instances.
In total, we have 108 instances for all four variants of the problem.

1https://people.brunel.ac.uk/˜mastjjb/jeb/orlib/files/
2https://www.leandro-coelho.com/packing-circular-container
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The IDEA algorithm uses several parameters whose default settings and descriptions are given in
Table 1. These default parameter settings were determined via several preliminary experiments. The
parameter P (the population size) was set to 200. The probabilities of applying k-swap and insertion
mutations (i.e., α and β) were set to 0.3, and the probabilities of applying the two crossover operators
(i.e., γ and 1− α− β − γ) were set to 0.2. The parameter kmax used in the k-swap mutation was to 5.
The parameter ∆ used in the constrained insertion and k-swap mutations was to N and N

5 respectively
for the small instances with N ≤ 30 and the large instances with N ≥ 100.

The IDEA algorithm was implemented in the C language and all computational experiments
were executed on a computer with a 2.3 GHz Intel(R) Xeon (R) Platinum 9242 CPU, running a Linux
operating system. Moreover, due to the stochastic behavior of the algorithm, we ran the IDEA algorithm
10 times for each instance with different random seeds. The time limit tmax was set according to the
size of instances: tmax = 200 seconds for the small instances with N ≤ 30 and tmax = 3000 seconds
for the large instances with N ≥ 100.

4.2 Computational results for maximizing the number of items without rotation

(a) s150-2 (t=124) (b) s200-1 (t=144) (c) s200-2 (t=165)

(d) r150-0 (t=78) (e) r150-2 (t=118) (f) r200-2 (t=158)

Figure 11: Improved solutions found by our IDEA algorithm for 6 representative instances of the
variant of maximizing the number of packed items without rotation, where t represents the number of
items packed.
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Table 2: Comparison of the IDEA algorithm with three previous algorithms on the small-scale instances
of the variant of maximizing the number of items without rotation.

FSS PEA SA IDEA (this work)
Instance BKS Best Best Best Avg Best Avg ∆BKS

s10-0 4 4 4∗ 4 4.00 4 4.00 0
s10-1 5 5 5∗ 5 5.00 5 5.00 0
s10-2 6 6 6∗ 6 6.00 6 6.00 0
s20-0 11 11 11∗ 11 11.00 11 11.00 0
s20-1 13 12 13∗ 13 12.20 13 13.00 0
s20-2 15 14 15∗ 14 14.00 15 15.00 0
s30-0 17 16 17 16 16.00 17 17.00 0
s30-1 21 20 21 20 20.00 21 21.00 0
s30-2 24 23 24 23 23.00 24 24.00 0
r10-0 5 5 5∗ 5 5.00 5 5.00 0
r10-1 6 6 6∗ 6 6.00 6 6.00 0
r10-2 7 7 7∗ 7 7.00 7 7.00 0
r20-0 8 7 8∗ 7 7.00 8 8.00 0
r20-1 11 10 11 10 10.00 11 11.00 0
r20-2 14 11 14 13 13.00 14 13.30 0
r30-0 15 13 15 14 14.00 15 15.00 0
r30-1 19 16 19 18 18.00 19 19.00 0
r30-2 22 19 22 21 21.00 22 22.00 0
#Improve 0 0 0 0
#Equal 7 18 8 18
#Worse 11 0 10 0

Table 3: Comparison of the IDEA algorithm with two recent heuristic algorithms on the small-scale
instances of the variant of maximizing the number of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

s10-0 4 4 4.00 4 4.00 4 4.00 0
s10-1 5 5 5.00 5 5.00 5 5.00 0
s10-2 6 6 6.00 6 6.00 6 6.00 0
s20-0 11 11 11.00 10 10.00 11 11.00 0
s20-1 13 13 13.00 13 13.00 13 13.00 0
s20-2 15 15 15.00 15 15.00 15 15.00 0
s30-0 17 17 17.00 17 17.00 17 17.00 0
s30-1 21 21 21.00 21 21.00 21 21.00 0
s30-2 24 24 24.00 24 24.00 24 24.00 0
r10-0 5 5 5.00 4 4.00 5 5.00 0
r10-1 6 6 6.00 6 6.00 6 6.00 0
r10-2 7 7 7.00 6 6.00 7 7.00 0
r20-0 8 8 8.00 7 7.00 8 8.00 0
r20-1 11 11 11.00 11 10.80 11 11.00 0
r20-2 14 13 13.00 13 13.00 14 13.30 0
r30-0 15 15 15.00 14 14.00 15 15.00 0
r30-1 19 19 18.20 18 18.00 19 19.00 0
r30-2 22 22 21.75 21 21.00 22 22.00 0
#Improve 0 0 0
#Equal 17 10 18
#Worse 1 8 0
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This subsection aims to evaluate the performance of the proposed IDEA algorithm on the variant
of maximizing the number of items without rotation, and the benchmark set used in the experiments
consists of 36 instances and can be further divided into two subsets. The first subset contains 18 small-
scale instances from López and Beasley (2018), where each instance is defined by a given container
radius R and N (N ∈ {10, 20, 30}) squares or rectangles with randomly generated dimensions. The
second set contains 18 large-scale instances from Bouzid and Salhi (2020), where each instance
is defined by a container radius R and N (N ∈ {100, 150, 200}) squares or rectangles with their
dimensions randomly generated in the interval [1, 5].

The computational results of the IDEA algorithm are summarized in Tables 2-5 respectively for
the small-scale instances and the large-scale instances, together with the results of six state-of-art
algorithms in the literature, including the formulation space search (FSS) algorithm (López and Beasley,
2018), the parallel enumeration algorithm (PEA) (Silva et al., 2022) that is an exact algorithm, the
simulated annealing (SA) algorithm (Bouzid and Salhi, 2020), the variable neighborhood search (VNS)
algorithm (Bouzid and Salhi, 2020), the hybrid-biased genetic algorithm (HGA) (Luo et al., 2024),
and the skyline-based variable neighborhood search (SL-VNS) algorithm (Zhang et al., 2024). The
first two columns of Tables 2-5 give the names of instances and the best-known results or the optimal
values (BKS) reported in the literature, where the instances with the letter ‘s’ as their prefix consist of
N squares. Columns 3 and 4 of Table 2 give the best objective value for the FSS and PEA algorithms,
where the optimal values proved by the exact algorithm PEA are marked by the symbol ‘*’. For other
four reference algorithms, the best objective value (Best), the average objective value (Avg) are given
in the tables. The computational results of our IDEA algorithm are shown in the last three columns
of the tables, where an improved result is underlined in terms of the best objective value, and the last
column gives the difference (∆BKS) between the best result of IDEA and the best-known result, and a
positive value of ∆BKS means that an improved solution is found by our IDEA algorithm. In terms of
the best objective value, the results matching the current best results are indicated in bold for all the
algorithms. In addition, the last three rows ‘#Improve’, ‘#Equal’, and ‘#Worse’ indicate the number
of instances for which the corresponding algorithm obtains a better, equal or worse result than the
best-known result reported in the literature in terms of the best objective value.

The computational results of the reference algorithms are taken from the literature, and the
comparisons between the algorithms focus on solution quality. Due to the fact that the compared
algorithms were implemented in different languages and run on different platforms, it is difficult to
make a direct and fair comparison in terms of computation time. As an alternative, we provide the
timing information of the compared algorithms in the online supplement for indicative purposes.

Table 2 shows that the IDEA algorithm performs very well for the small instances compared
to the three reference algorithms FSS, SA, and PEA. Specifically, the IDEA algorithm significantly
outperforms FSS and SA in terms of solution quality. The IDEA algorithm obtains the best-known
result for all 18 small instances, while the FSS and SA algorithms obtain the best-known result for only
7 and 8 instances, respectively. Compared to the PEA algorithm that is an exact algorithm, the IDEA
algorithm obtains an equal result for all instances in terms of the best objective value, where the result
is proved to be optimal for 10 instances (indicated by ‘*’).

Table 3 shows that IDEA also outperforms the recent HGA (Luo et al., 2024) and SL-VNS (Zhang
et al., 2024) on these small instances. Compared to the SL-VNS algorithm, our IDEA algorithm obtains
a better and equal result respectively for 8 and 10 out of 18 instances in terms of the best objective
value. Moreover, the IDEA algorithm obtains a better result than the HGA algorithm for one instance
in terms of the best objective value, and matches the result of the HGA algorithm for the remaining
instances. Furthermore, IDEA outperforms HGA in terms of the average objective value for three
instances.
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Table 4: Comparison of the IDEA algorithm with two heuristic algorithms on the large-scale instances
of the variant of maximizing the number of items without rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

s100-0 57 53 52.20 52 51.40 58 57.10 1
s100-1 70 67 65.60 64 63.40 71 70.10 1
s100-2 80 76 75.20 73 72.80 81 80.90 1
s150-0 92 84 82.80 84 83.80 93 92.20 1
s150-1 110 103 101.80 100 99.80 111 110.10 1
s150-2 123 117 115.40 113 112.60 124 123.80 1
s200-0 117 107 104.60 108 105.60 118 117.90 1
s200-1 143 132 130.60 130 129.20 144 144.00 1
s200-2 164 152 151.00 152 149.80 165 164.30 1
r100-0 49 45 44.20 45 44.00 50 49.10 1
r100-1 63 59 57.60 58 57.60 64 63.90 1
r100-2 75 70 69.80 69 69.00 76 75.90 1
r150-0 77 70 68.80 72 71.20 78 78.00 1
r150-1 98 91 90.40 92 91.80 101 100.20 3
r150-2 116 110 108.80 110 108.40 118 118.00 2
r200-0 104 95 94.00 99 97.00 107 106.20 3
r200-1 131 123 121.80 124 123.20 135 134.90 4
r200-2 155 146 144.80 146 145.20 158 158.00 3
#Improve 0 0 18
#Equal 0 0 0
#Worse 18 18 0

Table 5: Comparison of the IDEA algorithm with two recent heuristic algorithms on the large-scale
instances of the variant of maximizing the number of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

s100-0 57 55 54.70 57 56.40 58 57.10 1
s100-1 70 68 67.45 70 69.40 71 70.10 1
s100-2 80 78 77.15 80 79.60 81 80.90 1
s150-0 92 91 89.40 92 91.40 93 92.20 1
s150-1 110 108 107.10 110 109.60 111 110.10 1
s150-2 123 121 120.20 123 122.60 124 123.80 1
s200-0 117 115 112.45 117 116.40 118 117.90 1
s200-1 143 140 138.20 143 142.80 144 144.00 1
s200-2 164 160 158.80 164 163.40 165 164.30 1
r100-0 49 49 47.65 47 46.60 50 49.10 1
r100-1 63 63 61.70 61 60.60 64 63.90 1
r100-2 75 75 73.60 73 72.60 76 75.90 1
r150-0 77 77 75.20 74 73.40 78 78.00 1
r150-1 98 98 96.70 95 94.60 101 100.20 3
r150-2 116 116 114.65 114 112.80 118 118.00 2
r200-0 104 104 101.80 101 100.80 107 106.20 3
r200-1 131 131 129.45 131 129.20 135 134.90 4
r200-2 155 155 153.10 154 153.20 158 158.00 3
#Improve 0 0 18
#Equal 9 11 0
#Worse 9 7 0
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Tables 4 and 5 clearly show that the IDEA algorithm significantly outperforms the four best-
performing heuristic algorithms in the literature on the large-scale instances, i.e., SA (Bouzid and Salhi,
2020), VNS (Bouzid and Salhi, 2020), HGA (Luo et al., 2024) and SL-VNS (Zhang et al., 2024). We
observe from Table 4 that our IDEA algorithm obtains a significantly better result than the SA and VNS
algorithms for all the instances, both in terms of the best and average objective values. In particular, our
IDEA algorithm improves the best-known result for all 18 large-scale instances. Furthermore, Table 5
shows that the IDEA algorithm also outperforms HGA and SL-VNS in terms of solution quality.

To have an intuitive impression on the best solutions from our IDEA algorithm, Fig. 11 shows the
graphical representations of the improved solutions of 6 representative instances.

4.3 Computational results for maximizing the number of items with rotation

Table 6: Comparison of the IDEA algorithm with three previous algorithms on the small-scale instances
of the variant of maximizing the number of items with rotation.

FSS PEA SA IDEA (this work)
Instance BKS Best Best Best Avg Best Avg ∆BKS

r10-0 5 5 5∗ 5 5.00 5 5.00 0
r10-1 6 6 6∗ 6 6.00 6 6.00 0
r10-2 7 7 7∗ 7 7.00 7 7.00 0
r20-0 8 8 8∗ 8 7.60 8 8.00 0
r20-1 11 10 11 10 10.00 11 11.00 0
r20-2 14 12 14 13 13.00 14 14.00 0
r30-0 15 14 15 14 14.00 15 15.00 0
r30-1 19 17 19 18 18.00 19 19.00 0
r30-2 22 20 22 21 21.00 22 22.00 0
#Improve 0 0 0 0
#Equal 4 9 4 9
#Worse 5 0 5 0

Table 7: Comparison of the IDEA algorithm with two recent heuristic algorithms on the small-scale
instances of the variant of maximizing the number of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

r10-0 5 5 5.00 5 4.60 5 5.00 0
r10-1 6 6 6.00 6 6.00 6 6.00 0
r10-2 7 7 7.00 7 7.00 7 7.00 0
r20-0 8 8 8.00 7 7.00 8 8.00 0
r20-1 11 11 11.00 11 10.80 11 11.00 0
r20-2 14 14 13.30 13 13.00 14 14.00 0
r30-0 15 15 15.00 15 15.00 15 15.00 0
r30-1 19 19 18.70 19 18.40 19 19.00 0
r30-2 22 22 21.95 22 21.60 22 22.00 0
#Improve 0 0 0
#Equal 9 7 9
#Worse 0 2 0

This subsection aims to evaluate the performance of the IDEA algorithm on the variant of maxi-
mizing the number of items with rotation, where the items are allowed to be rotated orthogonally. The
set of 18 benchmark instances can be further divided into two subsets, where the first subset contains 9
small instances with N ∈ {10, 20, 30} from López and Beasley (2018) and the second subset contains
9 large instances with N ∈ {100, 150, 200} generated by Bouzid and Salhi (2020). The computational
results of the IDEA algorithm on the 9 small instances are summarized in Tables 6 and 7, together
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Table 8: Comparison of the IDEA algorithm with two heuristic algorithms on the large-scale instances
of the variant of maximizing the number of items with rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

r100-0 48 46 45.20 45 44.40 50 49.20 2
r100-1 63 59 58.00 59 57.80 64 64.00 1
r100-2 75 71 70.40 70 69.40 77 76.10 2
r150-0 78 70 69.40 73 71.60 79 78.10 1
r150-1 100 92 90.60 93 91.80 101 100.90 1
r150-2 117 110 109.00 110 108.80 118 118.00 1
r200-0 104 95 94.60 98 97.40 107 107.00 3
r200-1 134 125 122.60 126 124.40 136 135.30 2
r200-2 158 148 146.00 147 146.40 159 158.80 1
#Improve 0 0 9
#Equal 0 0 0
#Worse 9 9 0

Table 9: Comparison of the IDEA algorithm with two recent heuristic algorithms on the large-scale
instances of the variant of maximizing the number of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

r100-0 48 48 47.95 48 48.00 50 49.20 2
r100-1 63 63 62.10 62 62.00 64 64.00 1
r100-2 75 75 74.00 75 74.20 77 76.10 2
r150-0 78 77 75.40 78 77.40 79 78.10 1
r150-1 100 99 97.00 100 99.20 101 100.90 1
r150-2 117 116 114.50 117 116.40 118 118.00 1
r200-0 104 103 102.25 104 103.80 107 107.00 3
r200-1 134 132 130.05 134 132.80 136 135.30 2
r200-2 158 155 153.40 158 157.00 159 158.80 1
#Improve 0 0 9
#Equal 1 8 0
#Worse 8 1 0

with the results of five reference algorithms, i.e., FSS (López and Beasley, 2018), PEA (Silva et al.,
2022), SA (Bouzid and Salhi, 2020), HGA (Luo et al., 2024) and SL-VNS (Zhang et al., 2024). The
computational results of the IDEA algorithm on the 9 large instances are summarized in Tables 8 and 9,
together with the results of four reference algorithms, i.e., SA, VNS (Bouzid and Salhi, 2020), HGA
and SL-VNS. In these tables, the statistical information and symbols are the same as in the previous
tables.

Table 6 shows that the IDEA algorithm performs very well and outperforms FSS and SA on the
variant of maximizing the number of items with rotation. Specifically, the IDEA algorithm obtains
the best-known result with a success rate of 100% for all instances, while FSS and SA obtain the
best-known results for only 4 instances, respectively. Compared to the exact algorithm PEA, the IDEA
algorithm obtains the same best solution for all instances, where the best solution is proved to be
optimal for 4 instances (indicated by ‘*’).

Table 7 shows that for the small instances the IDEA algorithm also outperforms the recent HGA
and SL-VNS. In terms of the best objective value, the HGA and IDEA algorithms obtain the same
result for all instances. However, the IDEA algorithm outperforms the HGA algorithm in terms of the
average objective value. Moreover, compared to the SL-VNS algorithm, our IDEA algorithm obtains
a better result for 2 instances in terms of the best objective value, matching the result of SL-VNS
algorithm for the remaining instances. In terms of the average objective value, the IDEA algorithm
obtains a better result for 5 out of 9 instances, and matches the result of SL-VNS algorithm for the
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remaining instances.
Tables 8 and 9 clearly show that in terms of the best objective value the proposed IDEA algorithm

significantly outperforms four the state-of-art algorithms in the literature on the large-scale instances.
It can be found from the tables that the IDEA algorithm improves the best-known results for all tested
instances. Furthermore, the average objective value of the IDEA algorithm is superior to the best-known
result for each tested instance, which shows a strong searching ability of IDEA algorithm.

In summary, the experimental results of this section show that the IDEA algorithm is very efficient
and outperforms the state-of-the-art algorithms in the literature for the variant of maximizing the
number of items with rotation.

4.4 Computational results for maximizing the area of items without rotation

This section evaluate the proposed IDEA algorithm on the variant of maximizing the area of items
without rotation. The benchmark set used in the experiment consists of 36 instances and can be further
divided into two subsets, including a set of 18 small-scale instances with N ∈ {10, 20, 30} and a set of
18 large-scale instances with N ∈ {100, 150, 200}. The computational results of the IDEA algorithm
on the small-scale instances are summarized in Tables 10 and 11, together with the results of five
reference algorithms, i.e., the FSS algorithm (López and Beasley, 2018), the cutting plane method
(CPM) (Silva et al., 2022) that is an exact algorithm, the VNS algorithm (Bouzid and Salhi, 2020), the
HGA (Luo et al., 2024) , and the SL-VNS algorithm (Zhang et al., 2024). The computational results of
the IDEA algorithm on the large-scale instances are summarized in Tables 12 and 13, together with the
results of the SA, VNS, HGA and SL-VNS algorithms. The statistical information and symbols of the
tables are the same as in the previous tables in Section 4.2.

Table 10: Comparison of the IDEA algorithm with three previous algorithms on the small-scale
instances of the variant of maximizing the area of items without rotation.

FSS CPM VNS IDEA (this work)
Instance BKS Best Best Best Avg Best Avg ∆BKS

s10–0 23.9878 22.9485 23.9878∗ 23.9878 23.3642 23.9878 23.5028 0.0000
s10–1 37.7471 36.7126 37.7471∗ 37.7471 37.3333 37.7471 37.7471 0.0000
s10–2 52.7555 51.7583 52.7555∗ 52.7555 51.9923 52.7555 52.7555 0.0000
s20–0 64.7463 54.1054 64.7463∗ 63.7523 62.7630 63.7430 63.6483 -1.0033
s20–1 95.9219 85.2107 95.9219∗ 94.7706 94.0801 95.7239 95.7239 -0.1980
s20–2 137.2832 109.8363 137.2832∗ 132.4100 125.8077 131.9165 130.9737 -5.3667
s30–0 65.1246 54.4941 64.3817 63.9965 63.4017 64.7352 64.4022 -0.3894
s30–1 99.5590 77.5814 97.8908 98.1142 97.1655 99.6053 99.2590 0.0463
s30–2 134.5194 103.0963 131.6949 131.5472 129.5725 134.6538 133.7937 0.1344
r10–0 18.4441 18.4441 18.4441∗ 18.4441 18.3351 18.4441 18.4441 0.0000
r10–1 28.9390 28.9390 28.9390∗ 28.9390 28.9390 28.9390 28.9390 0.0000
r10–2 39.4588 37.6878 39.4588∗ 38.7870 38.7870 39.4588 39.4588 0.0000
r20–0 45.9961 43.3885 45.9961∗ 45.1567 44.7210 45.3621 45.3601 -0.6340
r20–1 72.7850 63.1643 72.7850 68.8314 67.4388 70.6065 70.6065 -2.1785
r20–2 97.5007 84.4446 96.7569 91.6368 90.6159 95.9012 95.4251 -1.5995
r30–0 67.4983 60.3570 67.1937 64.4689 63.7051 67.6012 67.2801 0.1029
r30–1 104.7251 85.2113 102.6709 102.1196 99.3385 104.0392 102.9556 -0.6859
r30–2 141.0049 103.4802 138.4558 137.4149 135.2876 141.0108 139.4474 0.0059
#Improve 0 0 0 4
#Equal 2 15 5 6
#Worse 16 3 13 8

Table 10 shows that the IDEA algorithm outperforms both FSS and VNS on the small-scale
instances in terms of solution quality. In terms of the best objective value, FSS and VNS obtain a worse
result than the best-known result for 16 and 13 out of 18 instances, and match the best-known result for
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Table 11: Comparison of the IDEA algorithm with two recent heuristic algorithms on the small-scale
instances of the variant of maximizing the area of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

s10–0 23.9878 23.9878 23.9878 22.6150 22.6150 23.9878 23.5028 0.0000
s10–1 37.7471 37.7471 37.7471 36.7126 36.7126 37.7471 37.7471 0.0000
s10–2 52.7555 52.7555 52.7555 49.2838 49.0052 52.7555 52.7555 0.0000
s20–0 64.7463 64.7463 63.8517 59.6314 59.5471 63.7430 63.6483 -1.0033
s20–1 95.9219 95.9219 95.9044 88.9578 88.9578 95.7239 95.7239 -0.1980
s20–2 137.2832 137.2832 135.4750 130.9828 129.5658 131.9165 130.9737 -5.3667
s30–0 65.1246 65.1246 64.9994 63.9965 63.9965 64.7352 64.4022 -0.3894
s30–1 99.5590 99.5590 99.0206 97.7980 97.4868 99.6053 99.2590 0.0463
s30–2 134.5194 134.4015 133.11345 132.2788 131.1505 134.6538 133.7937 0.1344
r10–0 18.4441 18.4441 18.4441 17.8992 17.8992 18.4441 18.4441 0.0000
r10–1 28.9390 28.9390 28.9390 26.7643 26.7643 28.9390 28.9390 0.0000
r10–2 39.4588 39.4588 39.2676 37.3681 36.5987 39.4588 39.4588 0.0000
r20–0 45.9961 45.9961 45.7653 44.4296 44.4296 45.3621 45.3601 -0.6340
r20–1 72.7850 72.7850 71.6012 69.7481 69.5623 70.6065 70.6065 -2.1785
r20–2 97.5007 97.5007 95.7674 94.3265 93.7633 95.9012 95.4251 -1.5995
r30–0 67.4983 67.4983 66.77903 66.1060 66.1060 67.6012 67.2801 0.1029
r30–1 104.7251 104.7251 103.0498 101.7709 101.5139 104.0392 102.9556 -0.6859
r30–2 141.0049 141.0049 139.4206 137.5372 137.0940 141.0108 139.4474 0.0059
#Improve 0 0 4
#Equal 14 0 6
#Worse 4 18 8

Table 12: Comparison of the IDEA algorithm with two heuristic algorithms on the large-scale instances
of the variant of maximizing the area of items without rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

s100–0 301.3806 293.5578 293.4949 297.8481 296.3685 300.5580 300.1525 -0.8226
s100–1 455.4665 446.0632 443.2703 449.0898 447.3728 453.1629 451.3734 -2.3036
s100–2 610.9711 587.8824 586.7831 600.2514 596.5111 611.2694 609.5736 0.2983
s150–0 476.1826 469.7621 468.9567 472.4785 470.7997 474.1083 473.0807 -2.0743
s150–1 721.6048 707.3694 705.7661 714.3385 712.3815 721.0362 719.8731 -0.5686
s150–2 963.1189 935.9346 935.0466 948.3443 946.8239 963.5195 960.9966 0.4006
s200–0 602.4622 593.9045 590.6651 596.4252 595.3754 601.8076 600.9707 -0.6546
s200–1 904.0008 882.0002 879.1137 889.4874 887.5525 906.7465 904.4098 2.7457
s200–2 1211.8357 1178.8631 1176.3317 1185.9045 1182.5038 1212.3386 1210.0431 0.5029
r100–0 285.3060 276.2503 274.7736 281.5851 279.3196 286.8923 284.7452 1.5863
r100–1 433.0382 418.9820 418.9820 424.7806 424.3101 434.6132 433.9410 1.575
r100–2 579.1004 556.3578 555.6125 567.0707 563.8865 581.8476 578.9688 2.7472
r150–0 393.1389 382.7671 382.6841 387.9162 386.4728 394.9145 393.9623 1.7756
r150–1 592.6726 576.9804 576.0199 583.5556 581.0678 596.2875 594.1016 3.6149
r150–2 793.9707 769.4407 765.6101 780.1788 777.1628 796.9769 795.2090 3.0062
r200–0 508.9918 497.3100 497.3100 503.1195 502.1400 511.2864 509.6866 2.2946
r200–1 766.7049 745.3243 745.0537 758.4439 754.7137 770.7467 769.0476 4.0418
r200–2 1021.4577 994.7474 990.0431 1003.5017 1001.2816 1026.1222 1023.7889 4.6645
#Improve 0 0 13
#Equal 0 0 0
#Worse 18 18 5
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Table 13: Comparison of the IDEA algorithm with two recent heuristic algorithms on the large-scale
instances of the variant of maximizing the area of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

s100–0 301.3806 301.3806 300.7750 297.5600 295.8297 300.5580 300.1525 -0.8226
s100–1 455.4665 455.4665 452.1387 451.0402 448.6063 453.1629 451.3734 -2.3036
s100–2 610.9711 610.9711 608.3166 602.1586 601.0954 611.2694 609.5736 0.2983
s150–0 476.1826 476.1826 474.2942 470.5036 469.5171 474.1083 473.0807 -2.0743
s150–1 721.6048 721.6048 720.1896 712.1517 711.2916 721.0362 719.8731 -0.5686
s150–2 963.1189 963.1189 961.9878 953.7799 952.2550 963.5195 960.9966 0.4006
s200–0 602.4622 602.4622 601.3726 597.6537 595.5345 601.8076 600.9707 -0.6546
s200–1 904.0008 904.0008 901.6450 898.7813 896.9252 906.7465 904.4098 2.7457
s200–2 1211.8357 1211.8357 1208.7768 1203.318 1200.9086 1212.3386 1210.0431 0.5029
r100–0 285.3060 285.3060 283.7283 283.5337 282.1808 286.8923 284.7452 1.5863
r100–1 433.0382 433.0382 430.8815 428.2655 426.8841 434.6132 433.9410 1.5750
r100–2 579.1004 579.1004 574.8603 569.5371 568.9367 581.8476 578.9688 2.7472
r150–0 393.1389 393.1389 391.2339 390.8242 390.4987 394.9145 393.9623 1.7756
r150–1 592.6726 592.6726 590.0955 590.7326 588.6003 596.2875 594.1016 3.6149
r150–2 793.9707 793.9707 789.5589 790.4961 787.3235 796.9769 795.2090 3.0062
r200–0 508.9918 508.9918 507.1107 508.4863 505.2021 511.2864 509.6866 2.2946
r200–1 766.7049 766.7049 764.3574 766.5361 763.5390 770.7467 769.0476 4.0418
r200–2 1021.4577 1021.4577 1016.3950 1018.2872 1017.1783 1026.1222 1023.7889 4.6645
#Improve 0 0 13
#Equal 4 0 0
#Worse 14 18 5

the remaining instances. However, the IDEA algorithm obtains a worse result than the best-known
result only for the 8 instances, and improves the best-known result for 4 instances. Compared to the
exact algorithm CPM, the IDEA algorithm obtains a better and worse result for 6 instances, respectively,
which means these two algorithms are comparable in terms of solution quality.

Table 11 shows that the IDEA algorithm significantly outperforms the SL-VNS algorithm but
performs worse than the HGA algorithm on these small-scale instances. Specifically, the IDEA
algorithm obtains a better result than the SL-VNS algorithm for all instances in terms of both the best
and average objective values. On the other hand, the IDEA algorithm obtains a better and worse result
than the HGA algorithm for 4 and 8 instances, respectively, in terms of the best objective value, which
means that the HGA algorithm has a better performance than our IDEA algorithm on the small-scale
instances. Since both the HGA and IDEA algorithms are evolutionary algorithms and use the same
data structure in the decoding procedure, the difference in computational results between HGA and
IDEA is mainly due to other algorithmic components, such as the number of initial configurations, the
scoring function of the decoding procedure, the crossover and mutation operators, and the population
updating strategy.

Tables 12 and 13 shows that in terms of solution quality the IDEA algorithm significantly out-
performs four state-of-the-art algorithms on the large-scale instances, including SA, VNS, HGA, and
SL-VNS. Compared to SA, VNS and SL-VNS, the IDEA algorithm obtains a better result for each
instance tested in terms of both the best and average objective values. In particular, the IDEA algorithm
improves the best-known result for 13 out of 18 instances. Moreover, compared to the HGA algorithm,
the IDEA algorithm obtains a better result for 13 out of 18 instances in terms of the best objective
value, and a worse result only for 5 instances.

To have an intuitive impression on the improved solutions, Fig. 12 provides the graphical represen-
tations for the best solutions of 6 representative instances.

24



(a) s30-1 (b) s100-2 (c) s200-2

(d) r100-1 (e) r150-1 (f) r200-0

Figure 12: Improved solutions found by the IDEA algorithm for 6 representative instances of the
variant maximizing the area of packed items without rotation.

4.5 Computational results for maximizing the area of items with rotation

We now evaluate the performance of the IDEA algorithm on the variant of maximizing the area of
items with rotation, based on the 18 benchmark instances which are further divided into a subset
of 9 small-scale instances with N ∈ {10, 20, 30} from López and Beasley (2018) and a subset of 9
large-scale instances with N ∈ {100, 150, 200} from Bouzid and Salhi (2020). The computational
results of the IDEA algorithm on the small-scale instances are given in Tables 14 and 15, together
with the results of five reference algorithms in the literature. The results of the IDEA algorithm on the
large-scale instances are given in Tables 16 and 17, together with the results of four state-of-the-art
algorithms in literature.

We observe from Table 14 that the IDEA algorithm outperforms the FSS and VNS methods in
terms of the best and average objective values except for two smallest instances. Compared to the
exact CPM algorithm, the IDEA algorithm performs worse for 6 small instances N ≤ 20, but performs
better for the larger instances with N = 30, which means that the IDEA algorithm is more suitable
than the CPM algorithm for the medium-sized and large-scale instances.

Table 15 shows that the IDEA algorithm outperforms the recent SL-VNS algorithm but performs
worse than the HGA algorithm on these small-scale instances in terms of objective values. Specifically,
the IDEA algorithm obtains a better result than the SL-VNS algorithm for almost all instances in terms
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Table 14: Comparison of the IDEA algorithm with three previous algorithms on the small-scale
instances of the variant maximizing the area of items with rotation.

FSS CPM VNS IDEA (this work)
Instance BKS Best Best Best Avg Best Avg ∆BKS

r10–0 19.6702 19.6702 19.6702 19.6702 19.2633 18.8619 18.8619 -0.8083
r10–1 30.8746 29.5041 30.8746 30.8746 29.7208 29.5041 29.5041 -1.3705
r10–2 41.5246 37.9687 41.5246 40.9063 40.3619 41.1612 41.1612 -0.3634
r20–0 47.9336 43.6850 47.9336 45.4200 45.3303 47.1228 46.9025 -0.8108
r20–1 72.7850 63.5279 72.6945 70.8221 68.7228 71.8253 71.7682 -0.9597
r20–2 98.4189 84.7008 97.9712 95.2162 93.4912 97.5326 97.4168 -0.8863
r30–0 67.8840 57.9328 67.2577 66.6329 65.1248 67.4140 67.3798 -0.4700
r30–1 104.8784 84.3715 103.1495 100.3020 99.2145 104.7157 103.3479 -0.1627
r30–2 141.6376 110.3253 138.6397 137.5277 136.1031 141.5478 140.3539 -0.0898
#Improve 0 0 0 0
#Equal 1 8 2 0
#Worse 8 1 7 9

Table 15: Comparison of the IDEA algorithm with two recent heuristic algorithms on the small-scale
instances of the variant maximizing the area of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

r10–0 19.6702 19.6702 19.6702 18.4441 18.4441 18.8619 18.8619 -0.8083
r10–1 30.8746 30.8746 30.8746 28.7839 27.7443 29.5041 29.5041 -1.3705
r10–2 41.5246 41.5246 41.3819 39.5569 39.5569 41.1612 41.1612 -0.3634
r20–0 47.9336 46.4452 46.0419 45.2503 45.2148 47.1228 46.9025 -0.8108
r20–1 72.7850 72.7850 71.6061 70.9040 70.4724 71.8253 71.7682 -0.9597
r20–2 98.4189 98.4189 97.5771 97.9176 96.8554 97.5326 97.4168 -0.8863
r30–0 67.8840 67.8840 67.1898 67.0593 66.8382 67.4140 67.3798 -0.4700
r30–1 104.8784 104.8784 103.7276 102.7266 102.2871 104.7157 103.3479 -0.1627
r30–2 141.6376 141.6376 140.0809 139.1076 138.0495 141.5478 140.3539 -0.0898
#Improve 0 0 0
#Equal 8 0 0
#Worse 1 9 9

Table 16: Comparison of the IDEA algorithm with two heuristic algorithms on the large-scale instances
of the variant of maximizing the area of items with rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

r100–0 286.0224 275.9862 275.9862 282.3465 280.7830 287.5666 286.9704 1.5442
r100–1 434.7697 422.5904 422.5904 426.5573 425.9241 435.3168 434.4095 0.5471
r100–2 580.7641 564.5293 561.1405 571.6369 569.1376 583.9064 581.7455 3.1423
r150–0 393.9724 386.3599 386.0969 389.6020 388.5257 395.5893 394.5173 1.6169
r150–1 594.9417 576.2670 574.8735 585.5947 583.7210 595.6288 594.3948 0.6871
r150–2 796.1322 771.9016 769.5404 780.7081 778.2186 799.1850 795.5685 3.0528
r200–0 510.9300 500.0271 498.8451 505.4126 503.2490 511.2842 509.5505 0.3542
r200–1 768.3748 748.1296 748.1296 757.9592 755.5614 771.3863 769.5982 3.0115
r200–2 1026.7739 994.3341 992.4800 1008.3091 1006.3442 1031.1575 1027.0228 4.3836
#Improve 0 0 9
#Equal 0 0 0
#Worse 9 9 0
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Table 17: Comparison of the IDEA algorithm with two recent heuristic algorithms on the large-scale
instances of the variant maximizing the area of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Best Avg Best Avg ∆BKS

r100–0 286.0224 285.2622 283.9407 286.0224 284.2914 287.5666 286.9704 1.5442
r100–1 434.7697 434.7697 432.9662 430.9151 429.6375 435.3168 434.4095 0.5471
r100–2 580.7641 580.7641 576.9916 579.1329 574.8210 583.9064 581.7455 3.1423
r150–0 393.9724 393.9724 392.2238 393.5067 391.5401 395.5893 394.5173 1.6169
r150–1 594.9417 594.9417 591.8375 594.0722 592.9682 595.6288 594.3948 0.6871
r150–2 796.1322 794.3447 791.3517 796.1322 794.7256 799.1850 795.5685 3.0528
r200–0 510.9300 509.2270 507.8536 510.9300 508.5306 511.2842 509.5505 0.3542
r200–1 768.3748 768.3748 766.4292 767.8849 765.3624 771.3863 769.5982 3.0115
r200–2 1026.7739 1026.7739 1021.1400 1026.3432 1024.2576 1031.1575 1027.0228 4.3836
#Improve 0 0 9
#Equal 6 3 0
#Worse 3 6 0

of both the best and average objective values. On the other hand, our IDEA algorithm obtains a worse
result than the HGA algorithm for 8 out of 9 instances in terms of the best objective value, and a better
result for the remaining instance. The results of Tables 14 and 15 mean that for the small-scale instances
the IDEA algorithm is the second best-performing heuristic algorithm after the HGA algorithm. It
is worth noting that, according to an additional experiment (results not shown here), IDEA performs
better than HGA in terms of the average objective value when both algorithms use the same initial
configurations of Luo et al. (2024), which means that the initial configurations play an important role
for the search ability of the algorithm on these small instances.

Tables 16 and 17 shows clearly that for the large-scale instances the IDEA algorithm significantly
outperforms the four reference algorithms (SA, VNS, HGA and SL-VNS) in terms of solution quality.
Compared to each of these reference algorithms, the IDEA algorithm produces a better result for all the
tested instances in terms of both the best and average objective values. Moreover, the IDEA algorithm
improves the best-known result for all the tested instances, which indicates a strong search ability of
the algorithm.

4.6 A summary of comparisons between the proposed IDEA algorithm and the previ-
ous algorithms

Table 18: Summary for the number of instances where the proposed IDEA algorithm obtains a better,
equal and worse result compared to the reference algorithms and the best-known result in terms of the
best objective value.

Maximizing Number Maximizing Area
Algorithm Type Reference #Total #Better #Equal #Worse #Total #Better #Equal #Worse
FSS heuristic López and Beasley (2018) 27 16 11 0 27 23 3 1
SA heuristic Bouzid and Salhi (2020) 54 32 12 0 54 44 8 2
VNS heuristic Bouzid and Salhi (2020) 54 44 10 0 54 45 5 4
PEA exact Silva et al. (2022) 54 27 27 0 54 37 6 11
CMP exact Silva et al. (2022) 27 9 18 0 27 12 6 9
SL-VNS heuristic Zhang et al. (2024) 54 37 17 0 54 53 0 1
HGA heuristic Luo et al. (2024) 54 28 26 0 54 26 6 22
BKS 54 27 27 0 54 26 6 22

To provide an overall impression of the comparisons between the proposed IDEA algorithm and
seven previous algorithms from the literature, we summarize the comparative results in Table 18. This
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summary is based on the results from the previous subsections, as well as additional results from
Bouzid and Salhi (2020) and Silva et al. (2022). The first three columns of the table give the name,
type, and the reference of the algorithms, respectively. Columns 4-7 show the comparative results
between the reference algorithms and our IDEA algorithm for the two variants of maximizing the
number of items packed, including the total number (#Total) of instances used in the original paper
in which the corresponding reference algorithm was proposed and tested, and the numbers (#Better,
#Equal, and #Worse) of instances for which our IDEA algorithm achieves a better, equal, or worse
result compared to the corresponding reference algorithm in terms of the best objective value. The
last four columns of the table show the overall comparative results between our IDEA algorithm and
the reference algorithms for the two variants of maximizing the area of packed items. In addition, the
last row of the table compares the results of our IDEA algorithm with the best-known results in the
literature.

We observe from Table 18 that the proposed IDEA algorithm significantly outperforms all the
reference algorithms for the variants of maximizing the number of items packed. The best solution
obtained by our IDEA algorithm is either better than or matches the best solution obtained by the
reference algorithm for each instance. Furthermore, for the variants of maximizing the area of packed
items, the IDEA algorithm also has a good performance compared to each reference algorithm in
terms of the best objective value. The last row shows that the proposed IDEA algorithm improves the
best-known solutions for 53 out of 108 instances, matching the best-known result for 33 instances. In
summary, this outcome shows that the proposed algorithm significantly surpasses the state-of-the-art
algorithms in the literature in terms of the solution quality.

5 Analysis of the Key Algorithmic Components

In this section, we analyze several key components of the proposed IDEA algorithm, including the
population initialization method, the scoring function of decoding procedure, the parameters, and the
speedup strategy of the decoding procedure.

5.1 Effectiveness of initial population

The population initialization method aims to provide a good initial population that contains some
high-quality solutions. To check the effectiveness of the initialization method used in our IDEA
algorithm, we carried out a comparative experiment based on 18 representative instances of the
variant of maximizing the number of items without rotation. In this experiment, we created a variant
IDEA∗ of our IDEA algorithm by replacing the initialization method with a random method, which
generates each individual of the population randomly. We ran both IDEA∗ and IDEA 10 times on each
instance, and report the computational results in Table 19, including the best objective value (Best),
the average objective value (Avg), and the average computation time, where better results between
the two compared algorithms are indicated in bold for each performance indicator. The last three
rows ‘#Better’, ‘#Equal’, and ‘#Worse’ indicate the numbers of instances for which the corresponding
algorithm obtains a better, equal, or worse result than its competitor.

Table 19 shows that the IDEA algorithm significantly outperforms the IDEA∗ algorithm for all the
considered performance indicators. First, in terms of the best objective value, the IDEA algorithm
obtains a better result for 15 out of the 18 instances, while matching the results of IDEA∗ for the
remaining instances. In terms of the average objective value, IDEA outperforms IDEA∗ for all the
instances. In terms of computation time, the IDEA algorithm outperforms the IDEA∗ algorithm on
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Table 19: Comparison between the population initialization methods on 18 representative instances of
the variant maximizing the number of items without rotation. The IDEA∗ and IDEA algorithms were
each run 10 times on each instance, and the dominant results between two algorithms are shown in
bold for each considered performance indicator.

Best Avg Time(s)
Instance BKS IDEA∗ IDEA IDEA∗ IDEA IDEA∗ IDEA
s100-0 57 57 58 56.60 57.10 325.20 11.60
s100-1 70 70 71 69.80 70.10 869.00 107.30
s100-2 80 80 81 79.20 80.90 331.40 155.00
s150-0 92 92 93 91.10 92.20 606.40 407.00
s150-1 110 109 111 108.80 110.10 1290.50 18.40
s150-2 123 122 124 121.90 123.80 1000.90 594.70
s200-0 117 116 118 115.50 117.90 1011.20 517.10
s200-1 143 142 144 141.50 144.00 1497.50 43.30
s200-2 164 161 165 160.80 164.30 943.80 420.50
r100-0 49 49 50 49.00 49.10 230.50 27.70
r100-1 63 64 64 63.20 63.90 236.80 478.70
r100-2 75 76 76 75.10 75.90 626.60 257.80
r150-0 77 78 78 77.30 78.00 587.60 478.90
r150-1 98 100 101 99.30 100.20 863.10 628.50
r150-2 116 117 118 116.40 118.00 1270.00 1222.10
r200-0 104 105 107 104.90 106.20 1313.10 641.50
r200-1 131 134 135 132.90 134.90 1728.90 1199.50
r200-2 155 156 158 155.50 158.00 1492.50 540.20
#Better 0 15 0 18 1 17
#Equal 3 3 0 0 0 0
#Worse 15 0 18 0 17 1

17 out of 18 instances. The result of this experiment clearly shows that the population initialization
method plays an important role for the performance of the algorithm and that the initialization method
used in our IDEA algorithm is much more efficient than the stochastic method.

5.2 Effectiveness of the scoring function

The scoring function of the decoding procedure is used to determine the position of the current
rectangular item. To check whether the scoring function of decoding procedure plays an important role
in the algorithm, we carried out an experiment based on the 18 representative instances used in Section
5.1. In this experiment, we first developed two IDEA variants, named IDEA1 and IDEA2, by using
two alternative scoring functions, while maintaining the other components of the algorithm unchanged.
In IDEA1, the distance between the center of the item to be packed and the center of the container is
used as a scoring function, as in Bouzid and Salhi (2020). In IDEA2, the extended scoring function
of Eq. (7) is used, i.e., the distance from a position of the current rectangular item to the boundary of
the container is used as an additional criterion to further determine the scores of positions if multiple
positions have the same score with respect to Eq. (7), and a shorter distance has a higher score. Then,
the IDEA1, IDEA2 and IDEA algorithms were run 10 times on each instance, and the computational
results are summarized in Table 20. The last two rows of the table respectively give the sum of the
results in the corresponding column (i.e., sum) and the number of instances (i.e., #Best) where the
corresponding algorithm obtains the best result between the compared algorithms in the performance
indicator considered.

Table 20 shows that IDEA significantly outperforms IDEA1 and slightly outperforms IDEA2.
Compared to the variant IDEA1, IDEA achieves a better result in terms of the best objective value for
15 out of 18 instances, and matches the result of IDEA1 for the remaining instances. For the average
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Table 20: Comparison of the scoring functions on the 18 representative instances of the variant of
maximizing the number of items packed without rotation. The IDEA1, IDEA2 and IDEA algorithms
were respectively run 10 times for each instance and the best results between the algorithms are
indicated in bold.

Best Avg Time(s)
Instance BKS IDEA1 IDEA2 IDEA IDEA1 IDEA2 IDEA IDEA1 IDEA2 IDEA
s100-0 57 57 58 58 57.00 57.10 57.10 45.70 107.50 11.60
s100-1 70 70 71 71 69.90 70.20 70.10 57.60 462.90 107.30
s100-2 80 80 81 81 80.00 80.70 80.90 69.80 59.90 155.00
s150-0 92 92 93 93 92.00 92.20 92.20 282.10 159.80 407.00
s150-1 110 109 110 111 109.00 110.00 110.10 30.90 19.20 18.40
s150-2 123 123 124 124 122.90 123.60 123.80 645.40 222.80 594.70
s200-0 117 117 118 118 116.90 117.70 117.90 687.70 387.90 517.10
s200-1 143 143 144 144 143.00 144.00 144.00 569.00 42.1 43.3
s200-2 164 163 165 165 162.60 164.10 164.30 677.80 30.3 420.5
r100-0 49 49 49 50 49.00 49.00 49.10 68.90 22.50 27.70
r100-1 63 64 64 64 63.80 63.90 63.90 893.40 209.50 478.70
r100-2 75 76 76 76 75.20 75.80 75.90 300.00 245.10 257.80
r150-0 77 78 78 78 77.60 78.00 78.00 705.30 411.20 478.90
r150-1 98 100 100 101 99.90 100.00 100.20 945.10 138.3 628.5
r150-2 116 117 118 118 117.00 117.60 118.00 254.70 542.50 1222.10
r200-0 104 106 106 107 105.90 106.00 106.20 797.70 244.10 641.50
r200-1 131 134 135 135 133.90 134.90 134.90 850.70 1649.50 1199.50
r200-2 155 157 158 158 156.90 158.00 158.00 697.60 703.40 540.20
sum 1835 1848 1852 1832.50 1842.80 1844.60 8579.16 5658.49 7749.77
#Best 3 14 18 0 8 17 3 13 2

objective value, IDEA outperforms IDEA1 on all tested instances. On the other hand, compared to the
variant IDEA2, the IDEA algorithm obtains 4 better and 14 equal results in terms of the best objective
value. For the average objective value, the IDEA and IDEA2 algorithm obtain the best result among
the three compared algorithms on 8 and 17 instances, respectively. However, the IDEA2 algorithm
generally outperforms the IDEA algorithm in terms of the computation time. This experiment confirms
that the scoring function of our decoding procedure has a great impact on the performance of the
IDEA algorithm and that the present scoring function is very efficient, especially for the variants
of maximizing the number of items packed. Finally, we also tested the combined scoring function,
which mixes the two scoring functions of IDEA2 and IDEA. The preliminary results on instances of
maximizing the number of items without rotation do not show an improvement over IDEA’s results.
However, the search for more meaningful scoring functions that take into account more problem
features remains an interesting direction for future research.

5.3 Effectiveness of the speedup strategy of the decoding procedure

Recall that the overlapping test between items is the most frequent operation in the decoding process
of a solution and that we use a candidate list strategy to reduce the number of the overlapping tests
between items during the decoding process and greatly speed up the decoding process. To show the
effect of this speedup strategy, we performed an experiment based on 18 representative instances
mentioned in sections 5.1 and 5.2, where the IDEA algorithms with and without the speedup strategy
were run 10 times on each instance and the average computation times of the underlying decoding
procedures were recorded for each of the two algorithms. The computational results are plotted in Fig.
13, where the X-axis shows the instances and the Y-axis shows the average computation times of each
run of the decoding procedures.

Fig. 13 shows that the speedup strategy plays an important role in enhancing the speed of the
decoding procedure and that the effect of the speedup is closely related to the size of instances to be
solved. For the medium-sized instances with N = 100, the decoding procedure with the speedup
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Figure 13: Comparison between the decoding procedures with and without the speedup in terms of the
average computation time.

strategy leads to a speedup ratio of about 1.5. As the problem size increases, the effect of the speedup
strategy is more and more obvious for most instances. In particular, the speedup ratio reaches about
2.0 for some large-scale instances with N = 200. Moreover, we can observe that the speed of the
decoding procedure depends also on the instance to be solved. This experiment shows clearly that
the candidate list strategy plays a key role in speeding up the decoding procedure especially for the
large-scale instances.

5.4 Sensitivity analysis of the parameters

Table 21: Computational results of the proposed algorithm with eight parameter combinations of
(α, β, γ) in terms of the average objective values (Avg).

Avg
Instance/(α, β, γ) (0, 0.1, 0.45) (0, 0.5, 0.25) (0.6, 0, 0.2) (0.6, 0.1, 0.15) (0.6, 0.1, 0.3) (0.6, 0.1, 0) (0.3, 0.3, 0.2) (0.3, 0.1, 0.3)
s100-0 57.0 57.0 57.0 57.1 57.0 57.0 57.1 57.0
s100-1 70.1 70.2 70.0 70.1 70.0 70.1 70.1 70.0
s100-2 80.6 80.8 80.7 80.9 80.8 80.8 80.9 80.4
s150-0 92.0 92.0 92.0 92.2 92.0 92.5 92.2 92.1
s150-1 110.0 110.0 110.0 110.0 110.0 110.0 110.1 110.0
s150-2 123.4 123.4 123.5 123.4 123.5 123.5 123.8 123.4
s200-0 117.6 117.7 117.8 117.5 117.2 118.0 117.9 117.7
s200-1 144.0 144.0 144.0 144.0 144.0 144.0 144.0 144.0
s200-2 164.1 164.2 164.0 164.2 164.0 164.2 164.3 164.1
r100-0 49.0 49.0 49.0 49.0 49.0 49.0 49.1 49.0
r100-1 63.6 64.0 63.5 63.8 63.8 63.7 63.9 63.7
r100-2 75.4 75.9 75.5 75.9 75.3 75.8 75.9 75.5
r150-0 77.9 78.0 78.0 78.1 77.9 77.9 78.0 78.0
r150-1 100.0 100.0 100.0 100.0 100.0 100.1 100.2 100.0
r150-2 117.6 118.0 117.6 117.7 117.7 117.8 118.0 117.9
r200-0 106.0 106.2 106.0 106.0 106.0 106.2 106.2 106.0
r200-1 134.9 135.0 134.4 134.8 134.5 134.6 134.9 134.8
r200-2 158.0 158.0 158.0 158.0 157.9 157.9 158.0 157.9
sum 1841.2 1843.4 1841.0 1842.7 1840.6 1843.1 1844.6 1841.5

To show the effect of the mutation and crossover operators on the performance of the algorithm
and to determine an appropriate setting for the parameters α, β, γ, which are used to control the
probabilities of applying these operators, we performed an experiment based on the 18 representative
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instances mentioned above. In this experiment, due to the high dependence between the parameters, the
IDEA algorithm was run 10 times on each instance with each combination of (α, β, γ) given in Table
21, and the average objective values (Avg) obtained over 10 runs are summarized in columns 2-9 of
Table 21 for each parameter combination. The last row of the table shows the sum of the computational
results in the corresponding column.

The last row of Table 21 shows that the setting of the parameters α, β, γ has a slight influence
on the performance of the algorithm. First, the second column of the table shows that the algorithm
obtains a relatively poor performance with the setting of (α, β, γ) = (0, 0.1, 0.45), which means that
the k-swap mutation operator is applied with a probability of 0 and both crossover operators are used
with a large probability of 0.45. This result implies that the k-swap mutation plays a more important
role than the crossover operators. Second, for the parameter combination of (α, β, γ) = (0, 0.5, 0.25),
which means that the insertion mutation operator is used with a large probability of 0.5 and the k-swap
mutation operator is applied with a probability of 0, the algorithm reaches a desirable performance
(i.e., sum = 1843.4), and this outcome indicates that the insertion operator also plays an essential
role for the performance of the algorithm. The conclusion is further confirmed by the worsen result
(i.e., sum = 1841) in the fourth column in which the insertion operator is applied with a probability of
0. Third, with the combination of (α, β, γ) = (0.6, 0.1, 0.3), which means that the prefix crossover
operator is disabled, the performance of the algorithm is obviously deteriorated (i.e., sum = 1840.6).
This result implies that the prefix crossover operator plays a more important role compared to the
order crossover operator, and this conclusion is also confirmed by the excellent results with respect
to the parameter combination (α, β, γ) = (0.6, 0.1, 0) where the order crossover operator is disabled.
Finally, for the combination (α, β, γ) = (0.3, 0.3, 0.2), which means that the two mutation operators
are applied with a large probability of 0.3 and the two crossover operators are applied with a smaller
probability of 0.2, the algorithm reaches a desirable performance with sum = 1844.6. In summary, this
experiment shows that the mutation operators play a more important role than the crossover operators
and thus should be applied with a large probability and that the crossover operators should be applied
with a smaller probability to ensure a high performance of the algorithm.

6 Conclusions and Future Work

We study the problem of orthogonally packing rectangles in a fixed size circular container (OPRCC),
which is a very challenging combinatorial optimization problem with many real-world applications. To
efficiently solve the different variants of the OPRCC problem, we present an effective evolutionary
algorithm that uses an improved decoding procedure, new initialization methods and a set of probabilis-
tically applied mutation and crossover operators. The algorithm also integrates a new scoring function
and an effective speedup strategy to accelerate the decoding procedure.

The performance of the proposed algorithm is evaluated on 108 benchmark instances widely used
in the literature and compared with several state-of-the-art algorithms. The computational results
on these benchmark instances show that the algorithm competes very favorably with the reference
algorithms for the variants of maximizing the number of the packed items, improving the best-known
result for 27 out of 54 instances, and matching the best-known result for the remaining instances. For
the variants of maximizing the area of packed items, the algorithm improves the best-known result for
26 out of 54 instances. Experimental analysis shows that the population initialization methods, the
scoring function and the speedup strategy of the decoding procedure all play a key role in the high
performance of the algorithm.

The proposed algorithm has some limitations, which can be summarized as follows. First, compared
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to the algorithms using the skyline-based data structure (Wei et al., 2011; Zhang et al., 2024), the
proposed algorithm is slower in the computational speed due to the fact that our decoding procedure
must perform a large number of overlapping tests between the rectangles to find a feasible position
for a rectangle to be packed. Second, the performance of the proposed algorithm is still worse than
the state-of-the-art HGA algorithm (Luo et al., 2024) for the small-scale instances of the variants of
maximizing the area of packed items, and thus the further improvements of the algorithm are still
needed.

The present study can be extended in several directions. First, with some suitable modifications,
the border-based decoding procedure with an appropriate scoring function can be applied to packing
problems with a convex or non-convex container. In this sense, it can be considered as a general-
purpose decoding procedure for rectangle packing problems, and it would be interesting to test it on
rectangle packing problems with convex or non-convex containers, such as those encountered in the
wood industry. Second, the proposed algorithm may be further improved by designing alternative
methods of generating initial configurations of the underlying decoding procedure for the variants
of maximizing the area of packed items. Third, it would be useful to study other efficient scoring
functions for the decoding procedure, crossover operators, and population updating strategies. Finally,
the proposed algorithm can be applied to other variants of the OPRCC problem, such as rectangle
packing problems where the container has a number of defects.
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1 Detailed Computational Results

In this online supplement, we present the detailed computational results of the IEDA algorithm and
the reference algorithms in the literature, where ’Best’ denotes the best objective values obtained by
the corresponding algorithm, ’Avg’ denotes the average objective values obtained over multiple runs
of algorithms, and the computation times refer to the running time of the algorithms or their valid
computation time (i.e., the elapsed time from the start of the program to the last update of the best
solution found). The reference algorithms include the formulation space search (FSS) algorithm (López
and Beasley, 2018), the cutting plane method (CPM) (Silva et al., 2022), the parallel enumeration
algorithm (PEA) (Silva et al., 2022), the simulated annealing algorithm (SA) (Bouzid and Salhi, 2020),
the variable neighborhood search algorithm (VNS) (Bouzid and Salhi, 2020), the hybrid-biased genetic
algorithm (HGA) (Luo et al., 2024), and the skyline-based variable neighborhood search algorithm
(SL-VNS) (Zhang et al., 2024). It should be noted that the computation times given in the tables are
only indicative, since the algorithms compared were run on different computing platforms. In addition,
for our IDEA algorithm, we give the average number of configurations (#pack) evaluated from the start
of the program to the last update of the best solution found. In the following subsections, the results of
the IEDA algorithm and the reference algorithms are given for each of the four problem variants.

1.1 Computational results for maximizing the number of items without rotation
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Table 1: Comparison of the proposed algorithm with three previous algorithms (i.e., FSS (López and
Beasley, 2018), PEA (Silva et al., 2022) and SA (Bouzid and Salhi, 2020) ) on the small-scale instances
of the variant of maximizing the number of items without rotation.

FSS PEA SA IDEA (this work)
Instance BKS Best Time(s) Best Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s10-0 4 4 1123.0 4 0.2 4 4.00 1.0 4 4.00 0.00 0 228
s10-1 5 5 2761.0 5 0.3 5 5.00 1.0 5 5.00 0.00 0 215
s10-2 6 6 2275.0 6 0.6 6 6.00 2.0 6 6.00 0.00 0 213
s20-0 11 11 5450.0 11 236.7 11 11.00 5.0 11 11.00 0.01 0 207
s20-1 13 12 6465.0 13 358.4 13 12.20 5.0 13 13.00 0.02 0 204
s20-2 15 14 6995.0 15 28801.0 14 14.00 6.0 15 15.00 0.18 0 3497
s30-0 17 16 13552.0 17 28803.3 16 16.00 10.0 17 17.00 0.09 0 1051
s30-1 21 20 13457.0 21 28802.7 20 20.00 12.0 21 21.00 0.05 0 202
s30-2 24 23 10427.0 24 28801.3 23 23.00 13.0 24 24.00 0.07 0 202
r10-0 5 5 3058.0 5 0.2 5 5.00 1.0 5 5.00 0.00 0 211
r10-1 6 6 2862.0 6 0.2 6 6.00 2.0 6 6.00 0.00 0 210
r10-2 7 7 2966.0 7 0.2 7 7.00 2.0 7 7.00 0.00 0 229
r20-0 8 7 6278.0 8 3441.7 7 7.00 5.0 8 8.00 8.50 0 391862
r20-1 11 10 4530.0 11 28800.1 10 10.00 5.0 11 11.00 0.26 0 7906
r20-2 14 11 7311.0 14 28801.3 13 13.00 6.0 14 13.30 2.68 0 64724
r30-0 15 13 11514.0 15 28801.8 14 14.00 10.0 15 15.00 0.34 0 5192
r30-1 19 16 10029.0 19 28801.5 18 18.00 11.0 19 19.00 3.16 0 36849
r30-2 22 19 6966.0 22 28801.0 21 21.00 13.0 22 22.00 0.28 0 2262
#Improve 0 0 0 0
#Equal 7 18 8 18
#Worse 11 0 10 0

Table 2: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the small-scale instances of the variant of maximizing
the number of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s10-0 4 4 4.00 0.03 4 4.00 0.15 4 4.00 0.00 0 228
s10-1 5 5 5.00 0.06 5 5.00 0.20 5 5.00 0.00 0 215
s10-2 6 6 6.00 0.08 6 6.00 0.25 6 6.00 0.00 0 213
s20-0 11 11 11.00 0.18 10 10.00 0.50 11 11.00 0.01 0 207
s20-1 13 13 13.00 0.14 13 13.00 0.50 13 13.00 0.02 0 204
s20-2 15 15 15.00 1.78 15 15.00 0.55 15 15.00 0.18 0 3497
s30-0 17 17 17.00 42.36 17 17.00 1.15 17 17.00 0.09 0 1051
s30-1 21 21 21.00 67.97 21 21.00 1.10 21 21.00 0.05 0 202
s30-2 24 24 24.00 84.8 24 24.00 1.15 24 24.00 0.07 0 202
r10-0 5 5 5.00 0.03 4 4.00 0.20 5 5.00 0.00 0 211
r10-1 6 6 6.00 0.04 6 6.00 0.20 6 6.00 0.00 0 210
r10-2 7 7 7.00 0.05 6 6.00 0.25 7 7.00 0.00 0 229
r20-0 8 8 8.00 3.51 7 7.00 0.45 8 8.00 8.50 0 391862
r20-1 11 11 11.00 0.5 11 10.80 0.80 11 11.00 0.26 0 7906
r20-2 14 13 13.00 36.79 13 13.00 0.75 14 13.30 2.68 0 64724
r30-0 15 15 15.00 38.7 14 14.00 1.00 15 15.00 0.34 0 5192
r30-1 19 19 18.20 53.78 18 18.00 1.15 19 19.00 3.16 0 36849
r30-2 22 22 21.75 68.64 21 21.00 1.25 22 22.00 0.28 0 2262
#Improve 0 0 0
#Equal 17 10 18
#Worse 1 8 0
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Table 3: Comparison of the proposed algorithm with two heuristic algorithms (i.e., SA (Bouzid
and Salhi, 2020) and VNS (Bouzid and Salhi, 2020)) on the large-scale instances of the variant of
maximizing the number of items without rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s100-0 57 53 52.20 118.0 52 51.40 126.0 58 57.10 11.6 1 11923
s100-1 70 67 65.60 153.0 64 63.40 145.0 71 70.10 107.3 1 81927
s100-2 80 76 75.20 176.0 73 72.80 143.0 81 80.90 155.0 1 104364
s150-0 92 84 82.80 289.0 84 83.80 308.0 93 92.20 407.0 1 162361
s150-1 110 103 101.80 429.0 100 99.80 319.0 111 110.10 18.4 1 5075
s150-2 123 117 115.40 511.0 113 112.60 393.0 124 123.80 594.7 1 153639
s200-0 117 107 104.60 585.0 108 105.60 569.0 118 117.90 517.1 1 109983
s200-1 143 132 130.60 832.0 130 129.20 687.0 144 144.00 43.3 1 6718
s200-2 164 152 151.00 1082.0 152 149.80 895.0 165 164.30 420.5 1 58229
r100-0 49 45 44.20 101.0 45 44.00 66.0 50 49.10 27.7 1 31116
r100-1 63 59 57.60 141.0 58 57.60 85.0 64 63.90 478.7 1 364156
r100-2 75 70 69.80 181.0 69 69.00 95.0 76 75.90 257.8 1 158865
r150-0 77 70 68.80 272.0 72 71.20 217.0 78 78.00 478.9 1 180291
r150-1 98 91 90.40 380.0 92 91.80 258.0 101 100.20 628.5 3 164351
r150-2 116 110 108.80 501.0 110 108.40 286.0 118 118.00 1222.1 2 265266
r200-0 104 95 94.00 534.0 99 97.00 468.0 107 106.20 641.5 3 109738
r200-1 131 123 121.80 818.0 124 123.20 737.0 135 134.90 1199.5 4 152346
r200-2 155 146 144.80 1038.0 146 145.20 683.0 158 158.00 540.2 3 59062
#Improve 0 0 18
#Equal 0 0 0
#Worse 18 18 0

Table 4: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the large-scale instances of the variant of maximizing
the number of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s100-0 57 55 54.70 323.0 57 56.40 9.70 58 57.10 11.6 1 11923
s100-1 70 68 67.45 513.0 70 69.40 8.70 71 70.10 107.3 1 81927
s100-2 80 78 77.15 725.0 80 79.60 10.10 81 80.90 155.0 1 104364
s150-0 92 91 89.40 813.0 92 91.40 18.45 93 92.20 407.0 1 162361
s150-1 110 108 107.10 1353.0 110 109.60 24.90 111 110.10 18.4 1 5075
s150-2 123 121 120.20 1944.0 123 122.60 25.55 124 123.80 594.7 1 153639
s200-0 117 115 112.45 1276.0 117 116.40 35.85 118 117.90 517.1 1 109983
s200-1 143 140 138.20 2235.0 143 142.80 40.85 144 144.00 43.3 1 6718
s200-2 164 160 158.80 3445.0 164 163.40 60.95 165 164.30 420.5 1 58229
r100-0 49 49 47.65 299.0 47 46.60 10.20 50 49.10 27.7 1 31116
r100-1 63 63 61.70 490.0 61 60.60 9.60 64 63.90 478.7 1 364156
r100-2 75 75 73.60 711.0 73 72.60 9.25 76 75.90 257.8 1 158865
r150-0 77 77 75.20 690.0 74 73.40 19.35 78 78.00 478.9 1 180291
r150-1 98 98 96.70 1201.0 95 94.60 35.95 101 100.20 628.5 3 164351
r150-2 116 116 114.65 1793.0 114 112.80 33.70 118 118.00 1222.1 2 265266
r200-0 104 104 101.80 1263.0 101 100.80 40.65 107 106.20 641.5 3 109738
r200-1 131 131 129.45 2146.0 131 129.20 51.55 135 134.90 1199.5 4 152346
r200-2 155 155 153.10 3220.0 154 153.20 52.95 158 158.00 540.2 3 59062
#Improve 0 0 18
#Equal 9 11 0
#Worse 9 7 0
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1.2 Computational results for maximizing the number of items with rotation

Table 5: Comparison of the proposed algorithm with three previous algorithms (i.e., FSS (López and
Beasley, 2018), PEA (Silva et al., 2022), and SA (Bouzid and Salhi, 2020))on the small-scale instances
of the variant of maximizing the number of items with rotation.

FSS PEA SA IDEA (this work)
Instance BKS Best Time(s) Best Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r10-0 5 5 9836.0 5 0.3 5 5.00 2.0 5 5.00 0.00 0 211
r10-1 6 6 10332.0 6 0.3 6 6.00 3.0 6 6.00 0.01 0 224
r10-2 7 7 12409.0 7 0.4 7 7.00 3.0 7 7.00 0.01 0 220
r20-0 8 8 22759.0 8 9896.2 8 7.60 9.0 8 8.00 0.02 0 202
r20-1 11 10 30682.0 11 28802.2 10 10.00 10.0 11 11.00 0.12 0 1802
r20-2 14 12 30823.0 14 28802.4 13 13.00 11.0 14 14.00 14.41 0 211175
r30-0 15 14 49724.0 15 28802.8 14 14.00 17.0 15 15.00 0.29 0 2566
r30-1 19 17 45857.0 19 28802.9 18 18.00 19.0 19 19.00 0.68 0 4268
r30-2 22 20 57427.0 22 28801.7 21 21.00 20.0 22 22.00 0.28 0 1130
#Improve 0 0 0 0
#Equal 4 9 4 9
#Worse 5 0 5 0

Table 6: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the small-scale instances of the variant of maximizing
the number of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r10-0 5 5 5.00 0.03 5 4.60 0.30 5 5.00 0.00 0 211
r10-1 6 6 6.00 0.04 6 6.00 0.40 6 6.00 0.01 0 224
r10-2 7 7 7.00 0.05 7 7.00 0.40 7 7.00 0.01 0 220
r20-0 8 8 8.00 0.15 7 7.00 0.80 8 8.00 0.02 0 202
r20-1 11 11 11.00 29.92 11 10.80 1.20 11 11.00 0.12 0 1802
r20-2 14 14 13.30 36.97 13 13.00 1.75 14 14.00 14.41 0 211175
r30-0 15 15 15.00 40.19 15 15.00 1.95 15 15.00 0.29 0 2566
r30-1 19 19 18.70 56.18 19 18.40 2.55 19 19.00 0.68 0 4268
r30-2 22 22 21.95 69.25 22 21.60 3.00 22 22.00 0.28 0 1130
#Improve 0 0 0
#Equal 9 7 9
#Worse 0 2 0
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Table 7: Comparison of the proposed algorithm with two heuristic algorithms (i.e., SA (Bouzid
and Salhi, 2020) and VNS (Bouzid and Salhi, 2020)) on the large-scale instances of the variant of
maximizing the number of items with rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r100-0 48 46 45.20 185.0 45 44.40 110.0 50 49.20 66.0 2 38947
r100-1 63 59 58.00 239.0 59 57.80 164.0 64 64.00 41.3 1 16260
r100-2 75 71 70.40 275.0 70 69.40 149.0 77 76.10 282.3 2 92984
r150-0 78 70 69.40 458.0 73 71.60 463.0 79 78.10 155.0 1 28754
r150-1 100 92 90.60 611.0 93 91.80 379.0 101 100.90 839.0 1 111109
r150-2 117 110 109.00 745.0 110 108.80 570.0 118 118.00 54.5 1 5781
r200-0 104 95 94.60 927.0 98 97.40 805.0 107 107.00 1281.9 3 116066
r200-1 134 125 122.60 1267.0 126 124.40 1190.0 136 135.30 547.3 2 36916
r200-2 158 148 146.00 1519.0 147 146.40 1579.0 159 158.80 932.3 1 54280
#Improve 0 0 9
#Equal 0 0 0
#Worse 9 9 0

Table 8: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the large-scale instances of the variant of maximizing
the number of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r100-0 48 48 47.95 311.0 48 48.00 17.20 50 49.20 66.0 2 38947
r100-1 63 63 62.10 502.0 62 62.00 21.40 64 64.00 41.3 1 16260
r100-2 75 75 74.00 719.0 75 74.20 41.35 77 76.10 282.3 2 92984
r150-0 78 77 75.40 677.0 78 77.40 79.95 79 78.10 155.0 1 28754
r150-1 100 99 97.00 1173.0 100 99.20 45.90 101 100.90 839.0 1 111109
r150-2 117 116 114.50 1756.0 117 116.40 58.15 118 118.00 54.5 1 5781
r200-0 104 103 102.25 1253.0 104 103.80 76.70 107 107.00 1281.9 3 116066
r200-1 134 132 130.05 2197.0 134 132.80 168.20 136 135.30 547.3 2 36916
r200-2 158 155 153.40 3346.0 158 157.00 102.85 159 158.80 932.3 1 54280
#Improve 0 0 9
#Equal 1 8 0
#Worse 8 1 0
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1.3 Computational results for maximizing the area of items without rotation

Table 9: Comparison of the proposed algorithm with three previous algorithms (i.e., FSS (López and
Beasley, 2018), CPM (Silva et al., 2022) and VNS (López and Beasley, 2018)) on the small-scale
instances of the variant of maximizing the area of items without rotation.

FSS CPM VNS IDEA (this work)
InstanceBKS Best Time(s) Best Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s10–0 23.9878 22.9485 2762 23.9878 0.2 23.9878 23.3642 0.0 23.9878 23.5028 0.12 0.0000 32166
s10–1 37.7471 36.7126 3402 37.7471 0.4 37.7471 37.3333 1.0 37.7471 37.7471 0.07 0.0000 11864
s10–2 52.7555 51.7583 4593 52.7555 2.3 52.7555 51.9923 1.0 52.7555 52.7555 0.00 0.0000 482
s20–0 64.7463 54.1054 9412 64.7463 33.6 63.7523 62.7630 4.0 63.7430 63.6483 0.94 -1.0033 37671
s20–1 95.9219 85.2107 11304 95.9219 114.4 94.7706 94.0801 3.0 95.7239 95.7239 14.11 -0.1980 477067
s20–2 137.2832 109.8363 7636 137.2832 1055.4 132.4100 125.8077 5.0 131.9165 130.9737 58.23 -5.3667 1419112
s30–0 65.1246 54.4941 16629 64.3817 28802.0 63.9965 63.4017 4.0 64.7352 64.4022 9.48 -0.3894 216055
s30–1 99.5590 77.5814 14808 97.8908 28800.3 98.1142 97.1655 12.0 99.6053 99.2590 67.18 0.0463 1069698
s30–2 134.5194 103.0963 15145 131.6949 28814.1 131.5472 129.5725 6.0 134.6538 133.7937 46.72 0.1344 528448
r10–0 18.4441 18.4441 3292 18.4441 0.2 18.4441 18.3351 1.0 18.4441 18.4441 0.00 0.0000 162
r10–1 28.9390 28.9390 2992 28.9390 0.6 28.9390 28.9390 1.0 28.9390 28.9390 0.00 0.0000 94
r10–2 39.4588 37.6878 4754 39.4588 1.2 38.7870 38.7870 1.0 39.4588 39.4588 0.00 0.0000 213
r20–0 45.9961 43.3885 7227 45.9961 104.3 45.1567 44.7210 2.0 45.3621 45.3601 22.30 -0.6340 1350650
r20–1 72.7850 63.1643 9791 72.7850 28805.0 68.8314 67.4388 3.0 70.6065 70.6065 2.30 -2.1785 100572
r20–2 97.5007 84.4446 10601 96.7569 28811.9 91.6368 90.6159 3.0 95.9012 95.4251 66.60 -1.5995 2081882
r30–0 67.4983 60.3570 14011 67.1937 28821.1 64.4689 63.7051 5.0 67.6012 67.2801 61.76 0.1029 1458596
r30–1 104.7251 85.2113 19786 102.6709 28806.1 102.1196 99.3385 8.0 104.0392 102.9556 84.90 -0.6859 1473801
r30–2 141.0049 103.4802 19470 138.4558 28803.5 137.4149 135.2876 7.0 141.0108 139.4474 76.84 0.0059 1046130
#Improve 0 0 0 4
#Equal 2 15 5 6
#Worse 16 3 13 8

Table 10: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA
(Luo et al., 2024) and SL-VNS (Zhang et al., 2024)) on the small-scale instances of the variant of
maximizing the area of items without rotation.

HGA SL-VNS IDEA (this work)
InstanceBKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s10–0 23.9878 23.9878 23.9878 0.25 22.6150 22.6150 0.25 23.9878 23.5028 0.12 0.0000 32166
s10–1 37.7471 37.7471 37.7471 0.17 36.7126 36.7126 0.25 37.7471 37.7471 0.07 0.0000 11864
s10–2 52.7555 52.7555 52.7555 0.13 49.2838 49.0052 0.30 52.7555 52.7555 0.00 0.0000 482
s20–0 64.7463 64.7463 63.8517 26.05 59.6314 59.5471 0.75 63.7430 63.6483 0.94 -1.0033 37671
s20–1 95.9219 95.9219 95.9044 10.02 88.9578 88.9578 0.65 95.7239 95.7239 14.11 -0.1980 477067
s20–2 137.2832 137.2832 135.4750 33.02 130.9828 129.5658 0.80 131.9165 130.9737 58.23 -5.3667 1419112
s30–0 65.1246 65.1246 64.9994 29.16 63.9965 63.9965 0.95 64.7352 64.4022 9.48 -0.3894 216055
s30–1 99.5590 99.5590 99.0206 38.22 97.7980 97.4868 2.10 99.6053 99.2590 67.18 0.0463 1069698
s30–2 134.5194 134.4015 133.1134548.09 132.2788 131.1505 1.70 134.6538 133.7937 46.72 0.1344 528448
r10–0 18.4441 18.4441 18.4441 0.03 17.8992 17.8992 0.20 18.4441 18.4441 0.00 0.0000 162
r10–1 28.939 28.939 28.9390 0.06 26.7643 26.7643 0.25 28.939 28.939 0.00 0.0000 94
r10–2 39.4588 39.4588 39.2676 7.58 37.3681 36.5987 0.30 39.4588 39.4588 0.00 0.0000 213
r20–0 45.9961 45.9961 45.7653 11.26 44.4296 44.4296 0.55 45.3621 45.3601 22.30 -0.6340 1350650
r20–1 72.785 72.785 71.6012 21.47 69.7481 69.5623 0.70 70.6065 70.6065 2.30 -2.1785 100572
r20–2 97.5007 97.5007 95.7674 26.55 94.3265 93.7633 0.90 95.9012 95.4251 66.60 -1.5995 2081882
r30–0 67.4983 67.4983 66.7790 30.41 66.106 66.1060 1.00 67.6012 67.2801 61.76 0.1029 1458596
r30–1 104.7251 104.7251 103.0498 36.56 101.7709 101.5139 2.15 104.0392 102.9556 84.90 -0.6859 1473801
r30–2 141.0049 141.0049 139.4206 44.71 137.5372 137.094 2.25 141.0108 139.4474 76.84 0.0059 1046130
#Improve 0 0 4
#Equal 14 0 6
#Worse 4 18 8
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Table 11: Comparison of the proposed algorithm with two heuristic algorithms (i.e., SA (Bouzid
and Salhi, 2020) and VNS (Bouzid and Salhi, 2020)) on the large-scale instances of the variant of
maximizing the area of items without rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s100–0 301.3806 293.5578 293.4949 106.0 297.8481 296.3685 72.0 300.5580 300.1525 664.8 -0.8226 1483757
s100–1 455.4665 446.0632 443.2703 145.0 449.0898 447.3728 138.0 453.1629 451.3734 1146.8 -2.3036 1859588
s100–2 610.9711 587.8824 586.7831 194.0 600.2514 596.5111 208.0 611.2694 609.5736 1224.7 0.2983 1213440
s150–0 476.1826 469.7621 468.9567 286.0 472.4785 470.7997 171.0 474.1083 473.0807 1891.5 -2.0743 2174031
s150–1 721.6048 707.3694 705.7661 369.0 714.3385 712.3815 312.0 721.0362 719.8731 1184.7 -0.5686 790107
s150–2 963.1189 935.9346 935.0466 532.0 948.3443 946.8239 599.0 963.5195 960.9966 1622.9 0.4006 818294
s200–0 602.4622 593.9045 590.6651 572.0 596.4252 595.3754 237.0 601.8076 600.9707 975.6 -0.6546 603029
s200–1 904.0008 882.0002 879.1137 748.0 889.4874 887.5525 457.0 906.7465 904.4098 1454.8 2.7457 544019
s200–2 1211.8357 1178.8631 1176.3317 1064.0 1185.90451182.50381330.0 1212.3386 1210.0431 1833.3 0.5029 435898
r100–0 285.3060 276.2503 274.7736 96.0 281.5851 279.3196 61.0 286.8923 284.7452 1249.3 1.5863 3238794
r100–1 433.0382 418.9820 418.9820 143.0 424.7806 424.3101 95.0 434.6132 433.9410 1615.3 1.5750 2588311
r100–2 579.1004 556.3578 555.6125 192.0 567.0707 563.8865 156.0 581.8476 578.9688 840.9 2.7472 879791
r150–0 393.1389 382.7671 382.6841 250.0 387.9162 386.4728 144.0 394.9145 393.9623 1986.0 1.7756 2416976
r150–1 592.6726 576.9804 576.0199 324.0 583.5556 581.0678 258.0 596.2875 594.1016 1771.4 3.6149 1273424
r150–2 793.9707 769.4407 765.6101 436.0 780.1788 777.1628 510.0 796.9769 795.2090 2299.7 3.0062 994613
r200–0 508.9918 497.3100 497.3100 461.0 503.1195 502.1400 221.0 511.2864 509.6866 1869.3 2.2946 1242239
r200–1 766.7049 745.3243 745.0537 734.0 758.4439 754.7137 589.0 770.7467 769.0476 1953.3 4.0418 702961
r200–2 1021.4577 994.7474 990.0431 989.0 1003.50171001.2816887.0 1026.1222 1023.7889 2268.8 4.6645 492533
#Improve 0 0 13
#Equal 0 0 0
#Worse 18 18 5

Table 12: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the large-scale instances of the variant of maximizing
the area of items without rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
s100–0 301.3806 301.3806 300.7750 126.0 297.5600 295.8297 11.9 300.5580 300.1525 664.8 -0.8226 1483757
s100–1 455.4665 455.4665 452.1387 207.0 451.0402 448.6063 15.7 453.1629 451.3734 1146.8 -2.3036 1859588
s100–2 610.9711 610.9711 608.3166 293.0 602.1586 601.0954 20.9 611.2694 609.5736 1224.7 0.2983 1213440
s150–0 476.1826 476.1826 474.2942 260.0 470.5036 469.5171 31.8 474.1083 473.0807 1891.5 -2.0743 2174031
s150–1 721.6048 721.6048 720.1896 422.0 712.1517 711.2916 54.0 721.0362 719.8731 1184.7 -0.5686 790107
s150–2 963.1189 963.1189 961.9878 543.0 953.7799 952.2550 54.2 963.5195 960.9966 1622.9 0.4006 818294
s200–0 602.4622 602.4622 601.3726 374.0 597.6537 595.5345 52.3 601.8076 600.9707 975.6 -0.6546 603029
s200–1 904.0008 904.0008 901.6450 674.0 898.7813 896.9252 58.9 906.7465 904.4098 1454.8 2.7457 544019
s200–2 1211.8357 1211.8357 1208.7768 1056.0 1203.31801200.9086119.7 1212.3386 1210.0431 1833.3 0.5029 435898
r100–0 285.306 285.306 283.7283 137.0 283.5337 282.1808 15.2 286.8923 284.7452 1249.3 1.5863 3238794
r100–1 433.0382 433.0382 430.8815 199.0 428.2655 426.8841 9.2 434.6132 433.9410 1615.3 1.5750 2588311
r100–2 579.1004 579.1004 574.8603 329.0 569.5371 568.9367 14.1 581.8476 578.9688 840.9 2.7472 879791
r150–0 393.1389 393.1389 391.2339 249.0 390.8242 390.4987 19.4 394.9145 393.9623 1986.0 1.7756 2416976
r150–1 592.6726 592.6726 590.0955 432.0 590.7326 588.6003 31.5 596.2875 594.1016 1771.4 3.6149 1273424
r150–2 793.9707 793.9707 789.5589 706.0 790.4961 787.3235 42.5 796.9769 795.2090 2299.7 3.0062 994613
r200–0 508.9918 508.9918 507.1107 407.0 508.4863 505.2021 45.0 511.2864 509.6866 1869.3 2.2946 1242239
r200–1 766.7049 766.7049 764.3574 762.0 766.5361 763.5390 72.1 770.7467 769.0476 1953.3 4.0418 702961
r200–2 1021.4577 1021.4577 1016.3950 1495.0 1018.28721017.178367.4 1026.1222 1023.7889 2268.8 4.6645 492533
#Improve 0 0 13
#Equal 4 0 0
#Worse 14 18 5
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1.4 Computational results for maximizing the area of items with rotation

Table 13: Comparison of the proposed algorithm with three previous algorithms (i.e., FSS (López
and Beasley, 2018), CPM (Silva et al., 2022), and VNS (Bouzid and Salhi, 2020)) on the small-scale
instances of the variant maximizing the area of items with rotation.

FSS CPM VNS IDEA (this work)
InstanceBKS Best Time(s) Best Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r10–0 19.6702 19.6702 8771.0 19.6702 0.2 19.6702 19.2633 1.0 18.8619 18.8619 0.07 -0.8083 7551
r10–1 30.8746 29.5041 16093.0 30.8746 1.1 30.8746 29.7208 1.0 29.5041 29.5041 0.13 -1.3705 10879
r10–2 41.5246 37.9687 15526.0 41.5246 2.6 40.9063 40.3619 1.0 41.1612 41.1612 0.06 -0.3634 3027
r20–0 47.9336 43.6850 50558.0 47.9336 28802.5 45.4200 45.3303 5.0 47.1228 46.9025 68.81 -0.8108 2260765
r20–1 72.7850 63.5279 50013.0 72.6945 28817.4 70.8221 68.7228 7.0 71.8253 71.7682 38.95 -0.9597 914689
r20–2 98.4189 84.7008 63350.0 97.9712 28805.4 95.2162 93.4912 5.0 97.5326 97.4168 16.16 -0.8863 275148
r30–0 67.8840 57.9328 69565.0 67.2577 28808.2 66.6329 65.1248 14.0 67.4140 67.3798 45.92 -0.4700 606523
r30–1 104.8784 84.3715 82101.0 103.1495 28808.3 100.3020 99.2145 11.0 104.7157 103.3479 86.7 -0.1627 834274
r30–2 141.6376 110.3253 39564.0 138.6397 28802.2 137.5277 136.1031 12.0 141.5478 140.3539 52.51 -0.0898 373245
#Improve 0 0 0 0
#Equal 1 8 2 0
#Worse 8 1 7 9

Table 14: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the small-scale instances of the variant maximizing
the area of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r10–0 19.6702 19.6702 19.6702 0.13 18.4441 18.4441 0.08 18.8619 18.8619 0.07 -0.8083 7551
r10–1 30.8746 30.8746 30.8746 0.12 28.7839 27.7443 0.08 29.5041 29.5041 0.13 -1.3705 10879
r10–2 41.5246 41.5246 41.3819 10.72 39.5569 39.5569 0.09 41.1612 41.1612 0.06 -0.3634 3027
r20–0 47.9336 46.4452 46.0419 23.46 45.2503 45.2148 0.23 47.1228 46.9025 68.81 -0.8108 2260765
r20–1 72.7850 72.7850 71.6061 25.41 70.9040 70.4724 0.38 71.8253 71.7682 38.95 -0.9597 914689
r20–2 98.4189 98.4189 97.5771 28.19 97.9176 96.8554 0.43 97.5326 97.4168 16.16 -0.8863 275148
r30–0 67.8840 67.8840 67.1898 34.19 67.0593 66.8382 0.56 67.4140 67.3798 45.92 -0.4700 606523
r30–1 104.8784 104.8784 103.7276 39.12 102.7266 102.2871 0.97 104.7157 103.3479 86.7 -0.1627 834274
r30–2 141.6376 141.6376 140.0809 46.94 139.1076 138.0495 0.86 141.5478 140.3539 52.51 -0.0898 373245
#Improve 0 0 0
#Equal 8 0 0
#Worse 1 9 9
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Table 15: Comparison of the proposed algorithm with two heuristic algorithms (i.e., SA (Bouzid
and Salhi, 2020) and VNS (Bouzid and Salhi, 2020)) on the large-scale instances of the variant of
maximizing the area of items with rotation.

SA VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r100–0 286.0224 275.9862 275.9862 167.0 282.3465 280.7830 129.0 287.5666 286.9704 1181.9 1.5442 1619532
r100–1 434.7697 422.5904 422.5904 221.0 426.5573 425.9241 145.0 435.3168 434.4095 1759.9 0.5471 1569765
r100–2 580.7641 564.5293 561.1405 281.0 571.6369 569.1376 336.0 583.9064 581.7455 1163.9 3.1423 624290
r150–0 393.9724 386.3599 386.0969 463.0 389.6020 388.5257 222.0 395.5893 394.5173 2017.6 1.6169 1343666
r150–1 594.9417 576.2670 574.8735 577.0 585.5947 583.7210 539.0 595.6288 594.3948 1852.4 0.6871 644533
r150–2 796.1322 771.9016 769.5404 752.0 780.7081 778.2186 1073.0 799.1850 795.5685 2433.9 3.0528 479858
r200–0 510.9300 500.0271 498.8451 803.0 505.4126 503.2490 503.0 511.2842 509.5505 1833.7 0.3542 560675
r200–1 768.3748 748.1296 748.1296 1215.0 757.9592 755.5614 1464.0 771.3863 769.5982 2141.1 3.0115 343765
r200–2 1026.7739 994.3341 992.4800 1448.0 1008.30911006.34422247.0 1031.1575 1027.02282181.8 4.3836 236466
#Improve 0 0 9
#Equal 0 0 0
#Worse 9 9 0

Table 16: Comparison of the proposed algorithm with two recent heuristic algorithms (i.e., HGA (Luo
et al., 2024) and SL-VNS (Zhang et al., 2024)) on the large-scale instances of the variant maximizing
the area of items with rotation.

HGA SL-VNS IDEA (this work)
Instance BKS Best Avg Time(s) Best Avg Time(s) Best Avg Time(s) ∆BKS #pack
r100–0 286.0224 285.2622 283.9407 175.0 286.0224 284.2914 36.55 287.5666 286.9704 1181.9 1.5442 1619532
r100–1 434.7697 434.7697 432.9662 238.0 430.9151 429.6375 43.50 435.3168 434.4095 1759.9 0.5471 1569765
r100–2 580.7641 580.7641 576.9916 384.0 579.1329 574.8210 38.90 583.9064 581.7455 1163.9 3.1423 624290
r150–0 393.9724 393.9724 392.2238 327.0 393.5067 391.5401 80.90 395.5893 394.5173 2017.6 1.6169 1343666
r150–1 594.9417 594.9417 591.8375 543.0 594.0722 592.9682 76.80 595.6288 594.3948 1852.4 0.6871 644533
r150–2 796.1322 794.3447 791.35165 849.0 796.1322 794.7256 67.65 799.1850 795.5685 2433.9 3.0528 479858
r200–0 510.9300 509.2270 507.8536 567.0 510.9300 508.5306 149.00 511.2842 509.5505 1833.7 0.3542 560675
r200–1 768.3748 768.3748 766.4292 1008.0 767.8849 765.3624 116.25 771.3863 769.5982 2141.1 3.0115 343765
r200–2 1026.7739 1026.7739 1021.1400 1770.0 1026.34321024.2576141.10 1031.1575 1027.02282181.8 4.3836 236466
#Improve 0 0 9
#Equal 6 3 0
#Worse 3 6 0
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