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Abstract
The point arrangement and equal circle packing problems are a category of classic

max-min constrained optimization problems with many important applications. Being
computationally very challenging to solve, they have been widely studied in operations
research and mathematics. We propose a heuristic algorithm for the point arrangement
and equal circle packing problems in various convex containers. The algorithm relies
on several complementary search components, including an unconstrained optimization
procedure that ensures diversified and intensified searches, an optima exploitation based
adjustment method for the radius of circles, and a monotonic basin-hopping method
with multi-scale perturbations. Computational results on numerous benchmark instances
show that the proposed algorithm significantly outperforms the existing state-of-the-art
algorithms, especially for hard instances or large-scale instances. For the well-known equal
circle packing problem in a circular container, it improves the best-known result for 69
out of the 96 hardest instances widely used in the literature. For the majority of the
remaining instances tested, the algorithm improves or matches the best-known results
with a high success rate, despite of the fact that these instances have been tested by many
existing algorithms. Experimental analysis shows that the optima exploitation based
adjustment method for the radius of circles plays a crucial role for the high performance
of the algorithm and that the multi-scale perturbations are able to significantly enhance
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the search ability and robustness of the algorithm. Given the general feature of the
proposed framework, it can be applied to other related max-min constrained optimization
problems.

Keywords: Packing; circle packing; global optimization; constrained optimization;
heuristics.

1 Introduction
The equal circle packing problem and the point arrangement problem are two very classic
global optimization problems in the fields of mathematic and operations search, where the
equal circle packing problem aims to pack N non-overlapping circles in a given container C
such that the common radius of N circles is maximized (Goldberg, 1970), while the point
arrangement problem aims to place N points in C such that the minimum distance between
points is maximized (Akiyama et al., 2002; Melissen, 1993; Maranas et al., 1995). These two
problems are closely related, and both are referred to in the literature as the continuous p-
dispersion problem (Drezner and Erkut, 1995; Baur and Fekete, 2001; Dimnaku et al., 2005).
Moreover, they can be mutually converted into each other for some regular containers such
as a circle or a convex polygon.

The equal circle packing problem and the point arrangement problem have a number of
relevant applications, such as the max-min distance design (Van Dam et al., 2007), circular
cutting, container loading, cylinder packing, facility dispersion, and communication networks
(Castillo et al., 2008). On the other hand, they are computationally very challenging because
the number of local optima on the potential energy surface (PES) of the objective function
increases exponentially with the problem size, and the global optimum solution may locate
at a very narrow and deep funnel on the PES of the objective function. Furthermore, they
are shown to be NP-hard (Demaine et al., 2010).

Due to their practical importance and theoretical significance, the equal circle packing
problem and the point arrangement problem have been widely studied by researchers from
various fields, and a large number of algorithms have been proposed in the literature, including
the analytical approaches, exact algorithms, and heuristic algorithms. Due to the continuity
of the solution space and the large number of local optima, the capabilities of analytical
approaches and exact algorithms are severely limited, leading to a small number of related
approaches to solve some small instances exactly. For example, using an analytical approach,
Melissen (1994) and Fodor (1999) respectively proved the optimality of solutions for the
problems of packing N = 11 and 19 equal circles in a circular container. Based on different
pruning strategies, several branch-and-bound algorithms have been developed for the equal
circle packing problem in a square container (Locatelli and Raber, 2002; Markót and Csendes,
2005; Markót, 2021; Costa et al., 2013). However, it should be noted that according to the
reported results, the search capabilities of these approaches are very limited and that the best
algorithm among them is only able to solve the small instances with N < 40 in a reasonable
computational time.

To handle large instances, many heuristic algorithms have been proposed in the literature,
mainly including the billiard simulation methods, the discrete optimization methods, and the
continuous nonlinear constrained optimization methods.

The billiard simulation approach (Lubachevsky, 1991), which simulates the physical col-
lisions of billiards in an N -component continuous-time dynamic system, is one of the most
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popular heuristic algorithms in the early research on circle packing problems. Using a billiard
simulation method, Graham and Lubachevsky (1996) and Graham et al. (1998) respectively
reported many high-quality solutions for the equal circle packing problems in a square and
circular container. Boll et al. (2000) proposed a two-phase billiard simulation algorithm for
packing equal circles in a square container and improved the best-known solution for several
small instances by the proposed algorithm. Szabó and Specht (2007) systematically predicted
the putatively optimal solutions for the equal circle packing problem in a square with up to
N = 200 circles using a modified billiard simulation algorithm.

The discrete optimization methods, which treat the continuous optimization problems
using the discrete strategies, are another category of popular heuristic algorithms for the circle
packing problems. For example, Casado et al. (1998) devised a threshold acceptance algorithm
called TAMSASS for the packing equal circles in a square and evaluated the algorithm on
the instances with N ≤ 100. By constructing a grid in a given bounded domain, Galiev
and Lisafina (2013) proposed several integer linear programming models for the problem
of packing equal circles into a given domain. Based on several inequalities and different
grids, Litvinchev and Ozuna (2014) and Litvinchev et al. (2016) devised several integer linear
programming-based approaches. In addition, based on the Monte Carlo simulation, Liu et al.
(2009) proposed an energy landscape paving algorithm for the problem of packing circles into
a circular container. Hifi and M’Hallah (2007) presented a dynamic adaptive local search
algorithm for the circular packing problem. Based on the maximum hole degree, Akeb et al.
(2009) proposed an a beam search algorithm for the circular packing problem. Recently,
based on an idea of filtration, Chen et al. (2024) proposed a beam search-based constructive
heuristic algorithm for packing unit circles into a circular container.

Most of the existing heuristic algorithms belong to the continuous nonlinear constrained
optimization approaches, which aim to find a high-quality solution of a constrained nonlinear
continuous function. These approaches can be further divided into three categories according
to the local optimization methods used, since the local optimization method plays a crucial
role for the performance of nonlinear optimization algorithms.

The first category of continuous nonlinear constrained optimization approaches straight-
forwardly employ constrained local solvers as their local search procedure. For example,
Maranas et al. (1995) proposed a simple heuristic approach that combines the multi-start
strategy and a nonlinear programming (NLP) solver MINOS 5.3 for packing equal circles in
a square. Based on an NLP solver and two different formulations of the equal circle packing
problem, Mladenović et al. (2005) devised a reformulation descent algorithm in which two
formulations of the problem are used alternately to escape local optimum traps. Birgin et
al. studied the equal circle packing problem by using a popular NLP solver called Algen-
can, which is an augmented Lagrangian method for smooth general constrained minimization
(Birgin and Gentil, 2010; Birgin and Sobral, 2008). Addis et al. (2008) and Grosso et al.
(2010) respectively developed the monotonic basin hopping (MBH) method and the popu-
lation basin hopping (PBH) method for the equal circle packing problem, where the NLP
solver SNOPT are used for local optimization. Then, based on SNOPT, López and Beasley
(2011) proposed a formulation space search approach that uses different formulations of the
equal circle packing problem to escape local traps. Based on the interior-point solver IPOPT
and the decomposition method, Stoyan et al. (2020) proposed a unified heuristic approach
for solving several circle and sphere packing problems and improved the best-known results
for several large-scale instances of the equal circle packing problem in a circular container.

The second category of continuous nonlinear constrained optimization approaches is based
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on the idea of first transforming the original constrained optimization problem into an un-
constrained optimization problem, and then using an unconstrained local solver, such as the
steepest descent method, as the local search procedure. For example, to pack equal circles in
a square, Nurmela and Östergård (1997) used a multi-start method combined with the steep-
est descent method to minimize the unconstrained energy functions Em(X) =

∑
i<j(

λ
d2ij

)m,
where dij is the distance between the centers of the circles ci and cj and is represented by
trigonometric functions to remove the constraints, λ is a scaling factor, and m is an increasing
positive integer, each value of which defines an unconstrained function. Similarly, by using
this energy function as well as its variants, Amore and Morales (2023) and Amore (2023) re-
cently investigated the equal circle packing problems in a square container or several regular
polygons and produced the encouraging results.

The third category of continuous nonlinear constrained optimization approaches share a
common mechanism that dynamically converts the original constrained problem into a series
of unconstrained subproblems with a fixed radius of circles, and then handle the correspond-
ing subproblems by an unconstrained optimization method that uses an unconstrained local
solver, such as the conjugate gradient method, as its local search method. Moreover, an ad-
justment method for the radius of circles (or the minimum distance between points) is used
to slightly adjust the coordinates of circles so that the radius of circles is maximized while
maintaining the feasibility of the resulting solution, once a feasible solution is found by the
unconstrained optimization method. In other words, this category of approaches are mainly
composed of an adjustment method for the radius of circles and an unconstrained optimiza-
tion method for solving the subproblems. For example, Huang and Ye (2011) proposed a
quasi-physical global optimization algorithm, where a global optimization method based on
the quasi-physical local search is used to solve the subproblems, and a binary search method
is used to determine the radius of circles (or container). By employing the limited memory
BFGS (L-BFGS) method (Liu and Nocedal, 1989) to perform the local optimization and the
binary search method to adjust radius of circles (or the circular container), He et al. (2018)
proposed a quasi-physical quasi-human algorithm. Recently, Lai et al. (2022, 2023) presented
two highly efficient heuristic algorithms for packing equal circles into a convex container by in-
tegrating a dynamic thresholding search method to solve the subproblems and the sequential
unconstrained minimization technique (SUMT) (Fiacco and McCormick, 1964) to adjust the
radius of circles. Their computational results showed that the performance of the algorithm
depends not only on the method used to solve the subproblems, but also largely depends on
the method used to adjust the radius of the circles. The computational results also showed
that the SUMT method is the most efficient method to adjust the radius of the circles for
most instances. Subsequently, based on such a radius adjustment method, Zhou et al. (2024)
recently proposed a decomposition-based global optimization algorithm for the equal circle
packing problem in a circular container on large scale. Very recently, Basurto et al. (2024)
proposed a replica exchange/event-chain Monte Carlo method for packing equal circles into
a minimum circular container.

In addition to the above approaches, there are a number of other circle packing methods
according to the update history of the best-known results on the popular Packomania website
(Specht, 2023), such as the Packntile program from the Pack’n’tile contest (http://www.algit.
eu/htmlji/Packntile/Packing_Contest_01052010.html), Cantrell’s algorithms, and Specht’s
algorithms (see the update history of the Packomania website (Specht, 2023) for details).
These methods produced or improved on the best-known solutions for a number of benchmark

4

http://www.algit.eu/htmlji/Packntile/Packing_Contest_01052010.html
http://www.algit.eu/htmlji/Packntile/Packing_Contest_01052010.html


instances when they were proposed, although many of them were not published.
The recent studies in (Lai et al., 2023; Zhou et al., 2024) revealed that the third category

of continuous nonlinear constrained optimization approaches introduced above are the state-
of-the-art algorithms for the equal circle packing problems and that the SUMT method is the
best performing method for adjusting the radius of circles or the minimum distance between
points in most cases and significantly outperforms the popular binary search method (He
et al., 2018; Huang and Ye, 2011). On the other hand, recent studies (Zhou et al., 2024) also
showed that the SUMT method, which is the dominant method used for radius adjustment,
can perform poorly for some hard instances in terms of the success rate of the algorithm.
For example, even the iterated dynamic thresholding search (IDTS) algorithm (Lai et al.,
2022), which is one of the best performing algorithms for the equal circle packing problem
and relies on the SUMT method, has a very low success rate (= 1/20) for many hard instances.
Therefore, there is still room to improve the effectiveness of the adjustment method for the
radius of circles or the minimum distance between points.

Motivated by this observation, this work first aims to explore the adjustment methods
for the radius of circles or the minimum distance between points to further improve the
algorithm performance for the two packing problems, especially to better solve the hardest
instances. This work is also motivated by another observation. In fact, compared to the
non-convex or multi-connected containers (Dai et al., 2021), which require dedicated models
and approaches, the convex containers are much easier to handle by means of a unified
optimization approach. However, most of the existing studies focus only on some particular
regular containers, such as a circular container and a square container, while ignoring other
forms of containers. Therefore, the second objective of this work is to fill the gap by devising
a general-purpose, high-performance algorithm that can be applied to a variety of convex
containers for both the point-arrangement and equal-circle packing problems.

The main contributions of this work can be summarized as follows. First, we propose a
novel adjustment method for the minimum distance between points for the point arrangement
and equal circle packing problems. This adjustment method has a certain global search ability
since it is able to visit a number of local optimal solutions by using many small perturbations.
Because of its generality, this method can benefit solution approachs for other max-min (or
min-max) constrained optimization problems, such as the equal sphere packing problem. Sec-
ond, based on this distance adjustment method and a new unconstrained optimization method
for handling the unconstrained subproblems derived from the initial constrained problems, we
propose a new heuristic algorithm for both the point arrangement and equal circle packing
problems in a variety of convex containers. The framework of the proposed algorithm is gen-
eral enough to be applied to related constrained optimization problems, such as covering a
region by equal circles or spheres (Birgin et al., 2024).

The rest of paper is organized as follows. Section 2 gives a mathematical formulation of
the point arrangement problem in a convex container and a transformation method from the
equal circle packing problem to the point arrangement method. In section 3, the proposed
global optimization algorithm is described in detail. In Section 4, the performance of the
proposed algorithm is evaluated based on a number of benchmark instances respectively for
the point arrangement problem and the equal circle packing problem in a variety of convex
containers. In Section 5, the key algorithmic components are analyzed to check their impacts
on the performance of the algorithm. In the last section, we summarize the present work and
provide research perspectives.
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2 Formulations of the point arrangement and equal circle packing prob-
lems

In this section, we formulate the point arrangement problem and its subproblems, and then
introduce a conversion method from the equal circle packing problem to the point arrangement
problem.

2.1 The point arrangement problem
Given a positive integer N and a convex container, the point arrangement problem aims to
place N points in the container, such that the minimum distance d between the points is
maximized. Formally, given a convex container C with a piecewise smooth boundary which is
composed of m two-variable smooth functions gk(x, y) (1 ≤ k ≤ m), and a candidate solution
X = (x1, y1, x2, y2, . . . , xN , yN ) (i.e., a packing configuration of N points), the corresponding
point arrangement problem can be written as a constrained nonlinear optimization problem
as follows:

Maximize d (1)

Subject to
√

(xi − xj)2 + (yi − yj)2 ≥ d, 1 ≤ i ̸= j ≤ N (2)

gk(xi, yi) ≤ 0, 1 ≤ i ≤ N, 1 ≤ k ≤ m (3)

where d is the objective to be optimized and represents the minimum distances between N
points in the candidate X, the set of separation constraints (2) indicates that the distance
between any two points must be larger or equal to d, and the set of containment constraints
(3) indicates that all N points must be contained in the container.

Such a constrained optimization problem can be converted into a series of unconstrained
optimization subproblems with a fixed d value by converting all the constraints to the objective
by means of a penalty method. Specifically, suppose that the value of d is fixed to a constant,
the corresponding subproblem can be described as follows:

Ed(X) =

N−1∑
i=1

N∑
j=i+1

O2
ij +

N∑
i=1

m∑
k=1

O2
ik (4)

Oij = max{0, d−
√

(xi − xj)2 + (yi − yj)2} (5)

Oik = max{0, gk(xi, yi)} 1 ≤ i ≤ N, 1 ≤ k ≤ m (6)

where Oij denotes the degree of violation on the separation constraint between points i and j,
and Oik indicates the degree of violation on the containment constraint between point i and
the boundary gk(x, y) (1 ≤ k ≤ m). As such, Ed(X) measures the total degree of constraint
violation of candidate solution X, and Ed(X) = 0 means that X is a feasible solution, and
infeasible otherwise.

As a result, the original point arrangement problem can be handled by optimizing in
order the above unconstrained subproblems by an unconstrained optimization method and a
minimum distance adjustment method.
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2.2 Conversion of the circle packing problem into the point arrangement problem

(a) Circle packing in a container (r = d
2
) (b) Point arrangement in a subregion

Figure 1: An illustrative example of the conversion of the equal circle packing problem into
the point arrangement problem, where the former is converted into the latter by restricting
all points (i.e., the centers of circles) to a subregion indicated by the dotted lines.

Similar to the point arrangement problem, the equal circle packing problem can also be
converted into a series of optimization subproblems with a fixed radius r of circles. Then, the
original circle packing problem can be solved via solving in order the subproblems with an
increasing radius of circles.

Due to the close relationship between the point arrangement problem and the equal circle
packing problem, the subproblems of the equal circle packing problem with a fixed radius r of
circles can be easily converted into the corresponding subproblems of the point arrangement
problem defined in Section 2.1, especially for convex containers whose boundary is composed
of m (m > 0) line segments or circular arcs.

Specifically, given the radius r of N circles and a regular convex container C, the problem
of packing N circles with a radius r into the container C can be converted into a point
arrangement problem that aims to place the N points (i.e., the centers of the circles) into
a subregion of the container such that the minimum distance between N points is greater
than or equal to 2r. Figure 1 provides an illustrative example of this conversion, where
the subregion indicated by the dotted lines in the subfigure (b) represents the container of
the corresponding point arrangement problem and its boundaries can be written as gdk(x, y)
(1 ≤ k ≤ m), depending on the value of d and the original boundary function gk(x, y) of
container.

3 Optimization Method
In this study, we propose a new heuristic algorithm for the point arrangement problem and the
equal circle packing problem in a convex container. The central ideas of the algorithm can be
summarized as follows. First, these two constrained optimization problems are dynamically
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converted into a series of unconstrained subproblems, and these subproblems are handled
in order by a new unconstrained optimization algorithm. Second, the proposed algorithm
employs in its components the multi-scale perturbation strategy to enhance the search ability
and the robustness of the algorithm. The preliminary experiments reveal that the strength of
perturbations plays a key role for the search ability especially for hard instances. Therefore,
the proposed algorithm is named as the heuristic algorithm with multi-scale perturbations
(abbreviated as HAMSP). Third, the algorithm uses a new and highly efficient adjustment
method for the radius of the circles (or the minimum distance between the points). In the
following subsections, the general procedure and ingredients of the proposed algorithm are
described.

3.1 Main framework of the proposed HAMSP algorithm
The proposed HAMSP algorithm is performed in three phases and contains five main compo-
nents: the generation of initial solutions, the monotonic basin-hopping (MBH) method, the
diversification and intensification based heuristic (DIH) method, and two adjustment meth-
ods for the minimum distance d between points. The pseudo-code of the algorithm is given in
Algorithm 1, where X and d respectively denote the current solution and the corresponding
minimum distance between the points (or the centers of the circles), and X∗ and d∗ denote
the best solution found so far and the corresponding distance between the points. First of
all, the algorithm estimates an initial value for the minimum distance d between N points by
supposing that a proper equal circle packing configuration has an estimated packing density
p (line 1).

During the first phase, the algorithm tries to find a high-quality initial value for the
minimum distance d between the points by a multi-start strategy combined with the MBH
method (lines 3–11). At each time, an initial solution is generated by randomly distributing
the N points (or the circle centers) in the container. Subsequently, the MBH method is
used to minimize the potential function Ed(X) starting from the initial solution and then a
distance adjustment method (i.e., Adjust_Minimum_Dist) is used to adjust the minimum
distance d between the points of the solution returned by the MBH method. After that, the
best d value found so far is saved as d∗.

The second phase of the algorithm is the main search phase of this optimization approach,
where the solution initialization, the optimization of the unconstrained subproblem associ-
ated with the current d, and an optima exploitation based (OEB) adjustment procedure are
performed iteratively until the time limit tmax is reached (lines 13-28). At each iteration,
based on the current d value determined as d = d∗ +∆d (line 14), the algorithm first gener-
ates randomly an initial solution and then improves its quality using the diversification and
intensification based heuristic (DIH) method that aims to minimize the unconstrained func-
tion Ed(X) (lines 15-16). Then, the MBH procedure with very small perturbations (denoted
by Weak_MBH) is used to further minimize the function Ed(X) (line 17). Subsequently,
the OEB adjustment method (i.e., OEB_Adjustment()) is used to adjust the minimum dis-
tance d between the points if a feasible solution X with Ed(X) < 10−30 is obtained by the
Weak_MBH procedure. X∗, d∗ and ∆d are updated accordingly if an improving solution is
obtained by the distance adjustment method, and ∆d is reset to 0 otherwise (lines 20–26). It
should be noted that the use of ∆d in the setting of d aims to produce a squeezing effect for
the packing configuration.

At the final phase of the algorithm (line 29), the best solution found (X∗) is further
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Algorithm 1: Main framework of the proposed HAMSP algorithm
Input: Number of points (or circles) to be packed (N), maximum time limit (tmax),

estimated packing density of initial configuration used (p), the number of initial
solution tested (T ), strengthes of perturbation of MBH (∆1 and ∆2)

Output: The best solution found (X∗, d∗)
1 d←

√
4×Area×p

N×π /* Estimate the minimum distance d among N points, and Area denotes
the area of container */

2 d∗ ← 0
/* Find a high-quality d∗ by checking T initial solutions randomly generated. */

3 for i← 1 to T do
4 X ← RandomSolution() /* Generate randomly a configuration */
5 MBH(X,Ed(·), d,∆1) /* Optimize Ed(X) by Algorithm 2 */
6 (X, d)← Adjust_Minimum_Dist(X, d) /* Adjust the minimum distance between

points by the SUMT method, Algorithm 5, */
7 if d > d∗ then
8 d∗ ← d
9 X∗ ← X

10 end
11 end

/* The main search engine of optimization algorithm */
12 ∆d ← 0
13 while time() ≤ tmax do
14 d← d∗ +∆d /* Aims to produce a squeezing effect on configuration by increasing the

value of d or the radius of circles */
15 X ← RandomSolution() /* Generate randomly a configuration */
16 X ← Diversification_Intensification(X,Ed(·), d) /* Based on the current d, handle

the subproblem by optimizing Ed(X), Algorithm 3 */
17 Weak_MBH(X,Ed(·), d∗,∆2) /* Further optimize Ed(X) with d = d∗ using MBH with

very small perturbations, Algorithm 2 */
/* Adjust minimum distance d once a feasible solution X (i.e., Ed∗(X) < 10−30) is met
*/

18 if Ed∗(X) < 10−30 then
19 (X, d)← OEB_Adjustment(X, d∗) /* Adjust minimum distance d by Algorithm 4 */
20 if d > d∗ then
21 d∗ ← d
22 X∗ ← X
23 ∆d ← d− d∗ /* Update adaptively ∆d */
24 else
25 ∆d ← 0
26 end
27 end
28 end

/* The postprocessing of the best solution found */
29 (X∗, d∗)← OEB_Adjustment(X∗, d∗) /* Algorithm 4 */
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optimized by a post-processing procedure, where the minimum distance d between the points
is maximized by a reinforcement adjustment procedure, i.e., the OEB adjustment procedure
with a stronger parameter setting of µ0 = 104. Finally, the best solution found X∗ and the
corresponding distance d∗ are returned as the output of algorithm.

3.2 Monotonic basin-hopping method

Algorithm 2: Monotonic basin hopping (MBH) method for optimizing the function
Ed(X)

Input: Input solution X0, the objective function Ed(X) as well as the corresponding d, search
depth (MaxNoImprove), strength of perturbation (∆)

Output: The best solution found X
1 Function MBH() or Weak_MBH()

2 Xb ← X0

3 NoImprove← 0

4 while (NoImprove ≤MaxNoImprove) ∧ (Ed(X
b) > 0) do

5 X ← Shake(Xb,∆) /* Shift randomly and uniformly each coordinate of Xb in [−∆,∆]
*/

6 X ← LocalSearch(X,Ed(·)) /* Minimize function Ed(X) by L-BFGS */
7 if Ed(X) < Ed(X

b) then
8 Xb ← X
9 NoImprove← 0

10 else
11 NoImprove← NoImprove+ 1
12 end
13 end

The proposed algorithm employs the popular monotonic basin-hopping method (Leary,
2000) to perform an intensified search (Algorithm 2). Given an input solutionX = (x1, y1, x2, y2, . . . , xN , yN ),
the monotonic basin-hopping method performs a number of iterations to improve the input
solution until the current solution can not be improved during MaxNoImprove consecutive
iterations or the optimal solution has been found, where MaxNoImprove is a parameter
called the search depth. At each iteration, the current solution is first perturbed by a shaking
operator and then improved by a local optimization method, and the resulting solution is used
to replace the current solution if and only if the resulting solution has a better objective value.
Specifically, the shaking operator shifts simultaneously and randomly each coordinate xi (or
yi) of the solution X in an interval [−∆,∆] in which ∆ is a parameter called the strength
of perturbation. As for the local optimization method, many popular mathematical solvers
can be used, such as the quasi-Newton methods and the conjugate gradient methods. In this
study, the limited-memory quasi-Newton method (i.e., L-BFGS) (Liu and Nocedal, 1989) is
used as the local optimization method. It is worth noting that due to its simplicity and
effectiveness the monotonic basin-hopping method has been applied to a number of global
optimization problems, such as the circle packing problem and the structural optimization of
atomic clusters (Addis et al., 2008; Doye et al., 2004).

As a fundamental component of the proposed algorithm, the monotonic basin-hopping
method is used in the different situations according to the current purposes. When the strong
perturbations such as ∆ = 0.4 × d are adopted, the monotonic basin-hopping method has a
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strong ability to escape the local optimal traps and the corresponding procedure is denoted
as MBH() in the proposed algorithm. On the contrary, when the weak perturbations such
as ∆ = 0.05 × d are adopted, the purpose is to intensify the search and the corresponding
procedure is denoted as Weak_MBH().

3.3 Diversification and intensification based heuristic method

Algorithm 3: Diversification and intensification-based heuristic (DIH) method for
optimizing the function Ed(X)

Input: Input solution X0, the objective function Ed(X) as well as the corresponding
d, search depth (MaxIter), degree of diversification (β), strength of
perturbation of MBH (∆1)

Output: The best solution found Xb
exploit

1 Function Diversification_Intensification()
2 Iter ← 0

3 Xb
exploit ← X0

4 while (Iter ≤MaxIter) ∧ (Ed(X
b
exploit) > 0) do

/* Perform diversified search starting from Xb
exploit */

5 X ← Xb
exploit

6 for i← 1 to β do
7 X ← Shake(X,∆1)
8 X ← LocalSearch(X,Ed(·)) /* Minimize Ed(X) by L-BFGS */
9 end

/* Perform intensified search using the MBH method */
10 X ←MBH(X,Ed(·), d,∆1) /* Algorithm 2 */

/* Update the best solution found Xb
exploit */

11 if Ed(X) < Ed(X
b
exploit) then

12 Xb
exploit ← X

13 end
14 Iter ← Iter + 1
15 end

The diversification and intensification based heuristic (DIH) method can be regarded as
an unconstrained optimization approach, which aims to find a high-quality solution of a high-
dimensional nonlinear differentiable function. The basic idea of the DIH method is to reach
a desirable tradeoff between intensification and diversification of the search by performing
alternately an intensified search procedure and a diversified search procedure. However, unlike
the existing diversification mechanisms in the literature, to escape from a very deep local trap,
our diversification phase of the DIH method performs a fixed number (β) of perturbations
followed by a short local optimization, instead of a violent perturbation that may destroy
dramatically the solution. That is, each perturbation of the diversification phase slightly
destroys the current solution and the total diversification degree depends on the accumulated
change of many small perturbations over the current solution.

The pseudo-code of the DIH method is given in Algorithm 3, where X denotes the current
solution, Ed(X) is the objective function to be minimized, and Xb

exploit records the best
solution found during the search process. Starting from an input solution X0, the DIH
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method performs a number of iterations to improve the solution until the maximum number
MaxIter of iterations is reached or the global optimal solution X with Ed(X) = 0 is found
(lines 4–15). At each iteration, three main steps are performed in order. At first, starting
from the best solution found Xb

exploit, the diversified search is conducted by performing β
consecutive random perturbations and subsequent local optimizations (lines 5–9), where β
is a parameter that measures the degree of diversification and a larger β value means a
stronger diversification degree. Then, the intensified search is conducted by running the MBH
procedure with the moderate-strength perturbations (i.e., Algorithm 2) from the solution
returned by the diversified search (line 10). Finally, Xb

exploit is updated once an improving
solution is found by the MBH procedure (lines 11-13). As one of main components of the
proposed HAMSP algorithm, the DIH method is used to solve the subproblems of the point
arrangement problem and the equal circle packing problem, i.e., minimizing the potential
function Ed(X) defined by Eq. (4).

3.4 Adjustment method for the minimum distance between the points
Given a packing configuration (X0, d0), how to maximize the minimum distance d between
points (or the centers of circles) while maintaining the feasibility of the resulting solution
is a very crucial decision for the proposed algorithm. In fact, this is equivalent to solving
a max-min constrained optimization problem, which is difficult to handle by the popular
local optimization methods, such as the quasi-Newton methods and the conjugate gradient
methods. In the previous studies, several distance adjustment methods have been proposed
to maximize the radius of circles, such as the binary search method (He et al., 2018; Huang
and Ye, 2011) and the sequential unconstrained minimization technique (SUMT) (Fiacco and
McCormick (1964); Huang and Ye (2010); Lai et al. (2022, 2023)).

However, according to our experiments (see Section 5.1), the methods like SUMT perform
poorly on some hard instances. The fundamental reason why these methods failed to optimize
these hard instances is that there may exist a large number of local optimal solutions or saddle
points in the vicinity of the input solution for the constrained optimization problem, but these
methods return only one of them and ignore the rest, which greatly affects the search ability
of the algorithm.

To better handle this problem, we propose in this work an optima exploitation based
(OEB) adjustment method whose fundamental idea to exploit as many local optima as possible
in the vicinity of the input solution for the constrained optimization problem and then returns
the best local optimal solution found. Our OEB adjustment method is mainly composed of
two algorithmic components: the standard SUMT method and the MBH method using small
perturbations (denoted by Weak_MBH), where the standard SUMT method aims to find
a close local optima from the input solution and the MBH algorithm aims to find a feasible
solution by exploring a number of additional local optima near the input solution. Hence,
unlike the previous adjustment methods, the OEB algorithm can be regarded as a global
search method.

The pseudo-code of our OEB adjustment method is given in Algorithm 4. Starting from
a feasible input solution, the OEB adjustment method first performs the SUMT procedure to
preliminarily adjust the packing configuration (line 2), and then enters a ’while’ loop to further
seek for possible improvement. At each iteration of the loop, the value of d is first increased
by a small number δ that is a predetermined parameter, and then the packing configuration
is improved by minimizing the function Ed(X) using the Weak_MBH procedure (lines 6-7).
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Algorithm 4: Optima exploitation based adjustment method for the minimum dis-
tance between points
Input: Input solution X0, minimum distance between points (d0), expansion factor δ,

strength of perturbation of MBH (∆2)
Output: The best solution found (Xbest) and the minimum distance between points

(dbest)
1 Function OEB_Adjustment()
2 (Xbest, dbest)← Adjust_Minimum_Dist(X0, d0) /* Algorithm 5, adjust the

minimum distance between points */
3 Improve ← True
4 while Improve do
5 d← dbest × (1 + δ) /* δ is an expansion factor of d */

/* Minimizing Ed(S) by MBH with tiny perturbations */
6 X ←Weak_MBH(X,Ed(·), d,∆2) /* Minimize Ed(X) by Algorithm 2 */
7 X ←Weak_MBH(X,Edbest(·), dbest,∆2) /* Minimize Edbest(X) by Algorithm 2

*/
/* Edbest(X) < 10−30 means X is feasible, where 10−30 denotes the precision */

8 if Edbest(X) < 10−30 then
9 (X, d)← Adjust_Minimum_Dist(X, dbest) /* Algorithm 5 */

10 if d > dbest then
11 Xbest ← X
12 dbest ← d
13 Improve← True
14 else
15 Improve← False
16 end
17 else
18 Improve← False
19 end
20 end

Algorithm 5: Adjusting the minimum distance between points by the standard SUMT
method
Input: Input solution S0 = (X0, d0), parameter µ0

Output: The feasible local minimum solution S = (X, d)
1 Function Adjust_Minimum_Dist()
2 X ← X0, d← d0

/* µ0 = 102, K = 30 in this study */
3 µ← µ0

4 for k ← 1 to K do
5 (X, d) ← LocalsSearch(X, d) /* Minimize Uµ(X, d) using L-BFGS */
6 µ← 2× µ

7 end
8 return (X, d)

13



Then, the SUMT method is used to adjust the configuration again once a feasible solution
X with Ed(X) = 0 is found by the Weak_MBH method and the best solution is updated
if an improved solution is found (lines 9-12). The OEB adjustment procedure stops once the
Weak_MBH procedure does not find a feasible solution for the current d value or the SUMT
procedure does not find an improved solution.

The basic idea of the underlying SUMT method is to convert a constrained optimization
problem into a series of unconstrained optimization subproblems, and then solve in order
the subproblems using an unconstrained optimization method. Finally, the SUMT method
returns a feasible solution in which the objective function is locally optimized.

Formally, for the point arrangement problem and the equal circle packing problem, the
corresponding unconstrained subproblems can be written as follows:

Minimize Uµ(X, d) = −d2

µ
+ E(X, d) (7)

where µ is a penalty factor and thus Uµ(X, d) represents an unconstrained optimization func-
tion when the value of µ is fixed to a constant, X = (x1, y1, x2, y2, . . . , xN , yN ) are decision
variables representing the dispersion points (or the centers of circles) and d is a decision vari-
able representing the allowed minimum distance among the points or the centers of the circles.
The term E(X, d) containing 2N + 1 variables measures the degree of constraint violations
and can be written as follows:

E(X, d) =
N−1∑
i=1

N∑
j=i+1

O2
ij +

N∑
i=1

m∑
k=1

(O
′
ik)

2 (8)

where Oij is defined in the previous equation (5). As for the term O
′
ik, which measures the

degree of violation on the containment constraint between the point i and the k-th boundary
of the container, two different formulations are used for the point arrangement problem and
the equal circle packing problem, respectively. First, for the point arrangement problem O

′
ik

is the same as Oik in Eq. (6). However, for the equal circle packing problem, O′
ik contains

an additional variable d compared to Oik, due to the fact that the circle packing problem
is first transformed into a point arrangement problem whose boundary functions gdk(x, y)
(1 ≤ k ≤ m) of the container vary dynamically, depending on the variable d (see Figure 1 for
an illustrative example of the dependence of boundary of region on the variable d).

The pseudo-code of the SUMT method is given in Algorithm 5. Starting from an input
solution (X0, d0) and an initial µ, the SUMT method performs K (=30) iterations. At each
iteration, the function Uµ(X, d) is optimized by the L-BFGS method, and then resulting
solution is used as the input solution of next iteration, and the value of µ is increased by a
fact of 2. Finally, a feasible solution is obtained when µ reaches a very large number, where
the value of d is locally maximized.

Two aspects of the OEB adjustment method should be noted because they can greatly af-
fect the effectiveness of the OEB adjustment method. First, the method uses twoWeak_MBH()
procedures to search for a feasible solution (lines 5–7), where the first Weak_MBH() pro-
cedure uses a larger d value (d = (1 + δ) × dbest) than dbest to squeeze the geometrical con-
figuration of the solution, and the second Weak_MBH() procedure aims to find a feasible
solution for the current dbest. Such a strategy is similar to the potential energy transformation
method (Doye et al., 2004), and its purpose is not only to speed up the search process, but
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also to guide the search direction. Second, the Weak_MBH procedures perform a series of
very small random perturbations to explore the solution space around the current solution,
where two small perturbation scales ∆2 = 0.05d and ∆2 = 0.15d are alternately applied to
improve the search robustness. The principle behind the Weak_MBH method is that in
many cases the current solution X is very close to the feasible region of the problem, and
large perturbations followed by a local optimization will change the solution sharply and miss
feasible solutions in the region. Thus, in these cases the small perturbations followed by a
local optimization will be much more efficient to approach the feasible region. Moreover, the
preliminary experiments show that the Weak_MBH() procedure with small random per-
turbations plays a very important role in enhancing the search capability of the algorithm,
especially for some hard instances.

3.5 Discussions on the proposed algorithm
The proposed algorithm has the following remarkable features. First, the proposed algorithm
is able to deal with both the point arrangement problem with a piecewise smooth boundary
of the container and the equal circle packing problem in which the boundary of the container
is composed of line segments or circular arcs. Second, for the proposed algorithm, the circle
packing problem is handled from the point of view of the point arrangement problem. That is,
the circle packing problem is first dynamically converted to the corresponding point arrange-
ment problem, then is handled using the point arrangement algorithm. Third, the present
algorithm is designed only for solving the problems with a convex container, differing from
some existing studies such as (Lai et al., 2024), which concentrate on non-convex and multi-
connected containers. Fourth, the underlying optima exploitation based (OEB) adjustment
method employs the potential energy transformation strategy and the MBH method with
multi-scale small perturbations to enhance its robustness, differing the existing adjustment
methods in the literature. Fifth, the proposed algorithm uses a new heuristic method called
the DIH method, which integrates explicitly the diversified search and the intensified search
to optimize the subproblems (i.e., to minimize the objective function Ed(X)). As we show in
the next section, the proposed algorithm with these new algorithmic components performs
well, especially on the most challenging problem instances. Finally, the OEB adjustment
method and the DIH method are of general nature. Consequently, they can be applied to
other related max-min constrained optimization problems with a proper modification on the
optimization model.

4 Experimental Evaluation and Computational Results
In this section, we evaluate the proposed HAMSP algorithm by presenting computational
results and making a comparison with the best-known results in the literature. We carry
out extensive computational experiments based on a variety of benchmark instances widely
used in the previous studies for the point arrangement problem and the equal circle packing
problem in a convex container.

4.1 Parameter settings and experimental protocol
The HAMSP algorithm uses several parameters whose default settings given in Table 1 have
been empirically determined by preliminary experiments. In Table 1, the parameter p is the
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Table 1: Settings of parameters

Parameters Section Description Values
p 3.1 estimated density of initial solu-

tions
{0.85, 1.0}

T 3.1 number of initial solutions 10
∆1 3.3 strength of large perturbation of

MBH
0.4d

∆2 3.2 strength of small perturbation of
MBH

{0.05d, 0.15d}

MaxNoImprove 3.2 search depth of MBH {20, 30}
MaxIter 3.3 degree of intensification 10
β 3.3 degree of diversification 10
δ 3.4 expansion factor of d 10−10

µ0 3.4 initial value of µ in SUMT {102, 104}

estimated packing density of initial solutions and is set 0.85 and 1.0 respectively for the equal
circle packing problem and the point arrangement problem. The parameter T is the number of
initial solutions examined in the first phase of the algorithm and its value is set to 10 by default.
The parameters ∆1 and ∆2 represent the strengthes of perturbations of the MBH() and
Weak_MBH() procedures, and the parameter MaxNoImprove represent the search depth
of the MBH method, and their values are set according to the situations that the MBH method
is used. In the Weak_MBH procedure, the value of ∆2 is alternately used between 0.05d
and 0.15d to enhance the robustness of the algorithm, and the value of MaxNoImprove is set
to 30. In the other MBH procedures, the values of ∆1 and MaxNoImprove are respectively
set to 0.4d and 20. As for the parameters MaxIter and β that respectively represent the
degree of the intensified search and the degree of the diversified search in the DIH method,
their values are both set to 10. The parameter δ is an expansion factor of d, and is used in
the optima exploitation based adjustment method. As for the parameter µ0 that is the initial
penalty coefficient of the SUMT method, two values 102 and 104 are respectively used in the
second and third phases of the algorithm. In this work, all the computational experiments
of the proposed algorithm were executed with the above default parameter settings, unless
otherwise stated.

The HAMSP algorithm was implemented in the C++ language and all computational
experiments were executed on a computer with an Intel(R) Xeon (R) Platinum 9242 CPU
(2.3 GHz), running a Linux operating system. The experiments were conducted on three
sets of benchmark instances for the point arrangement problem and four sets of benchmark
instances for the equal circle packing problem. Due to the randomness of the proposed
algorithm, the algorithm was run 20 times for each tested instance with different random
seeds, and the time limit tmax of each run was set according to the size of instances. For the
small instances with N ≤ 100 and the medium-sized instances with 101 ≤ N ≤ 200, tmax is
set to one and two hours, respectively. For the larger instances with N > 200, tmax is set to
6 hours.

4.2 Computational results and comparisons on the point arrangement problem
This section aims to evaluate the performance of the proposed algorithm on the point arrange-
ment problem on three sets of benchmark instances. The first set consists of 50 instances with
151 ≤ N ≤ 200 and the container is an isosceles right triangle. These instances are taken
from the well-known Packomania website (Specht, 2023). The second set consists of 25 in-
stances in the range of 75 ≤ N ≤ 200 and the container is defined by two smooth nonlinear
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Table 2: Computational results and comparison on 50 representative instances with 151 ≤
N ≤ 200 for the point arrangement problem in an isosceles right triangle. In terms of dbest,
dave and dworst, the improved results are indicated in bold compared to the best-known results
(BKR) in the literature (Specht, 2023).

N Best-Known
(d∗)

dbest dave dworst dbest − d∗ SR time(s)

151 0.06539389 0.06541182 0.06541109 0.06540952 1.79E-05 13/20 3676
152 0.06520869 0.06524338 0.06524338 0.06524338 3.47E-05 20/20 535
153 0.06498504 0.06498782 0.06498782 0.06498782 2.78E-06 20/20 518
154 0.06476024 0.06476033 0.06476033 0.06476033 8.74E-08 20/20 1913
155 0.06453303 0.06455659 0.06455533 0.06454403 2.36E-05 17/20 3344
156 0.06429295 0.06432531 0.06431426 0.06430455 3.24E-05 8/20 2897
157 0.06410261 0.06410720 0.06410720 0.06410720 4.59E-06 20/20 666
158 0.06386645 0.06387430 0.06387430 0.06387430 7.86E-06 20/20 568
159 0.06366169 0.06367830 0.06367830 0.06367830 1.66E-05 20/20 1318
160 0.06343523 0.06347833 0.06347636 0.06343898 4.31E-05 19/20 2386
161 0.06323523 0.06325269 0.06325182 0.06323523 1.75E-05 19/20 3742
162 0.06300838 0.06301209 0.06301209 0.06301209 3.70E-06 20/20 707
163 0.06281728 0.06284458 0.06284458 0.06284458 2.73E-05 20/20 3133
164 0.06257985 0.06263200 0.06262837 0.06262502 5.21E-05 3/20 2922
165 0.06241150 0.06244573 0.06243604 0.06242125 3.42E-05 8/20 4161
166 0.06225576 0.06225576 0.06225576 0.06225576 0.0 20/20 927
167 0.06200927 0.06206068 0.06206068 0.06206068 5.14E-05 20/20 2555
168 0.06179469 0.06184040 0.06184012 0.06183645 4.57E-05 17/20 4385
169 0.06160887 0.06162159 0.06162159 0.06162159 1.27E-05 20/20 792
170 0.06145443 0.06145443 0.06145443 0.06145443 0.0 20/20 806
171 0.06128908 0.06129168 0.06129168 0.06129168 2.60E-06 20/20 820
172 0.06106357 0.06108015 0.06108015 0.06108015 1.66E-05 20/20 1136
173 0.06089417 0.06089672 0.06089672 0.06089672 2.54E-06 20/20 1696
174 0.06065999 0.06071446 0.06070851 0.06068820 5.45E-05 14/20 3518
175 0.06050951 0.06050951 0.06050951 0.06050951 0.0 20/20 661
176 0.06034694 0.06034711 0.06034711 0.06034711 1.72E-07 20/20 974
177 0.06015600 0.06017464 0.06017126 0.06016491 1.86E-05 11/20 4480
178 0.05993953 0.05995694 0.05995370 0.05995242 1.74E-05 5/20 3911
179 0.05977985 0.05980101 0.05979777 0.05979350 2.12E-05 11/20 4174
180 0.05960124 0.05960667 0.05960667 0.05960667 5.42E-06 20/20 2608
181 0.05944638 0.05946775 0.05946775 0.05946775 2.14E-05 20/20 894
182 0.05922093 0.05925016 0.05925016 0.05925016 2.92E-05 20/20 1090
183 0.05907345 0.05911292 0.05910926 0.05909532 3.95E-05 9/20 4211
184 0.05890057 0.05893863 0.05893358 0.05893095 3.81E-05 4/20 2242
185 0.05874263 0.05877579 0.05876359 0.05874973 3.32E-05 4/20 3161
186 0.05858326 0.05859843 0.05859790 0.05858794 1.52E-05 18/20 2815
187 0.05841723 0.05844370 0.05844370 0.05844370 2.65E-05 20/20 3040
188 0.05822837 0.05824421 0.05824245 0.05823527 1.58E-05 10/20 4123
189 0.05807468 0.05808931 0.05808125 0.05807587 1.46E-05 5/20 2056
190 0.05792661 0.05793564 0.05793564 0.05793564 9.03E-06 20/20 1393
191 0.05779322 0.05779422 0.05779422 0.05779422 9.94E-07 20/20 1403
192 0.05758947 0.05761475 0.05761475 0.05761475 2.53E-05 20/20 2405
193 0.05741069 0.05747589 0.05747265 0.05746864 6.52E-05 11/20 4011
194 0.05728257 0.05734092 0.05734092 0.05734092 5.83E-05 18/20 2729
195 0.05714176 0.05716857 0.05715184 0.05714484 2.68E-05 5/20 2826
196 0.05701607 0.05701942 0.05701942 0.05701942 3.35E-06 20/20 1023
197 0.05681954 0.05683607 0.05683607 0.05683607 1.65E-05 20/20 2198
198 0.05667839 0.05670143 0.05669789 0.05669043 2.30E-05 6/20 4129
199 0.05653446 0.05654672 0.05654672 0.05654670 1.23E-05 17/20 4174
200 0.05639931 0.05641389 0.05640459 0.05639950 1.46E-05 1/20 1700
#Improve 47 47 46
#Equal 3 3 4
#Worse 0 0 0
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functions: (1) g1(x, y) = x2 − y, (2) g2(x, y) = x2/4 + y − 5. Similar to the second set, the
third set consists of 25 instances in the range of 75 ≤ N ≤ 200 and the container is defined
by three smooth nonlinear functions: (1) g1(x,y) = x2 − y, (2) g2(x, y) = −x + y2 − 6y + 6,
(3) g3(x, y) = x + y − 6. The containers of the second and third sets are taken from (Birgin
et al., 2006) for the rectangle packing problem.

The computational results are summarized in Tables 2–4 respectively for these three sets
of benchmark instances. In Table 2, the first two columns give the instance size (N) and
the best-known result (d∗) reported on the Packomania website (Specht, 2023), columns 3–
5 give the best objective value dbest (i.e., the minimum distance between points) over 20
independent runs, the average objective value dave, and the worst objective value dworst. The
last three columns respectively give the difference between dbest and d∗, the success rate to hit
the best result (SR), and the average computational time in seconds to reach the final result
(time(s)), where a positive value of dbest−d∗ means that an improved solution is found by the
proposed algorithm. In addition, the last three rows “#Improve”, “#Equal” and “#Worse”
respectively indicate the numbers of instances for which the proposed algorithm obtains an
improved, equal and worse result compared to the best-known result in the literature in terms
of dbest, dave and dworst. We compare the results of the proposed algorithm only with the
best-known results due to the lack of source codes of previous algorithms and the fact that
these instances have been widely tested by a number of algorithms (Specht, 2023). In Tables
3 and 4, we give only the detailed computational results of the proposed algorithm due to
the fact that these instances are used for the first time and no available results exist in the
literature.

Table 3: Computational results on 25 representative instances with 75 ≤ N ≤ 200 for the
point arrangement problem in a convex region whose boundary is composed of two functions.

N dbest dave dworst SR time(s)
75 0.48293031 0.48293031 0.48293031 20/20 48
80 0.46629954 0.46629954 0.46629954 20/20 44
85 0.45058151 0.45058151 0.45058151 20/20 45
90 0.43796527 0.43796527 0.43796527 20/20 76
95 0.42534047 0.42534047 0.42534047 20/20 79
100 0.41286482 0.41286482 0.41286482 20/20 100
105 0.40338203 0.40338203 0.40338203 20/20 97
110 0.39271321 0.39271321 0.39271321 20/20 141
115 0.38314630 0.38314630 0.38314630 20/20 584
120 0.37500452 0.37500452 0.37500452 20/20 203
125 0.36753081 0.36753081 0.36753081 20/20 173
130 0.35946377 0.35946377 0.35946377 20/20 70
135 0.35206437 0.35206437 0.35206437 20/20 3223
140 0.34571829 0.34571829 0.34571829 20/20 245
145 0.33934576 0.33934576 0.33934576 20/20 313
150 0.33311847 0.33311847 0.33311847 20/20 864
155 0.32749615 0.32749615 0.32749615 20/20 936
160 0.32224426 0.32224426 0.32224426 20/20 369
165 0.31680994 0.31680994 0.31680994 20/20 540
170 0.31178504 0.31178504 0.31178504 20/20 1372
175 0.30720611 0.30720611 0.30720611 20/20 2047
180 0.30279972 0.30275695 0.30265606 12/20 3965
185 0.29856631 0.29851061 0.29846755 6/20 3228
190 0.29441376 0.29441376 0.29441376 20/20 2820
200 0.28682205 0.28681802 0.28678181 5/20 3998

Table 2 shows that the computational results of the proposed HAMSP algorithm dom-
inate the best-known results for the tested instances in terms of dbest, dave and dworst. In
particular, HAMSP improves the best-known result for 47 out of 50 instances, while matching
the best-known result for the remaining three instances. In terms of dave and dworst, our re-
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(a) N = 165 (b) N = 180 (c) N = 192

(d) N = 75 (e) N = 190 (f) N = 195

(g) N = 80 (h) N = 180 (i) N = 200

Figure 2: The best solutions found for nine representative instances of the point arrangement
problem in three different containers, where two points are connected by a dotted line if the
distance between them is the minimum distance among all the points.
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Table 4: Computational results on 25 representative instances with 75 ≤ N ≤ 200 for the
point arrangement problem in a convex region whose boundary is composed of three functions.

N dbest dave dworst SR time(s)
75 0.44065436 0.44065436 0.44065436 20/20 17
80 0.42380589 0.42380589 0.42380589 20/20 28
85 0.40871077 0.40871077 0.40871077 20/20 75
90 0.39668273 0.39668273 0.39668273 20/20 56
95 0.38471740 0.38471740 0.38471740 20/20 274
100 0.37485528 0.37485528 0.37485528 20/20 61
105 0.36559582 0.36559582 0.36559582 20/20 67
110 0.35728310 0.35728310 0.35728310 20/20 115
115 0.34936407 0.34936407 0.34936406 7/20 768
120 0.34154019 0.34154019 0.34154019 20/20 4152
125 0.33421670 0.33421670 0.33421670 20/20 88
130 0.32671203 0.32671203 0.32671203 20/20 206
135 0.31979897 0.31979897 0.31979897 20/20 106
140 0.31365217 0.31365217 0.31365217 20/20 183
145 0.30769644 0.30769644 0.30769644 20/20 146
150 0.30197125 0.30197125 0.30197125 20/20 704
155 0.29697189 0.29697189 0.29697189 20/20 388
160 0.29236891 0.29236891 0.29236891 20/20 206
165 0.28796118 0.28796118 0.28796118 20/20 1170
170 0.28357494 0.28357494 0.28357494 20/20 576
175 0.27986725 0.27986725 0.27986725 20/20 787
180 0.27505978 0.27505978 0.27505978 20/20 516
185 0.27117086 0.27117086 0.27117084 19/20 2061
190 0.26753922 0.26753922 0.26753922 20/20 575
200 0.26014522 0.26014522 0.26014522 20/20 1405

sult outperforms the best-known result respectively for 47 and 46 instances, and matches the
best-known result for the remaining instances. Moreover, the success rate of the algorithm
is higher than 10/20 for 39 out of the 50 instances, which means a high robustness of the
algorithm. These results indicate that the proposed algorithm is very competitive compared
to the previous algorithms on the point arrangement problem.

Tables 3 and 4 show that for the instances where the boundary of the container consists of
several piecewise-smooth nonlinear or linear functions, the proposed algorithm also performs
very well. One observes from the tables that for most instances tested, the success rate of our
algorithm is 20/20 and the average computational time of the algorithm is short compared
to the existing packing algorithms in the literature.

To have an intuitive impression of the best solutions found, Figure 2 shows the graphical
representation of the best solutions of 9 representative instances, where for each container
the best solutions of three instances are given. We observe that the distance between two
neighboring points matches the minimum distance d∗ between points for most points.

In summary, the experimental results of this section clearly show that the HAMSP al-
gorithm is very efficient for solving the point arrangement problem with a convex container
whose boundary is piecewise-smooth and that the performance of the algorithm is very com-
petitive compared to the existing algorithms.

4.3 Computational results and comparison on the circle packing problem
This section aims to assess the performance of the proposed HAMSP algorithm on four sets of
benchmark instances for the equal circle packing problem in a convex container, where each
set corresponds to a different container. The first set consists of two subsets and contains 96
instances with a circular container, where the first subset contains 55 instances with N ≤ 300
and the second subset contains 41 large-scale instances in the range of 301 ≤ N ≤ 700.
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The reason of selecting these instances as the test bed of our algorithm is that they are the
hardest instances for the state-of-the-art algorithms in the literature (Lai et al., 2022; Zhou
et al., 2024). For example, for the iterated dynamic thresholding search (IDTS) algorithm,
which is one of the state-of-the-art circle packing algorithms (Lai et al., 2022), the success
rate of hitting the best-known solution is very low (1/20) for most of these instances. The
second set consists of 50 instances in the range of 151 ≤ N ≤ 200, and the container is a
circular quadrant. The third and fourth sets both consist of 50 instances in the range of
151 ≤ N ≤ 200, and the corresponding containers are respectively a semicircle and a regular
hexadecagon. For these instances, the best-known results collected from different studies are
online available on the Packomania website (Specht, 2023).

The computational results of our HAMSP algorithm are summarized in Tables 5 – 9 for
the four sets of instances with the same statistical information as in Table 2. It should be
noted that the objective values (i.e., the minimum distance d among the points) are converted
as R using a rule of R = 2

d to make a direct comparison with the best-known results in the
literature (Specht, 2023). As such, the value of R corresponds to 1

r in which r is the common
radius of circles, and thus a smaller R value means a better result in terms of the objective
value. For most instances, the results of the proposed algorithm are compared with the best-
known results in the literature due to the lack of source codes of previous algorithms and
the fact that these instances have been widely tested by a number of algorithms (see (Specht,
2023) for the updating history of the best-known results).

The computational results of HAMSP on the first part of instances with a circular con-
tainer are summarized in Table 5, together with the best-known results (Specht, 2023). Table
5 shows that the HAMSP algorithm performs very well and has a high performance for each
considered indicator. In terms of Rbest, HAMSP improves the best-known results for 41 out of
the 55 instances and matches the best-known results for the remaining instances, which means
that our algorithm has a stronger search ability compared to all the previous algorithms on
these instances. Moreover, the average result of proposed HAMSP algorithm over 20 runs
is superior to the best-known result for 33 out of the 55 instances, while matching the best-
known results for 14 instances. In terms of Rworst, the HAMSP algorithm obtains a better,
equal and worse result compared to the best-known result respectively for 20, 17 and 18 in-
stances. Moreover, the success rate of the proposed algorithm is very high for most instances,
which means a good robustness of the algorithm. This implies that the proposed algorithm
significantly outperforms the state-of-the-art algorithms in the literature. In addition, it is
worth noting that the proposed HAMSP algorithm improves on the best-known solutions for
several small instances such as N = 156 and 197 with a perfect success rate 20/20 and very
short computational time compared to that of the state-of-the-art algorithms in the literature
(Lai et al., 2022; Zhou et al., 2024). This performance is impressive due to the fact that these
small instances have been widely studied in the literature for a very long time and a large
number of algorithms have been used to search for their optimal solutions, according to the
update history of these best-known results on the Packomania website (Specht, 2023).

To make a further comparison between the HAMSP algorithm and the state-of-the-art
circle packing algorithm (i.e., the geometric batch optimization (GBO) algorithm that also
is a randomized heuristic algorithm (Zhou et al., 2024)) on the large-scale instances, the
computational results of the HAMSP and GBO algorithms on the second part of instances
with a circular container are summarized in Table 6, where the GBO algorithm ran on an Intel
Xeon E5-2650 processor and its time limits were set to 12 and 24 hours respectively for the
instances with 301 ≤ N ≤ 320 and the instances with N ≥ 500, which are much longer than
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that of our HAMSP algorithm. The second column gives the best-known results (R∗) in the
literature. The best results (Rbest), the average results (Rave) and the average computational
times are given in columns 3–8 for the two algorithms. The differences between the best
results of HAMSP and the best-known results (Rbest − R∗) are given in the last column,
where a negative value means that an improved solution is found by HAMSP. The last three
rows ’#Better’, ’#Equal’, and ’#Worse’ indicate the numbers of instances for which the
corresponding algorithm obtains a better, equal or worse result than its reference algorithm
in terms of Rbest, Rave and the computational time, respectively.

Table 6 shows that the HAMSP algorithm significantly outperforms the GBO algorithm in
all the considered performance indicators. In terms of Rbest, the HAMSP algorithm obtains a
better result than the GBO algorithm for 32 out of 41 instances, while matching the results of
the GBO algorithm for 8 instances. In terms of Rave, the HAMSP algorithm obtains a better
and worse result for 39 and 2 out of 41 instances, respectively. Moreover, the computational
times of the HAMSP algorithm are much shorter than those of the GBO algorithm for all
instances. In addition, the last column of table shows that the HAMSP algorithm improves
or matches the best-known result except for two instances.

Tables 7 – 8 give the computational results of the algorithm on the second and third
sets of instances. These instances are widely studied by different researchers according to
the update history of the best-known solutions on the Packomania website (Specht, 2023).
One can observe from the tables that the results of the proposed algorithm outperform the
best-known results for almost all instances. Specifically, Table 7 shows that for the quadrant
container the HAMSP algorithm improves the best-known results for 49 out of the 50 instances
and matches the best-known result for the remaining instance. Furthermore, the worst result
of the proposed algorithm is superior to the best-known results for 48 instances, and matches
the best-known result for one instance. Moreover, the success rate of the algorithm is very high
for most instances and reaches 20/20 for 41 instances. Table 8 shows that for the semicircular
container the proposed algorithm performs very well too. It improves and matches the best-
known results respectively for 47 and 3 out of the 50 instances. The success rate of the
algorithm is 20/20 for 47 instances and is at least 12/20 for the remaining instances. The
average computational times of the algorithm, which can be used to estimate the hardness of
the instance, are plotted in Figure 3 respectively for the quadrant and semicircular containers.
The results in Figure 3 show that the computational time of the algorithm displays some large
fluctuations as the size of instance increases, which means that for the proposed algorithm
the hardness of the instance depends mainly on its structural features, rather than its size.

Tables 9 shows that the proposed algorithm also performs very well for the instances with
a regular hexadecagon container. These instances are intensively investigated in a recent
work (Amore, 2023), and E. Specht who is the maintainer of the Packomania website (Specht,
2023) subsequently improved the best-known results for most instances. Table 9 shows that
our algorithm performs very well. In particular, it improves and matches the best-known
results respectively for 46 and 4 out of the 50 instances. Nevertheless, compared to the
results of Table 8, the success rate of the algorithm decreases for several instances, and
the computational time significantly increases for most instances, which implies that these
instances are much more difficult to solve than those in Tables 7 and 8.

Figure 4 shows the graphical representation of the improved solutions of 12 representative
instances with different containers.

In summary, the results of this section show that the proposed HAMSP algorithm is highly
efficient for the equal circle packing problems in a variety of regular convex containers and
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significantly outperforms the existing algorithms in terms of search capacity.
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(a) Quadrant container
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(b) Semicircular container

Figure 3: Variation of the average computation time of the proposed algorithm as a function
of the instance size.
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Table 5: Computational results and comparison on the selected hard instances in the range of
N < 300 for the well-known equal circle packing problem in a circular container. In terms of
Rbest, Rave and Rworst, the improved results are indicated in bold compared to the best-known
results (BKR) in the literature (Specht, 2023).

N Best-Known
(R∗)

Rbest Rave Rworst Rbest −R∗ SR time(s)

156 13.71636305 13.71636279 13.71636279 13.71636279 -2.59E-07 20/20 1570
197 15.36749738 15.36737767 15.36737767 15.36737767 -1.20E-04 20/20 1306
206 15.73455751 15.73455751 15.73455751 15.73455751 0.0 20/20 8952
209 15.83987136 15.83987136 15.83987136 15.83987136 0.0 20/20 2778
215 16.04930621 16.04811230 16.04811230 16.04811230 -1.19E-03 20/20 5602
219 16.16915510 16.16915508 16.16915509 16.16915512 -1.76E-08 13/20 4191
221 16.25883435 16.25883435 16.25883435 16.25883435 0.0 20/20 3838
222 16.29878935 16.29868984 16.29868984 16.29868984 -9.95E-05 20/20 3967
223 16.33716660 16.33716660 16.33716660 16.33716660 0.0 20/20 887
224 16.36883169 16.36873161 16.36873161 16.36873161 -1.00E-04 20/20 863
230 16.59256499 16.59131228 16.59131228 16.59131228 -1.25E-03 20/20 4232
231 16.62906093 16.62893606 16.62893606 16.62893606 -1.25E-04 20/20 2174
233 16.69482994 16.69236002 16.69287019 16.69470787 -2.47E-03 2/20 12799
236 16.77439249 16.77439249 16.77439249 16.77439249 0.0 20/20 4481
237 16.80158286 16.80158033 16.80177814 16.80214550 -2.53E-06 13/20 8880
244 17.03480638 17.03480638 17.03480638 17.03480638 0.0 20/20 2064
250 17.26195491 17.26195483 17.26206684 17.26227118 -8.02E-08 9/20 8497
251 17.29538990 17.29538990 17.29538990 17.29538990 0.0 20/20 3431
252 17.32519590 17.32519590 17.32519590 17.32519590 0.0 20/20 2632
253 17.34595632 17.34594127 17.34612343 17.34620060 -1.51E-05 1/20 6677
254 17.39376319 17.39373178 17.39373717 17.39383945 -3.14E-05 19/20 5706
257 17.51796492 17.51796321 17.51836149 17.51938226 -1.71E-06 1/20 7926
258 17.53823578 17.53823578 17.53823578 17.53823578 0.0 20/20 7381
259 17.57395465 17.57336270 17.57377987 17.57425884 -5.92E-04 3/20 11016
261 17.62724067 17.62724067 17.62724067 17.62724067 0.0 20/20 2166
262 17.65790679 17.65746970 17.65760132 17.66010235 -4.37E-04 19/20 8309
263 17.68861384 17.68849774 17.68849774 17.68849774 -1.16E-04 20/20 6505
266 17.77608677 17.77608677 17.77608677 17.77608677 0.0 20/20 2708
267 17.79736130 17.79735106 17.79735157 17.79736130 -1.02E-05 19/20 6357
268 17.83206851 17.83187501 17.83190837 17.83208671 -1.93E-04 14/20 11358
270 17.88726567 17.88726567 17.88726567 17.88726567 0.0 20/20 6193
271 17.92969388 17.92967411 17.92967411 17.92967411 -1.98E-05 20/20 6038
274 18.03369836 18.03358504 18.03358504 18.03358504 -1.13E-04 20/20 5202
276 18.10341647 18.10341647 18.10341647 18.10341647 0.0 20/20 4714
277 18.13607946 18.13607836 18.13608058 18.13608325 -1.10E-06 10/20 8925
278 18.18055598 18.18002601 18.18012574 18.18024588 -5.30E-04 2/20 10675
279 18.21756845 18.21736923 18.21756168 18.21773521 -1.99E-04 1/20 8879
280 18.24592742 18.24592308 18.24592308 18.24592308 -4.34E-06 20/20 4057
281 18.28037613 18.28020456 18.28028991 18.28039300 -1.72E-04 3/20 10778
282 18.30878994 18.30727366 18.30809173 18.30929487 -1.52E-03 8/20 12341
283 18.34023658 18.34008331 18.34027483 18.34076016 -1.53E-04 11/20 11067
284 18.35945664 18.35942819 18.35953414 18.36117326 -2.85E-05 18/20 10407
285 18.40267860 18.40071061 18.40122240 18.40260402 -1.97E-03 8/20 11641
286 18.42924176 18.42924174 18.42924174 18.42924174 -1.96E-08 20/20 3644
287 18.46780004 18.46743979 18.46748244 18.46829272 -3.60E-04 19/20 8048
288 18.49434502 18.49428619 18.49428619 18.49428619 -5.88E-05 20/20 6817
289 18.51153892 18.51148362 18.51148362 18.51148362 -5.53E-05 20/20 9068
290 18.54870759 18.54862498 18.54862498 18.54862498 -8.26E-05 20/20 9384
291 18.56655121 18.56604139 18.56604139 18.56604139 -5.10E-04 20/20 6564
292 18.59450109 18.59433631 18.59440060 18.59454741 -1.65E-04 10/20 8005
293 18.62336670 18.62278847 18.62338391 18.62430519 -5.78E-04 4/20 11150
294 18.64484970 18.64427425 18.64427827 18.64429811 -5.75E-04 15/20 9956
295 18.65521752 18.65521752 18.65521752 18.65521752 0.0 20/20 6667
296 18.70275001 18.70257531 18.70257531 18.70257531 -1.75E-04 20/20 3912
297 18.72977481 18.72977465 18.72977475 18.72977481 -1.53E-07 7/20 5500
299 18.78542781 18.78525576 18.78525576 18.78525576 -1.72E-04 20/20 3045
#Improve 41 33 20
#Equal 14 14 17
#Worse 0 8 18
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Table 6: Comparison between the HAMSP method and the state-of-the-art algorithm (i.e.,
the GBO algorithm (Zhou et al., 2024)) on 41 selected large-scale instances, where the better
results between the two compared algorithms are indicated for each performance indicator.
The best-known results (R∗) are taken from (Specht, 2023) and (Zhou et al., 2024)

Rbest Rave time(s) HAMSP
N Best-Known

(R∗)
GBO HAMSP GBO HAMSP GBO HAMSP Rbest −R∗

301 18.84346351 18.84346351 18.84346351 18.84355108 18.84346351 38618 3563 0.0
302 18.89178160 18.89178226 18.89178160 18.89203331 18.89178160 23987 7170 0.0
303 18.92974915 18.92975062 18.92970239 18.93032872 18.92970239 23652 5917 -4.68E-05
304 18.96362032 18.96362032 18.96273958 18.96466401 18.96307327 18852 10726 -8.81E-04
305 19.00169315 19.00172681 19.00123339 19.00273469 19.00135969 21922 12136 -4.60E-04
306 19.03038941 19.03065124 19.03038941 19.03139172 19.03038941 25226 5134 0.0
307 19.06016092 19.06084192 19.05981236 19.06195543 19.05981236 26981 3259 -3.49E-04
308 19.10499144 19.10723995 19.10468186 19.10982061 19.10484180 23291 8151 -3.10E-04
309 19.14133583 19.14262504 19.14132915 19.14362043 19.14132915 24278 5045 -6.68E-06
310 19.17841932 19.17841932 19.17791232 19.17944284 19.17791453 24718 8767 -5.07E-04
311 19.21056407 19.21056407 19.21052802 19.21256178 19.21104031 21153 12815 -3.61E-05
312 19.23358565 19.23358565 19.23358565 19.23452950 19.23361006 30386 10734 0.0
313 19.25699466 19.25710301 19.25699466 19.25828441 19.25705900 25457 10768 0.0
314 19.28619024 19.28619024 19.28619024 19.28647695 19.28624867 26386 10275 0.0
315 19.30227399 19.30227399 19.30227399 19.30228618 19.30227399 24488 4149 0.0
316 19.33404175 19.33404175 19.33404175 19.33458428 19.33405120 22840 9388 0.0
317 19.36759567 19.36759567 19.36759567 19.36787112 19.36759567 23129 6674 0.0
318 19.39156609 19.39156609 19.39156609 19.39163157 19.39156609 27084 3693 0.0
319 19.42427783 19.42427783 19.42427783 19.42531087 19.42427783 24782 5343 0.0
320 19.45158374 19.45173418 19.45120573 19.45445553 19.45120573 30039 11018 -3.78E-04
500 24.13125294 24.13125294 24.13096092 24.13137882 24.13123427 39561 12725 -2.92E-04
510 24.42105376 24.42105376 24.41401851 24.42491359 24.41690342 60259 13460 -7.04E-03
520 24.62580737 24.62580737 24.62378188 24.63141241 24.62496543 69426 15284 -2.03E-03
530 24.84552802 24.84552802 24.84401862 24.84726030 24.84567511 44648 13646 -1.51E-03
540 25.08559112 25.08559112 25.08223707 25.08771273 25.08505206 45255 15157 -3.35E-03
550 25.33425357 25.33425357 25.33122417 25.33576287 25.33231313 43783 13416 -3.03E-03
560 25.51224249 25.51224249 25.51215422 25.51467968 25.51445402 59827 17570 -8.83E-05
570 25.71348473 25.71348473 25.71341665 25.71385424 25.71390697 63852 15087 -6.81E-05
580 25.95110749 25.95110749 25.94749220 25.95273796 25.94860967 69140 16749 -3.62E-03
590 26.20250416 26.20250416 26.20034819 26.20691566 26.20496190 62246 15667 -2.16E-03
600 26.41697463 26.41768801 26.41565986 26.42168302 26.41693481 58273 15676 -1.31E-03
610 26.62277366 26.62277366 26.61661750 26.62561510 26.61977506 55976 18057 -6.16E-03
620 26.84158994 26.84312357 26.83650030 26.84576525 26.83915474 65063 17639 -5.09E-03
630 27.03400365 27.05257789 27.04637089 27.06185882 27.05799715 44900 19136 1.24E-02
640 27.23872827 27.23872827 27.23672227 27.24218949 27.23974319 59358 16687 -2.01E-03
650 27.43822860 27.43822860 27.43780972 27.44220589 27.43930454 71570 17066 -4.19E-04
660 27.65890939 27.65890939 27.65624913 27.66222253 27.65903910 69611 16314 -2.66E-03
670 27.90082150 27.90082150 27.89106316 27.90309048 27.89881537 65422 16112 -9.76E-03
680 28.08775360 28.08775360 28.08231895 28.09039650 28.08596757 63392 16352 -5.43E-03
690 28.24471863 28.24471863 28.25947460 28.26387873 28.27520876 55853 19037 1.48E-02
700 28.48398886 28.48398886 28.47465411 28.48776809 28.48224102 59161 18351 -9.33E-03
#Better 1 32 2 39 0 41
#Equal 8 8 0 0 0 0
#Worse 32 1 39 2 41 0
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Table 7: Computational results and comparison on 50 representative instances with 151 ≤
N ≤ 200 for the circle packing problem in a circular quadrant. In terms of Rbest, Rave and
Rworst, the improved results are indicated in bold compared to the best-known results (BKR)
in the literature (Specht, 2023).

N Best-Known
(R∗)

Rbest Rave Rworst Rbest −R∗ SR time(s)

151 26.88099748 26.88099650 26.88099650 26.88099650 -9.76E-07 20/20 554
152 26.98525902 26.97209464 26.97209464 26.97209464 -1.32E-02 20/20 341
153 27.05193768 27.03877679 27.03877679 27.03877679 -1.32E-02 20/20 603
154 27.12615743 27.12605925 27.12605925 27.12605925 -9.82E-05 20/20 318
155 27.20731019 27.19736572 27.19736572 27.19736572 -9.94E-03 20/20 676
156 27.33076708 27.32756819 27.32756819 27.32756819 -3.20E-03 20/20 728
157 27.44115885 27.42921417 27.42921417 27.42921417 -1.19E-02 20/20 482
158 27.52805142 27.51518692 27.51518692 27.51518692 -1.29E-02 20/20 725
159 27.61317610 27.60997397 27.60997397 27.60997397 -3.20E-03 20/20 380
160 27.68020720 27.67681210 27.67681210 27.67681210 -3.40E-03 20/20 1016
161 27.76710059 27.75873859 27.75873863 27.75873867 -8.36E-03 14/20 1660
162 27.85308885 27.85152800 27.85152800 27.85152800 -1.56E-03 20/20 1244
163 27.93802281 27.93472827 27.93472827 27.93472827 -3.29E-03 20/20 1823
164 28.01892441 28.00821229 28.00821229 28.00821229 -1.07E-02 20/20 1573
165 28.07820011 28.07689445 28.07689445 28.07689445 -1.31E-03 20/20 2711
166 28.13692699 28.13412529 28.13412529 28.13412529 -2.80E-03 20/20 1086
167 28.25175477 28.25170534 28.25170534 28.25170534 -4.94E-05 20/20 1065
168 28.33962115 28.33165430 28.33165430 28.33165430 -7.97E-03 20/20 1523
169 28.39994391 28.38450707 28.38450707 28.38450711 -1.54E-02 20/20 1560
170 28.46447993 28.46103505 28.46103505 28.46103505 -3.44E-03 20/20 1365
171 28.55117566 28.54989072 28.54989072 28.54989072 -1.28E-03 20/20 2219
172 28.62189446 28.62189446 28.62189446 28.62189446 0.0 20/20 995
173 28.70363885 28.70040562 28.70040562 28.70040562 -3.23E-03 20/20 745
174 28.79791377 28.79128943 28.79128943 28.79128943 -6.62E-03 20/20 1009
175 28.89832171 28.88487441 28.88487465 28.88487473 -1.34E-02 1/20 845
176 28.94798884 28.94032832 28.94032832 28.94032832 -7.66E-03 20/20 1123
177 29.04805340 29.04274053 29.04274053 29.04274053 -5.31E-03 20/20 2061
178 29.12143989 29.11064185 29.11064185 29.11064185 -1.08E-02 20/20 1162
179 29.22334274 29.19603528 29.19604503 29.19608405 -2.73E-02 16/20 3055
180 29.29833508 29.29626399 29.29626399 29.29626399 -2.07E-03 20/20 965
181 29.36945074 29.35840508 29.35840508 29.35840508 -1.10E-02 20/20 2340
182 29.46466038 29.45094711 29.45094711 29.45094711 -1.37E-02 20/20 2403
183 29.53271084 29.53271043 29.53271043 29.53271044 -4.05E-07 20/20 1715
184 29.59954138 29.59420367 29.59420367 29.59420367 -5.34E-03 20/20 1491
185 29.68283028 29.67814732 29.67814732 29.67814732 -4.68E-03 20/20 1830
186 29.77478130 29.76016486 29.76152952 29.77694134 -1.46E-02 17/20 2669
187 29.86148198 29.84738261 29.84738261 29.84738261 -1.41E-02 20/20 717
188 29.94923359 29.92043832 29.92277541 29.93202812 -2.88E-02 9/20 3919
189 30.01368591 30.00905944 30.00945286 30.01070396 -4.63E-03 15/20 2058
190 30.06775827 30.06335485 30.06403512 30.06764616 -4.40E-03 4/20 3417
191 30.09376814 30.09274593 30.09274593 30.09274593 -1.02E-03 20/20 2276
192 30.17107846 30.16981048 30.16981048 30.16981048 -1.27E-03 20/20 2283
193 30.26593359 30.26325469 30.26325469 30.26325469 -2.68E-03 20/20 1734
194 30.29458525 30.28990478 30.28990478 30.28990478 -4.68E-03 20/20 889
195 30.37795325 30.37603818 30.37603818 30.37603818 -1.92E-03 20/20 1416
196 30.47206849 30.47200511 30.47200511 30.47200511 -6.34E-05 20/20 1458
197 30.53231551 30.53100816 30.53101519 30.53102824 -1.31E-03 13/20 2838
198 30.65507058 30.64184993 30.64184993 30.64184993 -1.32E-02 20/20 1235
199 30.76162418 30.74562161 30.74568260 30.74623156 -1.60E-02 18/20 3312
200 30.84866371 30.83073970 30.83073970 30.83073970 -1.79E-02 20/20 1672
#Improve 49 49 48
#Equal 1 1 1
#Worse 0 0 1
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Table 8: Computational results and comparison on 50 representative instances with 151 ≤
N ≤ 200 for the circle packing problem in a semicircular container. In terms of Rbest, Rave

and Rworst, the improved results are indicated in bold compared to the best-known results
(BKR) in the literature (Specht, 2023).

N Best-Known
(R∗)

Rbest Rave Rworst Rbest −R∗ SR time(s)

151 19.02323592 19.02002407 19.02002407 19.02002407 -3.21E-03 20/20 294
152 19.06265540 19.06221437 19.06221437 19.06221437 -4.41E-04 20/20 162
153 19.12897454 19.12897454 19.12897454 19.12897454 0.0 20/20 98
154 19.19521364 19.19521364 19.19521364 19.19521364 0.0 20/20 85
155 19.25078841 19.24697435 19.24697435 19.24697435 -3.81E-03 20/20 179
156 19.30345692 19.29849436 19.29849436 19.29849436 -4.96E-03 20/20 97
157 19.35632456 19.34791907 19.34791907 19.34791907 -8.41E-03 20/20 454
158 19.41878265 19.41452997 19.41452997 19.41452997 -4.25E-03 20/20 498
159 19.47975867 19.47281127 19.47281125 19.47281128 -6.95E-03 20/20 1531
160 19.52284608 19.51547755 19.51547755 19.51547755 -7.37E-03 20/20 458
161 19.59446429 19.58799292 19.58799292 19.58799292 -6.47E-03 20/20 158
162 19.65555020 19.65399771 19.65399771 19.65399771 -1.55E-03 20/20 145
163 19.72570612 19.72416358 19.72416358 19.72416358 -1.54E-03 20/20 226
164 19.80858461 19.79489897 19.79489897 19.79489897 -1.37E-02 20/20 390
165 19.85154071 19.83674815 19.83674815 19.83674815 -1.48E-02 20/20 713
166 19.90811731 19.89775064 19.89775064 19.89775064 -1.04E-02 20/20 330
167 19.93789457 19.92693560 19.92693560 19.92693560 -1.10E-02 20/20 103
168 19.98453918 19.98439486 19.98439486 19.98439486 -1.44E-04 20/20 154
169 20.02459782 20.01939596 20.01939596 20.01939596 -5.20E-03 20/20 602
170 20.07169903 20.06926724 20.06926724 20.06926724 -2.43E-03 20/20 98
171 20.14172559 20.14172559 20.14172559 20.14172559 0.0 20/20 47
172 20.21795883 20.21213938 20.21213938 20.21213938 -5.82E-03 20/20 217
173 20.27787466 20.27665458 20.27665458 20.27665458 -1.22E-03 20/20 110
174 20.36530505 20.35767251 20.35767251 20.35767251 -7.63E-03 20/20 155
175 20.43874997 20.43105887 20.43105887 20.43105887 -7.69E-03 20/20 226
176 20.51716646 20.49078395 20.49078395 20.49078395 -2.64E-02 20/20 133
177 20.58943015 20.56707995 20.56707995 20.56707995 -2.24E-02 20/20 458
178 20.63989907 20.61560032 20.61562639 20.61612189 -2.43E-02 19/20 3246
179 20.67518227 20.67170894 20.67170894 20.67170894 -3.47E-03 20/20 1976
180 20.73853303 20.71613996 20.71711807 20.72592521 -2.24E-02 18/20 1551
181 20.77161098 20.76582985 20.76582985 20.76582985 -5.78E-03 20/20 538
182 20.81550922 20.80883762 20.80883762 20.80883762 -6.67E-03 20/20 461
183 20.87866550 20.87210569 20.87210569 20.87210569 -6.56E-03 20/20 227
184 20.91621379 20.90735959 20.90735959 20.90735959 -8.85E-03 20/20 655
185 20.95908902 20.95902727 20.95902727 20.95902727 -6.17E-05 20/20 2001
186 20.99553967 20.99487256 20.99487256 20.99487256 -6.67E-04 20/20 255
187 21.07051412 21.06701043 21.06701043 21.06701043 -3.50E-03 20/20 275
188 21.10907698 21.10720379 21.10720379 21.10720379 -1.87E-03 20/20 309
189 21.16865010 21.16333789 21.16333789 21.16333789 -5.31E-03 20/20 171
190 21.21639955 21.20971376 21.20971376 21.20971376 -6.69E-03 20/20 249
191 21.28735771 21.27027494 21.27027494 21.27027494 -1.71E-02 20/20 324
192 21.35886586 21.34165308 21.34165308 21.34165308 -1.72E-02 20/20 413
193 21.42376435 21.39944050 21.39944050 21.39944050 -2.43E-02 20/20 501
194 21.47454536 21.45598547 21.45598547 21.45598547 -1.86E-02 20/20 504
195 21.52404840 21.51619827 21.51619831 21.51619836 -7.85E-03 12/20 2021
196 21.56967305 21.56910957 21.56910957 21.56910957 -5.63E-04 20/20 988
197 21.62871647 21.62489082 21.62489082 21.62489082 -3.83E-03 20/20 528
198 21.68800177 21.67889729 21.67889729 21.67889729 -9.10E-03 20/20 939
199 21.73383636 21.72626039 21.72626039 21.72626039 -7.58E-03 20/20 715
200 21.77435759 21.77008392 21.77008392 21.77008392 -4.27E-03 20/20 516
#Improve 47 47 47
#Equal 3 3 3
#Worse 0 0 0
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Table 9: Computational results and comparison on 50 representative instances with 151 ≤
N ≤ 200 for the circle packing problem in a regular hexadecagon. In terms of Rbest, Rave and
Rworst, the improved results are indicated in bold compared to the best-known results (BKR)
in the literature (Specht, 2023).

N Best-Known
(R∗)

Rbest Rave Rworst Rbest −R∗ SR time(s)

151 13.67618656 13.67618656 13.67618656 13.67618656 0.0 20/20 1894
152 13.73253530 13.72590253 13.72590253 13.72590253 -6.63E-03 20/20 1854
153 13.77397972 13.76798264 13.76798264 13.76798264 -6.00E-03 20/20 1329
154 13.81635827 13.81494554 13.81494554 13.81494554 -1.41E-03 20/20 1790
155 13.85630968 13.85197084 13.85197084 13.85197084 -4.34E-03 20/20 2672
156 13.89607948 13.89201271 13.89201271 13.89201271 -4.07E-03 20/20 1616
157 13.94391511 13.93859447 13.93859596 13.93862419 -5.32E-03 19/20 2260
158 13.98397872 13.97810571 13.97810571 13.97810571 -5.87E-03 20/20 757
159 14.04592114 14.04370266 14.04375079 14.04382297 -2.22E-03 12/20 2693
160 14.09100872 14.08885285 14.08885285 14.08885285 -2.16E-03 20/20 544
161 14.14138067 14.13438254 14.13438254 14.13438254 -7.00E-03 20/20 2464
162 14.19981231 14.18862625 14.18912581 14.19429236 -1.12E-02 18/20 4104
163 14.24084739 14.23552782 14.23555921 14.23584162 -5.32E-03 16/20 4020
164 14.26205512 14.26195123 14.26195123 14.26195123 -1.04E-04 20/20 1857
165 14.31510039 14.30981306 14.30981306 14.30981306 -5.29E-03 20/20 3133
166 14.35034787 14.34398777 14.34529385 14.35100780 -6.36E-03 11/20 4313
167 14.38748643 14.38629573 14.38634388 14.38725873 -1.19E-03 19/20 4111
168 14.42660836 14.42660836 14.42688729 14.43218908 0.0 19/20 2725
169 14.46993030 14.46522926 14.46522926 14.46522926 -4.70E-03 20/20 1213
170 14.51016657 14.50713079 14.50713079 14.50713079 -3.04E-03 20/20 2061
171 14.54120514 14.53854478 14.53854478 14.53854478 -2.66E-03 20/20 1758
172 14.58646525 14.58482768 14.58482768 14.58482768 -1.64E-03 20/20 2051
173 14.63403212 14.62806564 14.62806564 14.62806564 -5.97E-03 20/20 2072
174 14.67419569 14.67333554 14.67333554 14.67333554 -8.60E-04 20/20 2479
175 14.71532571 14.71532571 14.71532571 14.71532571 0.0 20/20 1725
176 14.74655587 14.74421399 14.74421399 14.74421399 -2.34E-03 20/20 1777
177 14.78655948 14.78593783 14.78593783 14.78593783 -6.22E-04 20/20 1887
178 14.81828379 14.81574646 14.81574646 14.81574646 -2.54E-03 20/20 1252
179 14.86357121 14.86235043 14.86235043 14.86235043 -1.22E-03 20/20 1147
180 14.90383558 14.90318314 14.90318314 14.90318314 -6.52E-04 20/20 2182
181 14.93492487 14.93464881 14.93609123 14.94102909 -2.76E-04 6/20 4770
182 14.96788416 14.96741213 14.96741213 14.96741213 -4.72E-04 20/20 1445
183 15.01512999 15.01430450 15.01430450 15.01430450 -8.25E-04 20/20 1424
184 15.08030005 15.06994998 15.07051651 15.07242450 -1.04E-02 12/20 3771
185 15.12527995 15.11321619 15.11359850 15.11470166 -1.21E-02 13/20 3405
186 15.15833014 15.15648427 15.15661522 15.15833014 -1.85E-03 16/20 4457
187 15.19243873 15.19086317 15.19251845 15.19670624 -1.58E-03 2/20 5347
188 15.23751318 15.22914287 15.23008216 15.23262453 -8.37E-03 7/20 5835
189 15.25734952 15.25273776 15.25301365 15.25430693 -4.61E-03 15/20 4301
190 15.28931004 15.28772107 15.28772107 15.28772107 -1.59E-03 20/20 2328
191 15.31991771 15.31932982 15.31934376 15.31960860 -5.88E-04 19/20 2912
192 15.36584005 15.36519642 15.36521146 15.36529671 -6.44E-04 17/20 3878
193 15.40042766 15.39963616 15.39963616 15.39963616 -7.92E-04 20/20 3837
194 15.43981814 15.43914722 15.43914722 15.43914722 -6.71E-04 20/20 2561
195 15.48373234 15.48168862 15.48168862 15.48168862 -2.04E-03 20/20 2072
196 15.52705499 15.52404128 15.52407856 15.52441036 -3.01E-03 17/20 3194
197 15.56150329 15.55794670 15.55794914 15.55799555 -3.56E-03 19/20 3089
198 15.60368610 15.59902157 15.59902446 15.59905321 -4.66E-03 2/20 4122
199 15.62855640 15.62855640 15.62855640 15.62855640 0.0 20/20 3812
200 15.68010718 15.67975636 15.67980896 15.68060061 -3.51E-04 17/20 4670
#Improve 46 44 41
#Equal 4 3 4
#Worse 0 3 5
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(a) N = 170 (b) N = 195 (c) N = 200

(d) N = 233 (e) N = 305 (f) N = 320

(g) N = 160 (h) N = 180 (i) N = 190

(j) N = 168 (k) N = 187 (l) N = 193

Figure 4: The improved solutions of 12 representative instances for the equal circle packing
problems in four different containers, i.e., a circular quadrant, a circle, a semicircle and a
regular hexadecagon, where the circles are colored according to their number of neighbors.
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5 Analysis of the Key Algorithmic Components
In this section, we turn to an analysis and discussion of two essential components of the
proposed algorithm, i.e., the optima exploitation based adjustment method to adjust the
minimum distance between points and the DIH method to optimize the subproblems.

5.1 Effectiveness of the optima exploitation based adjustment method

Table 10: Comparison between the OEB adjustment method and the standard SUMT ad-
justment method on a well-known equal circle packing problem (i.e., the problem of packing
equal circles in a circular container), where the better results between two compared methods
are indicated in bold.

Rbest Ravg SR time(s)
N HAMSP∗ HAMSP HAMSP∗ HAMSP HAMSP∗ HAMSP HAMSP∗ HAMSP
262 17.65746970 17.65746970 17.65847621 17.65760132 1/20 19/20 11934 8309
267 17.79735106 17.79735106 17.79739701 17.79735157 2/20 19/20 9813 6357
268 17.83196595 17.83187501 17.83204077 17.83190837 0/20 14/20 7253 11358
271 17.92969125 17.92967411 17.92970886 17.92967411 0/20 20/20 12154 6038
274 18.03371525 18.03358504 18.03384668 18.03358504 0/20 20/20 9067 5202
277 18.13607836 18.13607836 18.13689254 18.13608058 1/20 10/20 11584 8925
278 18.18010080 18.18002601 18.18088264 18.18012574 0/20 2/20 9593 10675
279 18.21757827 18.21736923 18.21778483 18.21756168 0/20 1/20 7812 8879
280 18.24592742 18.24592308 18.24595821 18.24592308 0/20 20/20 9742 4057
281 18.28031024 18.28020456 18.28041047 18.28028991 0/20 3/20 10652 10778
282 18.30734603 18.30727366 18.30885008 18.30809173 0/20 8/20 13995 12341
283 18.34027382 18.34008331 18.34085322 18.34027483 0/20 11/20 11579 11067
284 18.35942819 18.35942819 18.36078644 18.35953414 1/20 18/20 16129 10407
285 18.40071061 18.40071061 18.40220652 18.40122240 1/20 8/20 14617 11641
286 18.42924174 18.42924174 18.42999250 18.42924174 7/20 20/20 10961 3644
287 18.46743979 18.46743979 18.46776284 18.46748244 5/20 19/20 11019 8048
288 18.49428619 18.49428619 18.49433566 18.49428619 3/20 20/20 13948 6817
289 18.51148362 18.51148362 18.51151638 18.51148362 8/20 20/20 13224 9068
290 18.54862498 18.54862498 18.54880632 18.54862498 1/20 20/20 8295 9384
291 18.56604139 18.56604139 18.56617971 18.56604139 8/20 20/20 13576 6564
292 18.59440852 18.59433631 18.59459066 18.59440060 0/20 10/20 13258 8005
293 18.62320045 18.62278847 18.62379224 18.62338391 0/20 4/20 9653 11150
294 18.64472770 18.64427425 18.64495967 18.64427827 0/20 15/20 13550 9956
303 18.92974929 18.92970239 18.92990859 18.92970239 0/20 20/20 13439 5917
304 18.96389896 18.96273958 18.96441090 18.96307327 0/20 4/20 12387 10726
305 19.00124350 19.00123339 19.00172921 19.00135969 0/20 15/20 11067 12136
307 19.06016876 19.05981236 19.06088124 19.05981236 0/20 20/20 9690 3259
308 19.10678912 19.10468186 19.10782138 19.10484180 0/20 15/20 12106 8151
309 19.14133079 19.14132915 19.14235732 19.14132915 0/20 20/20 14606 5045
310 19.17800359 19.17791232 19.17900317 19.17791453 0/20 17/20 14777 8767
311 19.21066978 19.21052802 19.21151914 19.21104031 0/20 4/20 14835 12815
320 19.45158294 19.45120573 19.45173284 19.45120573 0/20 20/20 10131 11018
#Better 0 21 0 32 0 32 8 24
#Equal 11 11 0 0 0 0 0 0
#Worse 21 0 32 0 32 0 24 8

The optima exploitation based (OEB) adjustment method is one of the main components
of the HAMSP algorithm, whose goal is to maximize the common circle radius or the mini-
mum distance between the points. To check its effectiveness, we carried out an experiment
based on 32 selected hard instances with respect to the well-known equal circle packing prob-
lem in a circular container. It should be noted that these instances are very hard to solve
for the state-of-art algorithms according to the update history of the best-known solutions
reported on the Packomania website (Specht, 2023). In this experiment, we first created a
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variant HAMSP∗ of the HAMSP algorithm by replacing the OEB adjustment method with
the standard SUMT method that is shown to be the best performing adjustment method for
the circle packing problem (Lai et al., 2022), while keeping other components of the algorithm
unchanged. Then, the HAMSP∗ and HAMSP algorithms were respectively run 20 times with
different random seeds to solver each of the 32 selected instances. The experimental results
of the two algorithms are summarized in Table 10, including the best objective value Rbest

(= 2.0/dbest) over 20 runs, the average objective value (Ravg), the success rate of hitting
the current best solutions (SR), and the average computational time (time(s)) in seconds to
reach the final result. The better results between the two compared algorithms are indicated
in bold. Moreover, the last three rows ‘#Better’, ‘#Equal’ and ‘#Worse’ respectively indicate
the numbers of instances for which the corresponding algorithm obtains a better, equal or
worse result for the corresponding performance indicator.

Table 10 shows that the HAMSP algorithm significantly outperforms the HAMSP∗ al-
gorithm for each performance indicator. For Rbest, the HAMSP algorithm obtains a better
result on 21 out of the 32 instances, while matching the results of HAMSP∗ for the remaining
instances. In terms of both Rave and success rate, HAMSP outperforms HAMSP∗ on all
the instances. In terms of computational time, HAMSP obtains a better and worse result
for 24 and 8 instances, respectively. The outcome of this experiment clearly shows that for
these hard instances the OEB adjustment method proposed in this work significantly outper-
forms the standard SUMT method, clearly showing the effectiveness of the OEB adjustment
method.

In addition, to have an adequate understanding for the reason why the OEB adjustment
method significantly outperforms the standard SUMT method for these hard instances, we
carried out a case study based on an representative instance with N = 271. In the case study,
to observe the differences between the solutions returned by the SUMT method, we ran
HAMSP∗ several times and collected a number of solutions returned by the SUMT method
in the search process of the algorithm. Figure 5 gives the packing configurations of three
different local optimal solutions collected.

(a) R = 17.92969388 (b) R = 17.92969125 (c) R = 17.92967411

Figure 5: The packing configurations of three different local optimal solutions returned by
the SUMT method for the problem of packing N = 271 circles in a circular container, where
the circles are colored according to their number of neighbors.

One observes from Figure 5 that despite having different objective values, the geometrical
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configurations of three local optimal solutions are very similar such that it is not easy for the
naked eyes to observe the differences between them. This observation indicates a very inter-
esting phenomenon that for the circle packing problems there exist a large number of different
local optimal solutions or saddle points sharing very similar geometrical configurations, which
largely increases the difficulty of global optimization. Furthermore, it should be pointed out
that this is a very common phenomenon especially for the hard instances according to our
computational experiments.

Due to this phenomenon, the adjustment methods aiming at local optimization are doomed
to be ineffective for the hard instances, which explains why the existing adjustment methods
like the standard SUMT method (Lai et al., 2022) and the binary search method (Huang
and Ye, 2011) perform poorly for these hard instances. Specifically, the adjustment methods
aiming at local optimization return only one local optimal solution at each time, and thus
often fail to reach high-quality packing configurations among a large number of similar ones,
thus limiting largely their search capacity. However, compared to these local optimization
approaches, our OEB adjustment method can be regarded as a global optimization approach.
In particular, it consists of the standard SUMT method and a MBH method with multi-
scale perturbations (Weak_MBH in Algorithm 4), where the MBH method is a global
optimization method aiming to find a high-quality feasible solution by jumping from one
local optimal solution to another one and the SUMT method is a local optimization method
aiming to locally improve the solution returned by the MBH method. Thus, the combined use
of the SUMT and MBH methods allows the OEB adjustment method to visit a large number
of local minimum solutions with very similar packing configurations and find high-quality
local minimum solutions.

5.2 Effectiveness of the diversification and intensification based heuristic method
The diversification and intensification based heuristic (DIH) method used to optimize the
unconstrained function Ed(X) (defined in Section 2.1) is one of main components of proposed
HAMSP algorithm, and its goal is to reach a desirable tradeoff between the intensification
and diversification search by alternately performing the MBH method and a stochastic diver-
sification procedure. To show its effectiveness, we carried out another experiment based on 32
representative instances mentioned above. In this experiment, we first created two variants
HAMSP1 and HAMSP2 of HAMSP algorithm by replacing the DIH method with the MBH
method with different search depths, respectively. In HAMSP1, the DIH method is replaced
by the MBH method with a small search depth of MaxNoImprove = 20, and thus HAMSP1

has a weak intensification search ability and a strong diversification search ability compared
to the HAMSP algorithm. On the contrary, in HAMSP2, the DIH method is replaced by the
MBH method with a large search depth of MaxNoImprove = 200, which leads to a strong
intensification search ability of the algorithm. Then, the HAMSP1, HAMSP2 and HAMSP
algorithms were independently run 20 times on each instance, respectively, and the computa-
tional results are summarized in Table 11, where ‘#Best’ denotes the numbers of instances for
which the corresponding algorithm obtains the best result among the compared algorithms
and other symbols are the same as in Table 10.

We observe from Table 11 that the HAMSP algorithm significantly outperforms the
HAMSP1 and HAMSP2 algorithms on all the considered performance indicators. Specifi-
cally, in terms of Rave, HAMSP, HAMSP1 and HAMSP2 respectively obtain the best results
on 27, 0 and 9 instances. In terms of the success rate of hitting the current best-known solu-
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Table 11: Comparison of HAMSP1, HAMSP2 and HAMSP in terms of Rave, success rate
(SR) to hit the current best-known solution, and average computational time (time(s)). The
best results among the three algorithms are indicated in bold in terms of Rave, SR and the
computational time.

Rave SR time(s)
N HAMSP1 HAMSP2 HAMSP HAMSP1 HAMSP2 HAMSP HAMSP1 HAMSP2 HAMSP
262 17.65960785 17.65773293 17.65760132 6/20 9/20 19/20 12868 12062 8309
267 17.79735669 17.79735311 17.79735157 9/20 8/20 19/20 9052 8977 6357
268 17.83209481 17.83189848 17.83190837 0/20 7/20 14/20 5559 13115 11358
271 17.92971492 17.92967411 17.92967411 12/20 20/20 20/20 7864 6179 6038
274 18.03360854 18.03358504 18.03358504 17/20 20/20 20/20 6762 6904 5202
277 18.13608830 18.13609301 18.13608058 4/20 3/20 10/20 7060 9746 8925
278 18.18015389 18.18020441 18.18012574 0/20 0/20 2/20 9734 13029 10675
279 18.21764200 18.21759286 18.21756168 1/20 1/20 1/20 7976 9799 8879
280 18.24592330 18.24592308 18.24592308 19/20 20/20 20/20 8345 9697 4057
281 18.28034950 18.28031514 18.28028991 0/20 1/20 3/20 13633 13165 10778
282 18.30970663 18.30868923 18.30809173 0/20 5/20 8/20 9292 12983 12341
283 18.34045670 18.34028669 18.34027483 6/20 11/20 11/20 9981 8728 11067
284 18.36077337 18.36089674 18.35953414 9/20 7/20 18/20 14497 16012 10407
285 18.40216457 18.40302101 18.40122240 3/20 2/20 8/20 12810 12059 11641
286 18.42930425 18.42945027 18.42924174 19/20 19/20 20/20 6921 10510 3644
287 18.46776682 18.46770038 18.46748244 10/20 15/20 19/20 9154 12256 8048
288 18.49430858 18.49434317 18.49428619 17/20 18/20 20/20 12386 9780 6817
289 18.51172660 18.51149183 18.51148362 8/20 17/20 20/20 10778 15841 9068
290 18.54871729 18.54868674 18.54862498 11/20 15/20 20/20 9271 9527 9384
291 18.56629865 18.56624000 18.56604139 12/20 16/20 20/20 10394 12255 6564
292 18.59451635 18.59437445 18.59440060 3/20 11/20 10/20 11351 8747 8005
293 18.62403455 18.62325319 18.62338391 0/20 8/20 4/20 10190 10018 11150
294 18.64459086 18.64429020 18.64427827 4/20 15/20 15/20 11960 10835 9956
303 18.92971365 18.92971972 18.92970239 8/20 12/20 20/20 11768 13794 5917
304 18.96335411 18.96299465 18.96307327 1/20 2/20 4/20 10331 10240 10726
305 19.00161173 19.00123339 19.00135969 5/20 20/20 15/20 8808 8162 12136
307 19.05981241 19.05981236 19.05981236 18/20 20/20 20/20 6262 10560 3259
308 19.10559347 19.10487262 19.10484180 3/20 11/20 15/20 10808 12596 8151
309 19.14212861 19.14134333 19.14132915 4/20 18/20 20/20 13226 11624 5045
310 19.17849825 19.17798487 19.17791453 9/20 14/20 17/20 10288 12616 8767
311 19.21158251 19.21214989 19.21104031 1/20 1/20 4/20 11256 13360 12815
320 19.45156768 19.45159036 19.45120573 2/20 0/20 20/20 9227 13275 11018
#Best 0 9 27 1 10 29 8 4 20
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tion, HAMSP, HAMSP1 and HAMSP2 respectively obtain the best results on 29, 1, and 10
instances. As for the average computational time, the HAMSP algorithm consumes the least
time for 20 out of the 32 instances. The outcome of this experiment implies that a good trade-
off between the intensification and the diversification of search plays an very important role
in ensuring the performance of the proposed algorithm and that the proposed DIH method
is able to provide such a tradeoff and thus guarantees a high performance of the HAMSP
algorithm in terms of both solution quality and computational time.

6 Conclusions and Future Work
In this work, we investigate the classic equal circle packing problem and the point arrange-
ment problem in a variety of convex containers, which have many real-world applications in
different domains. Due to the short interactions between the circles or points, the number of
local optimal solutions of these problems is huge and the corresponding optimization is very
challenging. To solve efficiently these problems, we proposed a unified HAMSP algorithm
by integrating several complementary search components, including the optima exploitation
based adjustment method to adjust the minimum distance between points (or the circle cen-
ters) and the diversification and intensification based heuristic (DIH) method to achieve a
desirable tradeoff between search intensification and diversification.

The computational results on a large number of popular benchmark instances show that
the proposed algorithm is efficient and significantly outperforms the state-of-the-art algo-
rithms in the literature, especially for the hard instances. In particular, for the equal circle
packing problem in a circular container, which is the most studied circle packing problem, the
proposed algorithm improves the best-known results for 69 out of 96 selected hard instances,
while matching the best-known results for most of the remaining instances with a high suc-
cess rate. For the remaining instances, the proposed algorithm also performs well for every
performance metric considered. The experimental analysis shows that both the DIH method
and the distance adjustment method used contribute significantly to the high performance of
the algorithm. Particularly, unlike the existing distance adjustment methods that visit only
one local optimum solution for the corresponding constrained optimization problem, our op-
tima exploitation based adjustment method is able to explore a large number of local optima
and then find high-quality solutions, which significantly enhances the search capacity of the
proposed algorithm.

The present study can be extended from the following directions. First, the basic idea
of the optima exploitation based adjustment method is very general and can be applied to
other related max-min (or min-max) constrained optimization problems, such as covering a
complicated region by the equal circles or spheres (Birgin et al., 2024). Second, the idea of
the multi-scale perturbation strategy is also very general and it is very interesting to check its
effectiveness on other optimization problems with a large number of local optima or saddle
points. Third, to handle super-large scale instances with more than 103 points or circles, it
would be interesting to integrate decomposition methods and dimension reduction strategies
into the proposed algorithm to further improve its performance. Fourth, the proposed algo-
rithm can be applied to higher dimensional problems with a convex container, such as the
point arrangement problem on a unit sphere in k-dimensional (k ≥ 3) space (i.e., the classic
spherical code problem (https://spherical-codes.org)) and the k-dimensional (k ≥ 3) sphere
packing problems with a regular convex container, such as a spherical container. Finally,
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by adding some specialized move operators, such as the insertion operator, which moves a
high-energy circle from its current position to a vacancy position, the proposed algorithm can
be adapted to the problems with a non-convex container as well.
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