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Abstract

The multidemand multidimensional knapsack problem (MDMKP) is a signi�cant
generalization of the popular multidimensional knapsack problem with relevant ap-
plications. In this work we investigate for the �rst time how solution-based tabu
search can be used to solve this computationally challenging problem. For this pur-
pose, we propose a two-stage search algorithm, where the �rst stage aims to locate
a promising hyperplane within the whole search space and the second stage tries
to �nd improved solutions by exploring the reduced subspace de�ned by the hyper-
plane. Computational experiments on 156 benchmark instances commonly used in
the literature show that the proposed algorithm competes favorably with the state-
of-the-art results. We analyze several key components of the algorithm to highlight
their impacts on the performance of the algorithm.
Keywords: Metaheuristics; Multidemand multidimensional knapsack problem; Two-
stage optimization; Solution-based tabu search; Combinatorial optimization.

1 Introduction1

Given a set V = {1, 2, . . . , n} of n items, a set R = {r1, r2, . . . , rm} of m2

resources with a capacity upper limit bi for resource ri (1 ≤ i ≤ m), where3
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each item j of V is associated with a pro�t cj and consumes a given quantity4

aij for each resource ri (i ∈ {1, 2, . . . ,m}), the popular NP-hard 0�1 multidi-5

mensional knapsack problem (MKP) involves selecting a subset of items from6

V such that the resource consummation of the selected items does not exceed7

the given capacity upper limit for each resource in R (knapsack constraints),8

while maximizing the total pro�t of the selected items. Formally, the MKP9

can be written as follows:10

(MKP ) Maximize z =
n∑
j=1

cjxj (1)

s.t.
n∑
j=1

aijxj ≤ bi,∀i ∈ {1, 2, . . . ,m} (2)

xj ∈ {0, 1},∀j ∈ {1, 2, . . . , n} (3)

where cj ≥ 0, aij > 0, bi > 0, ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , n} and Eq.11

(3) indicates that the binary decision variable xj (1 ≤ j ≤ n) takes the value12

of 1 if the item j is selected, 0 otherwise.13

The multidemand multidimensional knapsack problem (MDMKP) studied in14

this work is an important extension of the MKP, where q greater-than-or-15

equal-to constraints are imposed, in addition to m less-than-or-equal-to con-16

straints (Eq. (2)). Moreover, unlike the MKP, the pro�t cj in the MDMKP17

can take a positive, negative or zero value for each item j (j ∈ V ). Formally,18

the MDMKP can be formulated as follows [1,5]:19

(MDMKP ) Maximize z =
n∑
j=1

cjxj (4)

s.t.
n∑
j=1

aijxj ≤ bi,∀i ∈ {1, 2, . . . ,m} (5)

n∑
j=1

aijxj ≥ bi,∀i ∈ {m+ 1,m+ 2, . . . ,m+ q} (6)

xj ∈ {0, 1},∀j ∈ {1, 2, . . . , n} (7)

where the following conditions are assumed:20

bi > 0, aij ≥ 0 ∀i ∈ {1, 2, . . . ,m+ q},∀j ∈ {1, 2, . . . , n} (8)
n∑
j=1

aij > bi ∀i ∈ {1, 2, . . . ,m+ q} (9)

maxj{aij} ≤ bi ∀i ∈ {1, 2, . . . ,m} (10)

minj{aij} < bi ∀i ∈ {m+ 1, 2, . . . ,m+ q} (11)
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In above formulas, the inequalities in Eq. (5) are called the knapsack con-21

straints, and those in Eq. (6) are called the demand constraints.22

Clearly, the classic MKP is a special case of the MDMKP when q equals 023

and the pro�t cj of item j takes a nonnegative value (i.e., cj ≥ 0, ∀j ∈ V ).24

Like the MKP, the MDMKP has a number of practical applications [5] like ob-25

noxious and semiobnoxious facility location [4,22,24], capital-budgeting, and26

portfolio-selection [3], among others. On the other hand, the MDMKP is com-27

putationally challenging, given that it generalizes the NP-hard multidimen-28

sional knapsack problem. Consequently, there is no polynomial-time algorithm29

for the MDMKP, unless P = NP.30

Unlike the MKP that has been subject of intensive studies in the past decades31

(see e.g., [9,11,13,15,20,21,23,25�28]), the MDMKP receives much less atten-32

tion until now. Still, there exist several exact and heuristic approaches in33

the literature. For example, general mixed integer programming solvers like34

CPLEX can be used to solve instances with n ≤ 100 to optimality within an ac-35

ceptable time. However, it is usually di�cult for the existing exact approaches36

to �nd an optimal solution for larger instances. As a result, several heuristic37

algorithms have been proposed to solve large instances approximately.38

Speci�cally, in 2005, Cappanera and Trubian presented a nested-tabu-search39

heuristic [5], which combines a standard attribute-based tabu search with40

an oscillation method presented in [13]. In 2006, Arntzen et al. proposed an41

adaptive memory search method called Almha in [1], which uses a dynami-42

cal tabu search mechanism and a weighting scheme to handle infeasible solu-43

tions. Their computational results show the Almha algorithm outperforms the44

previous best MDMKP methods and can be viewed as one of the best per-45

forming MDMKP algorithms in the literature. In 2007, Hvattum and Løkke-46

tangen investigated the behavior of scatter search on the MDMKP [16]. In47

2009, Gortázar et al. introduced a black box scatter search method for general48

classes of binary optimization problems, and assessed their method on the49

MDMKP and some other binary problems [14]. In particular, their method50

uses a static penalty approach proposed in [32] to handle the constraints of51

the MDMKP. In 2010, Hvattum et al. proposed an alternating control tree52

(ACT) search framework for the MDMKP [17], which can lead to an exact al-53

gorithm or heuristic algorithm by choosing the routine of solving subproblems.54

Their computational results show that the associated ACT algorithms have55

a high performance compared to a previous tabu search algorithm and scat-56

ter search algorithm. At the same year, Balachandar proposed a dominance57

principle based heuristic for the MDMKP [2].58

In addition to these studies, there exist some theoretical investigations dedi-59

cated to the MDMKP in the literature. For example, Delissa investigated the60
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existence and usefulness of equality cuts for the MDMKP [10], while Wishon61

and Villalobos studied robust e�ciency measures for the MDMKP [30].62

To enrich the solution arsenal for the MDMKP, we present in this work the63

�rst study of using solution-based tabu search [6,7,31] to e�ectively solve the64

MDMKP. Actually, unlike the popular attribute-based tabu search approach65

[12], solution-based tabu search began to attract attention only very recently.66

Interestingly, this approach already showed excellent performances on sev-67

eral binary optimization problems as reported in [19,20,29]. This work aims68

thus to investigate the interest of the solution-based tabu search approach69

for the MDMKP. Compared to attribute-based tabu search, solution-based70

tabu search has at least two appealing features. First, this approach ensures71

a stronger intensi�cation ability, which is crucial for locating good local op-72

tima. Second, this approach makes the notion of tabu tenure irrelevant, thus73

simplifying the design of the algorithm and reducing the number of required74

parameters.75

We summarize the contributions of this work as follows. First, based on76

the solution-based tabu search approach, we introduce an e�ective two-stage77

search algorithm for the MDMKP. The �rst search stage aims to identify a78

promising hyperplane within the whole search space while the second search79

stage tries to �nd improved solutions by examining both feasible and infeasi-80

ble solutions on the identi�ed hyperplane. For both stages, the solution-based81

tabu search strategy is employed, which relies on a one-�ip and swap neigh-82

borhoods and a hash-based mechanism to e�ciently determine the tabu status83

of neighbor solutions. Second, we assess the performance of the proposed al-84

gorithm based on 96 benchmark instances commonly used in the literature85

(n = 100, 250,m = 5, 10 and q = 2, 5, 10). The computational results show86

that the algorithm improves and matches the best known solutions for 17 and87

71 instances respectively. Moreover, we report detailed computational results88

of the proposed algorithm for 60 additional instances with a large number of89

constraints (with n = 100, 500,m = q = 30). Third, given that the ideas of90

the two-stage search framework and solution-based tabu search developed in91

this work are quite general, they could be applied to solve other related binary92

optimization problems.93

The remaining parts of the paper are structured as follows. In the next section,94

the proposed two-stage tabu search algorithm is described. In Section 3, we95

present the computational assessment of the proposed algorithm and report96

experimental results on the well-known benchmark instances. In Section 4,97

several essential ingredients of the algorithm are investigated to show how they98

a�ect the performance of the algorithm. In the last section, we summarize the99

present work and provide research perspectives.100
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2 Two-stage tabu search algorithm for the MDMKP101

Our two-stage solution-based tabu search (TSTS) algorithm combines two102

search procedures working on two di�erent search spaces. The �rst stage of the103

algorithm performs an exploratory search within the whole search space to �nd104

a feasible solution as good as possible. Starting from this solution, the second105

stage carries out a focused exploitation within the reduced space composed106

of candidate solutions with exactly k selected items (k being identi�ed by107

the �nal solution of the �rst search stage). To explore both search spaces,108

TSTS relies on two solution-based tabu search procedures guided by a penalty-109

based evaluation function. One notices that the two-stage search strategy has110

been used with success to solve other knapsack problems like the Quadratic111

Knapsack Problem [8] and the classic MKP [26].112

2.1 General Procedure113

Algorithm 1: General procedure of two-stage tabu search algorithm for
the MDMKP

1 Function TSTS()
Input: Instance I, time limit tmax
Output: The best solution s∗ found

2 begin
/* Initialization of solution */

3 s← InitialSolution(I) /* Sections 2.2 */
/* Optimization of the first stage */

4 {s, t} ← TabuSearch1(s) /* Sections 2.3 */
/* Optimization of the second stage */

5 s← TabuSearch2(s, t, tmax) /* Sections 2.4 */
6 return s
7 end

The proposed TSTS algorithm is thus composed of two optimization stages,114

where the �rst stage identi�es a suitable hyperplane Ω[k] (see Section 2.4.2 for115

the de�nition of hyperplane) that is exploited intensively during the second116

optimization stage to locate improved solutions (see Algorithm 1).117

Speci�cally, the TSTS algorithm �rst generates randomly an initial solution118

by its initialization procedure (Section 2.2). Then the algorithm enters the119

�rst search stage where the initial solution is improved by the solution-based120

tabu search procedure presented in Sections 2.3 (line 4). During this search121

stage, the algorithm explores both feasible and infeasible solutions within the122

whole search space to �nd a high-quality feasible solution. At the end of its123

search stage, the best (feasible) solution found and the consumed time t are124

returned. At this point, the second search stage is triggered, which starts from125
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the solution returned by the �rst stage and uses another solution-based tabu126

search procedure (Section 2.4) to seek improved solutions (line 5). During this127

stage, the search is limited to the hyperplane Ω[k] (k being the number of the128

selected items in the returned solution of the �rst stage, see Section 2.4.1).129

Finally, the whole algorithm terminates when a given time limit tmax is met,130

and the best solution found during the search process is returned as the �nal131

result of the algorithm (line 6).132

2.2 Initial Solution133

Algorithm 2: Procedure of Generating Initial Solution

1 Function InitialSolution()
Input: An instance I, the size of instance (n)
Output: An initial solution s = (x1, x2, . . . , xn)

2 begin

3 for i← 1 to n do
4 xj ← rand() mod 2 /* rand() denotes a random integer */

5 end

6 s← (x1, x2, . . . , xn)
7 return s

8 end

The initial solution of the TSTS algorithm is generated by a randomized134

procedure whose pseudo-code is given in Algorithm 2. Speci�cally, given an135

instance with n items, the initialization procedure assigns randomly a value136

from the set {0, 1} to each component xi (i = 1, 2, . . . , n) to obtain an initial137

solution s = (x1, x2, . . . , xn). This random initialization has the advantage of138

being simple and fast. However, an initial solution generated in this way can139

be infeasible. If this is the case, its feasibility will be established during the140

�rst search stage described below.141

2.3 Tabu Search Method of the First Search Stage142

The �rst search stage is ensured by a solution-based tabu search algorithm143

(denoted by TabuSearch1()), whose pseudo-code is given in Algorithm 3. Af-144

ter initiating its tabu lists (lines 3�5), TabuSearch1() performs a number of145

iterations to improve the current solution until 1) a feasible solution is found146

and no improvement can be observed during α consecutive iterations, where147

α is a parameter called the depth of tabu search, or 2) the allowed maximum148

time limit tmax is reached (lines 8�17). At each iteration, according to the tabu149

rule and the penalty-based evaluation function de�ned in Sections 2.3.2 and150
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Algorithm 3: Tabu search method used in the �rst search stage

1 Function TabuSearch1()
Input: Initial solution s, extended evaluation function F , hash vectors

H1, H2, H3 of length L, hash functions h1, h2, h3, depth of tabu
search α, time limit tmax

Output: The best solution s∗ found, the time t consumed by the search
2 begin

/* Initialization of hash vectors (i.e., tabu lists) */

3 for i← 0 to L− 1 do
4 H1[i]← 0; H2[i]← 0; H3[i]← 0;
5 end

6 s∗ ← s
7 NoImprove← 0

/* Main search procedure */

8 while (time() < tmax) ∧ ((NoImprove < α) ∨ (s∗ is infeasible)) do
9 Find in N1(s)

⋃
N2(s) a best non-tabu solution s′ in terms of the

extended evaluation function F in Eq. (17)
/* N1(s) and N2(s) are defined in Eqs. (13) and (14),

and the tabu rule is given in Section 2.3.2 */

10 s← s′ /* Update the current solution */

11 if (F (s) > F (s∗) then
12 s∗ ← s
13 NoImprove← 0

14 end

/* Update the hash vectors (i.e., tabu lists) with s
*/

15 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1
16 NoImprove← NoImprove+ 1

17 end

18 t← time()
19 return {s∗,t}

20 end

2.3.3, a best non-tabu neighbor solution is selected to replace the current solu-151

tion, and then the tabu lists are accordingly updated. Finally, the best feasible152

solution found s∗ during this search stage and the computation time elapsed153

t are returned as the results of the �rst search stage. As our experiments in154

Section 3 show, the �rst search stage always ends up with a feasible solution155

for all tested instances, including those with 30 demand constraints and 30156

knapsack constraints. In other words, the �rst solution-based tabu search al-157

gorithm is typically able to locate a promising valid hyperplane for the second158

search stage.159

The ingredients of this tabu search algorithm, including the search space, the160
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neighborhood structures and the tabu strategy, are respectively described in161

the following subsections.162

2.3.1 Search Space and Neighborhood163

The search space Ω explored by the TabuSearch1() procedure is composed of164

all feasible and infeasible solutions of the given problem instance, i.e.,165

Ω = {(x1, x2, . . . , xn)|xi ∈ {0, 1}, 1 ≤ i ≤ n} (12)

The neighborhood used by TabuSearch1() is a combined neighborhood com-166

posed of two basic neighborhoods, namely the one-�ip neighborhood N1 and167

the swap neighborhood N2. The one-�ip neighborhood N1 is de�ned by the168

one-�ip operator (denoted by Flip(·)). Given a solution s = (x1, x2, . . . , xn),169

a one-�ip move Flip(q) consists of changing the value of a variable xq to its170

complementary value 1 − xq. As such, the neighborhood N1(s) of solution s171

includes all possible solutions that can be obtained by applying the one-�ip172

operator to s. Formally, the N1(s) can be written as follows:173

N1(s) = {s⊕ Flip(q) : 1 ≤ q ≤ n} (13)

The neighborhood N2 is de�ned by the swap operator (denoted by Swap(·, ·)).174

Given a solution s = (x1, x2, . . . , xn), let I1 = {q : xq = 1 in s} and I0 = {q :175

xq = 0 in s}, the swap neighborhood N2(s) can be written as follows:176

N2(s) = {s⊕ Swap(i, j) : i ∈ I1, j ∈ I0; } (14)

The �rst tabu search algorithm explores the union of these two neighborhoods,177

i.e., N(s) = N1(s)∪N2(s), whose size equals to n+|I1|×|I0|. At each iteration178

of the algorithm, a best non-tabu solution fromN(s) according to the extended179

evaluation function de�ned by Eq. (17) in Section 2.3.3 and the tabu strategy180

explained in Section 2.3.2 is selected to replace the current solution s.181

2.3.2 Tabu Strategy182

In the present tabu search method, we adopt the solution-based tabu strategy183

to determine the tabu status of neighbor solutions. Speci�cally, the tabu lists184

are based on three hash vectors H1, H2, and H3 of length of L, where each185

position of them represents a binary variable, and each hash vector Ht is186

associated with a hash function ht. In particular, the e�ect of hash functions187

8



is to map a candidate solution of the search space Ω to an index of Ht, i.e.,188

ht : Ω→ {0, 1, 2, . . . , L− 1}.189

Based on these hash vectors and the associated hash functions, we determine190

the tabu status of candidate solutions by the following rule. Given a candidate191

solution s, the hash vectors Ht (t = 1, 2, 3) and the associated hash functions192

ht, s is identi�ed as a tabu solution if H1(h1(s)) ∧H2(h2(s)) ∧H3(h3(s)) = 1.193

Otherwise, s is determined as a non-tabu solution.194

Following previous studies [6,29,31], we de�ne our hash functions as follows.195

Let s = (x1, x2, . . . , xn) be a candidate solution, our hash functions ht (t =196

1, 2, 3) are given by:197

ht(s) = (
n∑
i=1

biγtc × xi) mod L (15)

where γt is a parameter that is used to de�ne each hash function and L is the198

length of hash vectors that is empirically set to 108 in this work.199

Given a solution s and its hash value h(s), the hash value of its neighbor200

solutions can be determined in O(1) according to Eq. (15). Thus, the time201

complexity of determining the tabu status of a neighbor solution is O(1).202

2.3.3 Extended Evaluation Function203

Since the search space explored by the �rst tabu search algorithm contains204

both feasible and infeasible solutions, we devise an extended evaluation func-205

tion F which uses a penalty function P to assess constraint violations.206

Let s be a candidate solution in Ω, the penalty value P (s) is de�ned as the207

summation of all constraint violations, i.e.,208

P (s) =
m∑
i=1

Max{0,
n∑
j=1

aijxj − bi}+
q+m∑
i=q+1

Max{0, bi −
n∑
j=1

aijxj} (16)

Thus, a small (large) function value P (s) means a weak (strong) constraint209

violation in s. In particular, P (s) = 0 means that s is a feasible solution.210

Given this penalty function, the extended evaluation function F (s) is de�ned211

as a linear combination of the objective function f(s) in Eq.(4) and P (s):212
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F (s) =
n∑
j=1

cjxj − λ× P (s) (17)

where λ is a weighting factor that is empirically set to 102 in this work.213

For any two solutions s′ and s′′ in Ω[k], s
′ is considered to be better than s′′ if214

F (s′) > F (s′′).215

As shown in our experimental results (Section 3, Section 4.2 and the Ap-216

pendix), the �rst search stage equipped with the extended evaluation function217

always ends up with a feasible solution for all tested instances, including those218

with 30 demand constraints and 30 knapsack constraints. In other words, the219

�rst solution-based tabu search algorithm is typically able to locate a promis-220

ing valid hyperplane that is further explored by the second search stage.221

2.4 Tabu Search Method of the Second Search Stage222

The second optimization stage of the TSTS algorithm uses another tabu search223

algorithm (denoted by TabuSearch2(), Algorithm 4) to examine candidate224

solutions of a given hyperplane Ω[k] (see below). Unlike the �rst tabu search225

algorithm, TabuSearch2() explores only solutions that contain exactly k se-226

lected items. TabuSearch2() �rst initializes the hash vectors (lines 3�5), and227

then performs a number of iterations to improve the current solution (lines228

7�14). At each iteration, the algorithm replaces the current solution by a best229

non-tabu neighbor solution s′ in terms of the evaluation function in Eq. (17).230

During the search, the best feasible solution encountered s∗ is updated each231

time a better feasible solution is found, and the hash vectors are accordingly232

updated by the new solution (line 13). Finally, the algorithm terminates if the233

time limit tmax is reached, and then returns the best feasible solution s∗ found234

during the search process.235

2.4.1 Search Space, Tabu Strategy and Evaluation Function236

The search space Ω[k] explored by TabuSearch2() is composed of both feasible237

and infeasible solutions with a �xed number of k selected items. In other words,238

Ω[k] contains all n-dimensional 0�1 vectors with
∑n
i=1 xi = k, i.e., Ω[k] = {x ∈239

{0, 1}n|∑n
i=1 xi = k}. Ω[k] is also called a hyperplane of the search space Ω240

de�ned in Section 2.3.1, i.e., Ω = ∪nk=1Ω[k].241

Additionally, like the �rst tabu search algorithm, TabuSearch2() uses the242

solution-based tabu strategy described in Section 2.3.2 to determine the tabu243
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Algorithm 4: The tabu search method used in the second search stage

1 Function TabuSearch2()
Input: Initial solution s, extended evaluation function F , penalty

function P , hash vectors H1, H2, H3 of length L, hash functions
h1, h2, h3, time limit tmax, and time (t) consumed in the �rst
search stage.

Output: The best solution s∗ found
2 begin

/* Initialization of hash vectors (i.e., tabu lists) */

3 for i← 0 to L− 1 do
4 H1[i]← 0; H2[i]← 0; H3[i]← 0
5 end

6 s∗ ← s
/* Main search procedure */

7 while time() < tmax − t do
8 Find in N3(s) a best non-tabu solution s′ in terms of the extended

evaluation function F in Eq. (17) /* N3(s) is defined in Eq.

(18), and the tabu rule is given in Section 2.4.1. */

9 s← s′ /* Update the current solution */

10 if F (s) > F (s∗) ∧ P (s) = 0 then
11 s∗ ← s
12 end

/* Update the hash vectors (i.e., tabu lists) with s
*/

13 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1

14 end

15 return s∗

16 end

status of neighbor solutions, and employs the extended evaluation function in244

Eq. (17) to evaluate the solutions in the search space Ω[k].245

2.4.2 Neighborhood Structure246

To search e�ectively the hyperplane Ω[k], TabuSearch2() uses a constrained247

swap neighborhood N3(s). Formally, given a solution s = (x1, x2, . . . , xn), the248

neighborhood N3(s) is given by:249

N3(s) = {s⊕ Swap(i, j) : i ∈ I1, j ∈ I0; f(s⊕ Swap(i, j)) > f(s∗)} (18)

where f(·) is the objective function of the MDMKP in Eq. (4), s∗ is the best250
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feasible solution found so far in the current tabu search run, I1 and I0 denote251

respectively the sets of indices having the value of 1 (selected items) and 0252

(non selected items) in s. Clearly, the size of this neighborhood is bounded253

by O(|I1| × |I0|). It is worth noting that we constraint the neighborhood254

by f(s ⊕ Swap(i, j)) > f(s∗) to eliminate non-promising neighbor solutions.255

Similar idea was previously investigated for the related MKP in [26].256

2.5 Space and Time Complexities of the Algorithm257

At each stage of our TSTS algorithm, in addition to three hash vectors (i.e.,258

H1, H2 and H3) with a length of L, we maintain three solutions (i.e., s, s
′
,259

and s∗) to follow the search process, where each solution is stored by two260

vectors (i.e., I1 and I0) with a maximum length of n and a vector W =261

(w1, w2, . . . , wm+q) where wi =
∑n
j=1 aijxj (j ∈ V ) holds. Thus, the space262

complexity of our TSTS algorithm is bounded by O(n+m+ q + L).263

In addition, for each neighbor solution in the search space, the time complex-264

ity of evaluating its quality is bounded by O(m + q), since there are m + q265

constraints needed to be checked. Hence, for each iteration, the time complex-266

ities of the �rst and second tabu search stages are respectively bounded by267

O((m+ q)× (n+ |I1| × |I0|)) and O((m+ q)× (|I1| × |I0|)) according to the268

size of neighborhoods explored by the algorithm (see Sections 2.3.1 and 2.4.2).269

3 Experimental Results and Comparisons270

We evaluate the proposed TSTS algorithm by conducting extensive computa-271

tional experiments based on four sets of benchmark instances commonly used272

in the literature and by making a comparison between our results and the273

state-of-the-art results in the literature.274

3.1 Benchmark Instances275

In this study, we employed four sets of benchmark instances to assess the276

performance of our TSTS algorithm, where the �rst two sets of benchmark277

instances are available at http://www.optsicom.es/binaryss, and the third278

and fourth sets of benchmark instances are available in OR-Library 1 . The279

�rst set contains 48 small instances with n = 100, and the second set contains280

48 larger instances with n = 250. In addition, for the instances in the �rst281

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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two sets, the number of knapsack constrains m varies from 5 to 10, and the282

number of demand constraints q belongs to {2, 5, 10}. The third set includes283

30 instances with n = 100, where both the number of knapsack constrains284

m and the number of demand constraints q equal to 30. The fourth set is285

composed of 30 large instances with n = 500, m = 30 and q = 30.286

3.2 Parameter Settings and Experimental Protocol287

Table 1
Settings of parameters

Parameters Section Description Values

α 2.3 tabu depth of TabuSearch1() 5× 103

γ1 2.3 parameter used in the hash function 1.9

γ2 2.3 parameter used in the hash function 2.1

γ3 2.3 parameter used in the hash function 2.3

Our TSTS algorithm employs four parameters, including γ1, γ2 and γ3 that288

are used to de�ne the hash functions, and the depth α of tabu search used289

in the �rst search stage. The parameters γ1, γ2 and γ3 are set as in Table 1290

according to the analysis shown in Section 4.3 while α is empirically set to291

5× 103.292

In addition, our algorithm was implemented in C++ and compiled by g++293

compiler with -O3 option 2 . All computational experiments were carried out294

on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM),295

running the Linux operating system. Moreover, when running the DIMACS296

machine benchmark procedure dmclique 3 , our processor requires 0.19, 1.17,297

and 4.54 seconds to solve the graphs r300.5, r400.5, and r500.5, respectively.298

Finally, due to the stochastic nature of the algorithm, we independently ran299

the algorithm 30 times to solve each instance, where the time limit tmax for300

each run was set to 60 seconds for instances with n ≤ 250 according to [14].301

For the large instances with n = 500, the time limit tmax was set to n seconds,302

where n is the size of instances.303

3.3 Computational Results and Comparison304

In this section, we report the computational results of our TSTS algorithm305

on the �rst two sets of benchmark instances. We provide in the Appendix306

the computational results of TSTS on the third and fourth sets of benchmark307

2 The source code of our TSTS algorithm will be available at our website: http:
//www.info.univ-angers.fr/pub/hao/mdmkp.html
3 ftp://dimacs.rutgers.edu/pub/dsj/clique
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Table 2
Computational results and comparison on the 48 instances with n = 100. In terms
of fbest, the improved results are indicated in bold compared to the best known
objective values (BKV ).

TSTS (this work)

Instance BKV Almha fbest favg fworst σf
100-5-2-0-0 28384 28384 28384 28374.63 28103 50.44

100-5-2-0-1 26386 26386 26386 26386.00 26386 0.00

100-5-2-0-2 23484 23424 23484 23450.83 23285 74.16

100-5-2-0-3 27374 27374 27374 27365.33 27290 20.45

100-5-2-0-4 30632 30632 30632 30632.00 30632 0.00

100-5-2-0-5 44674 44614 44674 44650.93 44518 51.70

100-5-2-1-0 10379 10307 10379 10359.13 10276 22.53

100-5-2-1-1 11114 11074 11114 11114.00 11114 0.00

100-5-2-1-2 10124 10022 10124 10108.53 10066 25.65

100-5-2-1-3 10567 10559 10567 10567.00 10567 0.00

100-5-2-1-4 10658 10658 10658 10566.00 10451 49.10

100-5-2-1-5 17550 17550 17550 17540.30 17494 14.72

100-5-5-0-0 21892 21892 21892 21831.20 21740 74.46

100-5-5-0-1 26280 26280 26280 26280.00 26280 0.00

100-5-5-0-2 20628 20628 20628 20628.00 20628 0.00

100-5-5-0-3 21547 21547 21547 21547.00 21547 0.00

100-5-5-0-4 25074 25067 25074 25074.00 25074 0.00

100-5-5-0-5 40327 40327 40327 40320.47 40272 16.80

100-5-5-1-0 10263 10263 10263 10248.87 10210 23.44

100-5-5-1-1 10625 10625 10625 10625.00 10625 0.00

100-5-5-1-2 10198 10126 10198 10149.27 10124 34.47

100-5-5-1-3 10030 9959 10030 10019.60 9874 38.91

100-5-5-1-4 9964 9838 9964 9926.20 9775 64.25

100-5-5-1-5 15603 15591 15603 15603.00 15603 0.00

100-10-5-0-0 21852 21843 21852 21852.00 21852 0.00

100-10-5-0-1 20645 20586 20645 20593.10 20514 45.39

100-10-5-0-2 19517 19517 19517 19507.37 19228 51.88

100-10-5-0-3 20596 20556 20596 20514.20 20454 69.20

100-10-5-0-4 19423 19278 19423 19248.37 19218 41.68

100-10-5-0-5 35933 35903 35933 35856.00 35743 92.42

100-10-5-1-0 10018 10000 10018 10018.00 10018 0.00

100-10-5-1-1 9839 9839 9839 9837.83 9804 6.28

100-10-5-1-2 10000 10000 10000 9989.60 9688 56.01

100-10-5-1-3 10544 10544 10544 10535.33 10479 22.10

100-10-5-1-4 10011 9878 10011 9961.57 9908 46.28

100-10-5-1-5 16230 16210 16230 16220.33 16095 33.69

100-10-10-0-0 22054 22054 22054 22054.00 22054 0.00

100-10-10-0-1 20103 20103 20103 20103.00 20103 0.00

100-10-10-0-2 19381 19312 19381 19371.80 19312 23.46

100-10-10-0-3 17434 17434 17434 17434.00 17434 0.00

100-10-10-0-4 18792 18792 18833 18794.73 18792 10.23

100-10-10-0-5 33837 33833 33837 33832.23 33702 24.20

100-10-10-1-0 8560 8560 8560 8513.17 8475 26.22

100-10-10-1-1 8493 8493 8493 8489.80 8397 17.23

100-10-10-1-2 9266 9227 9266 9266.00 9266 0.00

100-10-10-1-3 9823 9823 9823 9819.13 9707 20.82

100-10-10-1-4 8929 8929 8929 8914.00 8839 33.54

100-10-10-1-5 14152 14151 14152 14144.33 14106 17.14

Avg. 18108.10 18083.17 18108.96 18088.27 18023.38 24.98

#Better 1

#Equal 47

#Worse 0

p-value 3.2e-1 8.7e-1
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Table 3
Computational results and comparison on the 48 instances with n = 250. In terms of
fbest, the improved results are indicated in bold and the worse results are indicated
in italic compared to the best known objective value (BKV ).

TSTS (this work)

Instance BKV Almha fbest favg fworst σf
250-5-2-0-0 78486 78413 78486 78289.00 77644 146.76

250-5-2-0-1 75132 75086 75132 74833.33 73702 269.45

250-5-2-0-2 71003 70895 70898 70674.93 69762 285.03

250-5-2-0-3 80311 80227 80311 80206.57 80065 51.12

250-5-2-0-4 70935 70918 70935 70834.30 70583 70.55

250-5-2-0-5 130981 130863 130191 129271.40 127061 780.97

250-5-2-1-0 26666 26529 26666 26573.83 26457 54.46

250-5-2-1-1 26864 26778 26864 26806.77 26690 46.08

250-5-2-1-2 27280 27158 27280 27235.83 27109 47.32

250-5-2-1-3 26269 26160 26250 26173.90 26098 37.88

250-5-2-1-4 27293 27149 27287 27204.13 27131 25.01

250-5-2-1-5 44419 44216 44395 44302.57 44163 58.29

250-5-5-0-0 68026 68000 68026 68017.03 67978 15.64

250-5-5-0-1 60795 60727 60766 60627.90 60258 141.78

250-5-5-0-2 62093 62093 62093 62072.57 61960 28.50

250-5-5-0-3 66567 66513 66567 66519.80 66384 42.28

250-5-5-0-4 61929 61929 61929 61925.90 61878 11.66

250-5-5-0-5 127934 127890 127922 127708.10 127211 181.12

250-5-5-1-0 26966 26898 26973 26918.43 26853 31.01

250-5-5-1-1 26665 26520 26665 26576.10 26462 54.58

250-5-5-1-2 26648 26468 26648 26556.97 26403 49.58

250-5-5-1-3 25923 25701 25885 25784.30 25695 38.65

250-5-5-1-4 26021 25931 26060 25992.03 25882 41.71

250-5-5-1-5 41372 41131 41338 41237.67 41104 49.44

250-10-5-0-0 56306 56142 56260 55900.43 55344 274.20

250-10-5-0-1 59564 59504 59619 59551.47 59330 64.43

250-10-5-0-2 54898 54817 54890 54657.33 54367 109.54

250-10-5-0-3 52399 51987 52249 52105.73 51588 155.34

250-10-5-0-4 58234 57970 58119 57750.73 57113 291.28

250-10-5-0-5 99682 99452 99512 99201.73 98604 213.06

250-10-5-1-0 26867 26845 26961 26866.77 26716 59.78

250-10-5-1-1 26585 26441 26658 26538.87 26390 62.11

250-10-5-1-2 25737 25543 25737 25598.13 25322 83.93

250-10-5-1-3 27162 26982 27159 27089.60 26952 60.98

250-10-5-1-4 26816 26774 26815 26729.87 26635 46.01

250-10-5-1-5 46244 46087 46244 46145.40 46112 18.18

250-10-10-0-0 52441 52343 52407 52326.03 52045 113.59

250-10-10-0-1 53720 53603 53745 53663.80 53493 48.05

250-10-10-0-2 46927 46703 46927 46770.97 46487 81.50

250-10-10-0-3 54782 54779 54831 54745.93 54441 84.37

250-10-10-0-4 49675 49562 49660 49575.43 49327 72.88

250-10-10-0-5 92959 92792 92975 92821.53 92473 98.62

250-10-10-1-0 26696 26651 26696 26667.67 26564 40.85

250-10-10-1-1 25757 25692 25876 25786.43 25721 28.17

250-10-10-1-2 26356 26438 26517 26470.70 26418 32.17

250-10-10-1-3 26684 26443 26684 26614.77 26518 50.58

250-10-10-1-4 26554 26428 26676 26617.33 26511 28.13

250-10-10-1-5 42528 42284 42629 42464.80 42376 64.06

Avg. 49836.48 49717.81 49821.10 49687.60 49403.75 98.76

#Better 12

#Equal 18

#Worse 18

p-value 2.7e-1 4.0e-2
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instances for which no detailed results are available for existing algorithms in308

the literature.309

The computational results of our TSTS algorithm on the �rst set of benchmark310

instances with n = 100 are summarized in Table 2, together with the results311

of the Almha algorithm implemented in [14]. Column 1 gives the names of312

instances. Columns 2 and 3 indicate respectively the best known objective313

values (BKV ) and the results of the Almha algorithm, which were reported314

in [14] and available at http://www.optsicom.es/binaryss. The results of315

our TSTS algorithm are reported in columns 4�7, including the best objective316

value obtained over 30 runs (fbest), the average objective value (favg), the317

worst objective value (fworst), and the standard deviation (σf ) of objective318

values. The row Avg. shows the average result over all instances tested for319

each column. The rows #Better, #Equal, and #Worse respectively show320

the number of instances for which our best result fbest is better than, equal to,321

worse than the BKV. Moreover, in terms of fbest, our improved results (new322

lower bounds) are indicated in bold and our worse results are indicated in italic323

compared to the BKV . Finally, to verify whether there exists a signi�cant324

di�erence between our best results (fbest) and the BKV, we provide in the325

last row the p-values (∈ [0, 1]) from the non-parametric Friedman test, where326

a p-value less than 0.05 means a signi�cant di�erence between the compared327

results. This test was also performed to compare the results of the Almha328

algorithm and our average results (favg)
4 .329

Table 2 shows that our TSTS algorithm matches the best known results for330

47 out of 48 instances, and improves the best known result for the remaining331

one instance, leading to an improved Avg. value compared to the averaged332

BKV (18108.96 vs. 18108.10). When comparing the average objective values333

favg of our TSTS algorithm with the results of the Almba algorithm, one can334

�nd that both algorithms have a very similar performance, which is con�rmed335

by a large p-value of 0.87. In addition, regarding the average results over all336

instances (Avg.), the value of favg of our TSTS algorithm is 18088.27, which337

is slightly better than that of Almba (i.e., 18083.17). These outcomes show338

that our TSTS algorithm performs similarly on these small instances n = 100339

compared to the state-of-the-art Almba algorithm.340

The second experiment aims to evaluate our TSTS algorithm on the set of 48341

larger instances with n = 250, and the computational results are summarized342

in Table 3, where we report the same statistics as in Table 2. We observe343

from Table 3 that our algorithm matches the best known results for 18 out344

of 48 instances, improves the best known results for 12 instances, and misses345

the best known results for the remaining 18 instances. In terms of Avg., the346

4 Since the results of Almha are based on only one run, we mainly use our average
results for this comparison.
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value of fbest of TSTS is slightly worse than the value of BKV (i.e., 49821.10347

vs. 49836.48), and slightly better than the result of Almha (i.e., 49821.10 vs.348

49717.81), which is however slightly better than the value of favg of TSTS (i.e.,349

49687.60 vs. 49717.81). This experiment indicates that under the short time350

limit tmax = 60 seconds, TSTS performs globally well on these larger instance351

with n = 250 especially by �nding 12 improved best solutions. Additionally, we352

observe from Table 3 that TSTS performs particularly well for instances with353

a large number of constraints and achieves a better result than Almha for most354

of the 12 instances with 10 demand constraints and 10 knapsack constraints.355

Finally, we mention that the results of TSTS can be further improved by356

increasing the time limit (see the detailed results in the Appendix), implying357

that the current time limit (tmax = 60) is too short for the TSTS algorithm358

on these instances.359

4 Analysis and Discussions360

To shed light on the functioning of the proposed algorithm, we now analyze361

and discuss several essential components of the TSTS algorithm.362

4.1 E�ectiveness and Robustness Analysis for Two-Stage Strategy363

To study the e�ectiveness of the underlying two-stage search strategy, we364

summarize in Table 4 the computational results about the k values returned365

by the TSTS algorithm, where the results are based on the experiments in366

Section 3.3 and the value of k represents the number of selected items in367

the solution found. It is worth noting that the purpose of the �rst search368

stage is just to discover a promising hyperplane Ω[k] that contains high quality369

solutions, and the second search stage aims to locate improved solutions in370

the given hyperplane. Hence, the two-stage search strategy can be considered371

to be relevant and robust if the �rst search stage is able to reach very stably372

the identical or close hyperplane to the best known solution (i.e., Ω[kbest]).373

The results of small instances with n = 100 are reported in the �rst 4 columns374

of Table 4, including the name of instances, the k value of the best solution375

obtained over 30 runs (kbest), the average k value of solutions obtained, and the376

standard deviation of k values obtained (σk). The results of larger instances377

with n = 250 are reported in columns 5�8, with the same statistics as in378

columns 1�4. In addition, the row Avg. shows the average results of standard379

deviations σk of k values over all tested instances of each test set.380

Table 4 shows that the value of kavg is very close to that of kbest for most tested381
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Table 4
Statistical results over 30 runs in terms of the number k of items in the obtained
solutions.

n=100 n=250

Instance kbest kavg σk Instance kbest kavg σk

100-5-2-0-0 30 29.97 0.30 250-5-2-0-0 79 78.47 0.85

100-5-2-0-1 31 31.00 0.34 250-5-2-0-1 78 76.00 0.89

100-5-2-0-2 31 30.83 0.34 250-5-2-0-2 78 77.03 1.08

100-5-2-0-3 32 31.83 0.42 250-5-2-0-3 79 79.07 0.44

100-5-2-0-4 31 31.00 0.00 250-5-2-0-4 79 78.33 0.54

100-5-2-0-5 56 55.83 0.40 250-5-2-0-5 137 134.87 1.50

100-5-2-1-0 28 27.00 0.30 250-5-2-1-0 71 70.03 0.66

100-5-2-1-1 29 29.00 0.00 250-5-2-1-1 69 69.23 0.67

100-5-2-1-2 27 27.27 0.34 250-5-2-1-2 72 72.07 0.63

100-5-2-1-3 29 29.00 0.00 250-5-2-1-3 69 68.57 0.72

100-5-2-1-4 29 28.17 0.44 250-5-2-1-4 70 70.67 0.83

100-5-2-1-5 54 53.00 0.31 250-5-2-1-5 129 127.70 1.07

100-5-5-0-0 28 28.40 0.46 250-5-5-0-0 76 75.50 0.50

100-5-5-0-1 30 30.00 0.00 250-5-5-0-1 74 71.87 1.02

100-5-5-0-2 30 30.00 0.00 250-5-5-0-2 74 74.37 0.55

100-5-5-0-3 30 30.00 0.00 250-5-5-0-3 76 75.40 0.66

100-5-5-0-4 29 29.00 0.00 250-5-5-0-4 76 76.00 0.26

100-5-5-0-5 54 54.00 0.18 250-5-5-0-5 136 134.60 0.80

100-5-5-1-0 27 26.73 0.48 250-5-5-1-0 68 66.90 0.65

100-5-5-1-1 28 28.00 0.00 250-5-5-1-1 66 65.40 0.55

100-5-5-1-2 27 27.37 0.47 250-5-5-1-2 65 65.53 0.62

100-5-5-1-3 28 27.93 0.34 250-5-5-1-3 65 65.80 0.65

100-5-5-1-4 27 27.07 0.18 250-5-5-1-4 66 66.90 0.60

100-5-5-1-5 52 52.00 0.00 250-5-5-1-5 126 126.23 0.80

100-10-5-0-0 28 28.00 0.00 250-10-5-0-0 69 67.20 1.05

100-10-5-0-1 28 27.40 0.50 250-10-5-0-1 71 71.07 0.44

100-10-5-0-2 27 26.97 0.00 250-10-5-0-2 70 69.23 0.56

100-10-5-0-3 28 27.43 0.42 250-10-5-0-3 68 67.33 0.94

100-10-5-0-4 28 27.07 0.25 250-10-5-0-4 69 67.53 0.96

100-10-5-0-5 53 52.60 0.47 250-10-5-0-5 130 128.93 0.81

100-10-5-1-0 26 26.00 0.18 250-10-5-1-0 65 65.13 0.62

100-10-5-1-1 26 26.03 0.00 250-10-5-1-1 67 66.73 0.63

100-10-5-1-2 26 26.03 0.25 250-10-5-1-2 65 63.97 0.71

100-10-5-1-3 26 26.13 0.30 250-10-5-1-3 65 65.03 0.60

100-10-5-1-4 27 26.47 0.50 250-10-5-1-4 66 65.43 0.50

100-10-5-1-5 51 50.93 0.18 250-10-5-1-5 128 127.20 0.40

100-10-10-0-0 28 28.00 0.00 250-10-10-0-0 68 66.83 0.58

100-10-10-0-1 27 27.00 0.00 250-10-10-0-1 68 68.47 0.56

100-10-10-0-2 27 27.00 0.00 250-10-10-0-2 67 66.70 0.64

100-10-10-0-3 27 27.00 0.26 250-10-10-0-3 68 67.30 0.59

100-10-10-0-4 28 27.30 0.45 250-10-10-0-4 67 66.13 0.56

100-10-10-0-5 53 52.97 0.00 250-10-10-0-5 130 129.53 0.56

100-10-10-1-0 24 24.77 0.42 250-10-10-1-0 64 63.70 0.46

100-10-10-1-1 25 25.03 0.00 250-10-10-1-1 63 63.03 0.18

100-10-10-1-2 26 26.00 0.00 250-10-10-1-2 64 63.63 0.48

100-10-10-1-3 25 25.03 0.37 250-10-10-1-3 63 63.40 0.49

100-10-10-1-4 25 25.17 0.30 250-10-10-1-4 65 64.00 0.37

100-10-10-1-5 50 49.83 0.30 250-10-10-1-5 123 123.70 0.46

Avg. 0.22 0.66
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instances, which means that the �rst search stage of the TSTS algorithm is382

able to �nd a hyperplane that is very close to the best hyperplane containing383

the current best known solution. On the other hand, we observe that the384

standard deviations σk of k values obtained are very small for most instances.385

In particular, the average standard deviations of k values are respectively 0.22386

and 0.66 for the set of small instances with n = 100 and the set of larger387

instances with n = 250. Hence, this experiment con�rms to some extend the388

e�ectiveness and robustness of the two-stage search strategy employed by the389

TSTS algorithm.390

4.2 E�ects of Two Stages on the Performance of Algorithm391

To investigate the respective role of the two stages of our algorithm, we carried392

out an experiment based on the instances with n = 250. We ran our TSTS393

algorithm 30 times to solve each instance according to the experimental pro-394

tocol of Section 3.2. The average results from the �rst stage and the second395

stage over 30 independent runs are summarized in Table 5. The �rst column396

gives the name of instances, columns 2 and 3 show the objective value (f1)397

obtained by the �rst stage and computation time (t1) in seconds needed to398

reach f1. Columns 4 and 5 show the objective value (f2) obtained by the sec-399

ond stage and the computation time (t2) needed to reach f2 from f1. The last400

two columns indicate the gap between f2 and f1 and the improvement ratio401

(ρ) of f2 over f1, which is calculated as ρ = 100× (f2 − f1)/f1.402

We observe from Table 5 that the �rst search stage of the TSTS algorithm403

is able to obtain a high-quality feasible solution for each instance and the404

solutions obtained in the �rst stage can be further improved during the second405

search stage. Furthermore, the improvements of f2 over f1 are signi�cant with406

an average improvement ratio ρ close to 1%. On the other hand, regarding407

the computation times needed by the two search stages, we observe that most408

computational e�orts are required by the second search stage and that t2 is409

about �ve times larger than t1. Of course, this proportion depends also on the410

setting of the parameters α and tmax. These outcomes indicate that both search411

stages of the TSTS algorithm are indispensable for the high performance of412

the algorithm. The �rst search stage is able to generate high-quality feasible413

solutions while the second search stage is able to further improve the solutions414

by performing an intensi�ed search in the reached hyperplane.415

4.3 Sensitivity Analysis of Hash functions416

Now, we investigate the impacts of hash functions on the performance of the417

algorithm and discuss the sensitivity of the associated parameters. For this418
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Table 5
Comparison between the two search stages on the instances with n = 250.

Instance f1 t1(s) f2 t2 (s) f2 − f1 ρ

250-5-2-0-0 78029.83 9.60 78289.00 31.53 259.17 0.33

250-5-2-0-1 74599.40 11.44 74833.33 25.52 233.93 0.31

250-5-2-0-2 70402.30 13.79 70674.93 34.09 272.63 0.39

250-5-2-0-3 79927.80 4.89 80206.57 32.33 278.77 0.35

250-5-2-0-4 70555.47 2.91 70834.30 24.41 278.83 0.40

250-5-2-0-5 128985.57 11.40 129271.40 28.83 285.83 0.22

250-5-2-1-0 26322.20 3.98 26573.83 37.52 251.63 0.96

250-5-2-1-1 26522.33 4.43 26806.77 30.21 284.43 1.07

250-5-2-1-2 26945.23 4.75 27235.83 31.91 290.60 1.08

250-5-2-1-3 25892.27 4.91 26173.90 38.03 281.63 1.09

250-5-2-1-4 26997.30 5.39 27204.13 39.99 206.83 0.77

250-5-2-1-5 44068.70 5.99 44302.57 28.11 233.87 0.53

250-5-5-0-0 67902.80 7.89 68017.03 10.63 114.23 0.17

250-5-5-0-1 60341.40 7.58 60627.90 37.09 286.50 0.47

250-5-5-0-2 61948.87 5.17 62072.57 16.03 123.70 0.20

250-5-5-0-3 66363.73 7.16 66519.80 16.84 156.07 0.24

250-5-5-0-4 61803.67 3.57 61925.90 4.69 122.23 0.20

250-5-5-0-5 127473.87 10.57 127708.10 26.23 234.23 0.18

250-5-5-1-0 26574.67 2.38 26918.43 35.36 343.77 1.29

250-5-5-1-1 26197.30 2.56 26576.10 26.45 378.80 1.45

250-5-5-1-2 26129.73 3.26 26556.97 34.95 427.23 1.64

250-5-5-1-3 25386.40 2.84 25784.30 34.02 397.90 1.57

250-5-5-1-4 25586.80 2.34 25992.03 31.64 405.23 1.58

250-5-5-1-5 40721.77 4.86 41237.67 37.49 515.90 1.27

250-10-5-0-0 55376.00 10.35 55900.43 31.43 524.43 0.95

250-10-5-0-1 59234.87 7.83 59551.47 37.65 316.60 0.53

250-10-5-0-2 54262.60 8.68 54657.33 35.68 394.73 0.73

250-10-5-0-3 51626.67 9.97 52105.73 34.57 479.07 0.93

250-10-5-0-4 57155.03 8.66 57750.73 36.08 595.70 1.04

250-10-5-0-5 98688.90 13.45 99201.73 34.25 512.83 0.52

250-10-5-1-0 26410.57 5.71 26866.77 34.05 456.20 1.73

250-10-5-1-1 26189.03 4.29 26538.87 33.99 349.83 1.34

250-10-5-1-2 25149.17 5.15 25598.13 35.00 448.97 1.79

250-10-5-1-3 26671.27 3.54 27089.60 38.49 418.33 1.57

250-10-5-1-4 26317.50 5.12 26729.87 34.43 412.37 1.57

250-10-5-1-5 45787.90 6.45 46145.40 31.66 357.50 0.78

250-10-10-0-0 51902.63 8.52 52326.03 36.24 423.40 0.82

250-10-10-0-1 53349.40 4.96 53663.80 33.53 314.40 0.59

250-10-10-0-2 46352.07 7.58 46770.97 38.03 418.90 0.90

250-10-10-0-3 54397.33 9.80 54745.93 25.69 348.60 0.64

250-10-10-0-4 49214.60 5.47 49575.43 44.01 360.83 0.73

250-10-10-0-5 92424.20 9.18 92821.53 35.22 397.33 0.43

250-10-10-1-0 26297.53 4.05 26667.67 28.92 370.13 1.41

250-10-10-1-1 25386.40 4.20 25786.43 35.09 400.03 1.58

250-10-10-1-2 25963.63 5.58 26470.70 21.09 507.07 1.95

250-10-10-1-3 25996.40 5.25 26614.77 27.03 618.37 2.38

250-10-10-1-4 26132.07 2.62 26617.33 39.61 485.27 1.86

250-10-10-1-5 41890.40 9.74 42464.80 32.11 574.40 1.37

Avg. 49330.32 6.45 49687.60 31.41 357.28 0.96

purpose, we carried out an additional experiment based on 30 representative419

instances in terms of the numbers of knapsack and demand constraints. We420

ran our TSTS algorithm 30 times for each instance and each parameter com-421

bination of (γ1, γ2, γ3), where γi (i = 1, 2, 3) are the parameters used to de�ne422

the hash functions hi (see Section 2.3.2 for details). Speci�cally, we tested 10423

di�erent settings, i.e., (γ1, γ2, γ3) ∈ {(1.1, 1.5, 1.8), (1.3, 1.5, 1.8), (1.3, 1.5, 2.0),424

(1.5, 2.0, 2.5), (1.6, 1.8, 2.0), (1.6, 1.8, 2.5), (1.8, 2.0, 2.2), (1.8, 2.0, 2.5), (1.9, 2.1, 2.3),425
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(2.0, 2.2, 2.5)}.426

The experimental results are summarized in Table 6, where the �rst column427

gives the name of instances, the second row shows the settings of parameters,428

and the average objective values (favg) obtained over 30 runs are reported in429

columns 2�11 for each parameter combination and each instance, respectively.430

In addition, the rows #Best and Avg. of the table indicate respectively the431

number of instances for which the associated setting of parameters yielded the432

best results and the average results over all instances tested.433

We observe from Table 6 that the algorithm is sensitive to the setting of the pa-434

rameters γ1,γ2, and γ3. For the parameter combinations containing two small435

parameter values, the TSTS algorithm performed badly. For example, the algo-436

rithm with the combination (1.1, 1.5, 1.8) yielded the worst results in terms of437

Avg. However, when all parameters in (γ1, γ2, γ3) take a relatively large value,438

the algorithm obtained a much better performance. Taking (1.9, 2.1, 2.3) as an439

example, the algorithm achieved the best results on 9 instances. In summary,440

the parameters γ1,γ2, and γ3 have an important impact on the performance441

of the algorithm, and parameter combinations containing at least two large442

parameter values lead usually to a good performance of the algorithm.443

4.4 E�ectiveness of Solution-based Tabu Strategy444

The solution-based tabu strategy is an essential ingredient of our TSTS algo-445

rithm. To show its e�ectiveness with respect to the popular attribute-based446

tabu strategy, we created a variant A-TSTS of the TSTS algorithm by replac-447

ing the solution-based tabu strategy with the popular attribute-based tabu448

strategy, while keeping the other TSTS components unchanged. In A-TSTS,449

the adopted tabu strategy can be simply described as follows. Given an incum-450

bent solution s = (x1, x2, . . . , xn), once a 0�1 variable xi (1 ≤ i ≤ n) is �ipped451

as xi ← 1 − xi, xi is forbidden to be �ipped again for the next tt iterations452

(tt is the tabu tenure) and the associated neighbor solutions are excluded for453

consideration during the period identi�ed by the tabu tenure. We empirically454

set tt = C + rand[0, 2] where C is a parameter that takes the value of 20 and455

rand[0, 2] is a random integer in [0, 2]. Finally, the tabu status of a variable is456

disabled if �ipping the variable leads to a solution better than all previously457

visited solutions (this is the so-called aspiration criterion).458

To compare TSTS and A-TSTS, we carried out an experiment based on the459

set of 48 large instances with n = 250, where both algorithms were run 30460

times according to the experimental protocol given in Section 3.2. The compu-461

tational results are summarized in Table 7 where we show for each algorithm462

the best results (fbest) obtained over 30 runs, the average results (favg), and463
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Table 7
Comparison between the solution-based and attribute-based tabu strategies on the
instances with n = 250. The better results between the two algorithms are indicated
in bold in terms of fbest, favg and fworst.

fbest favg fworst
Instance A-TSTS TSTS A-TSTS TSTS A-TSTS TSTS

250-5-2-0-0 72278 78486 69459.47 78289.00 66794 77644

250-5-2-0-1 68945 75132 65578.57 74833.33 62546 73702

250-5-2-0-2 65744 70898 62624.13 70674.93 60403 69762

250-5-2-0-3 75654 80311 71754.33 80206.57 69139 80065

250-5-2-0-4 66935 70935 63119.17 70834.30 60155 70583

250-5-2-0-5 125571 130191 122346.53 129271.40 118507 127061

250-5-2-1-0 25126 26666 23250.10 26573.83 20310 26457

250-5-2-1-1 25352 26864 23872.30 26806.77 22806 26690

250-5-2-1-2 25204 27280 23651.70 27235.83 21274 27109

250-5-2-1-3 24796 26250 23342.57 26173.90 21765 26098

250-5-2-1-4 25474 27287 24349.20 27204.13 22944 27131

250-5-2-1-5 42388 44395 40612.43 44302.57 37348 44163

250-5-5-0-0 64755 68026 62158.80 68017.03 58973 67978

250-5-5-0-1 58390 60766 56174.20 60627.90 53842 60258

250-5-5-0-2 59571 62093 57389.37 62072.57 53856 61960

250-5-5-0-3 64279 66567 61548.97 66519.80 59335 66384

250-5-5-0-4 59003 61929 56954.03 61925.90 54735 61878

250-5-5-0-5 123840 127922 121678.73 127708.10 116272 127211

250-5-5-1-0 25188 26973 23643.70 26918.43 21024 26853

250-5-5-1-1 24472 26665 23106.03 26576.10 21433 26462

250-5-5-1-2 24316 26648 23054.23 26556.97 20703 26403

250-5-5-1-3 24165 25885 22694.20 25784.30 20186 25695

250-5-5-1-4 23813 26060 22712.63 25992.03 21016 25882

250-5-5-1-5 38977 41338 37637.83 41237.67 34688 41104

250-10-5-0-0 53124 56260 50822.33 55900.43 47977 55344

250-10-5-0-1 56060 59619 53640.83 59551.47 50706 59330

250-10-5-0-2 51944 54890 49772.90 54657.33 47349 54367

250-10-5-0-3 49409 52249 47341.53 52105.73 44605 51588

250-10-5-0-4 54681 58119 52606.43 57750.73 49637 57113

250-10-5-0-5 96521 99512 94044.77 99201.73 89840 98604

250-10-5-1-0 25431 26961 23844.97 26866.77 21589 26716

250-10-5-1-1 25399 26658 23638.70 26538.87 21920 26390

250-10-5-1-2 23836 25737 21624.83 25598.13 15478 25322

250-10-5-1-3 24940 27159 23633.13 27089.60 21621 26952

250-10-5-1-4 24819 26815 23390.37 26729.87 20190 26635

250-10-5-1-5 43814 46244 42276.70 46145.40 40483 46112

250-10-10-0-0 49931 52407 48520.97 52326.03 45896 52045

250-10-10-0-1 52102 53745 50398.53 53663.80 47944 53493

250-10-10-0-2 44797 46927 43186.07 46770.97 40408 46487

250-10-10-0-3 52271 54831 50908.37 54745.93 48603 54441

250-10-10-0-4 47965 49660 46648.33 49575.43 44642 49327

250-10-10-0-5 90501 92975 88609.13 92821.53 83712 92473

250-10-10-1-0 24671 26696 22845.10 26667.67 20131 26564

250-10-10-1-1 24350 25876 22838.50 25786.43 19149 25721

250-10-10-1-2 24341 26517 22613.70 26470.70 20116 26418

250-10-10-1-3 24577 26684 23209.00 26614.77 21611 26518

250-10-10-1-4 24679 26676 23352.07 26617.33 21524 26511

250-10-10-1-5 39576 42629 37427.70 42464.80 34366 42376

Avg. 47166.15 49821.10 45206.42 49687.60 42490.65 49403.75

p-value 4.26e-12 4.26e-12 4.26e-12
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the worst results obtained (fworst). In addition, the row 'Avg.' shows the av-464

erage results for each performance indicator. Finally, to check whether there465

exists a signi�cant di�erence between the two algorithms in terms of fbest, favg466

and fworst, we provide the p-values from the non-parametric Friedman test in467

the last row, where a p-value smaller than 0.05 implies a signi�cant di�erence468

between the compared results.469

We observe from Table 7 that the solution-based algorithm TSTS dominates470

the attribute-based algorithm A-TSTS in terms of all indicators, by reporting471

better results in terms of fbest, favg and fworst on all the instances. Further-472

more, the small p-values indicate that the performance di�erences between473

the compared results are statistically signi�cant. Therefore, this experiment474

con�rms that under the two-stage framework of this work, the solution-based475

tabu strategy is much more suitable than the attribute-based tabu strategy476

for solving the MDMKP.477

4.5 Discussion about the Solution-based and Attribute-based Tabu Search Ap-478

proaches479

Attribute-based tabu search is a popular approach, whose key idea is to pre-480

vent one attribute or a combination of several attributes of a solution from481

being changed during a number of iterations since their last changes. For such a482

method, a tabu attribute or a combination of several attributes is usually asso-483

ciated with a number of tabu solutions. However, unlike attribute-based tabu484

search, solution-based tabu search tries to record all the visited solutions and485

prevent them from being revisited during the following search process. Thus,486

solution-based tabu search ensures a stronger intensi�cation search ability.487

Recent studies on several binary optimization cases including two dispersion488

problems (minimum di�erence dispersion [29] and maximum min-sum dis-489

persion [19]) and the classic multidimensional knapsack problem [20] demon-490

strate that solution-based tabu search is more suitable than attribute-based491

tabu search. On the other hand, our experience on another dispersion problem492

(max-mean dispersion [18]) does not con�rm the advantage of the solution-493

based tabu search approach over the attribute-based tabu search approach.494

So one interesting question concerning the solution-based and attribute-based495

tabu search approaches is under what circumstances one approach will be more496

suitable than the other. Given that solution-based tabu search has been inves-497

tigated only very recently, little knowledge is currently available, which makes498

it di�cult to provide a meaningful guidance on the choice between these two499

approaches. To fully characterize these approaches and understand the rela-500

tionships between these approaches and the optimization problem under con-501

sideration, more studies are clearly needed, which constitutes an interesting502

24



research perspective.503

Finally, the ideas of the present solution-based tabu search algorithm being504

quite general, they could conveniently be tested on other binary optimization505

problems, by adjusting the γ parameters of the hash functions (Eq. (15), Sec-506

tion 2.3.2) or by increasing the number of the hash vectors and the associated507

hash functions.508

5 Conclusions509

In this work, we investigated the NP-hard multidemand multidimensional510

knapsack problem, by proposing a two-stage tabu search (TSTS) algorithm511

that combines two solution-based tabu search procedures and a penalty-based512

evaluation function to explore di�erent search spaces. Computational results513

on 156 benchmark instances showed that the proposed algorithm is competi-514

tive compared to the state-of-art results in the literature, especially for those515

instances with a large number of knapsack and demand constraints.516

The experimental analysis showed the usefulness of the two-stage search strat-517

egy and the respective impacts of two stages on the performance of the algo-518

rithm. The �rst search stage is able to reach a promising hyperplane containing519

high-quality solutions, and the second search stage is able to �nd elite solutions520

by an intensi�ed examination of the given hyperplane. We also showed that521

the hash functions used by the tabu search algorithms are a key component522

that signi�cantly in�uences the performance of the algorithm.523

This work enriches the existing tools for e�ectively solving the MDMKP and524

invites more research and attention on solution-based tabu search for solving525

binary optimization problems in the future. Speci�cally, given that the ideas526

of the two-stage strategy and the solution-based tabu search procedures devel-527

oped in this work are quite general, it would be interesting to investigate their528

e�ectiveness on other problems, especially those related to subset selection529

problems for which the search space can be divided into a series of hyper-530

planes. It is also interesting to study search strategies mixing solution-based531

and attribute-based approaches. As a more fundamental research perspec-532

tive, studies on a characterization of both solution-based and attribute-based533

search approaches are needed, which could ease the choice of one or the other534

approach to solve additional binary optimization problems.535
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A Appendix627

This Appendix presents the detailed computational results of the proposed628

TSTS algorithm for the third and fourth sets of benchmark instances for629

which no detailed results are available in the literature. These instances have630

100 or 500 items, 30 knapsack constraints and 30 demand constraints, making631

them more di�cult to solve. For each of these instances, the TSTS algorithm632

was run 30 times under the condition presented in Section 3.2 and the com-633

putational results are summarized in Table A.1, where the symbols have the634

same meanings as in the previous tables.In addition, we report in Table A.2635

the computational results of our TSTS algorithm on instances with n = 250636

under a long time limit of tmax = 300 (instead of tmax = 60 used in Section637

3). The results reported in this Appendix can serve as references for future638

comparative studies of new MDMKP algorithms.639

We observe from Table A.1 that TSTS is able to reach the best result (fbest)640

with a success rate of 100% for 15 out of 30 small instances with n = 100, which641

means a good robustness of our TSTS algorithm on these instances. Note that642

for some small instances with n = 100, m = 30, and q = 30, it is di�cult643

for some state-of-the-art algorithms in the literature [17] to obtain a feasible644

solution. However, it is very easy for our TSTS algorithm to obtain a feasible645
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solution for all these instances. For other instances, the standard deviation646

(σf ) of objective values obtained by the TSTS algorithm is relatively small,647

which indicates a good robustness of the algorithm. Regarding the value of648

k which represents the number of items selected, it can be seen that the gap649

between kbest and kavg and the standard deviation (σk) of k values obtained650

are very small, implying that the two-stage strategy of the algorithm is very651

robust and e�ective.652

Table A.2 shows that our TSTS algorithm improves the best known results653

for 16 out of 48 instances, matches the best known results for 24 instances,654

and misses the best known results for only 8 instances. These results indicate655

that the performance of our TSTS algorithm can be further improved when a656

longer computation time is available.657
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Table A.1
Computational results of the TSTS algorithm on the instances with a large number of
constraints under the condition presented in Section 3.2. For each of these instances,
there are 30 knapsack constraints and 30 demand constraints.
Instance fbest favg fworst σf kbest kavg σk
100-30-30-0-2-1 11312 11300.00 11252 24.00 25 25.20 0.40
100-30-30-0-2-2 9945 9945.00 9945 0.00 25 25.00 0.00
100-30-30-0-2-3 11195 11130.33 10225 241.96 25 25.07 0.25
100-30-30-0-2-4 11324 11290.40 11198 55.72 25 25.00 0.00
100-30-30-0-2-5 9704 9704.00 9704 0.00 25 25.00 0.00
100-30-30-0-2-6 23296 23296.00 23296 0.00 50 50.00 0.00
100-30-30-0-2-7 22442 22224.40 22126 125.49 51 50.27 0.44
100-30-30-0-2-8 23452 23312.90 23182 45.57 51 50.13 0.34
100-30-30-0-2-9 22756 22756.00 22756 0.00 50 50.00 0.00
100-30-30-0-2-10 24371 24323.60 24287 28.16 50 50.00 0.00
100-30-30-0-2-11 33472 33472.00 33472 0.00 75 75.00 0.00
100-30-30-0-2-12 32670 32670.00 32670 0.00 75 75.00 0.00
100-30-30-0-2-13 32942 32942.00 32942 0.00 75 75.00 0.00
100-30-30-0-2-14 35106 35106.00 35106 0.00 75 75.00 0.00
100-30-30-0-2-15 30930 30788.73 30767 55.41 75 75.00 0.00
100-30-30-1-5-1 5340 5340.00 5340 0.00 26 26.00 0.00
100-30-30-1-5-2 4390 4390.00 4390 0.00 25 25.00 0.00
100-30-30-1-5-3 4227 4227.00 4227 0.00 25 25.00 0.00
100-30-30-1-5-4 4706 4433.40 4424 50.62 25 25.97 0.18
100-30-30-1-5-5 2597 2591.90 2546 15.30 25 25.00 0.00
100-30-30-1-5-6 10808 10647.60 10462 92.10 50 50.00 0.00
100-30-30-1-5-7 9807 9789.37 9766 5.37 51 50.03 0.18
100-30-30-1-5-8 10882 10865.47 10753 42.27 50 50.10 0.30
100-30-30-1-5-9 10595 10595.00 10595 0.00 50 50.00 0.00
100-30-30-1-5-10 10297 10285.87 9963 59.95 50 50.03 0.18
100-30-30-1-5-11 11029 11029.00 11029 0.00 75 75.00 0.00
100-30-30-1-5-12 11884 11823.27 11747 45.74 75 75.00 0.00
100-30-30-1-5-13 10751 10751.00 10751 0.00 75 75.00 0.00
100-30-30-1-5-14 11567 11567.00 11567 0.00 75 75.00 0.00
100-30-30-1-5-15 10671 10368.47 10351 59.75 75 75.00 0.00
500-30-30-0-2-1 85188 84991.27 84418 185.69 128 127.57 0.62
500-30-30-0-2-2 82073 81856.17 81504 141.84 129 128.07 0.44
500-30-30-0-2-3 77393 76995.10 76516 205.93 129 127.40 0.80
500-30-30-0-2-4 82304 82049.27 81628 158.83 128 127.37 0.75
500-30-30-0-2-5 83525 83300.07 82779 170.66 129 127.87 0.72
500-30-30-0-2-6 145967 145705.17 145474 88.16 253 252.73 0.68
500-30-30-0-2-7 152246 152019.70 151665 132.72 253 252.67 0.79
500-30-30-0-2-8 157687 157487.13 157087 129.19 254 253.30 0.82
500-30-30-0-2-9 153751 153548.53 153365 87.25 254 252.33 0.75
500-30-30-0-2-10 142173 141943.90 141721 110.37 253 252.67 0.75
500-30-30-0-2-11 185226 184986.67 184781 91.72 377 376.97 0.55
500-30-30-0-2-12 194614 194444.30 194275 72.88 376 376.87 0.67
500-30-30-0-2-13 208246 208129.67 207904 76.15 378 377.53 0.72
500-30-30-0-2-14 215849 215693.30 215381 90.85 378 377.67 0.65
500-30-30-0-2-15 194224 194037.03 193788 91.74 376 376.57 0.62
500-30-30-1-5-1 51666 51574.93 51359 65.87 126 126.50 0.56
500-30-30-1-5-2 50101 49871.50 49566 123.11 126 126.33 0.54
500-30-30-1-5-3 51226 50979.60 50842 88.53 126 126.13 0.62
500-30-30-1-5-4 51637 51483.20 51261 91.69 127 126.77 0.42
500-30-30-1-5-5 52078 51860.97 51655 103.52 128 127.00 0.63
500-30-30-1-5-6 84052 83834.80 83548 104.57 251 251.03 0.41
500-30-30-1-5-7 82850 82637.00 82342 116.19 250 250.87 0.56
500-30-30-1-5-8 82722 82576.90 82419 74.14 250 250.70 0.46
500-30-30-1-5-9 82825 82451.43 81944 146.82 250 250.23 0.62
500-30-30-1-5-10 82845 82559.93 82098 143.15 249 249.67 0.60
500-30-30-1-5-11 88887 88756.90 88556 75.33 374 374.23 0.42
500-30-30-1-5-12 87254 87136.80 86815 82.34 374 374.20 0.65
500-30-30-1-5-13 87315 87167.80 87028 61.20 375 374.80 0.54
500-30-30-1-5-14 87583 87486.57 87261 89.89 374 373.90 0.65
500-30-30-1-5-15 87956 87814.97 87616 72.05 374 374.10 0.40
Avg. 62265.52 62139.10 61957.25 70.33 150.88 150.78 0.34
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Table A.2
Computational results of the TSTS algorithm on the instances with n = 250 under
a time limit of tmax = 300 seconds. In terms of fbest, the improved results are
indicated in bold and the worse results are indicated in italic compared to the best
known objective value (BKV ) reported in the literature.
Instance BKV fbest favg fworst σf kbest kavg σk
250-5-2-0-0 78486 78486 78282.30 77986 173.14 79 78.17 0.73
250-5-2-0-1 75132 75132 74849.07 74152 232.22 78 76.10 0.94
250-5-2-0-2 71003 70898 70676.77 70137 217.86 78 76.87 0.92
250-5-2-0-3 80311 80311 80250.07 80131 53.66 79 79.10 0.54
250-5-2-0-4 70935 70935 70856.43 70805 63.06 79 78.40 0.49
250-5-2-0-5 130981 130448 129283.31 127720 686.96 138 134.23 1.36
250-5-2-1-0 26666 26666 26603.30 26504 47.41 71 70.23 0.62
250-5-2-1-1 26864 26864 26841.70 26727 35.40 69 68.97 0.55
250-5-2-1-2 27280 27280 27232.97 27052 54.88 73 72.30 0.86
250-5-2-1-3 26269 26269 26217.17 26148 37.72 69 68.63 0.84
250-5-2-1-4 27293 27293 27233.30 27184 29.95 70 70.40 0.84
250-5-2-1-5 44419 44386 44318.67 44022 90.92 129 127.97 1.40
250-5-5-0-0 68026 68026 68023.43 68019 3.37 76 75.63 0.48
250-5-5-0-1 60795 60785 60675.60 60456 82.68 73 72.27 0.68
250-5-5-0-2 62093 62093 62072.10 61960 35.00 74 74.23 0.56
250-5-5-0-3 66567 66567 66522.10 66400 41.43 76 75.27 0.57
250-5-5-0-4 61929 61929 61920.00 61878 18.10 76 75.93 0.44
250-5-5-0-5 127934 127922 127769.60 127240 187.71 136 134.67 0.70
250-5-5-1-0 26966 26973 26925.60 26869 31.43 68 66.93 0.77
250-5-5-1-1 26665 26665 26616.73 26520 59.80 66 65.73 0.57
250-5-5-1-2 26648 26648 26586.10 26536 22.47 65 65.63 0.48
250-5-5-1-3 25923 25923 25813.13 25684 64.51 66 65.83 0.78
250-5-5-1-4 26021 26064 26008.77 25823 44.13 67 66.93 0.63
250-5-5-1-5 41372 41372 41270.67 41129 53.23 126 126.30 0.64
250-10-5-0-0 56306 56221 56008.07 55430 158.01 69 67.67 0.65
250-10-5-0-1 59564 59619 59575.30 59447 52.03 71 71.00 0.52
250-10-5-0-2 54898 54912 54700.40 54367 179.52 70 69.17 0.78
250-10-5-0-3 52399 52388 52209.00 51975 98.42 68 67.57 0.67
250-10-5-0-4 58234 58234 57833.13 57156 222.30 69 67.60 0.71
250-10-5-0-5 99682 99646 99359.67 99023 176.86 130 129.07 0.73
250-10-5-1-0 26867 26976 26918.33 26766 55.74 66 65.03 0.48
250-10-5-1-1 26585 26658 26562.03 26486 35.34 67 66.73 0.68
250-10-5-1-2 25737 25749 25661.60 25515 59.69 64 64.20 0.60
250-10-5-1-3 27162 27181 27138.93 26971 46.61 65 64.93 0.36
250-10-5-1-4 26816 26856 26776.10 26706 55.74 66 65.47 0.50
250-10-5-1-5 46244 46244 46170.97 46137 23.64 128 127.10 0.30
250-10-10-0-0 52441 52441 52363.33 52171 78.20 68 67.07 0.57
250-10-10-0-1 53720 53745 53689.97 53607 33.25 68 68.60 0.49
250-10-10-0-2 46927 46927 46830.67 46546 87.89 67 66.47 0.62
250-10-10-0-3 54782 54856 54780.47 54507 60.51 68 67.50 0.56
250-10-10-0-4 49675 49675 49578.80 49342 104.58 67 66.03 0.71
250-10-10-0-5 92959 92989 92823.07 92465 141.18 130 129.27 0.73
250-10-10-1-0 26696 26696 26678.47 26606 28.58 64 63.63 0.48
250-10-10-1-1 25757 25893 25822.07 25771 29.03 62 63.07 0.44
250-10-10-1-2 26356 26517 26490.50 26438 35.14 64 63.70 0.46
250-10-10-1-3 26684 26684 26641.83 26598 37.16 63 63.47 0.50
250-10-10-1-4 26554 26676 26630.10 26603 18.02 65 64.10 0.30
250-10-10-1-5 42528 42629 42520.90 42306 70.96 123 123.80 0.48

Avg. 49836.48 49840.56 49721.10 49500.44 88.66 79.65 79.15 0.64
#Better 16
#Equal 24
#Worse 8
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